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ISOTONIC REGRESSION IN MULTI-DIMENSIONAL SPACES AND GRAPHS

BY HANG DENG* AND CUN-HUI ZHANG†

Department of Statistics, Rutgers University, *hdeng@stat.rutgers.edu; †czhang@stat.rutgers.edu

In this paper, we study minimax and adaptation rates in general isotonic
regression. For uniform deterministic and random designs in [0,1]d with
d ≥ 2 and N(0,1) noise, the minimax rate for the �2 risk is known to be
bounded from below by n−1/d when the unknown mean function f is non-
decreasing and its range is bounded by a constant, while the least squares
estimator (LSE) is known to nearly achieve the minimax rate up to a fac-
tor (logn)γ where n is the sample size, γ = 4 in the lattice design and
γ = max{9/2, (d2 + d + 1)/2} in the random design. Moreover, the LSE
is known to achieve the adaptation rate (K/n)−2/d {1 ∨ log(n/K)}2γ when
f is piecewise constant on K hyperrectangles in a partition of [0,1]d .

Due to the minimax theorem, the LSE is identical on every design point to
both the max-min and min-max estimators over all upper and lower sets con-
taining the design point. This motivates our consideration of estimators which
lie in-between the max-min and min-max estimators over possibly smaller
classes of upper and lower sets, including a subclass of block estimators. Un-
der a qth moment condition on the noise, we develop �q risk bounds for such
general estimators for isotonic regression on graphs. For uniform determinis-
tic and random designs in [0,1]d with d ≥ 3, our �2 risk bound for the block
estimator matches the minimax rate n−1/d when the range of f is bounded
and achieves the near parametric adaptation rate (K/n){1∨ log(n/K)}d when
f is K-piecewise constant. Furthermore, the block estimator possesses the
following oracle property in variable selection: When f depends on only a
subset S of variables, the �2 risk of the block estimator automatically achieves
up to a poly-logarithmic factor the minimax rate based on the oracular knowl-
edge of S.

1. Introduction. Let G = (V ,E) be a directed graph with vertex set V and edge set E.
For a and b in V , we say that a is a descendant of b if E contains a chain of edges from
vj to vj+1 such that b = v0 and a = vm for some finite m ≥ 0. We write a � b if a = b or
a is a descendant of b. A function f : V → R is nondecreasing on the graph G if f (a) ≤
f (b) whenever a � b. Let F be the class of all nondecreasing functions on G. In isotonic
regression, we observe xi ∈ V and yi ∈R satisfying

yi = f (xi ) + εi, i = 1, . . . , n, for some f ∈ F,(1)

where ε1, . . . , εn are independent noise variables with Eεi = 0 and Var(εi) ≤ σ 2 given the
(deterministic or random) design points {xi}. Note that we allow |V | > n.

An interesting special case of (1) is the multiple isotonic regression where V ⊂ R
d is a

subset of a certain Euclidean space of dimension d , and for a = (a1, . . . , ad)T ∈ R
d and

b = (b1, . . . , bd)T ∈ R
d , a � b iff aj ≤ bj for all 1 ≤ j ≤ d . In this case, F is the class of all

nondecreasing functions on V .
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Let f n = (f (x1), . . . , f (xn))
T and f̂ n = (f̂n(x1), . . . , f̂n(xn))

T for any estimator f̂n

of f . We are interested in the estimation of f under the (normalized) �q risk

Rq(f̂ n,f n) = 1

n
E‖f̂ n − f n‖q

q = 1

n

n∑
i=1

E
∣∣f̂n(xi ) − f (xi )

∣∣q.(2)

In this case, a specification of f̂ n is sufficient for the definition of f̂n. For multiple isotonic
regression with random design in V ⊆ R

d , we are also interested in the Lq risk

R∗
q(f̂n, f ) = E‖f̂n − f ‖q

Lq(V ) = E

∫
V

∣∣f̂n(x) − f (x)
∣∣q dx.(3)

The literature of univariate isotonic regression (d = 1) encompasses at least the past six
decades; see, for example, Brunk (1955), Ayer et al. (1955), Grenander (1956), Prakasa Rao
(1969), Groeneboom (1985), van de Geer (1990, 1993), Donoho (1990), Birgé and Massart
(1993), Woodroofe and Sun (1993), Wang (1996), Durot (2007, 2008) and Yang and Barber
(2019) among many others for some key developments. The least squares estimator (LSE),
say f̂

(lse)
n , has been the focus of this literature. We describe in some detail here existing results

on minimax and adaptation rates as they are directly related to our study. For any a < b, the
�q risk of the LSE in the interval [a, b] is bounded by

(4) E

∑
a≤xi≤b

∣∣f̂ (lse)
n (xi) − f (xi)

∣∣q ≤ Cqσ
q

{
na,b

(
�a,b(f n/σ )

na,b

∧ 1
)q/3

+
na,b∑
j=1

j−q/2

}
,

where �a,b(f n/σ ) = maxa≤xi<xj≤b{f (xj ) − f (xi)}/σ is the range-to-noise ratio for the
mean vector f n in [a, b], na,b = #{j : a ≤ xj ≤ b} is the number of design points in the
interval, and Cq is a constant depending on q only. This result can be found in Meyer and
Woodroofe (2000) for na,b = n, q = 2 and εi ∼ N(0, σ 2), and in Zhang (2002) for gen-
eral a < b and 1 ≤ q < 3 under a (q ∨ 2)th moment condition on εi . For �−∞,∞(f n/σ ) ≤
�∗

n � 1, (4) yields the cube-root rate σq(�∗
n/n)q/3 for the LSE in terms of the �q risk in (2).

By summing over the risk bound (4) over K intervals [ak, bk] with �ak,bk
(f n/σ ) = 0, the

LSE can be seen to achieve the near parametric adaptation rate (K/n){1 ∨ log(n/K)} in
the mean squared risk when the unknown f is piecewise constant on the K intervals and
xi ∈⋃K

k=1[ak, bk] for all i ≤ n. This adaptation rate was explicitly given in Chatterjee, Gun-
tuboyina and Sen (2015). However, Gao, Han and Zhang (2017) proved that the sharp adap-
tation rate in the mean squared risk, achieved by a penalized LSE, is (K/n) log log(16n/K)

in the piecewise constant case. Moreover, by summing over the risk bound (4) over a growing
number of disjoint intervals, the LSE has been shown to converge faster than the cube root
rate when the measure f (dx) is singular to the Lebesgue measure (Zhang (2002)).

Compared with the rich literature on univariate isotonic regression, our understanding of
the multiple isotonic regression, that is, V ⊂ R

d with d > 1, is quite limited. A major diffi-
culty is that the design points are typically only partially ordered. Univariate risk bounds can
be directly applied to linearly ordered paths in V , but this typically does not yield a nearly
minimax rate. However, significant advances have been made recently on the minimax and
adaptation rates for the LSE. For n1 × · · · × nd lattice designs with n = ∏d

j=1 nj , the LSE
provides

R2
(
f̂

(lse)
n ,f n

)≤ Cdσ 2{�(f n/σ )n−1/d(logn)γ + n−2/d(logn)2γ }(5)

in certain settings, where �(f n/σ ) = max1≤i<j≤n |f (xi ) − f (xj )|/σ is the range-to-noise
ratio of the mean over the design points. For Gaussian εi and n1 = · · · = nd , the minimax rate
is bounded from below by

inf
f̂ n

sup
�(f n/σ)≤�∗

n

R2(f̂ n,f n) ≥ σ 2 min
{
1,C0n

−1/d�∗
n

}
.(6)
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Moreover, when f is piecewise constant on K hyperrectangles in a partition of the lattice,

R2
(
f̂

(lse)
n ,f n

)≤ Cdσ 2(K/n)2/d{1 ∨ log(n/K)
}2γ

.(7)

For d = 2 and Gaussian noise, Chatterjee, Guntuboyina and Sen (2018) proved the above
mean squared risk bounds with γ = 4. Thus, up to a logarithmic factor, the LSE is nearly rate
minimax for a wide range of �∗

n and also nearly adaptive to the parametric rate σ 2K/n when
f is piecewise constant on K rectangles. Han et al. (2019) extended the results of Chatterjee,
Guntuboyina and Sen (2018) from d = 2 to d > 2 under the conditions n1 = · · · = nd and
�(f n/σ ) ≤ �∗

n = 1 in (5) and (6), and also proved parallel results for random designs with a
larger γ = max{9/2, (d2 +d +1)/2}. However, there is still a gap of a poly-logarithmic factor
between such upper and lower minimax bounds for d ≥ 2, and it is still unclear from (7) the
feasibility of near adaptation to the parametric rate σ 2K/n for d ≥ 3 when f is piecewise
constant on K hyperrectangles.

We have also seen some progresses in adaptive estimation to variable selection in isotonic
regression on lattices with maxj≤d nj ≤ Cdn1/d . When the unknown mean function depends
on only a known subset of s variables, say f (x) = fS(xS) where xS = (xj , j ∈ S)T with

|S| = s, one may use the LSE, say f̂
(lse)
n,S , based on the average of yi given xS to attain

R2
(
f̂

(lse)
n,S ,f n

)≤
{
Cdσ 2

S

[
�(f n/σS)n−1/d(logn)γ + n−2/d(logn)2γ ], s ≥ 2,

Cdσ 2
S

[{(
�(f n/σS)n−1/d)∧ 1

}2/3 + n−1/d logn
]
, s = 1,

(8)

with σ 2
S = σ 2/

∏
j /∈S nj ≤ Cdσ 2/n1−s/d , which would match the minimax rate for Gaus-

sian εi for a proper range of �(f n/σS) as we discussed in the previous paragraph. For
unknown S with d ≥ 2 and �(f n/σ ) ≤ 1 = σ , Han et al. (2019) proved that the LSE
f̂

(lse)
n for the general f automatically achieves the rate n−4/(3d)(logn)16/3 for s = d − 1

and n−2/d(logn)8 for s ≤ d − 2. As �(f n/σS) � n(d−s)/(2d) in their setting, (8) would yield
the rates n−(d−s)/(2d)−1/d for s ≥ 2 and n−(d−1)/d−(3−d)+/(3d) for s = 1 up to a logarithmic
factor. These oracle minimax rates nearly match the adaptation rates in Han et al. (2019) for
d − s = 2 or (d, s) = (2,1), but not for other configurations of (d, s).

We consider isotonic regression on directed graphs, that is, with general domain V in (1),
including V ⊂ R

d as a special case. In this general setting, Robertson, Wright and Dykstra
(1988) proved the following minimax formula for the LSE on the design points:

f̂ (lse)
n (x) = max

U�x
min
L�x

yU∩L = min
L�x

max
U�x

yU∩L(9)

for x = xi , i = 1, . . . , n, where the maximum is taken over all upper sets U containing x,
the minimum over all lower sets L containing x, and yA is the average of the observed yi

over xi ∈ A for any A ⊆ V . As the high complexity of the upper and lower sets for d ≥ 2
could be the culprit behind the possible suboptimal performance of the LSE in convergence
and adaptation rates, we consider a class of block estimators involving rectangular upper
and lower sets. As the minimax theorem no longer holds in this setting in general, the block
estimator, say f̂

(block)
n (x), is defined as any estimator in-between the following max-min and

min-max estimators:

f̂ (max-min)
n (x) = max

u�x,nu,∗>0
min

x�v,nu,v>0
y[u,v] ∀x ∈ V,

f̂ (min-max)
n (x) = min

x�v,n∗,v>0
max

u�x,nu,v>0
y[u,v] ∀x ∈ V,

(10)

where [u,v] = {x : u � x � v}, nu,v = #{i ≤ n : xi ∈ [u,v]}, nu,∗ = #{i ≤ n : u � xi} and
n∗,v = #{i ≤ n : xi � v}. The idea of replacing the general level sets U ∩ L by rectangular
blocks [u,v] is not new as a preliminary version of the block estimator in the case of V =
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[0,1]d was considered in Fokianos, Leucht and Neumann (2017). Some more delicate details
of different versions of the block estimator are discussed in Section 2.

We derive in Section 3 a general �q risk bound for the above block estimator on graphs.
For n1 × · · · × nd lattice designs with d ≥ 2, our general risk bound yields

R2
(
f̂

(block)

n ,f n

)≤ Cdσ 2 min
{
1,�(f n/σ )n−1/d(logn)I {d=2} + n−1(logn)d

}
(11)

when maxj≤d nj ≤ Cdn1/d , compared with (5) and (6), and the adaptation rate

R2
(
f̂

(block)

n ,f n

)≤ Cdσ 2(K/n)
{
1 ∨ log(n/K)

}d(12)

when the true f is nondecreasing and piecewise constant on K hyperrectangles, compared
with (7).

We also explore the phase transition of the risk bounds, both the minimax lower bound and
the upper risk bound for the block estimator, by presenting them using its effective dimension
s in the sense that the risk bound only depends on the largest s nj ’s. For example, when n1 ≥
n2 ≥ · · · ≥ nd and n

3/2
2 /n

1/2
1 ≤ �(f n/σ ), we show that the risk bound for the block estimator

in d-dimensional isotonic regression with n design points is almost no different from that
in univariate isotonic regression with n1 design points. This phase transition, captured by
effective dimension, proved for d = 2 in Chatterjee, Guntuboyina and Sen (2018), is new for
d > 2.

Moreover, perhaps more interestingly, we prove that when the unknown f depends on
an unknown set of s variables, the block estimator achieves near adaptation to the oracle
selection in the sense that for �(f n/σ ) ≤ �∗

n,

R2
(
f̂

(block)

n ,f n

)
≤
⎧⎨⎩Cdσ 2

S min
[
(logn)d−s,�∗

nn
d−s−2

2d (logn)I {s=2} + n− s
d (logn)d

]
, s ≥ 2,

Cdσ 2
S min

[
(logn)d−1,

(
�∗

nn
d−s−2

2d
)2/3 + n− 1

d (logn)d
]
, s = 1,

(13)

with σ 2
S = σ 2/

∏
j /∈S nj ≤ Cdσ 2/n1−s/d , while the oracle minimax rate with the knowledge

of S is bounded from below by

inf
f̂ n

sup
f n

{
R2(f̂ n,f n) : f n ∈ Fn, f (x) = fS(xS),�(f n/σ ) ≤ �∗

n

}

≥
{
Cdσ 2n−1+s/d min

[
1,�∗

nn
(d−s−2)/(2d)], s ≥ 2,

Cdσ 2n−1+1/d min
[
1,
(
�∗

nn
(d−3)/(2d))2/3]

, s = 1,

(14)

where Fn = {f n : f ∈ F}.
Let f

∗
n be the noiseless version of the block estimator. When the isotonic regression model

is misspecified in the sense of having a nonmonotone regression function, we prove that the
error bounds discussed above still hold if f

∗
n is treated as the estimation target; (11), (12)

and (13) are valid with f n replaced by f
∗
n when f /∈ F in (1). However, such results are of a

less ideal form compared with the existing oracle inequalities for the LSE under misspecified
monotonicity assumption (Chatterjee, Guntuboyina and Sen (2015, 2018), Bellec (2018), Han
et al. (2019)).

We summarize our main results as follows. In terms of the mean squared risk, the block
estimator is rate minimax for �(f n/σ ) ≤ �∗

n with a wide range of �∗
n (with no extra logarith-

mic factor for d �= 2), achieves near parametric adaptation in the piecewise constant case, and
also achieves near adaptation to the oracle minimax rate in variable selection. Furthermore,
we prove parallel results for the integrated risk for i.i.d. random designs in [0,1]d when the
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joint density of the design point is uniformly bounded away from zero and infinity. In addition
to Sections 2 and 3, we present in Section 4 some simulation results to demonstrate the ad-
vantage of the block estimator over the LSE in multiple isotonic regression. The full proofs
of all theorems, propositions and lemmas in this paper are relegated to the Supplementary
Material (Deng and Zhang (2020)).

Here and in the sequel, the following notation is used. For {a,b} ⊂ V , we say b is larger
than a when a � b, and we set [a,b] = {x ∈ V : a � x � b} as a block in G = (V ,E). We
denote by nA the number of sampled points in A, that is, nA = #{i ≤ n : xi ∈ A}, and set
na,b = n[a,b], na,∗ = #{i ≤ n : a � xi} and n∗,b = #{i ≤ n : xi � b}. For a = (a1, . . . , ad)T ∈
R

d and b = (b1, . . . , bd)T ∈ R
d , a � b iff aj ≤ bj for all 1 ≤ j ≤ d , and this is also expressed

as a ≤ b. We denote by C a positive numerical constant, and Cindex a positive constant de-
pending on the “index” only. For example, Cq,d is a positive constant depending on (q, d)

only. For the sake of convenience, the value of such a constant with the same subscript may
change from one appearance to the next. We may write x �index y when x ≤ Cindexy. Finally,
we set log+(x) = 1 ∨ logx.

2. The least squares and block estimators. Given design points xi ∈ V and responses
yi ∈ R, the isotonic LSE is formally defined as

f̂ (lse)
n = arg min

f ∈F

n∑
i=1

{
yi − f (xi )

}2
,

where F = {f : f (u) ≤ f (v) ∀u � v} is the set of all nondecreasing functions on the di-
rected graph G = (V ,E). As the squared loss only involves the value of f at the de-
sign points, this LSE is any nondecreasing extension of the LSE of the mean vector f n =
(f (x1), . . . , f (xn))

T in (1),

f̂
(lse)
n = arg min

f n∈Fn

‖y − f n‖2
2,(15)

where y = (y1, . . . , yn)
T and Fn = {f n : f ∈ F} ⊂ R

n. As Fn is defined with no more than(n
2

)
linear constraints, f̂

(lse)
n can be computed with quadratic programming. Potentially more

efficient algorithms for the LSE have been developed in Dykstra (1983), Kyng, Rao and
Sachdeva (2015) and Stout (2015), among others.

As mentioned in the Introduction, the LSE f̂
(lse)
n has an explicit representation in the mini-

max formula (9) for isotonic regression on graphs in general (Robertson, Wright and Dykstra
(1988)), although this fact is better known in the univariate case. As the high complexity of
the general upper and lower sets in the minimax formula seems to be the cause of the analyti-
cal or possibly real gap between the risk of the LSE and the optimal minimax and adaptation
rates, we consider in this paper block estimators f̂

(block)
n of the form

min
{
f̂ (max-min)

n (x), f̂ (min-max)
n (x)

}
≤ f̂ (block)

n (x)

≤ max
{
f̂ (max-min)

n (x), f̂ (min-max)
n (x)

} ∀x ∈ V,

(16)

where f̂
(max-min)
n and f̂

(min-max)
n are the block max-min and min-max estimators given in

(10). It is clear from (10) that both the max-min and min-max estimators are nondecreasing
on the graph G = (V ,E) as the maximum is taken over increasing classes indexed by x ∈ V

and the minimum over decreasing classes. However, the monotonicity of the block estimator,
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f̂
(block)
n ∈ F or even f̂

(block)

n ∈ Fn, is optional in our analysis. A practical monotone solution
is

f̂ (block)
n (x) = 1

2

{
f̂ (max-min)

n (x) + f̂ (min-max)
n (x)

} ∀x ∈ V.(17)

We note that the estimator (16) is defined on the entire V . This is needed as we shall
consider the Lq risk (3) as well as the �q risk (2). It would be tempting to define the block
estimator by

max
u�x

min
x�v

y[u,v] ≤ f̂ (block)(x) ≤ min
x�v

max
u�x

y[u,v]

(Fokianos, Leucht and Neumann (2017)). However, unfortunately, when x is not a de-
sign point, y[u,v] is undefined when [u,v] contains no data point, and f̂

(max-min)
n (x) ≤

f̂
(min-max)
n (x) is not guaranteed to hold even for properly defined max-min and min-max es-

timators in (10), even in the univariate case. For example, for V = [0,1] with two data points
(x1, y1) = (0,1) and (x2, y2) = (1,2), (10) gives f̂

(max-min)
n (0.5) = 2 > 1 = f̂

(min-max)
n (0.5).

We do have

(18) f̂ (max-min)
n (xi ) ≤ f̂ (min-max)

n (xi ), i = 1, . . . , n,

but the minimax formula f̂
(max-min)
n = f̂

(min-max)
n may fail even on the design points as the

example in Figure 1 demonstrates.
In the rest of this section, we prove that the max-min and min-max estimators defined with

upper and lower sets in a graph G, including the LSE, can always be expressed as the block
estimators defined as in (16) but over a larger graph than G, so that our analysis of general
block estimators is also relevant to the LSE. We present our argument in a more general
setting as follows.

Formally, a subset of vertices U ⊆ V is called an upper set if U = {x : f (x) > t} for some
f ∈ F and real t , or equivalently the indicator function 1U is non-decreasing on G, that is,
1U ∈ F; a subset L ⊆ V is called a lower set if L = {x : f (x) ≤ t} for some f ∈ F and
t ∈ R, that is, the complement of an upper set. Let U be the collection of all upper sets, L the
collection of all lower sets, and

Ux ⊆ {U ∈ U : x ∈ U} and Lx ⊆ {L ∈ L : x ∈ L}
be certain subsets of the collections of upper and lower sets containing x. The max-min and
min-max estimator can be defined in general as

f̂ (max-min)
n (x) = max

U∈Ux ,nU>0
min

L∈Lx ,nU∩L>0
yU∩L, x ∈ V,

f̂ (min-max)
n (x) = min

L∈Lx ,nL>0
max

U∈Ux ,nU∩L>0
yU∩L, x ∈ V,

(19)

FIG. 1. Responses yi on a 4 × 2 lattice design: At design point x = (4,1), f̂
(max-min)
n (x) = 0.4 is attained by

the mean inside the magenta box and f̂
(max-min)
n (x) = 0.725 attained by the mean inside the green box.
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FIG. 2. Amendment of G to include U ∩ L = ⋃
j∈{1,2},k∈{1,2,3}[uj ,vk] where u(new) has two inbound edges

from u1 and u2 and v(new) has three outbound edges to v1, v2 and v3.

where nA = {i ≤ n : xi ∈ A}. These max-min and min-max estimators are nondecreasing in
x on the entire graph if Ux is nondecreasing in x and Lx non-increasing in x: Ux ⊆ Ux′ and
Lx ⊇ Lx′ for all ordered pairs x � x′.

By (9), the LSE is a special case of (19) when Ux and Lx are taken to be the largest
possible. The block max-min and min-max estimators (10) are special cases of (19) with
Ux = {[u,∗] : u � x} and Lx = {[∗,v] : x � v}. Conversely, the LSE, and more generally
(19), can be written as

f̂ (max-min)
n (x) = max

u∈Ax ,nu,∗>0
min

v∈Bx ,nu,v>0
y[u,v], x ∈ V,

f̂ (min-max)
n (x) = min

v∈Bx ,n∗,v>0
max

u∈Ax ,nu,v>0
y[u,v], x ∈ V,

(20)

based on the average response in blocks [u,v] for suitable Ax and Bx in a larger graph G∗ in
which G is a subgraph. We define G∗ by amending G with new nodes and edges as follows.
For each upper set U , we amend G with node u(new) = u(new,U) and edges {u → u(new) :
u ∈ U}, whereas for each lower set L, we amend G with node v(new) = v(new,L) and edges
{v(new) → v : v ∈ L}. Define in the new graph G∗ the estimators (20) with Ax = {u(new,U) :
U ∈ Ux} and Bx = {v(new,L) : L ∈ Lx}. Then the restriction of (20) on G is identical to
(19) as [u(new,U),v(new,L)] contains the same set of design points as U ∩ L. This can be
seen as follows. For any pair of upper and lower sets U and L, [u(new,U),v(new,L)] ⊃ U ∩ L

by the definition of u(new,U) and v(new,L) and the associated collections of new edges. On
the other hand, for any design point xi ∈ [u(new,U),v(new,L)], u(new,U) � xi could happen
only if u � xi for some u ∈ U as there is no other way to connect to u(new,U) in G∗, while
xi � v(new,L) could happen only if xi � v for some v ∈ L. Thus, yU∩L = y[u(new,U),v(new,L)].
Figure 2 demonstrate a [u(new),v(new)] when G is a 2-dimensional lattice.

Our theoretical results on general graph in Section 3.1 below are applicable to the LSE by
writing the LSE as a block estimator on a much larger amended graph. However, the more
specific results in multiple isotonic regression in Sections 3.2–3.7 are not application to the
LSE as they are based the calculation of the variability bounds in (21) and (22) below for the
lattice and random designs, not on the enlarged graph.

3. Theoretical results. In this section, we first analyze the block estimator f̂
(block)
n (x)

in (16) for graphs under the most general setting. Specific risk bounds are then given for
multiple isotonic regression with fixed lattice designs and random designs.
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3.1. General isotonic regression on graph. We shall extend the risk bounds of Zhang
(2002) from the real line to general graphs. To this end, we first derive an upper bound for
the total risk in subsets V0 ⊂ V ,

Tq(V0) = ∑
xi∈V0

E
∣∣f̂ (block)

n (xi ) − f (xi )
∣∣q,

based on the value of the true f on V0. Such bounds automatically produce adaptive risk
bounds when the true f is “piecewise constant” in a partition of V . Given V0, let rq,+(m) be
a nonincreasing function of m ∈ N

+ satisfying

rq,+(m) ≥ max
{
E

(
max
u�x

∑
xi∈[u,v]

εi

nu,v

)q

+
: nx,v = m,x � v and v ∈ V0

}
.(21)

This function bounds the error of the block estimator from the positive side when the positive
part of its bias is no greater than the positive part of the maximum average of at least m noise
variables. Similarly, to control the estimation error from the negative side, let rq,−(m) be a
nonincreasing function satisfying

rq,−(m) ≥ max
{
E

(
min
v�x

∑
xi∈[u,v]

εi

nu,v

)q

−
: nu,x = m,u � x and u ∈ V0

}
.(22)

With the above functions rq,±(m), we define for x ∈ V0,

mx,− = max
{
nu,x : f (u) ≥ f (x) − r

1/q
q,−(nu,x),u � x and u ∈ V0

}
,

ux = arg max
u∈V0:u�x

{
nu,x : f (u) ≥ f (x) − r

1/q
q,−(nu,x)

}
,

mx = mx,+ = max
{
nx,v : f (v) ≤ f (x) + r

1/q
q,+(nx,v),x � v and v ∈ V0

}
,

vx = arg max
v∈V0:x�v

{
nx,v : f (v) ≤ f (x) + r

1/q
q,+(nx,v)

}
.

(23)

Roughly speaking, the above quantities provide configurations in which the bias of f̂n(xi ) is
of no greater order than its variability from the negative and positive sides, so that the error
of the block estimator is of no greater order than an average of mxi ,− noise variables on the
negative side and the average of mx = mxi ,+ noise variables on the positive side. Thus, it
makes sense to count the frequencies of mxi ,− and mxi

as follows:

�−(m) = #{i : xi ∈ V0,mxi ,− ≤ m},
�+(m) = #{i : xi ∈ V0,mxi

≤ m}.(24)

We note that the functions rq,± in (21) and (22) do not depend on f , and all the quantities in
(23) and (24) depend on the true f only through {f (x) : x ∈ V0}.

THEOREM 1. Assume f is nondecreasing on a graph G = (V ,E). Let rq,±(m) be given

by (21) and (22), and �±(m) by (24). Then it holds for any block estimator f̂
(block)
n (x) in (16)

that

E
{
f̂ (block)

n (xi ) − f (xi )
}q
+ ≤ 2qrq,+(mxi

) ∀xi ∈ V0,

E
{
f̂ (block)

n (xi ) − f (xi )
}q
− ≤ 2qrq,−(mxi ,−) ∀xi ∈ V0.

(25)
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Consequently, for any upper bounds �∗±(m) ≥ �±(m) with �∗±(0) = 0,

Tq(V0) ≤
∞∑

m=1

2qrq,+(m)
{
�∗+(m) − �∗+(m − 1)

}

+
∞∑

m=1

2qrq,−(m)
{
�∗−(m) − �∗−(m − 1)

}
.

(26)

Theorem 1 provides risk bound for the block estimator (16) over a subset V0 of design
points in terms of upper bound functions rq,±(m) and �∗±(m). Ideally, we would like to have

rq,±(m) = Cq,dσ qm−q/2(27)

in (21) and (22). When the design points in V0 are linear and the (q ∨ 2)th moment of the
noise variable is uniformly bounded, (21) and (22) hold for the above choice of rq,±(m). This
choice of rq,±(m) is also valid when V is a lattice in R

d and εi are independent variables with
uniformly bounded (q ∨ 2)th moment, as we will prove in Section 3.3.

REMARK 1. Suppose the nondecreasing function f satisfies extra constraints, that is, f

belongs to a subclass F0 ⊂ F . We may use the block estimators to compute a nondecreasing
solution and then project it to the subclass F0. This two-step estimator must produce loss no
greater than that of the block estimators whenever F0 is convex and at most twice the loss for
general F0. Consequently, the risk bound in Theorem 1 and all others produced later in this
paper (Theorems 2-9) remain valid for the two-step estimator. This set of results may serve
as a benchmark for estimation under constraints more than just monotonicity.

3.2. Minimax lower bound in multiple isotonic regression with lattice designs. We study
in the rest of this section multiple isotonic regression in V ⊆ R

d where a � b iff a ≤ b, that
is, aj ≤ bj∀1 ≤ j ≤ d , for all a = (a1, . . . , ad)T and b = (b1, . . . , bd)T , and F is the class of
all nondecreasing functions f (t1, . . . , td) ↑ tj ,∀j = 1, . . . , d .

The lattice design we are considering is given by

V = {xi : 1 ≤ i ≤ n} = [1,n] =
d∏

j=1

{1, . . . , nj },(28)

where n = (n1, . . . , nd)T with positive integers nj and n = ∏d
j=1 nj . Here, [1,n] is treated

as a set of integer-valued vectors in N
d , forming a lattice. Occasionally, we may also use

[u,v] to denote a hyperrectangle of real numbers in continuum. This slight abuse of notation
typically would not lead to confusion, for example, in xi ∈ [u,v], but we would be specific
if necessary. Without loss of generality, we assume in this subsection n1 ≥ n2 ≥ · · · ≥ nd . In
the above lattice design, we provide a minimax lower bound in multiple isotonic regression
as follows.

PROPOSITION 1. Suppose εi ∼ N(0, σ 2). Let �(f n/σ ) = {f (n) − f (1)}/σ , nd+1 = 1,
n∗

s =∏s
j=1 nj , ts = n∗

s /ns
s , td+2 = ∞ and sq = �2/(q −1)�∧ (d +1). Let h0(t) = �∗

n

√
t and

define piecewise H(t) = min{1, h0(t)/(n
∗
s /t)1/(s∧d)}, t ∈ [ts, ts+1], s = 1, . . . , d + 1. Then

inf
f̂

sup
{
Rq(f̂ ,f n) : f n ∈ Fn,�(f n/σ ) ≤ �∗

n

}
�q,d σ q max

{
(t ∧ n)−q/2H(t) : t ∧ h0(t) ≥ 1

}
(29)
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= σq ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, n1 ≤ �∗
n, (s = 0)(

�∗
n/
(
n∗

s

)1/s) qs
2+s ns+1/t

1/2
s+1 ≤ �∗

n ≤ ns/t1/2
s , (1 ≤ s < sq)

�∗
n/
(
nst

(q−1)/2
s

)
, t−1/2

s ≤ �∗
n ≤ ns/t1/2

s , (s = sq ≤ d)(
�∗

n

)q−2/s
/
(
n∗

s

)1/s
, t

−1/2
s+1 ≤ �∗

n ≤ t−1/2
s , (sq ≤ s ≤ d)

n−q/2, 0 ≤ �∗
n ≤ n−1/2. (s = d + 1)

In particular, when n1 = · · · = nd = n1/d and �∗
n ≥ n−1/2, the right-hand side of (29) is

σq ×
{

min
{
1,
(
�∗

n/n1/d)qd/(d+2)}
, q ≤ 1 + 2/d,

min
{
1,�∗

n/n1/d,
(
�∗

n

)q−2/d
/n1/d}, q ≥ 1 + 2/d.

(30)

On the right-hand side of (29), the breaking points on [0,∞) for �∗
n are

0, n−1/2 = t
−1/2
d+1 , t

−1/2
d , . . . , t−1/2

sq
, nsq /t1/2

sq
, . . . , n1/t

1/2
1 = n1.

Note that 1 lies in between t
−1/2
sq and nsq /t

1/2
sq . The above minimax lower bound also depends

on the loss function through q and the dimension of the lattice. For q ≥ 3, we have sq = 1, so
that

inf
f̂

sup
{
Rq(f̂ ,f n) : f n ∈ Fn,�(f n/σ ) ≤ �∗

n

}
�q,d σ q min

(
1,�∗

n/n1
)

for �∗
n ≥ 1. However for q = 2, we have sq = 2, so that (29) yields

inf
f̂

sup
{
R2(f̂ ,f n) : f n ∈ Fn,�(f n/σ ) ≤ �∗

n

}

�d σ 2 ×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, n1 ≤ �∗

n, (s = 0)(
�∗

n/n1
)2/3

, n
3/2
2 /n

1/2
1 ≤ �∗

n ≤ n1, (s = 1)

�∗
n/(n1n2)

1/2,
√

n2/n1 ≤ �∗
n ≤ n

3/2
2 /n

1/2
1 . (s = 2)

(31)

For �∗
n � 1, this matches the lower bound for the �2 minimax rate in Chatterjee, Guntuboyina

and Sen (2018) for d = 2 and Han et al. (2019) for d ≥ 3. For 5/3 ≤ q < 2 ≤ d , we have
sq = 3.

If (29) is achievable, the integer parameter s can be viewed as the effective dimension of
the isotonic regression problem as the rate depends on n only through n1, . . . , ns when ns+1
is sufficiently small; the rate would also be achievable by separate s-dimensional isotonic
regression in the

∏d
j=s+1 nj = n/n∗

s individual s-dimensional sheets with fixed xs+1, . . . , xd .

For example, in (31), the minimax rate can be achieved by f̂ n = y for s = 0, by the row-by-
row univariate isotonic regression for s = 1, and by individual bivariate isotonic least squares
up to a factor of (logn)4 for s = 2 (Chatterjee, Guntuboyina and Sen (2018)). We will prove
in the next subsection that the block estimator (16) achieves the rate in (29) for a wide range
of �∗

n, so that Proposition 1 indeed provides the minimax rate.
In the proof of Proposition 1, we divide [1,n′] ⊂ V = [1,n] into a K1 × · · · × Kd lattice

of hyperrectangles of size m1 × · · · × md , indexed by k = (k1, . . . , kd)T , kj = 1, . . . ,Kj ,
j = 1, . . . , d , and consider the class of piecewise constant functions f (x) = g(k) satisfying

g(k) = σ min
{
�∗

n,
(
m∗)−1/2[

θ(k) + (
k1 + · · · + kd − k∗)

+
]}

, θ(k) ∈ {0,1},
and f (x) = σ�∗

n for x ∈ [1,n] \ [1,n′], where m∗ =∏d
j=1 mj is the size of the hyperrectan-

gle. As g(k) is nondecreasing in kj for each j for all θ(k) ∈ {0,1}, this construction provides
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a lower bound for the �q risk proportional to the product of σq(m∗)−q/2 and the number of
free θ(k). This is summarized in the following lemma.

LEMMA 1. Under the conditions of Proposition 1,

inf
f̂

sup
{
E‖f̂ − f n‖q

q : f n ∈ Fn,�(f n/σ ) ≤ �∗
n

}
≥ cqcdσ qn max

m∈M

{
1

(m∗)q/2 min
( √

m∗�∗
n

maxj�nj/mj� ,1
)}

,

(32)

where cq = infδ Eμ∼Bernoulli(1/2)|δ(N(μ,1)) − μ|qq is the Bayes risk for estimating μ with
the Bernoulli(1/2) prior based on a single N(μ,1) observation, cd is a constant depending
on d only,

M= {
m = (m1, . . . ,md) : mj ∈ N+,mj ≤ nj ∀j ≤ d,

√
m∗�∗

n ≥ 1
}
,

and m∗ = ∏
j≤d mj . Moreover, the optimal configuration of m in (32) must satisfy either

mj = 1 or �nj/mj� = max1≤j≤d�nj/mj� for each j .

3.3. The block estimator in multiple isotonic regression with lattice designs. We further
divide this subsection into three separate sub-subsections to study the performance of the
block estimator at a single design point xi , in an arbitrary subblock [a,b] ⊂ [1,n], and on the
entire lattice [1,n]. It is of great interest to show that the block estimator in (16) matches the
minimax lower bound given in Proposition 1, which will be done in the third sub-subsection
for general q and d .

3.3.1. Risk of the block estimator at a single design point. For any given point in the
design lattice, the following proposition asserts that the block estimator matches certain one-
sided oracle estimators in the rate of one-sided Lq risks.

PROPOSITION 2. Let f̂
(block)
n (x) be the block estimator in (16) with the lattice design

V = [1,n] in (28). Let q ≥ 1 and rq,±(m) be as in (21) and (22). Assume εi are independent
N(0, σ 2) random variables. Then, for any design point xi ∈ [1,n],

E
(
f̂ (block)

n (xi ) − f (xi )
)q
+ ≤ 2qrq,+(mxi

) ≤ Cq,d min
xi≤v≤n

E
(
y[xi ,v] − f (xi )

)q
+,(33)

where y[u,v] =∑
u≤xi≤v yi/nu,v , and

E
(
f̂ (block)

n (xi ) − f (xi )
)q
− ≤ 2qrq,−(mxi

) ≤ Cq,d min
1≤u≤xi

E
(
y[u,xi ] − f (xi )

)q
−.(34)

Consequently, with Eg being the expectation under which yi = g(xi ) + εi ,

E
∣∣f̂ (block)

n (xi ) − f (xi )
∣∣q

≤ Cq,d min
u≤xi≤v

{
Eg

∣∣y[u,v] − g(xi )
∣∣q : g ∈ F, g(v) = f (v) ∀v ≥ xi

}
+ Cq,d min

u≤xi≤v

{
Eg

∣∣y[u,v] − g(xi )
∣∣q : g ∈ F, g(u) = f (u) ∀u ≤ xi

}
.

(35)

Suppose we are confined to consider only block mean estimators y[u,v] with no negative
bias in the estimation of f (xi ) but we also want to control the positive side of the error. As
f is nondecreasing but otherwise unknown, we are thus forced to choose u ≥ xi . As y[u,v]
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with xi ≤ u ≤ v would have larger bias and variance than y[xi ,v], the optimal [u,v] is given
by

min
u=xi≤v≤n

E
(
y[xi ,v] − f (xi )

)q
+.

The above minimum can be viewed as an oracle benchmark under the no-negative-bias con-
straint as the solution of the optimal v still depends on f . Although the block estimator (16)
is unlikely to be unbiased, (33) and (34) assert that its one-sided risks match the rates of such
oracle benchmarks from both the positive and negative sides. Another interpretation of the
performance of the block estimator is (35) in which the oracle expert has to guard against the
worst case scenarios in the uncertainty of f on either sides, but not simultaneously on both.

We prove Proposition 2 with an application of Theorem 1. This requires more explicit
variability bounds rq,±(m) in (21) and (22) as in (27). This validity of (27) is a consequence
of the following lemma, which extends Doob’s inequality to certain multiple indexed sub-
martingales. It plays a key role in removing the normality assumption on the noise ε1, . . . , εn

in our analysis.

LEMMA 2. Let T = T1 × · · · × Td ⊆ R
d be an index set with Tj ⊆ R. Let {ft , t ∈ T} be

a collection of random variables. Suppose for each j and each (s1, . . . , sj−1, tj+1, . . . , td),

{fs1,...,sj−1,t,tj+1,...,td , t ∈ Tj } is a submartingale with respect to certain filtration {F(j)
t , t ∈

Tj }. Then, for all q > 1 and t ∈ T,

E max
s∈T,s≤t

|fs |q ≤ (
q/(q − 1)

)qd
E|ft |q .

In particular when εi ’s are independent random variables with Eεi = 0,

Emax
s≤t

∣∣∣∣∑
xi≤s

εi

∣∣∣∣q ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(
q/(q − 1)

)qd
E

∣∣∣∣∑
xi≤t

εi

∣∣∣∣q, q ≥ 2,

(
4d
E

∣∣∣∣∑
xi≤t

εi

∣∣∣∣2)q/2
, 1 ≤ q < 2.

3.3.2. Risk of the block estimator in a sub-block. To automatically deal with adaptation
which gives better risk bound when f (·) is piecewise constant, we first consider the risk in
one of such “piece,” a hyperrectangle [a,b] ⊆ V = [1,n].

THEOREM 2. Let f̂
(block)
n (x) be the block estimator in (16) with the lattice design V =

[1,n] in (28). Assume εi are independent random variables with Eεi = 0 and E|εi |q∨2 ≤
σq∨2. Let a ≤ b be integer vectors in V = [1,n] and ñj = bj −aj +1. Suppose ñ1 ≥ · · · ≥ ñd .
Define ñ = na,b, ñd+1 = 1, ñ∗

s =∏s
j=1 ñj and ts = ñ∗

s /ñ
s
s (with 1 = t1 ≤ · · · ≤ td ≤ td+1 = ñ).

Then, for q ≥ 1 and any f ∈ F with �a,b(f n/σ ) = {f (b) − f (a)}/σ ≤ �∗
n,

Tq

([a,b])= ∑
xi∈[a,b]

E
∣∣f̂ (block)

n (xi ) − f (xi )
∣∣q

≤ C∗
q,dna,bσ

q

(
H̃ (1) +

∫ na,b

1

H̃ (dt)

tq/2 + 1

na,b

d∏
j=1

∫ ñj

0

dt

(t ∨ 1)q/2

)
,

(36)

where H̃ (t) is a nondecreasing and continuous function of t , defined piecewise by H̃ (t) =
min{1,�∗

nt
1/2(t/ñ∗

s )
1/s} for ts ≤ t ≤ ts+1, s = 1, . . . , d , and C∗

q,d is continuous in q ∈ [1,∞)
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and nondecreasing in d . Moreover,

H̃ (1) +
∫ na,b

1
t−q/2H̃ (dt)

�q,d

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, ñ1 ≤ �∗

n, (s = 0)(
�∗

n/
(
ñ∗

s

)1/s)qs/(2+s)
, ñs+1/t

1/2
s+1 ≤ �∗

n ≤ ñs/t1/2
s , (1 ≤ s < sq)(

�∗
n/
(
ñs t

(q−1)/2
s

))
	s, �∗

n ≤ ñs/t1/2
s , (s = sq ≤ d)

(37)

where sq = �2/(q − 1)� ∧ (d + 1) is as in Proposition 1 and

	s =
[
log+

(
min

{
ñs

ñs+1
,
ñs/(ñ

∗
s )

1/(s+2)

(�∗
n)

2/(s+2)

})]I {2/(q−1)=s}
.(38)

REMARK 2. The last component on the right-hand side of (36) is bounded by

(39) σq
d∏

j=1

∫ bj−aj+1

0

dt

(t ∨ 1)q/2 �q,d σ q

[
n

1−q/2
a,b +

(
d∏

j=1

log+(bj − aj + 1)

)I {q=2}]
.

When �a,b(f n/σ ) = 0, H̃ (t) = 0 for all t , so that (39) is an upper bound for the rate of the
total risk Tq([a,b]) in the block [a,b] by Theorem 2, for any a ≤ b. This yields the adaptation
rate stated in Section 3.4.

REMARK 3. The function H̃ (t) is defined in the same way as H(t) is in Proposition 1
but for the dimensions {ñj = bj − aj + 1, j ≤ d} of [a,b] and range-to-noise ratio within
[a,b]. When [a,b] = [1,n], we have H̃ (t) = H(t) for all t ∈ [1, n]. Thus, as discussed below
(31), the integer parameter s in (37), completely determined by {ñj }, �∗

n and q , has the
interpretation as the effective dimension for the estimation of f in [a,b] subject to {f (b) −
f (a)}/σ ≤ �∗

n. We note that as H̃ (t) is a smooth fit of pieces proportional to t1/2+1/s or 1,
the upper limit of the integration is actually t∗ = min{t ≥ 1 : H̃ (t) = 1 or t = ña,b}, which
depends on �∗

n, and the effective dimension s is then determined by the comparison between
t∗ and ts and the critical sq .

In addition to the validity of (27) as variability bounds in (21) and (22), which follows
from Lemme 2, the proof of Theorem 2 requires the complexity bounds for the �±(m) in
(24). We outline here an analysis of the count �+(m) in (24) in the case where ñj /ñd are
integers and m ≥ td = ñ/ñd

d . We note that td = 1 when ñj = ñd for all j . Upper bounds for
both �±(m) in the general setting are given in the proof of Theorem 2 in Subsection A3.3 of
the Supplementary Material (Deng and Zhang (2020)).

To find upper bounds for �+(m), we partition V0 = [a,b] into an ñd × · · · × ñd lattice
of small “unit blocks” of size (ñ1/ñd) × · · · × (ñd/ñd), each composed of td = ñ/ñd

d de-
sign points. Consider a line of such unit blocks Lk in the “anti-diagonal” direction and a
region Dj between two contours of the unknown f (x) at the levels c and c + r

1/q
q,+(3dm).

In Figure 3, we color in red the unit blocks in Lk with nonempty intersection with Dj .
Due to the monotonicity of the �+(m), it suffices to consider m = kdtd for some integer
k ≥ 1. If x ≤ v in Lk ∩ Dj are separated by k unit blocks as depicted in Figure 3, then

m = kdtd < nx,v ≤ (k + 2)d td ≤ 3dm and f (v) − f (x) ≤ r
1/q
q,+(3dm) ≤ r

1/q
q,+(nx,v), so that

mx ≥ nx,v > m. Thus, the intersection contains no more than (k + 1)td ≤ 2m1/d t
1−1/d
d

design points xi with mxi
≤ m, all within k unit blocks from the upper contour. Let

J = �{f (b) − f (a)}/r
1/q
q,+(3dm)�. We divide [a,b] into J such regions Dj between con-

secutive contours with a ∈ D1 and b ∈ DJ . The last region DJ is special. For x ∈ DJ with
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FIG. 3. Upper bound for the number of design points with mxi ≤ m, an example: d = 2, td = ñ/ñd
d , m = kd td

with k = 3, a line segment of unit blocks in the antidiagonal direction is colored in red, depicting its intersection
with the region Dj between two contours of f ; x is a design point k blocks away from the upper boundary of

Dj , v ∈ Dj ; m, nx,v and the upper bound (k + 2)dm are respectively the number of points inside the rectangles
colored in dashed green, gray and blue; as mx ≥ nx,v > m in this example, design points inside the intersection
of Dj and these red unit blocks with mxi ≤ m must belong to one of the k + 1 = 4 upper-right unit blocks colored

in red, and there are at most (k + 1)td = 4td such points in this example with k = 3. For general k and m = kd td ,

(k + 1)td ≤ 2m1/d t
1−1/d
d .

nx,b > m, there must exist v ∈ [x,b] such that m < nx,v ≤ 2m, so that mx ≥ nx,v > m due to

f (v) ≤ f (x) + r
1/q
q,+(3dm) ≤ f (x) + r

1/q
q,+(nx,v). Thus, as there are no more than dñd−1

d such

Lk and J − 1 ≤ {f (b) − f (a)}/r
1/q
q,+(3dm) ≤ �∗

nσ/r
1/q
q,+(3dm) regions Dj not containing b,

for m = kdtd with integer k ≥ 1,

�+(m) ≤ min
{
ñ, dñd−1

d

(
�∗

nσ

r
1/q
q,+(3dm)

)(
2m

1
d t

1− 1
d

d

)}+ #
{
xi ∈ [a,b] : nxi ,b ≤ m

}
= ñmin

{
1,m

1
d
+ 1

2

(
�∗

n

ñ1/d

)(
2d3d/2/C

1/q
q,d

)}+ #
{
xi ∈ [a,b] : nxi ,b ≤ m

}
with the variability bound rq,+(m) = Cq,dσ qm−q/2 in (27). It follows that

�±(m) ≤ �∗±(m) = ñH̃ (m) + #
{
xi ∈ [a,b] : nxi ,b ≤ m

} ∀m ≥ td(40)

when C
1/q
q,d ≥ (21/d+1/2)d2d3d/2. In Section A3.3 of the Supplementary Material (Deng and

Zhang (2020)), we extend the above inequality to all m ≥ 1 and prove (36) by applying (26)
of Theorem 1 with the above �∗±(m) and the rq,±(m) in (27).

Theorem 2 is a comprehensive statement which gives rise to many conclusions. In the next
sub-subsection, we prove that the block estimator is rate minimax in the �q risk for the entire
lattice [1,n] in a wide range of configurations of n, q and �∗

n. In the next two subsections,
we study the adaptation rate when f (·) is a piecewise constant function, and the variable
selection rate when f (·) only depends on a subset of variables.

3.3.3. Risk of the block estimator on the entire lattice and rate minimaxity. We assume
without loss of generality in this sub-subsection n1 ≥ · · · ≥ nd . A direct comparison between
Proposition 1 and Theorem 2 yields the following Theorem 3.

THEOREM 3. Let f̂
(block)
n (x) be the block estimator in (16) with the lattice design V =

[1,n] as in (28). Assume εi are independent random variables with Eεi = 0 and E|εi |q∨2 ≤
σq∨2. Let sq = �2/(q − 1)� ∧ (d + 1), n∗

s = ∏s
j=1 nj for s ≤ d + 1 with nd+1 = 1, and
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�(f n/σ ) = {f (n) − f (1)}/σ . Then, for q ≥ 1,

sup
{
Rq

(
f̂

(block)

n ,f n

) : f n ∈ Fn,�(f n/σ ) ≤ �∗
n

}
�q,d 	(match) inf

f̂
sup

f n∈Fn

{
Rq(f̂ ,f n) : �(f n/σ ) ≤ �∗

n

}+ σq

n

(
d∏

j=1

log+(nj )

)I {q=2}(41)

holds when �∗
n �q,d t

−1/2
sq = (n∗

sq
/n

sq
sq )

−1/2, where 	(match) ≤ logn is defined by

(42) 	(match) =
[
log+

(
min

{
nsq

nsq+1
,
nsq /(n

∗
sq

)1/(sq+2)

(�∗
n)

2/(sq+2)

})]I { 2
q−1 =sq≤d,�∗

n≤nsq /t
1/2
sq }

.

Moreover, when maxj≤d nj �d n1/d and �(f n/σ ) ≤ �∗
n,

Rq

(
f̂

(block)

n ,f n

)
�q,d σ q min

{
1,

(
�∗

n

n1/d

)min{1,
qd

d+2 }[
log+

(
n ∧

(
n1/d

�∗
n

)2d/(d+2))]δ1 + (logn)dδ2

n(q/2)∧1

}
,

(43)

holds for all �∗
n ≥ 0, where δ1 = I { qd

d+2 = 1} and δ2 = I {q = 2}.

REMARK 4. It can be seen in our analysis that the logarithmic term presents for q = 2,
as the last component on the right-hand side of (36), (41) and (43), due to the lack of data
near the extreme points {a,b} or {1,n} of the domain.

Compared with Proposition 1, Theorem 3 shows that the risk of the block estimator
matches the minimax rate when �∗

n ≥ t
−1/2
sq = (

∏sq
j=1(nj/nsq ))

−1/2 (�∗
n ≥ n−1/2 if sq =

d + 1) possibly up to a logarithmic factor 	(match) ≤ log(n), provided that the minimax rate
is no faster than σqn−1(

∏d
j=1 log+(nj ))

δ2 due to the edge effect. The match is always exact
when 2/(q − 1) �= sq ≤ d , that is, 2/(q − 1) is not an integer or an integer greater than d .
When 2/(q − 1) = sq ≤ d − 1 and nsq � nsq+1, 	(match) = O(1) and the match is also exact.
However, in the interesting setting where q = d = 2 and n1 � n2, we have sq = 2 so that
	(match) � log(n) when �∗

n � n2.
The one-dimensional risk bound for all q ≥ 1 can be obtained from (43) as

Tq

([1, n])�q σ qnmin
{

1,

(
�∗

n

n

)min{ q
3 ,1}[

log+
(
n ∧

(
n

�∗
n

) 2
3
)]I {q=3}

+ (log+(n))I {q=2}

n(q/2)∧1

}
,

which reproduces (4) for 1 ≤ q < 3. We note that if we view one-dimensional isotonic re-
gression as multidimensional on an n1 × 1 × · · · × 1 lattice, the general bound yields this
one-dimensional n

−1/3
1 -rate. Interestingly, for general n, we still have the one-dimensional

rate as long as the effective dimension s is 0 or 1, that is, �∗
n ≥ n2/t

1/2
2 = n

3/2
2 /n

1/2
1 . For

q = 2 and d ≥ 2, it follows from Theorem 2 that when �∗
n ≥ n2/t

1/2
2 = n

3/2
2 /n

1/2
1 , we have

s < sq = 2 and only the first two cases of (37) are effective. This implies

T2
([1,n])�d σ 2nmin

{
1,
(
�∗

n/n1
)2/3 +

d∏
j=1

(
log+(nj )/nj

)}
,

exactly the same as the bound of T2([1, n1]) in univariate case when (�∗
n/n1)

2/3 is dominant
in both rates. In this case, our theory does not guarantee an advantage of the multiple iso-
tonic regression on the entire lattice in terms of the �2 risk, compared with the row-by-row
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univariate isotonic regression of length n1. This observation agrees with Chatterjee, Gun-
tuboyina and Sen (2018) where the �2 minimax rate of two-dimensional isotonic regression,
σ 2�∗

nn
−1/2, requires n

3/2
2 /n

1/2
1 ≥ �∗

n.
To conclude this subsection, we compare the �2 risk bound for the block estimator in The-

orem 3 with those for the LSE in the existing literature. For d = 2, Chatterjee, Guntuboyina
and Sen (2018) gives an upper bound for the LSE as

R2
(
f̂

(lse)
n ,f n

)
� σ 2

(
�∗

n√
n
(logn)4 + 1

n
(logn)8

)
for any n1 × n2 lattice and f satisfying �(f n/σ ) ≤ n

3/2
2 /n

1/2
1 , in contrast to

R2
(
f̂

(block)

n ,f n

)
� σ 2

(
�∗

n√
n

log(n) + 1

n
(logn)2

)
in (43) of Theorem 3 or in the third case of (37) of Theorem 2 with [a,b] = [1,n]. However,
for n1 = · · · = nd = n1/d and �∗

n = 1 as in Han et al. (2019) for d ≥ 3, (43) is reduced to

R2
(
f̂

(block)

n ,f n

)
�d n−1/d,

which should be compared with the the rate

R2
(
f̂

(lse)
n ,f n

)
�d n−1/d log4(n)

for the LSE (Han et al. (2019)).

3.4. Adaptation rate of the block estimator with lattice designs in the piecewise constant
case. We consider here the adaptation behavior of the block estimator in the setting where
f (·) is piecewise constant on a union of rectangles, as a direct consequence of Theorem 2.

THEOREM 4. Let f̂
(block)
n (x) be the block estimator in (16). Assume εi are independent

variables with Eεi = 0 and E|εi |q∨2 ≤ σq∨2 and f is nondecreasing and piecewise constant
on V in the sense of V =⋃K

k=1[ak,bk] with K ≤ n and f (ak) = f (bk) for all k ≤ K . Then

Rq

(
f̂

(block)

n ,f n

)
�q,d σ q min

{
1, n−1

K∑
k=1

n
(1−q/2)+
ak,bk

(
logsk+(nak,bk

)
)I {q=2}

}

with sk = #{j : bk,j > ak,j }. Moreover, if in addition {[ak,bk], k = 1, . . . ,K} are disjoint,
then

Rq

(
f̂

(block)

n ,f n

)
�q,d σ q min

{
1,

(
K

n

)min{1,q/2}(
logdK+ (n/K)

)I {q=2}
}
,(44)

where dK = max1≤k≤K sk is the largest dimension of [ak,bk] in the partition.

The rate in (44) is consistent with existing results for d = 1 under which the block estima-
tor is the LSE and the mean squared risk bound is

R2
(
f̂

(block)

n ,f n

)
� σ 2 K

n
log+(n/K).

In general, the risk bound in (44) under q = 2 is reduced to at most

σ 2 K

n
logd+(n/K),
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which should be compared with

σ 2
(

K

n

)2/d

log8+(n/K)

for the LSE as in Chatterjee, Guntuboyina and Sen (2018) for d = 2 and in Han et al. (2019)
for d ≥ 3.

REMARK 5. Han et al. (2019) proved that even when f (·) is a constant function, that is,
K = 1,

R2
(
f̂

(lse)
n ,f n

)
�d σ 2n−2/d

so the adaptation rate of the LSE, (K/n)2/d , cannot be further improved, which means the
LSE is unable to adapt to parametric rate for d ≥ 3.

The adaptation rate in (44) also implies that when [ak,bk] are two-dimensional sheets (i.e.,
|{j : bk,j �= ak,j }| ≤ 2), the upper bound turns out to be

K

n
log2+(n/K),

which again should be compared with

K

n
log8+(n/K)

in Han et al. (2019).

3.5. Adaptive estimation to variable selection with lattice designs. In this subsection, we
consider the case where the true function of interest, f (·), depends only on a subset S of
s variables, that is, f (x) = fS(xS). We study the adaptive estimation when maxj≤d nj �d

n1/d , that is, nj � n1/d for all 1 ≤ j ≤ d .

THEOREM 5. Assume f (·) is nondecreasing and dependent only on an unknown set
S of s < d variables. Let f̂

(block)
n (x) be the block estimator in (16) on the lattice design

V = [1,n]. Assume max1≤j≤d nj �d n1/d and εi ’s are independent and satisfies Eεi = 0 and
E|εi |q∨2 ≤ σq∨2. Let �(f n/σ ) = {f (n) − f (1)}/σ . Then

sup
{
Rq

(
f̂

(block)

n ,f n

) : f n ∈ Fn, f (x) = fS(xS),�(f n/σS) ≤ �∗
n,S

}
�d σ

q
S min

{
	

(select)
s,1 ,	

(select)
s,2

(
�∗

n,S/n1/d)min{1,
qs

s+2 }

+ 	
(select)
s,1

(
ns/d)−min{1,q/2}

(logn)sI {q=2}}
(45)

for all 1 ≤ s ≤ d , where σS = σ/(
∏

j /∈S nj )
1/2 ≤ Cdσ/n(1−s/d)/2 and

	
(select)
s,1 =

(
n1/d∑
j=1

j−q/2/
(
n1/d)1−q/2

)d−s

,

	
(select)
s,2 =

(
n1/d∑
j=1

jmin{ 1−q
2 ,− q

s+2 }/
(
n1/d)min{ 1−q

2 ,− q
s+2 }+1

)d−s

(logn)I { qs
s+2 =1}.
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In particular,

R2
(
f̂

(block)

n ,f n

)
�d

{
σ 2ns/d−1 min

{
(logn)d−s,�∗

n,Sn−1/d(logn)I {s=2} + n−s/d(logn)d
}
, s ≥ 2,

σ 2ns/d−1 min
{
(logn)d−1,

(
�∗

n,S/n1/d)2/3 + n−1/d(logn)d
}
, s = 1.

(46)

In the proof of Theorem 5, the key observation is that in the sheet of x with fixed xSc , the
risk bound is identical to that of model S with σq reduced by a factor of n

−q/2
xSc ,nSc . The above

rate would then become clear after the summation of risk bounds over xSc .
Let nj = n1/d for all j . Consider an oracle expert with the extra knowledge of the subset S.

Suppose the oracle expert first computes the average of the n1−s/d values of yi holding xS

fixed and then solves the s-dimensional isotonic regression problem at the noise level σS =
σn(s/d−1)/2. For this oracle expert, the sample size becomes ns/d and the condition on the
range-to-noise ratio becomes (f (n) − f (1))/σS ≤ �∗

n,S , equivalent to (f (n) − f (1))/σ ≤
�∗

n with �∗
n,S = �∗

nn
(1−s/d)/2. It follows from (30) in Proposition 1 that for εi ∼ N(0, σ 2)

and �∗
n,S ≥ (n−(s/d)/2)∨ (I {q > 1+2/s}), the �q minimax lower bound for the oracle expert

is

inf
f̂

sup
{
Rq(f̂ ,f n) : f n ∈ Fn, f (x) = fS(xS),�(f n/σS) ≤ �∗

n,S

}
� σ

q
S min

{
1,
(
�∗

n,S/n1/d)min{1,qs/(s+2)}}
.

Hence the variable-selection adaptation rate in (45) matches the oracle minimax lower bound
up to some constant or logarithmic factors 	

(select)
s,1 , 	

(select)
s,2 and 	

(select)
s,1 (logn)sI {q=2}, pro-

vided that

�∗
n,S ≥ max

(
n−s/(2d), I {q > 1 + 2/s}),

or equivalently �(f n/σ ) ≤ �∗
n with �∗

n ≥ max(n−1/2, n−(1−s/d)/2I {q > 1 + 2/s}). The
match to the oracle minimax rate is always exact for q = 1 and any s as both 	

(select)
s,1 and

	
(select)
s,2 are bounded by a constant. When q = 2, the match is also exact but up to some

logarithmic factors as 	
(select)
s,1 �d (logn)d−s and 	

(select)
s,2 �d (logn)I {s=2}.

3.6. Multiple isotonic regression with random designs. In this subsection, we consider
V = [0,1] in continuum and, same as before, a � b iff a ≤ b. Different from fixed designs,
here x1, . . . ,xn are i.i.d. random vectors from a distribution P supported on [0,1]. For sim-
plicity, we assume the distribution of the design points has a Lebesgue density bounded both
from above and below; for μu,v = P{u ≤ xi ≤ v} and the Lebesgue μL

u,v = μL([u,v]) =∫
[u,v] dx,

ρ1μ
L
u,v ≤ μu,v ≤ ρ2μ

L
u,v,(47)

with certain fixed constants 0 < ρ1 ≤ ρ2 < ∞. We consider the integrated Lq risk in (3), that
is,

R∗
q

(
f̂ (block)

n , f
)=

∫
x∈[0,1]

E
∣∣f̂ (block)

n (x) − f (x)
∣∣q dx,

and partial integrated Lq risk on block [a,b] as

R∗
q

([a,b])=
∫
[a,b]

E
∣∣f̂ (block)

n (x) − f (x)
∣∣q dx.
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THEOREM 6. Let f̂
(block)
n (x) be the block estimator in (16) with V = [0,1]. Assume

x1, . . . ,xn ∈ [0,1] are i.i.d. random vectors drawn from a distribution satisfying (47). Assume
f is nondecreasing and εi are independent random variables with Eεi = 0 and E|εi |q∨2 ≤
σq∨2. Let {a,b} ⊂ V with a ≤ b. Then, for q ≥ 1,

R∗
q

([a,b])=
∫
[a,b]

E
∣∣f̂ (block)

n (x) − f (x)
∣∣q dx

≤ C∗
q,d,ρ1,ρ2

σq

[∫ nμa,b

0

(
(t ∨ 1)−q/2 + �

q

a,be
−t )H ∗(dt)

+
∫
x∈[a,b]

({
(nμx,b) ∨ 1

}−q/2 + �
q
0,1e

−nμx,b
)
dx

]
,

(48)

where �u,v = (f (v) − f (u))/σ and μu,v = P{xi ∈ [u,v]} for all u ≤ v and H ∗(t) =
min{1,�a,b(nμa,b)

−1/d t1/2+1/d}. Specifically, (48) is no greater than

σq min
{(

�
q
0,1 + 1

)
μa,b,

(
�a,b

(nμa,b)
1/d

)min{1,
qd

d+2 }
	

(random)
1

+ �
q+1
a,b

(nμa,b)
1/d

+ (
�

q
0,1 + 1

)
μa,b

	
(random)
2

(nμa,b)
(q/2)∧1

}(49)

up to a constant depending on q, d,ρ1, ρ2 only, where

	
(random)
1 = [

log+
(
nμa,b ∧ (

(nμa,b)
2

d+2 /�
2d/(d+2)

a,b

))]I { qd
d+2 =1}

and 	
(random)
2 = (log+(nμa,b))

dI {q=2}+(d−1)I {q>2}.

The H ∗(t) here is identical to the H̃ (t) in Theorem 2 in t ∈ [td , n], effectively taking
td = 1. This reveals an intrinsic difference between lattice design and random design: the ef-
fective dimension of the random design over [a,b] ⊆ [0,1] is always d—any hyperrectangle
[a,b] with positive measure behaves similar to a hypercube. The above rate in (49) is there-
fore comparable to the rate in (43) for the lattice design with nj = n1/d for all j . In fact, the
rate in (49) can be derived from a scale change of the upper bound for R∗

q([0,1]).
The study of the integrated Lq risk in isotonic regression is relatively new. Fokianos,

Leucht and Neumann (2017) gives an asymptotic bound, O(n−1/(d+2)), for the L1 risk with
[a,b] = [0,1]. The L1 error bound in Theorem 6 is consistent with their result.

To fit in with random design, we now define rq,+(m) as a nonincreasing function of m ∈
[0, n] in continuum satisfying

rq,+(m) ≥ max
{
E

(
max
u�x

∑
xi∈[u,v]

εi

nu,v ∨ 1

)q

+
: E[nx,v] = m,x � v and v ∈ V0

}
,(50)

and modify the definition of mx = mx,+ in (23) to

mx = nμx,vx where vx = arg sup
x≤v≤b

{
nμx,v : f (v) ≤ f (x) + r

1/q
q,+(nμx,v)

}
.(51)

Note nx,v , the number of design points in [x,v], becomes a Binomial(n,μx,v) random vari-
able. Here, we omit mx,− as it can be analyzed by symmetry. Nevertheless, Theorem 6 is still
proved in a similar way to Theorem 2. However, different from (25) in Theorem 1, the point
risk bound is given by the following proposition.
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PROPOSITION 3. Assume the conditions of Theorem 6. Then (50) holds for

rq,+(nμx,v) = Cq,d,ρ1,ρ2σ
q(nμx,v ∨ 1)−q/2(52)

with Cq,d,ρ1,ρ2 continuous in q ∈ [1,∞) and for all x ∈ [a,b],
E
(
f̂ (block)

n (x) − f (x)
)q
+

≤ 2qrq,+(mx) + 2q−1σqCq,d,ρ1,ρ2

((
�

q

a,b + 1
)
e−mx + (

�
q
0,1 + 1

)
e−nμx,b

)
.

(53)

As we discussed below (23), the positive part of the bias of f̂
(block)
n (x) is of no greater

order than the variability of the noise as measured by r
1/q
q,+(nx,vx ) � r

1/q
q,+(mx) provided the

presence of at least one design point in [x,vx]. The first term on the right-hand side of (53)
thus comes from the case of nx,vx > 0. However, [x,vx] might be an empty cell with no
design points. We then have to consider points in [x,b] when nx,vx = 0 and in [x,1] when
nx,b = 0, leading to terms with �a,b and �0,1, respectively.

Corresponding to Theorems 3 and 4, the following two theorems give the risk bounds for
random designs under the general case and the piecewise constant case for the entire [0,1].
Due to space limitations, the minimax rate and the adaptation rate to variable selection in
random design are not discussed.

THEOREM 7. Let f̂
(block)
n (x), f and {xi , εi, i ≤ n} be as in Theorem 6. Suppose �0,1 =

(f (1) − f (0))/σ is bounded by a constant. Then

R∗
q

(
f̂ (block)

n , f
)
�q,d,ρ1,ρ2 σq

(
�0,1

n1/d

)min{1,
qd

d+2 }
(logn)I { qd

d+2 =1}

+ (logn)dI {q=2}+(d−1)I {q>2}

n(q/2)∧1 .

In particular, when q = 2 and d ≥ 2,

R∗
2
(
f̂ (block)

n , f
)
�d,ρ1,ρ2 σ 2 min

{
1,

�0,1

n1/d
(logn)I {d=2} + (logn)d

n

}
.(54)

REMARK 6. For simplicity, we here consider the case of bounded �0,1. Theorem 6 also
directly yields error bounds for general �0,1 by setting [a,b] = [0,1] in (48) and (49).

THEOREM 8. Let f̂
(block)
n (x), f and {xi , εi, i ≤ n} be as in Theorem 6. Suppose V has

disjoint partition V =⋃K
k=1[ak,bk] with K ≤ n and f (ak) = f (bk) for all k ≤ K . Then

R∗
q

(
f̂ (block)

n , f
)

�q,d,ρ1,ρ2 σq(�q
0,1 + 1

)(K

n

)min{1,q/2}(
log+(n/K)

)dI {q=2}+(d−1)I {q>2}
,

(55)

where �0,1 = (f (1) − f (0))/σ . In particular, when q = 2,

R∗
2
(
f̂ (block)

n , f
)
�d,ρ1,ρ2 σ 2(�2

0,1 + 1
)K
n

logd+(n/K).

We can also derive risk bounds for the empirical �q risk. As [xi ,vxi
] always has the design

point xi , there is no “empty cell” problem as in Proposition 3 when bounding the empirical
risk. It follows that

E
[(

f̂ (block)
n (xi ) − f (xi )

)q
+|xi = x

]
�q,d,ρ1,ρ2 rq,+(mx),
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so that

Rq

(
f̂

(block)

n ,f
)

�q,d,ρ1,ρ2 σq min
{
μa,b,

(
�a,b

(nμa,b)
1/d

)min{1,
qd

d+2 }
	

(random)
1 + μa,b

	
(random)
1

(nμa,b)
(q/2)∧1

}
by an almost identical proof. It follows that under the conditions of Theorem 6 and �0,1 = 1,
the worst case upper bound of the mean squared risk is

R2
(
f̂

(block)

n ,f
)
�d,ρ1,ρ2 σ 2n−1/d(logn)I {d=2},

and under the conditions of Theorem 8, the mean squared risk bound in piecewise constant
case is

R2
(
f̂

(block)

n ,f
)
�d,ρ1,ρ2 σ 2 K

n
logd(n/K).

We shall compare the above two rates with the results for the LSE in Han et al. (2019)
respectively, that is,

σ 2n−1/d logγd (n)

and

σ 2
(

K

n

)2/d

log2γd (en/K),

where γ2 = 9/2 and γd = (d2 + d + 1)/2 when d ≥ 3. It is worth mentioning that Han et al.
(2019) also proved the piecewise constant rate for the LSE, (K/n)2/d , is not improvable as
when K = 1,

R2
(
f̂

(lse)
n (x),f

)
�d,ρ1,ρ2 σ 2n−2/d .

3.7. Model misspecification. We consider in this subsection properties of the block esti-
mator in the nonparametric regression model

(56) yi = f (xi ) + εi, i = 1, . . . , n,

for general f . When the true regression function f fails to be nondecreasing, the isotonic re-
gression model (1) is misspecified, so that the block estimators actually estimate their noise-
less versions, say f

∗
n(x), instead of the true f . For the block max-min and min-max estimator

in (10),

f
∗
n(x) = f

(max-min)

n (x) = max
u�x,nu,∗>0

min
x�v,nu,v>0

f [u,v] ∀x ∈ V,

f
∗
n(x) = f

(min-max)

n (x) = min
x�v,n∗,v>0

max
u�x,nu,v>0

f [u,v] ∀x ∈ V,

(57)

are their noiseless versions, where f A denotes the average of {f (xi ) : 1 ≤ i ≤ n,xi ∈ A}. For
the average (17) of the two estimators, the noiseless version is

f
∗
n(x) = 1

2

{
f

(max-min)

n (x) + f
(min-max)

n (x)
} ∀x ∈ V.(58)

The functions in (57) and (58) can be viewed as estimation targets.
Our results can be summarized as follows. If we treat f̂

(block)
n (x)−f

∗
n(x) as the estimation

error and use f
∗
n/σ to measure the range-to-noise ratio, all the theoretical results we have
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presented so far hold in the nonparametric regression model (56) for general f with the
following adjustments of the error bounds rq,±(m) in (21) and (22):

rq,+(m) ≥ max
{
E

[
max
v′�v

(
max
u�x

∑
xi∈[u,v′]

εi

nu,v′

)q

+

]
: nx,v = m,x � v and v ∈ V0

}
,

rq,−(m) ≥ max
{
E

[
max
u′�u

(
min
v�x

∑
xi∈[u′,v]

εi

nu′,v

)q

−

]
: nu,x = m,u � x and u ∈ V0

}
,

(59)

without changing the notation. Both rq,±(m) are still required to be nonincreasing functions
of m ∈ N

+. Accordingly, this leads to the following adjustment of the functions in (23):

mx,− = max
{
nu,x : f ∗

n(u) ≥ f
∗
n(x) − r

1/q
q,−(nu,x),u � x and u ∈ V0

}
,

ux = arg max
u∈V0:u�x

{
nu,x : f ∗

n(u) ≥ f
∗
n(x) − r

1/q
q,−(nu,x)

}
,

mx = mx,+ = max
{
nx,v : f ∗

n(v) ≤ f
∗
n(x) + r

1/q
q,+(nx,v),x � v and v ∈ V0

}
,

vx = arg max
v∈V0:x�v

{
nx,v : f ∗

n(v) ≤ f
∗
n(x) + r

1/q
q,+(nx,v)

}
,

(60)

with the error bounds rq,±(m) in (59) and the estimation target f
∗
n(x) in (57) or (58).

THEOREM 9. Let f̂
(block)
n be as in (17), f

∗
n as in (58), rq,±(m) as in (59) and �±(m)

as in (24) with the mxi ,± in (60). Then the error bounds (25) and (26) of Theorem 1 hold
with f replaced by f

∗
n. Consequently, for the lattice design and under the q ∨ 2 moment

assumption on the noise {εi}, the error bounds in Theorems 2, 3, 4 and 5 hold with the same
substitution. In particular, with f replaced by f

∗
n and f n by f

∗
n = (f

∗
n(x1), . . . , f

∗
n(xn))

T ,
(36) holds with the same function H̃ (t) when {f ∗

n(b) − f
∗
n(a)}/σ ≤ �∗

n, (41) and (43) hold
when �(f

∗
n/n) ≤ �∗

n, (44) holds when f
∗
n(ak) = f

∗
n(bk) with V = ⋃K

k=1[ak,bk], and (45)
and (46) hold when f

∗
n(x) depends on only s of the d variables and nj � n1/d for all j .

The above results also hold when {f̂ (block)
n , f

∗
n} = {f̂ (max-min)

n , f
(max-min)

n } or {f̂ (block)
n , f

∗
n} =

{f̂ (min-max)
n , f

(min-max)

n }.

Theorem 9 asserts that f̂ n is close to f
∗
n in many ways when the isotonic condition on the

unknown f is misspecified. However, the interpretation of this result is not as clear as the
existing oracle inequality for the LSE as f

∗
n is not based on an optimality criterion.

4. Simulation results. In this section, we report the results of several experiments in
d = 2 and d = 3 to demonstrate the feasibility of the block estimators and to compare its es-
timation performance with the LSE. Among potentially many choices of the block estimator,
we simply use the block max-min estimator as in (10). In six simulation settings, the block
max-min estimator yields smaller average �2 losses than the LSE, with very small p-values
in piecewise constant and variable selection settings. In a seventh setting, the LSE slightly
outperforms the block max-min estimator but the difference is insignificant.

To compare the LSE and the block estimator, we carry out our experiments as follows. In
each experiment, we generate one unknown f , 5000 replications of y with standard Gaussian
noise, find the LSE and the block max-min estimator for each y and compute the mean
squared losses ‖f̂ n −f n‖2

2/n for both estimators. We therefore obtain 5000 simulated losses
for each estimator and take the averages to approximate their mean squared risks.
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We use quadratic programming to compute the LSE in our experiments. We would like
to mention that fast algorithms for the LSE have been developed in the literature: Dykstra
(1983), Kyng, Rao and Sachdeva (2015), Stout (2015), to name a few. We stick to quadratic
programming as it provides somewhat more accurate results, although the difference seems
small. The purpose of our experiment is to compare the risk of estimators, not the compu-
tational complexity of different algorithms. For the block max-min estimator, we use brute
force which exhaustively calculates means over all blocks and finds the max-min value for
each lattice point x. We note again that the computation cost via brute force is of order n3.

In d = 2, we consider isotonic regression with the n1 ×n2 lattice design [1,n] with n1 = 50
and n2 = 20, so that the number of design points in total is n = 1000. In Experiment I, we
consider the function f (x) = c(x1 + x2)

2/3 (here and in the sequel, c is a constant such that
f (n) = 10 so that the range of f is about 10 on the lattice). As the region between two
contours of this f cannot be efficiently represented by rectangular blocks, this example is
not expected to favor the block estimator. In Experiment II, we split the lattice into 5 × 5
small blocks of size 10 × 4, randomly assign 1, . . . ,10 to each small block, conditionally on
the realizations satisfying the isotonic constraint. The adaptation of the LSE and the block
max-min estimator to piecewise constant f is compared in this experiment. Lastly, we com-
pare the adaptation of the two estimators to variable selection in Experiment III by setting
f (x) = f1(x1) = c log(x1). See Figures 4, 5 and 6 for heat maps in Experiments I, II and III,
respectively; each figure contains heat maps for the unknown f , one example of observed
y, the LSE and the block max-min estimator for this y. Figure 7 provides boxplots of mean
squared losses of both estimators in Experiments I, II and III.

In d = 3, we consider isotonic regression with n1 × n2 × n3 lattice designs where n1 =
n2 = n3 = 10, so that the number of design points in total is also n = 1000. We choose the
true mean functions in a similar manner to d = 2. In Experiment IV, we consider f (x) =
c(x1 + x2 + x3)

2/3. In Experiment V, we randomly assign 1, . . . ,10 to 2 × 2 × 5 small blocks
of size 5 × 5 × 2 conditionally on the isotonic constraint. Lastly, the true mean function is
f (x) = f1(x1) = c log(x1) in Experiment VI. See Figure 8 for boxplots of mean squared
losses of both estimators in Experiments IV, V and VI.

Two basic statistics, mean and standard deviation of the losses of the LSE and the block
max-min estimator and the loss difference of the two estimators are listed in Table 1, along
with the two-sided p-value for the difference. In Experiment I and IV which are less favorable

FIG. 4. Heatmaps for the true f , an observed y and its LSE and max-min estimate in Experiment I.
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FIG. 5. Heatmaps for the true piecewise-constant f , an observed y, and its LSE and max-min estimate in
Experiment II.

to the block estimator, the block estimator still yields slightly smaller risk, although the risk
difference is insignificant (with p-values 0.6190 and 0.1600, resp.) In all other four experi-
ments, the block max-min estimator significantly outperforms the LSE with p-values 0.0062
or smaller, supporting our theoretical analysis. It is worthwhile to mention that, although the
risk values are incomparable due to different dimension d , we observe more significant dif-
ference in the mean squared losses between the LSE and the block max-min estimator in
d = 3 than in d = 2, in view of the p-values and box plots. This observation coincide with
Theorem 4 and its comparison to the existing risk bounds for the LSE.

We end this section with an example in which the LSE actually yields slightly smaller
mean squared risk than the block max-min estimator. In Experiment VII, we consider the
two-piece function f (x1, x2) = I {x1/n1 + x2/n2 ≥ 1} on an n1 × n2 lattice. Same as in

FIG. 6. Heatmaps for the true f , an observed y, and its LSE and max-min estimate in Experiment III.
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FIG. 7. Boxplots for the losses of LSE and block estimator in d = 2.

Experiments I, II and III, we take (n1, n2) = (50,20) and add standard Gaussian noises to
f (x1, x2). See the heat maps in Figure 9.

We shall recall f̂
(lse)
n (x) = yU∩L for some upper set U and lower set L. Suppose x1/n1 +

x2/n2 ≥ 1 so that f (x) = 1, then the best level set U ∩L for this design point is the upper red
triangle in Figure 9(a). In contrast, as f̂

(block)
n (x) = y[u,v] for some u and v, the best possible

block contains at most half design points of the upper triangle (when u = (n1/2, n2/2) and
v = (n1, n2)). Therefore, the variability of the block estimator at each design point may be
larger than the LSE, resulting in a greater risk. Indeed, when we compare them on 5000
replications of y as in Experiments I–VI, the mean squared losses for the LSE has mean
0.0420 and standard deviation 0.0090, while for the block max-min estimator the mean is
0.0440 and the standard deviation is 0.0087. However, the difference is not significant as
the mean and standard deviation for the loss difference are −0.0020 and 0.0040, and the
two-sided p-value is 0.6163.

It would be difficult to characterize settings or general examples in which the LSE out-
performs the block estimator. When we set f (x) = 0.5I {x1/n1 + x2/n2 ≥ 1}, the average

FIG. 8. Boxplots for the losses of LSE and block estimator in d = 3.
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TABLE 1
The mean and standard deviation (s.d.) of the mean squared losses for the LSE and the block max-min

estimator (block), and the mean, s.d. and two-sided p-value for the loss differences
(diff = loss of LSE − loss of block estimator)

(d = 2) Experiment I Experiment II Experiment III

LSE block diff LSE block diff LSE block diff

Mean 0.0822 0.0807 0.0016 0.1029 0.0918 0.0111 0.0713 0.0603 0.0110
s.d. 0.0096 0.0095 0.0031 0.0156 0.0149 0.0041 0.0115 0.0109 0.0033
p-value 0.6190 0.0062 0.0007

(d = 3) Experiment IV Experiment V Experiment VI

LSE block diff LSE block diff LSE block diff

Mean 0.1412 0.1353 0.0059 0.1316 0.1096 0.0220 0.0917 0.0746 0.0170
s.d. 0.0119 0.0117 0.0042 0.0178 0.0169 0.0059 0.0160 0.0147 0.0045
p-value 0.1600 0.0002 0.0002

normalized �2 loss for the LSE is 0.0298, slightly greater than 0.0280 for the block max-min
estimator, but the difference is insignificant as the two-sided p-value is 0.5568.
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SUPPLEMENTARY MATERIAL

Supplement to “Isotonic regression in multidimensional spaces and graphs” (DOI:
10.1214/20-AOS1947SUPP; .pdf). This supplement contains proofs of all the theoretical re-
sults stated in the main body of the paper.

FIG. 9. Heatmaps for the true two-piece function f , an observed y and its LSE and max-min estimate.

https://doi.org/10.1214/20-AOS1947SUPP
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