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Inferring gene regulatory networks can elucidate how genes work coop-
eratively. The gene-gene collaboration information is often learned by Gaus-
sian graphical models (GGM) that aim to identify whether the expression lev-
els of any pair of genes are dependent, given other genes’ expression values.
One basic assumption that guarantees the validity of GGM is data normality,
and this often holds for bulk-level expression data which aggregate biological
signals from a collection of cells. However, fine-grained cell-level expression
profiles collected in single-cell RNA-sequencing (scRNA-seq) reveal non-
normality features—cellular heterogeneity and zero inflation. We propose a
Bayesian latent mixture GGM to jointly estimate multiple gene regulatory
networks accounting for the zero inflation and unknown heterogeneity of
single-cell expression data. The proposed approach outperforms competing
methods on synthetic data in terms of network structure and precision ma-
trix estimation accuracy and provides biological insights when applied to two
real-world scRNA-seq datasets. An R package implementing the proposed
model is available on GitHub https://github.com/WgitU/BLGGM.

1. Introduction. Genes are not independent workers but collaborate with each other to
regulate associated biological processes. Elucidating gene regulatory networks allows us to
get insights into underlying molecular mechanisms related to disease development, aging, and
health (Chatterjee et al. (2016), Yang et al. (2015)). In Gaussian graphical models (GGM),
the gene regulatory networks are encoded in a Gaussian graph, where nodes represent genes
and edges capture the conditional dependence of expression levels of corresponding genes.
Mathematically, let (θ1, θ2, . . . , θp) be a random vector following a p-dimensional Gaussian
distribution with mean vector μ and precision matrix �, where θj represents the expression
level of gene j for 1 ≤ j ≤ p. Accordingly, the Gaussian graph is totally delineated by ele-
ments in �: there is no edge between nodes j1 and j2 (j1 �= j2) in the Gaussian graph (i.e.,
θj1 and θj2 are conditionally independent) if and only if �j1j2 = 0 (Dempster (1972), Yuan
and Lin (2007), Friedman, Hastie and Tibshirani (2008)).

GGM requires normality of observed data which is a basic assumption to correctly recover
gene regulatory networks. Fortunately, the normality often holds for bulk-level gene expres-
sion data, which are aggregate signals over all cells in a sample (Pratapa et al. (2020)), based
on central limit theorem. With the fast development and increasing popularity of single-cell
sequencing technology nowadays, such as single-cell RNA-sequencing (scRNA-seq), cell-
level expression data become more common to researchers. However, cell-level expressions
are different from bulk-level expressions in two ways. First, single-cell data are zero in-
flated, owing to the fact that there is a significantly smaller amount of mRNA molecules in
one single cell than those in a bulk-level sample so that low cell-level expressions of some
genes tend to be missed, resulting in zero values. Zero inflation is also called dropout, so
we use the two exchangeable terms throughout the paper. Second, single-cell data capture
cellular heterogeneity, and the distribution of heterogeneous expression values often exhibits
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multi-modality. Therefore, considering the increasing deposition of single-cell data in public
databases (Edgar, Domrachev and Lash (2002), Rozenblatt-Rosen et al. (2017)), how to gen-
eralize GGM to account for zero inflation and cellular heterogeneity is a crucial problem in
correctly estimating gene regulatory networks from single-cell expression data.

The application of GGM to recover gene regulatory networks from bulk-level expression
has received attentions from both perspectives of frequentist (Yuan and Lin (2007), Friedman,
Hastie and Tibshirani (2008)) and Bayesian (Dobra, Lenkoski and Rodriguez (2011), Wang
(2012), Wang and Li (2012), Mohammadi and Wit (2015)). For example, glasso (Friedman,
Hastie and Tibshirani (2008)) appended an L1-norm penalty term of nondiagonals in the
precision matrix � to the likelihood of � and then maximized penalized likelihood. In this
way, some nondiagonals can be exactly estimated as zeros. Bayesian approaches aim to as-
sign reasonable priors to �, which can induce sparsity of the precision matrices, for exam-
ple, G-Wishart prior (Wang and Li (2012)), Bayesian glasso (Wang (2012)) and continuous
spike-slab prior (Wang (2015)). Nevertheless, all of the methods are only applicable to homo-
geneous bulk-level expression data and hence might lead to problematic results when there
exist sample heterogeneity.

When sample heterogeneity is known, in other words, we know the information about
which class each sample comes from, several statistical methods extend GGM to jointly esti-
mate multiple Gaussian graphs by borrowing strengths across classes. Frequentist approaches
(Guo et al. (2011), Danaher, Wang and Witten (2014), Saegusa and Shojaie (2016), Ma and
Michailidis (2016)) employed additional penalties that link elements of multiple precision
matrices to induce similar sparsity structures across conditions. In the Bayesian paradigm,
Peterson, Stingo and Vannucci (2015) used G-Wishart distributions and a hypergraph prior to
connect multiple graphs. Lin et al. (2017) extended Bayesian GGM to analyze brain microar-
ray data with spatial and temporal structures. Li, McCormick and Clark (2019) took advan-
tage of a continuous spike-slab framework to realize Bayesian treatments of group and fused
graphical lasso. Gan et al. (2019) discussed the theoretical underpinning of joint Bayesian
estimation of multiple graphs using spike-slab lasso priors. When sample heterogeneity is
not available, graphical models built upon mixture distributions (Rodríguez, Lenkoski and
Dobra (2011), Gao et al. (2016), Luo and Wei (2018), Hao et al. (2018), Ren et al. (2021a))
were proposed to achieve simultaneous clustering and multiple graph estimations.

Despite the successful application of aforementioned graphical models to bulk-level ex-
pression, there are few statistical models that can deal with zero inflation in single-cell
expression data. McDavid et al. (2019) proposed a Hurdle graphical model to account for
zero-inflation of single-cell data. The Hurdle model turns out to be a mixture of degenerated
Gaussian distributions and encodes conditional independences through three interaction ma-
trices. Subsequently, they utilized the neighborhood selection technique to select edges for
each node via penalized regression. Unfortunately, the Hurdle model does not consider the
cellular heterogeneity among single-cell expressions. In addition, some computational biol-
ogy methods (Aibar et al. (2017), Qiu et al. (2018)) also aim to reconstruct gene regulatory
networks from homogeneous cells, but they rely on time-course expression data or expression
data with estimated pseudo-time, while our work focuses on cross-sectional expression data.

To the best of our knowledge, there is a lack of statistical methods to estimate cell-type-
specific gene regulatory networks from single-cell expression data that simultaneously con-
sider zero inflation and cellular heterogeneity. Therefore, we developed a Bayesian latent
Gaussian graph mixture model (BLGGM) to address the problem. The contributions of this
paper are as follows: (1) The proposed model teases apart the cellular heterogeneity, using
a model-based clustering strategy, and accounts for zero inflation through a nonignorable
dropout mechanism. (2) We proved the model identifiability (up to clustering label permu-
tation). (3) We inferred the model in the Bayesian paradigm thus enabling the quantification
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of uncertainty of graph structures and gene-gene collaboration intensities. (4) The model has
better performances in recovering gene regulatory networks than competing methods and
provides valid biological results in the application to two real scRNA-seq datasets.

2. Method.

2.1. Modeling cellular heterogeneity. Suppose that there are n sequenced cells and each
cell has G genes. We denote the true expression value of cell i on gene g by θgi . Consid-
ering the cellular heterogeneity, we assume that the n cells belong to K cell types (K is a
positive integer) and utilize the model-based clustering (Fraley and Raftery (2002)) to model
θ i = (θ1i , θ2i , . . . , θGi). Specifically, θ i is assumed to follow a mixture of K Gaussian distri-
butions, θ i ∼ ∑K

k=1 πkN(μk,�
−1
k ). Here, πk represents the cell-type k proportion satisfying

0 < πk ≤ 1 and
∑K

k=1 πk = 1, μk is the mean expression profile of cell type k, and �k is cell
type k’s precision matrix. If we associate cell i with a cell-type indicator Ci that describes
the cell type to which cell i belongs, then the mixture distribution for θ i is equivalent to

(1)
P(Ci = k) = πk,

θ i |Ci = k ∼ N
(
μk,�

−1
k

)
.

These indicators {Ci : 1 ≤ i ≤ n} are unknown and reflect the heterogeneity among cells.

2.2. Modeling zero inflation. The true expression level matrix {θgi : 1 ≤ g ≤ G,1 ≤ i ≤
n} is not directly observed due to zero inflation (Risso et al. (2018)). In practice, we assume
that the scRNA-seq raw count data are first normalized to account for library sizes (e.g.,
counts per the median library size of cells), resulting in the data matrix whose elements are
continuous and nonnegative. Assuming Xgi is the actually observed expression of gene g

in cell i after normalization, the relationship between Xgi and θgi is modeled as follows.
Conditional on θgi ,

(2) Xgi =
{

0 with probability p(θgi),

eθgi with probability 1 − p(θgi).

p(θgi) describes the probability that a dropout occurs on gene g in cell i and is defined as
�(λg0 + λg1θgi), λg1 < 0. � is the cumulative distribution function of the standard normal
distribution, and λg0 and λg1 depict the influence of θgi on the dropout event. The negative-
ness of λg1 ensures that the stronger the signal of θgi , the less likely we observe a zero on
this gene. Similar nonignorable dropout mechanism has been used in scRNA-seq analysis to
model zero inflation (Song, Chan and Wei (2020)) (here, we borrow the term “nonignorable”
from the missing data analysis as the zero inflation probability relies on the underlying value
θgi).

Moreover, if the dropout event does not happen, the observed Xgi is assumed to be an ex-
ponential transformation of θgi . Given Ci = k, as θgi follows a Gaussian/normal distribution,
Xgi = eθgi comes from an asymmetric log-normal distribution by definition. The asymmetry
feature has been observed in scRNA-seq data (Vieth et al. (2019)). In addition, log-normal-
based distributions have been widely proposed to fit sequencing data in biological studies
(Gallopin, Rau and Jaffrézic (2013), Zhang et al. (2015), Ntranos et al. (2019)). Hence, the
usage of the exponential transformation ensures a well-grounded distribution for observed
expression value Xgi .
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2.3. The unified model. We subsequently combine equations (1) and (2) and obtain the
following Bayesian latent Gaussian graph mixture (BLGGM) model:

(3)

P(Ci = k) = πk,

θ i |Ci = k ∼ N
(
μk,�

−1
k

)
,

Xgi |θgi =
{

0 with probability �(λg0 + λg1θgi),

eθgi with probability 1 − �(λg0 + λg1θgi).

In this model the unknown parameters are cell-type-k proportion πk , mean expression profile
μk , precision matrix �k which encode the gene regulatory networks for 1 ≤ k ≤ K and
dropout-related coefficients λ0 = (λ10, λ20, . . . , λG0) as well as λ1 = (λ11, λ21, . . . , λG1). All
elements of λ1 are negative. Given observed data X = {Xgi : 1 ≤ g ≤ G,1 ≤ i ≤ n}, the
likelihood function of the parameters is

(4)

L
(
λ0,λ1, (π1,μ1,�1), . . . , (πK,μK,�K)|X)

=
n∏

i=1

[
K∑

k=1

πk

∫ G∏
g=1

[
δ0(Xgi)�(λg0 + λg1θgi) + δ

e
θgi (Xgi)

(
1 − �(λg0 + λg1θgi)

)]

· N
(
θ i;μk,�

−1
k

)
dθ i

]
,

where δa(·) is the Dirac probability measure with point mass on a and N(θ i;μk,�
−1
k ) is the

multivariate normal density evaluated at θ i with mean μk and covariance matrix �k := �−1
k .

We proved the identifiability of model (3) up to label switching. The proof is based on re-
sults from Miao, Ding and Geng (2016) and can be found in Section S1 of the Supplementary
Material (Wu and Luo (2022)).

THEOREM 2.1 (Identifiability of BLGGM). If (μk1
,�k1) �= (μk2

,�k2) for any k1 �=
k2 and L(λ0,λ1, (πk,μk,�k), k = 1, . . . ,K|X) = L(λ∗

0,λ
∗
1, (π

∗
k ,μ∗

k,�
∗
k), k = 1, . . . ,K∗|X)

for any X, then we have K = K∗, λ0 = λ∗
0, λ1 = λ∗

1 and (πk,μk,�k) = (π∗
ρ(k),μ

∗
ρ(k),�

∗
ρ(k))

for some permutation ρ of {1,2, . . . ,K}.

2.4. Local and global conditional independence. Practically, the gene regulatory net-
work is difficult to be constructed in a transcriptome-wide manner because this is a huge
computational cost and, more importantly, we often need to filter out genes that do not sat-
isfy some quality requirements during data preprocessing. Thus, we emphasize that, within
one cell type, the interpretation for the precision matrix �p×p on the selected p genes is
usually different from that for the precision matrix �∗

p∗×p∗ on the transcriptome-wide whole

p∗ genes (p < p∗). If we partition �∗ into submatrices
(

�∗
1 �∗

12
�∗

21 �∗
2

)
, where the first diagonal

block �∗
1 corresponds to the selected p genes, we then have �p×p = �∗

1 − �∗
12�

∗−1
2 �∗

21.
We say that the matrix �p×p encodes local conditional independence, while �∗

1 encodes
global conditional independence. Specifically, a zero value of the (j1, j2) entry in �p×p

(j1 �= j2) implies that the expressions of genes j1 and j2 are independent, given other p − 2
selected genes {1,2, . . . , p} \ {j1, j2}. In contrast, a zero value of the (j1, j2) entry in �∗

1,p×p

implies that the expressions of genes j1 and j2 are independent, given all other p∗ − 2 genes
{1,2, . . . , p∗} \ {j1, j2}. Using the definitions, BLGGM aims to uncover the local conditional
independence for the selected p genes, based on the estimates for �p×p , rather than the
global conditional independence.
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2.5. Connection to Tobit models. The Tobit model is a class of flexible statistical regres-
sion methods to mitigate the problem of zero inflation in the observations and has been widely
used in statistics and econometrics (Amemiya (1984)). We justify that the proposed model
BLGGM is actually a smoothed standard Tobit model in Section S2 of the Supplementary
Material (Wu and Luo (2022)), so it can be placed in the Tobit context.

3. Bayesian inference.

3.1. Prior specification. We first focus on the prior assignment for precision matrices
�k’s. To decode gene network structures from �k , we need a prior that can induce sparsity
on the estimation of �k . The sparsity-promotion property can be realized by three types of
priors, G-Wishart prior (Wang and Li (2012)), Bayesian graphical lasso prior (Wang (2012))
and continuous spike-slab prior (Wang (2015)).

G-Wishart distribution uses a graph as a hyperparameter and constrains elements which
correspond to empty edges to be zero in the precision matrix. However, the graph update
strategy adds or deletes only one edge at a time and thus causes a slow exploration of the
whole graph space (Wang and Li (2012), Wang (2015)). Under Bayesian graphical lasso
prior, the posterior mode of �k is equivalent to the solution to the penalized likelihood max-
imization problem in glasso (Friedman, Hastie and Tibshirani (2008)). Since in the inference
�k is often estimated by averaging continuous posterior samples rather than finding a poste-
rior mode, Bayesian glasso cannot provide sparse structures in �k . In contrast, the continuous
spike-slab prior (Wang (2015)) enjoys computational convenience for its continuity feature
and is able to induce sparse estimate by augmenting edge indicators. Hence, we adopted the
continuous spike-slab prior for �k’s.

Specifically, we introduce binary latent variables Zk = (zk,j t ∈ {0,1} : 1 ≤ j �= t ≤ G),
and zk,j t = 1 indicates there is an edge connecting nodes j and t in the cell-type-k gene
regulatory network. When zk,j t = 1, �k,jt follows a normal distribution with a large variance
N(0, v2

1), corresponding to the dispersed slab component. When zk,j t = 0, �k,jt is from a
normal distribution with a lower variance N(0, v2

0), corresponding to the concentrated spike
part. We assign exponential distributions with rate α/2 to diagonals �k,jj (1 ≤ j ≤ G). The
continuous spike-slab prior is then represented by

p(�k|Zk, v0, v1, α) = C(Zk, v0, v1, α)−1
∏
j<t

N
(
�k,jt ;0, v2

zk,j t

) · ∏
j

Exp(�k,jj ;α/2)

· I(�k ∈ M+)
,

p(Zk|v0, v1, ξ, α) = C(v0, v1, ξ, α)−1C(Zk, v0, v1, α) · ∏
j<t

(
ξzk,j t (1 − ξ)1−zk,j t

)
,

where terms C(Zk, v0, v1, α) and C(v0, v1, ξ, α) are normalizing constants with tuning pa-
rameters v0, v1, ξ , α, and I(�k ∈ M+) means that �k must be in the cone of positive definite
matrices.

Next, we specify the priors for other parameters in the proposed model. The prior of
cell-type-k expression mean on gene g μgk is set as a normal distribution N(ημ, τ 2

μ). The
prior of cell-type proportion (π1, . . . , πK) is a Dirichlet distribution Dir(γ1, . . . , γK). Zero-
inflation-related parameters λg0 and λg1 are given weakly informative priors N(ηλ0, τ

2
λ0

) and

N(ηλ1, τ
2
λ1

)I(λg1 < 0), respectively.

3.2. Bayesian posterior inference. The observed-data likelihood (4) is intractable, as the
integration with respect to θ i has no explicit form. We thus take a data augmentation tech-
nique (Tanner and Wong (1987)) by involving the latent random variables C = (C1, . . . ,Cn)
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and � = {θ i : 1 ≤ i ≤ n} to form the posterior distribution of both unknown parameters and
latent variables, which removes the integration and is more friendly to performing sampling,

p
(
λ0,λ1,C,�, (πk,μk,�k,Zk), k = 1, . . . ,K|X)

∝
n∏

i=1

K∏
k=1

[
πk

G∏
g=1

[
δ0(Xgi)�(λg0 + λg1θgi) + δ

e
θgi (Xgi)

(
1 − �(λg0 + λg1θgi)

)]

· N
(
θ i;μk,�

−1
k

)]I(Ci=k)

·
K∏

k=1

p(�k|Zk, v0, v1, α)p(Zk|v0, v1, ξ, α)

G∏
g=1

N
(
μgk;ημ, τ 2

μ

)

· Dir(π1, . . . , πK |γ1, . . . , γK) ·
G∏

g=1

N
(
λg0;ηλ0, τ

2
λ0

)
N

(
λg1;ηλ1, τ

2
λ1

)
I(λg1 < 0).

Subsequently, we derive full conditional distributions for each parameter and latent vari-
able and perform Gibbs sampler (Geman and Geman (1984), Gelman et al. (2013)). However,
updates for �, λ0 and λ1 in Gibbs sampler are not of standard form, and traditional solutions,
such as random-walk Metropolis–Hastings step (Metropolis et al. (1953)), suffer from explo-
ration inefficiency and high correlations between nearby posterior samples. Thus, we resort
to the Hamiltonian dynamic to obtain proposals that can be far from current position using
gradient information which is often more efficient and significantly reduces between-sample
correlation (Neal (2011)). Therefore, the proposed hybrid sampling scheme alternates be-
tween Gibbs sampler and Hamiltonian Monte Carlo (HMC), and it proceeds as follows (“−”
means “given all other variables”):

1. (HMC) Update missing variable θgi for which Xgi equals zero.
Let θ i,mis be the vector of {θgi : g ∈ {g : Xgi = 0}} and θ i,obs be the vector of {θgi : g ∈ {g :

Xgi > 0}}. We then partition μk and �k = �−1
k by the “mis” and “obs” parts, giving

( μk,obs
μk,mis

)
and

( �k,obs �k,12
�k,21 �k,mis

)
, respectively. Given Ci = k, the conditional distribution of θ i,mis is

p(θ i,mis|−) = N
(
θ i,mis;μ∗

k,�
∗
k

) ∏
g:Xgi=0

�(λg0 + λg1θgi),

where μ∗
k = μk,mis + �k,21�

−1
k,obs(θ i,obs − μk,obs) and �∗

k = �k,mis − �k,21�
−1
k,obs�k,12.

2. (HMC) Update zero-inflation intensity parameters λg0 and λg1 from

p(λg0, λg1|−) ∝ ∏
i:Xgi>0

(
1 − �(λg0 + λg1θgi)

) ∏
i:Xgi=0

�(λg0 + λg1θgi)

· N
(
λg0;ηλ0, τ

2
λ0

) · N
(
λg1;ηλ1, τ

2
λ1

)
I(λg1 < 0).

3. (Standard Gibbs sampling) Update cell-type k expression mean profile μk from the
multivariate normal distribution with mean vector (nk�

−1
k + I/τ 2

μ)−1(�−1
k

∑
i:Ci=k θ i +

ημ/τ 2
μ) and covariance matrix (nk�

−1
k + I/τ 2

μ)−1, where nk is the current number of cells in
cell type k and I is a G × G identity matrix.

4. (Standard Gibbs sampling) Update precision matrices �k’s and edge indicators Zk’s.
Following Wang (2015), we update �k column by column. Without loss of generality, we

focus on the last column. Let V k = (v2
zk,j t

) be a G × G symmetric matrix with diagonals
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being zeros. Partition �k , Sk = ∑
i:Ci=k(θ i − μk)(θ i − μk)

� and V k as follows:

�k =
(
�k,11,�k,12

��
k,12,�k,22

)
, Sk =

(
Sk,11, sk,12

s�
k,12, sk,22

)
, V k =

(
V k,11,vk,12

v�
k,12,0

)
.

Then, sample (�k,12|−) ∼ N(−Csk,12,C) and (�k,22 − ��
k,12�

−1
k,11�k,12|−) ∼ �(nk

2 +
1, s22+α

2 ), where C = {(sk,22 + α)�−1
k,11 + diag(vk,12)

−1}−1.
Subsequently, update latent variables Zk independently from Bernoulli distributions with

success probability P(zk,j t = 1|−) = N(�k,j t ;0,v2
1)ξ

N(�k,j t ;0,v2
1)ξ+N(�k,j t ;0,v2

0)(1−ξ)
.

5. (Standard Gibbs sampling) Update cell-type indicators Ci for cell i = 1, . . . , n from the
distribution P(Ci = k|−) = πkN(θ i;μk,�k)/

∑K
j=1 πj N(θ i;μj ,�j ), k = 1, . . . ,K .

6. (Standard Gibbs sampling) Update cell-type proportions (π1, . . . , πK) from the Dirich-
let distribution Dir(n1 + γ1, . . . , nk + γK).

Details regarding the implementation of HMC using leapfrog steps are listed in Section S3
of the Supplementary Material (Wu and Luo (2022)).

3.3. Graph structure inference. We define the posterior probability of inclusion (PPI)
for edge (j, t) in cell type k as PPIk,j t = P(zk,j t = 1|X), and it is approximated based on

posterior samples of zk,j t through
∑L

�=1 I(z
(�)
k,j t = 1)/L for j �= t , where L is the number

of posterior samples after the burn-in period. Subsequently, we infer the graph structures by
controlling the expected Bayesian false discovery rate which is defined as follows (Newton
et al. (2004), Peterson, Stingo and Vannucci (2015)):

FDR(κ) =
∑K

k=1
∑

1≤j<t≤G ξk,j tI(ξk,j t ≤ κ)∑K
k=1

∑
1≤j<t≤G I(ξk,j t ≤ κ)

,

where ξk,j t = 1 − PPIk,j t . Generally, we choose an appropriate κ such that the Bayesian
FDR is less than a threshold, such as 0.05. Peterson, Stingo and Vannucci (2015) claim that
κ = 0.5 often results in a reasonable Bayesian FDR, so we follow their rule by cutting the
PPI at κ = 0.5. Hence, zk,j t is estimated to be 1 if ξk,j t ≤ κ and 0 otherwise. Actually, our
simulation studies also justify that the FDR can be well controlled using this fixed κ = 0.5.

3.4. The choice of the cell-type number. We recommend the use of a modified Bayesian
information criterion (penalized BIC) considering model sparsity (Pan and Shen (2007)) to
find the optimal cell-type number K . The formula of pBIC in our case is

pBIC(K) = −2 log
(
L

(
λ̂0, λ̂1, (π̂k, μ̂k, �̂k), k = 1, . . . ,K|X)) + log(n)(d − d0).

d is the number of parameters in the model and equals K − 1 + G(2 + K + (G +
1)K/2). d0 is the number of zero entries in the estimated precision matrices and equals∑K

k=1
∑G−1

j=1
∑G

t=j+1 I(ẑk,j t = 0), and ẑk,j t is the estimate of zk,j t . λ̂0, λ̂1, (π̂k, μ̂k, �̂k), k =
1, . . . ,K are the posterior means of corresponding parameters. The details to calculate the
pBIC value is given in Section S4 of the Supplementary Material (Wu and Luo (2022)).

3.5. Detection of differential partial correlations. An edge (j, t) is called differential
partial correlations between cell types 1 and 2 if this edge is present in the two cell types
but has partial correlations with opposite signs. Using posterior samples, we can easily esti-
mate the probability of differential partial correlations, P(�1,j t > 0,�2,j t < 0|z1,j t = z2,j t =
1,X) + P(�1,j t < 0,�2,j t > 0|z1,j t = z2,j t = 1,X).
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3.6. Tied precision matrices. Given the cell-type number K (K ≥ 2), we may be curious
about whether the precision matrix contributes to the cell heterogeneity. To that end, we
calculate the pBIC value when �1 = �2 = · · · = �K , where d becomes K − 1 +G(2 +K +
(G + 1)/2), and compare it to original pBIC(K). If the latter is smaller, the gene regulation
networks play a role in differentiating cells.

4. Simulation study. We generated data following model (3) with K = 3 cell types,
n = 3000 cells and G = 100 genes. The first 30% genes were marker genes that exhibit
differential expression levels in at least two cell types, and each of the rest genes has the
same expression mean across cell types. Specific values of mean expression profiles were
presented in Section S5 of the Supplementary Material (Wu and Luo (2022)). Cell-type pro-
portion vector (π1, π2, π3) was set to be (0.4,0.3,0.3). Dropout-related coefficients λg0 and
λg1 were sampled from N(1,0.12) and N(−1,0.12), respectively, for each gene g. The in-
terquartile range (IQR) of cellwise zero proportions is [19.0%, 25.0%] with median 22.0%
and maximum 38.0% in the simulated data.

Next, we specified the precision matrices �k for 1 ≤ k ≤ K . Each �k was set as a block
diagonal matrix, and every block is one of the following four modules:

1. Dense module Md : a 10 by 10 matrix with elements Md,jj = 2; Md,jt = 0.7 for 0 <

|j − t | ≤ 5 and Md,jt = 0, otherwise.
2. Circle module Mc: a 10 by 10 matrix with elements Mc,jj = 2; Mc,jt = 0.9 for |j − t | =

1; Mc,1,10 = Mc,10,1 = 0.9 and Md,jt = 0, otherwise.
3. Star module Ms : a 10 by 10 matrix where node 1 is the central role that connects to all

other nodes: Ms,jj = 2, Ms,1j = Ms,j1 = 0.6 for 2 ≤ j ≤ 10 and Ms,jt = 0, otherwise.
4. Partially negative dense module Mnd : a 10 by 10 matrix with elements Mnd,jj = 2;

Mnd,jt = Mnd,tj = −0.6 for 0 < j − t ≤ 5 and t = 1,2; Mnd,jt = Mnd,tj = 0.6 for 0 <

j − t ≤ 5 and t = 3,4,5 and Mnd,jt = 0, otherwise.

�1 consists of 10 modules: the first three are circle modules, the next is a partially negative
dense module and the last six blocks are dense modules. If we denote this precision matrix
type by [3c,1nd,6d], where “c” means circle, “nd” represents partially negative dense and
“d” is dense, then the types of �2 and �3 are [3d,7d] and [3s,7d] (“s” means star), re-
spectively. Heatmaps of the three precision matrices on the first 50 genes were displayed in
Figure 1(a). We used 50 genes for a good visualization, and the figure on whole 100 genes is
shown in Figure S1 of the Supplementary Materials (Wu and Luo (2022)).

We set hyperparameters v0 = 0.02, v1 = 1, ξ = 2/(G−1) and α = 1, as suggested in Wang
(2015). In the Bayesian inference procedure we performed 10,000 iterations (time cost: 25.94
mins using 24 cores), and samples in the last 5000 iterations were kept. Markov chain has
reached stationary (Figure S2 of the Supplementary Material (Wu and Luo (2022))). Con-
tinuous parameters λ0, λ1, π , μk and �k were estimated by posterior means. The estimates
of �k’s were shown in Figure 1(b). Posterior inclusive probabilities for binary indicators
zk,j t quantify the certainty that there is a connection between genes i and j in cell type k

(Figure 1(c)). In addition, we calculated pBIC values for K from two to six. According to
Figure 2(a), pBIC attains minimum when K = 3 which is the truth. Given K = 3, pBIC for
tied precision matrices is 814,830.6 while it is 800,817.2 for heterogeneous precision matri-
ces which is also consistent with the truth.

Figure 3 shows the network structure estimates in cell type 1 from the proposed model and
competing approaches including BDgraph (Mohammadi and Wit (2015), Mohammadi and
Wit (2019)), GGMPF (Ren et al. (2021a, 2021b)), glasso (Friedman, Hastie and Tibshirani
(2008)), HurdleNormal (McDavid et al. (2019)) and ppcor (Kim (2015)). For the network
recovery performance in cell types 2 and 3, please refer to Figure S3 of the Supplementary
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FIG. 1. Comparisons between: (a) true precision matrices and (b) estimated precision matrices for each cell
type on the first 50 genes. (c) Posterior probability of inclusion (PPI) for each edge.

FIG. 2. The results of the simulation: (a) The pBIC plot for K from 2 to 6. (b) ROC curves with FPR less than
0.1 in cell type 1. (c) ROC curves with FPR less than 0.1 in cell type 2. (d) ROC curves with FPR less than 0.1 in
cell type 3.
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FIG. 3. Performances of recovering gene regulatory network in cell type 1.

Material (Wu and Luo (2022)). In terms of clustering accuracy, we computed the adjusted
Rand index (ARI) (Hubert and Arabie (1985)) between BLGGM estimates and true cell-type
labels, giving a perfect clustering (Table 1). Among competing approaches, only GGMPF
is able to conduct clustering (mean ARI = 0.94), while others cannot automatically learn
the cellular heterogeneity. Thus, we applied them in an oracle situation where the cell-type
information is available. Table 1 provides comparisons in terms of edge-detection true pos-
itive rate (TPR), false positive rate (FPR), false discovery rate (FDR) and Frobenius norm
(F-norm) between estimated precision matrices and the truth. Compared to other methods,
the proposed model not only estimated network structures well (low FPR, FDR and high
TPR) but also gave accurate estimates for elements in the precision matrices (low F-norm).
Implementation details can be found in Section S6 of the Supplementary Material (Wu and
Luo (2022)). Their ROC curves with FPR less than 0.1 are also provided in Figure 2(b)–(d).

Notice that, for the fourth module, some elements in the precision matrix of cell type
1 are negative, while they are positive in cell types 2 and 3 (Figure 1(a)). To detect edges

TABLE 1
Comparisons are based on ten replications in the simulation. Numbers in parentheses represent

standard deviations

Cell type BLGGM BDgraph GGMPF glasso HurdleNormal ppcor

TPR 1 0.94 (0.06) 0.87 (0.04) 0.57 (0.05) 0.50 (0.02) 0.70 (0.01) 0.74 (0.03)
2 0.88 (0.05) 0.82 (0.03) 0.42 (0.03) 0.59 (0.02) 0.71 (0.02) 0.63 (0.03)
3 0.85 (0.05) 0.78 (0.04) 0.58 (0.03) 0.56 (0.02) 0.77 (0.03) 0.54 (0.05)

FPR 1 0.00 (0.00) 0.02 (0.00) 0.02 (0.01) 0.02 (0.00) 0.02 (0.00) 0.03 (0.00)
2 0.00 (0.00) 0.03 (0.00) 0.01 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00)
3 0.00 (0.00) 0.03 (0.00) 0.01 (0.00) 0.02 (0.00) 0.04 (0.00) 0.03 (0.00)

FDR 1 0.02 (0.02) 0.33 (0.02) 0.31 (0.07) 0.39 (0.02) 0.31 (0.02) 0.38 (0.02)
2 0.04 (0.02) 0.30 (0.02) 0.25 (0.01) 0.31 (0.01) 0.28 (0.02) 0.33 (0.02)
3 0.06 (0.03) 0.40 (0.03) 0.24 (0.03) 0.32 (0.04) 0.48 (0.02) 0.46 (0.03)

F-norm 1 4.77 (2.02) 13.34 (0.53) 17.03 (0.06) 21.01 (0.13) NA NA
2 7.84 (1.49) 14.60 (0.41) 19.58 (0.09) 22.09 (0.14) NA NA
3 7.73 (1.23) 14.45 (0.43) 17.10 (0.15) 19.89 (0.13) NA NA

ARI 1.00 (0.00) NA 0.94 (0.14) NA NA NA
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with differential partial correlations, using the cell type 1 as the reference, we calculated
P(�1,ij > 0,�2,ij < 0|z1,ij = z2,ij = 1) + P(�1,ij < 0,�2,ij > 0|z1,ij = z2,ij = 1) for any
edge (i, j) that is present in both cell types 1 and 2. The same way was applied to identify
differential partial correlations between cell types 1 and 3. Figure S4 of the Supplementary
Material (Wu and Luo (2022)) reported the heatmap of the tail probabilities, and if we use
0.5 as a threshold, the underlying positions where partial correlations have different signs can
be well recovered with TPR = 1, FPR = 0, FDR = 0 between cell types 1 and 2, and with
TPR = 0.6, FPR = 0, FDR = 0 between cell types 1 and 3.

4.1. Scale-free networks. We used the function “sample_pa” in the Rpackage “igraph”
(Csardi, Nepusz et al. (2006)) to generate three scale-free networks with 100 vertices and
then simulated precision matrices with support on the network structures. Figure S5 of the
Supplementary Material (Wu and Luo (2022)) displays the heatmaps of the three precision
matrices. Table S1 and Figure S6 of the Supplementary Material (Wu and Luo (2022)) show
that BLGGM still outperforms competing methods regarding the network structure recovery
and precision matrix estimation.

4.2. Sensitivity: Model misspecification. For the nondropout part in equation (3), we let
data Xgi be generated from a count-valued Poisson distribution with mean eθgi rather than
be equal to the continuous value eθgi . We then transformed Xgi into X̃gi by X̃gi = Xgi/�i ·
mediani�i , where �i is the library size of cell i. Subsequently, the transformed data matrix
{X̃gi : 1 ≤ g ≤ G,1 ≤ i ≤ n} was used as input of our method. The ROC curves for edge
detection were drawn in Figure S7 of the Supplementary Material (Wu and Luo (2022)).
Compared to the ideal case (the proposed model is accurate), our method did not lose much
power while controlling false positive rate. Thus, our model is robust to the misspecified case.

4.3. Sensitivity: Normalization strategies. We acknowledge that different normalization
approaches for high-throughput genomic data can lead to different performances in the down-
stream analysis. Hence, we investigated how they influence the results of edge detection. Two
other commonly used approaches, count per million (CPM) and quantile normalization (QN)
method, were chosen. Figure S8 of the Supplementary Material (Wu and Luo (2022)) shows
the ROC curves of the three normalization strategies, respectively. It is observed that scaling
using the median library size and CPM outperforms QN in our method, so we recommended
that users had better choose scaling by median or CPM normalization when they apply the
proposed method.

4.4. Performance and computational cost with more genes. We also showed the perfor-
mances of BLGGM and competing methods on gene numbers G = 200, 300 and 400. We
can observe in Figure S9 of the Supplementary Material (Wu and Luo (2022)) that, as the
gene number grows, the computational cost of BLGGM increases quadratically. The com-
putational speed is 0.15 seconds per iteration with 100 genes and attains 7.5 seconds per
iteration with 400 genes. Thus, we suggest the users choose, at most, 400 genes when con-
ducting posterior inference. Moreover, in terms of network estimation accuracy, Table 1 and
Tables S2–S4 of the Supplementary Material (Wu and Luo (2022)) indicate that BLGGM
uniformly outperforms competing methods when G = 200, 300 and 400.

4.5. Performance with various zero levels. We further adjusted the median zero propor-
tions from 25% to 35% and 45% with 100 genes. We observe that, with the increasing zero
proportions, the network structure estimation accuracy of all the approaches is decreasing
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(Figure 2(b)–(d) and Figure S10 of the Supplementary Material (Wu and Luo (2022))). How-
ever, in most cases, BLGGM has better performances than competing approaches. For exam-
ple, even with the median 45% zero proportion, our method can still achieve a relatively high
power 0.56 with a controlled FDR 0.15 (Table S6 of the Supplementary Material (Wu and
Luo (2022))). In addition, Table 1 displays the clustering results for BLGGM and GGMPF
when the median zero proportion is 25%, both of the methods can cluster cells well. However,
as the zero proportion increases to 35% and 45%, GGMPF’s clustering is less accurate than
BLGGM (Tables S5–S6 of the Supplementary Material (Wu and Luo (2022))). Therefore,
overall, the proposed method outperforms GGMPF in terms of clustering accuracy, thanks to
the ability of BLGGM to handle the zero inflation in the observed single-cell expression data.

5. Real application.

5.1. Mouse hematopoietic stem and progenitor cell (HSPC) data. HSPCs have the ability
to produce mature blood cells and show heterogeneity of self-renewal potential (Morita, Ema
and Nakauchi (2010)). Nestorowa et al. (2016) sequenced 1920 HSPCs from mice. In data
preprocessing, we followed the quality control scheme in Nestorowa et al. (2016), resulting
in 1656 cells, and then divided raw scRNA-seq counts for each cell by its size factor which is
defined as the ratio of the cell’s library size to the median of library sizes across all cells. The
normalized expression values were the input data X of our proposed model. Our interest is to
construct gene regulatory networks of 40 marker genes for K = 4 HSPC subtypes detected
by Nestorowa et al. (2016). The IQR of cellwise zero proportions is [22.5%,37.5%], and its
maximum is 70.0%. In fact, we tried multiple choices of K , ranging from 2 to 6, the pBIC
plot in Figure 4(a) justifies the usage of K = 4. Moreover, when the cell-type number is
four, we obtained pBIC = 365,837.7 for equal precision matrices and pBIC = 348,657.3 for
different precision matrices which indicates that the gene-gene relationships indeed play a
role in cell heterogeneity.

FIG. 4. The results of real application 1: (a) The pBIC plot for K from 2 to 6. (b) The log-expression heatmap
of the four estimated cell clusters on 40 marker genes. (c) Gene regulatory networks for the four HSPC subtypes.
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MCMC convergence diagnostic plots in Figure S11 of the Supplementary Material (Wu
and Luo (2022)) show that the chain has attained stationary, and the four estimated preci-
sion matrices are shown in Figure S12 of the Supplementary Material (Wu and Luo (2022)).
Figure 4(b) is the log-expression heatmap of the four estimated cell clusters on 40 marker
genes, showing clear differential expression patterns. Specifically, following the cell annota-
tions in Nestorowa et al. (2016), HSPC cell subtype 1 is mostly composed of megakaryocyte-
erythrocyte progenitors (MEP), and subtype 3 mainly consists of long-term hematopoietic
stem cells (LT-HSC). Subtypes 2 and 4 both represent a mix of other types of progenitor
cells.

Figure 4(c) displays gene regulatory networks for the four HSPC subtypes. We observe that
gene-gene connections vary across the four subtypes and the network in subtype 1 is more
dense than in other three subtypes. For example, the edge between Mpl and Esam is present in
subtype 1 (MEP) but absent in other subtypes, indicating that Mpl and Esam may have direct
effects given other 38 genes. A previous study (Kohlscheen et al. (2015)) identified Esam
as one of the downstream effectors of Thpo/Mpl-signaling in HSC, so our finding provides
the evidence that the regulation effect may be also in MEP cells. In addition, we identified a
Snca—Add2 link in subtype 3 (LT-HSC). Gajović et al. (2006) found that Snca is expressed
in mouse embryonic stem cells with mutated Add2 but is not in control cells with the null
mutation of Add2, indicating that this phenomenon may also happen in mouse hematopoietic
stem cells.

The tail probabilities of the differential partial correlation compared to HSPC subtype 1
are also reported in Figure S13 of the Supplementary Material (Wu and Luo (2022)). Us-
ing threshold 0.5, no edge with different signs of partial correlations is discovered. Finally,
we carried out the model checking to test whether the proposed model can fit the real data
well. A predictive sample Xpred was first simulated from the posterior predictive distribu-
tion p(Xpred|X) (Gelman et al. (2013)), where Xpred has the same shape as X. Subsequently,
we calculated the zero proportion for each cell in Xpred and X and then compared them in
the histogram of cell-specific zero proportions (Figure S14 of the Supplementary Material
(Wu and Luo (2022))), showing that the fitted model can produce a dataset with similar zero
proprotion distributions to the observed dataset. Moreover, for each gene, we compared its
predicted expressions to the observed expressions across cells. Figures S15–S18 of the Sup-
plementary Material (Wu and Luo (2022)) indicate that the predicted samples have relatively
large overlaps with the observations in most genes, so the proposed model has a satisfactory
fit to the genewise marginal expression distributions.

5.2. Human retina cell data. We also applied our model to transcriptomic data of human
retina cells (Menon et al. (2019)). As this dataset provides cell-type labels, we selected cells
from two main cell types, bipolar cells and macroglia, and data were then normalized us-
ing the same step described above. We focused on 34 marker genes provided by Menon et al.
(2019) for the two cell types and removed cells with zero proportions larger than 75% in these
marker genes, leading to 4697 cells. The IQR of zero proportions of cells is [44.1%,70.6%]
with the maximum value 73.5%. The pBIC plot in Figure 5(a) gives the optimal cell-type
number K = 4, and this is validated in Menon et al. (2019) where three subtypes in macroglia
are identified. When K = 4, the comparison between pBIC = 918,184.0 for tied precision
matrices and pBIC = 529,741.8 for distinct precision matrices shows the existence of hetero-
geneity among precision matrices.

After the application of our model, the trace plots in Figure S19 of the Supplementary
Material (Wu and Luo (2022)) show the MCMC chain has converged, and the four preci-
sion matrices are also displayed in Figure S20 of the Supplementary Material (Wu and Luo
(2022)). Figure 5(b) is the the heatmap of log-expression values where cell types were anno-
tated using names in Menon et al. (2019). The ARI of two major cell types between clustering
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FIG. 5. The results of real application 2: (a) The pBIC plot for K from 2 to 6. (b) The log-expression heatmap
of the four cell clusters on 34 marker genes. (c) Gene regulatory networks for the four subtypes.

result and the ACTIONet estimation (Mohammadi et al. (2018)) used in Menon et al. (2019)
is 0.99, indicating that the two methods have similar performance in terms of clustering. Gene
regulatory networks were shown in Figure 5(c). We can see that the gene regulatory networks
in Macroglia subtypes 1 and 2 are more dense than those in bipolar cells and macroglia sub-
type 3. One finding is that the GRM6—TRPM1 edge is present in only bipolar cells, and a
genetic study (van Genderen et al. (2009)) confirms it by claiming that TRPM1 is controlled
by the GRM6 signaling cascade in retina bipolar cells.

Moreover, the network structures can provide more insights into differentially expressed
genes. For example, we can observe from the expression heatmap in Figure 5(b) that FOS
is a marker for macroglia subtype 2, while it attains the maximal degree 9 in subtype 2 (5
in subtype 1 and 4 in subtype 3). Similarly, FTH1 is a marker for macroglia subtype 1 in
terms of expression, and it also has the mamximal degree 12 in that subtype (9 in subtype 2
and 8 in subtype 3). Thus, marker genes found by differential expressions may also exhibit
differences in the network property.

Finally, using the bipolar cells as the reference, we identified the following edges with
differential partial correlations (Figure S21 of the Supplementary Material (Wu and Luo
(2022))): FTH1—CP, FTH1—FOS and FTH1—SPP1 in macroglia subtype 1, FTH1—CP in
macroglia subtype 2 and DBI—FOSB in macroglia subtype 3. We found that all the reported
edges have negative partial correlations in bipolar cells, while they have positive signs in
corresponding macroglia subtypes, indicating that the gene-gene correlation signs may also
contribute to the cell heterogeneity. Finally, following the similar model-checking procedure
above, Figures S22–S26 of the Supplementary Material (Wu and Luo (2022)) support the
good fit of the proposed model to the observed data.

6. Discussion. We presented a Bayesian approach to simultaneously discover cell types
and estimate cell-type-specific gene regulatory network for zero-inflated single-cell expres-
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sion data. The graphical spike-slab prior was employed to induce sparsity of the gene regu-
latory networks. An efficient MCMC sampling scheme was developed to conduct posterior
inference. The model outperforms competing statistical graphical models and is also robust
to model-misspecified case via simulation study.

In the implementation of BLGGM, we assume that the scRNA-seq raw count data are
first normalized to account for library sizes (e.g., counts per the median library size of cells),
resulting in the input data matrix X whose elements are continuous and nonnegative values.
Since the normalization procedure has considered the library size/sequencing depth issue, we
do not need to take the library size into account when modeling X.

There are several directions to improve the current work. For example, it is possible to
directly model scRNA-seq raw counts using count-based distributions, such as zero-inflated
negative-binomial/Poisson-log-normal distribution. We currently used continuous log-normal
distribution for the following reasons. First, the normalization for read counts is usually
a standard step in scRNA-seq data analysis pipeline, such as Seurat. However, normalized
scRNA-seq data are not count-based anymore, and the empirical distribution exhibits asym-
metry. The two features can be well captured by the log-normal distribution which is both
continuous and asymmetric. Second, using the continuous distribution is more computation-
ally efficient than the discrete Poisson or negative binomial distribution in Bayesian posterior
sampling. Third, as discussed in the model misspecification part, by fitting transformed data
via log-normal, the performance is still satisfactory. Fourth, in scRNA-seq data analysis lit-
erature, some well-known approaches are also based on continuous distributions, such as
zero-inflated normal (Pierson and Yau (2015)), gamma (Lin et al. (2020)) and normal (Chen
and Zhou (2017)).

In the proposed model the dropout probability for gene g in cell i is �(λg0 + λg1θgi),
and the quantity can explain the zero proportions in real data to some extent based on the
posterior model checking. To make the zero inflation explained by the model more realistic
and dynamic, it is straightforward to design an extension of BLGGM by assuming that the
dropout coefficients λg0 and λg1 depend on the cell-type label k. Subsequently, for cells in
cell type k, their zero proportion for gene g becomes �(λg0,k + λg1,kθgi), so the number of
zeros can be more dynamic across cell types. We leave it for our future work.

As discussed in Section 2, BLGGM aims to recover the local conditional independence for
selected genes. Sometimes, the local conditional independence can be equivalent to the global
independence if the selected genes are independent of the filtered genes (i.e., �∗

12 = �∗
21 = 0).

In this case, �p×p = �∗
1. In general, there have been some works (Choi et al. (2011), Meng,

Eriksson and Hero (2014)) to recover �∗
1, based on �p×p through optimization strategies, so

the precision matrix estimates given by BLGGM can be used as the input for them to infer
the global conditional independence.

To improve the computation efficiency of BLGGM, the EM algorithm can be applied to
estimate the precision matrices. However, the EM algorithm needs to be implemented in a
variational way (Bishop (2006)) because in the E step the conditional density of the latent
variables θ , given observations X, p(θ |X,−), does not have an analytical form. Considering
that, in practice, the EM algorithm is more efficient than the MCMC sampling as EM only
searches the modes rather than capture the whole distribution and the variational EM can
further boost the speed, we expect that the EM implementation of BLGGM can scale to a
much larger number of genes.
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SUPPLEMENTARY MATERIAL

Additional details, analyses, and results (DOI: 10.1214/21-AOAS1582SUPPA; .pdf).
This file contains supplementary sections, tables, and figures that provide additional details,
analyses, and results.

Code and data (DOI: 10.1214/21-AOAS1582SUPPB; .zip). This file contains R code and
datasets to reproduce results in simulation and real application.
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