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Fitting a function by using linear combinations of a large number N of
“simple” components is one of the most fruitful ideas in statistical learn-
ing. This idea lies at the core of a variety of methods, from two-layer neu-
ral networks to kernel regression, to boosting. In general, the resulting risk
minimization problem is nonconvex and is solved by gradient descent or its
variants. Unfortunately, little is known about global convergence properties
of these approaches.

Here, we consider the problem of learning a concave function f on a com-
pact convex domain � ⊂ R

d , using linear combinations of “bump-like” com-
ponents (neurons). The parameters to be fitted are the centers of N bumps,
and the resulting empirical risk minimization problem is highly nonconvex.
We prove that, in the limit in which the number of neurons diverges, the evolu-
tion of gradient descent converges to a Wasserstein gradient flow in the space
of probability distributions over �. Further, when the bump width δ tends
to 0, this gradient flow has a limit which is a viscous porous medium equa-
tion. Remarkably, the cost function optimized by this gradient flow exhibits a
special property known as displacement convexity, which implies exponential
convergence rates for N → ∞, δ → 0.

Surprisingly, this asymptotic theory appears to capture well the behavior
for moderate values of δ, N . Explaining this phenomenon, and understand-
ing the dependence on δ, N in a quantitative manner remains an outstanding
challenge.

1. Introduction. In supervised learning, we are given data {(yj ,xj )}j≤n which are often
assumed to be independent and identically distributed from a common law P on R×R

d (here
xj ∈ R

d is a feature vector, and yj ∈ R is a label or response variable). We would like to find
a function f̂ : Rd → R to predict the labels at new points x ∈ R

d . Throughout this paper,
we will quantify the quality of our prediction by square loss, hence we are interested in
minimizing R(f̂ ) = E{(y − f̂ (x))2}.

One of the most fruitful ideas in this context is to use functions that are linear combinations
of simple components:

f̂ (x;w) = 1

N

N∑
i=1

aiσ (x;wi ).(1.1)

Here, σ : Rd × R
D → R is a component function (a “neuron” or “unit” in the neural

network parlance), and w = (w1, . . . ,wN) ∈ R
D×N , a = (a1, . . . , aN) ∈ R

N are param-
eters to be learnt from data. Standard choices for the activation function are σ(x;w) =
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(1 + exp(−〈w,x〉))−1 (sigmoid) or σ(x;w) = max(〈w,x〉;0) (ReLU). In this paper, we will
instead study a class of activation that depends on the difference x − w. The objective is to
minimize the population (prediction) risk

RN(a,w) = E

{[
y − 1

N

N∑
i=1

aiσ (x;wi )

]2}
.(1.2)

Special instantiations of this idea include (we provide only pointers to the immense literature
on each topic):

• Two-layer neural networks [2, 35];
• Sparse deconvolution [9, 18];
• Kernel ridge regression and related random feature methods [15, 34];
• Boosting [8, 21, 38].

Despite the impressive practical success of these methods, the risk function RN(w) is highly
nonconvex and little is known about global convergence of algorithms that try to minimize it
(we refer to Section 2 for further discussion of the related literature).

Notable exceptions to the last statement are provided by random features and boosting
algorithms. In random feature methods, the parameters wi are not optimized over (they are
drawn i.i.d. from some common distribution), and the resulting risk function becomes convex
in the weights (a1, . . . , aN) to be learned. While this is a fruitful idea, it gives up the degrees
of freedom afforded by the wi’s.

Boosting overcomes nonconvexity by fitting the components w1, . . . ,wN one at the time,
sequentially. The underlying assumption is that the problem of minimizing RN(w) with re-
spect to one of the hidden units wi is tractable. However, this is generally not the case when
the parameters wi belong to a high dimensional space.

The risk function (1.2) crystalizes a central conundrum in statistical learning. In a number
of applications (especially at low noise), it is rarely the case that low prediction error can be
achieved through a function that is linear in the raw covariates, for example, f̂ (x) = 〈w,x〉.
In a classical setting, the statistician would craft nonlinear features out of the covariates on the
basis of expert knowledge. For the model of Eq. (1.1), this amounts to constructing vectors
w1, . . . ,wN . Statistical methods would then be confined to the convex task of fitting the
coefficients a1, . . . , aN . This step is well understood from a statistical and computational
perspective.

Modern machine learning approaches (boosting, neural networks, etc.) hold the promise
of automatizing feature extraction, hence producing superior performances in a wide variety
of applications. Unfortunately, we are still far from understanding in which cases optimizing
over the wi’s yields a significant improvement over, say, choosing them randomly. This cen-
tral challenge intertwines statistical and computational aspects. It is not hard to see that vary-
ing the weights wi’s produces a significantly larger function class [3]. The relevant question
is what part of this class can be accessed using gradient descent or other practical algorithms.

The main objective of this paper is to introduce a nonparametric regression model in which
these questions can be addressed rigorously. The model is interesting for at least two reasons:
(i) From a theoretical point of view, global convergence can be proved in the limit of a large
neurons. The proof relies on a mathematical mechanism that has not been explored in the
statistics or machine learning literature before. (ii) From a practical point of view, the model
is nontrivial enough to illustrate the potential advantage of fitting the features wi (we demon-
strate this numerically in Section 4.)

Let � ⊂ R
d be a compact convex set with C 2 boundary. We assume {(yj ,xj )}j≥1 to be

i.i.d. where xj ∼ Unif(�) and

E(yj |xj ) = f (xj ),(1.3)
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with f : � → R a smooth function. We try to fit these data using a combination of bumps,
namely

f̂ (x;w) = 1

N

N∑
i=1

Kδ(x − wi),(1.4)

where Kδ(x) = δ−dK(x/δ), K : Rd → R≥0 is a first-order kernel with compact support,
and wi ∈ �δ for i ≤ N . Here, �δ is a slightly smaller compact set, with �δ → � as δ → 0.
(Note that in our setting the hidden units wi and input data xj have same dimensions, that
is, d = D.) We refer to Section 5 for a formal statement of our assumptions. From equation
(1.2), we have

RN(w) = R# +E

{[
f (x) − 1

N

N∑
i=1

Kδ(x − wi )

]2}
,

where R# = E[(y − f (x))2] and we use the fact that E[y − f (x)|x] = 0. Since the constant
R# does not depend on parameters w, it does not matter in optimizing RN(w) over w and
henceforth we write, with a slight abuse of notation,

RN(w) = E

{[
f (x) − 1

N

N∑
i=1

Kδ(x − wi )

]2}
.

The model (1.4) is general enough to include a broad class of radial-basis function (RBF)
networks which are known to be universal function approximators [32]. To the best of our
knowledge, there is no result on the global convergence of stochastic gradient descent for
learning RBF networks, and this paper establishes the first result of this type.

It is important to emphasize a few differences with respect to standard RBF networks.
First of all, we do not require the kernel K(x) to be radial, that is, to depend uniquely on
the norm |x|. Second, we require K to have compact support. This is mainly a technical
requirement that simplifies some arguments: we expect our results to be generalizable to
kernels that decay rapidly enough. Finally, and most crucially, the form (1.4) does not in-
clude nonuniform weights for the N components. A more standard formulation would posit
f̂ (x;w) = ∑N

i=1 aiK
δ(x −wi) and learn the weights ai from data; see equation (1.1). We de-

liberately set the weights to a fixed value because the risk function is convex in a = (ai)i≤N ,
and hence fitting a’s to global optimality is “easy.” Indeed, universal approximation could be
achieved by keeping the centers wi fixed (and sufficiently dense in �) and only adjusting a.
As discussed above, our focus is on the role of the wi ’s.

Our main result is a proof that, for sufficiently large N and small δ, gradient descent algo-
rithms converge to weights w with nearly optimum prediction error, provided f is strongly
concave. Let us emphasize that the resulting population risk RN(w) is nonconvex regard-
less of the concavity properties of f . Our proof unveils a novel mechanism by which global
convergence takes place. Convergence results for nonconvex empirical risk minimization are
generally proved by carefully ruling out local minima in the cost function (see Section 2 for
pointers to this literature). Instead we prove that, as N → ∞, δ → 0, the gradient descent
dynamics converges to a gradient flow in Wasserstein space, and that the corresponding cost
function is “displacement convex.” Breakthrough results in optimal transport theory guaran-
tee dimension-free convergence rates for this limiting dynamics [10–12]. In particular, we
expect the cost function RN(w) to have many local minima, which are however completely
neglected by the gradient descent dynamics.
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More specifically, our first step is to show that—for large N—the evolution of the weights
w1, . . . ,wN under gradient descent can be replaced by the evolution of a probability distribu-
tion1 ρδ ∈ P2(�), which approximates their empirical distribution. Namely, if (wk

1, . . . ,w
k
N)

denote the weights after k iterations with step size ε, and ρ̂
(N)
k = ∑N

i=1 δwk
i
/N is their empir-

ical distribution, then we have

lim
N→∞,ε→0

ρ̂
(N)
t/ε = ρδ

t ,(1.5)

where the limit holds in the sense of weak convergence or in W1 distance (the two are equiv-
alent since � is compact). The limit evolution (ρδ

t )t≥0 satisfies a partial differential equation
(PDE) that can also be described as the Wasserstein W2 gradient flow (i.e., gradient flow in
P2(�)), for the following effective risk:

Rδ(ρ) = ν0

∫
�

[
f (x) − Kδ ∗ ρ(x)

]2 dx,(1.6)

where ν0 = 1/|�| and |�| denotes the volume of the set �. Here, ∗ denotes the usual convo-
lution. Let us emphasize that the convergence to Wasserstein gradient flow holds regardless
of the concavity of f .

The use of W2 gradient flows to analyze two-layer neural networks was recently developed
in several papers [14, 29, 36, 39]. However, we cannot rely on earlier results because of the
specific boundary conditions in our problem. We constrain the wi ∈ �δ by running projected
stochastic gradient descent (SGD): at each step wi moves in the direction of a stochastic gra-
dient of RN(w) and then projected back to �δ . This results in a PDE with Neumann boundary
condition on �δ , which is not covered by previous theory. We establish a quantitative version
of the limit (1.5) via propagation-of-chaos techniques.

Even if the cost (1.6) is quadratic and convex in ρ, its W2 gradient flow can have multiple
fixed points, and hence global convergence cannot be guaranteed. Global convergence results
were proven in [29] and in [14] by showing that, for all t ≥ 0 ρδ

t has a density that is either
smooth, or strictly positive everywhere. However, these convergence results are nonquantita-
tive, and do not provide convergence rates.2

Indeed, the mathematical property that controls global convergence of W2 gradient flow is
not ordinary convexity but displacement convexity. Roughly speaking, displacement convex-
ity is convexity along geodesics of the W2 metric; see Section 3.5. The risk function (1.6) is
not displacement convex for small nonzero δ. In fact, up to an additive constant, the risk is
equal to

−2ν0

∫
Kδ ∗ f (x)ρ(x)dx + ν0

∫
Kδ ∗ Kδ(x − x′)ρ(x)ρ

(
x′) dx dx′,

which is not displacement convex unless Kδ ∗ Kδ − 2Kδ ∗ f is convex (see Lemma H.1),
and this cannot hold in our setting (see Lemma H.2). However, for small δ, we can formally
approximate Kδ ∗ρ ≈ ρ, and hence hope to replace the risk function (1.6) with a simpler one

R(ρ) = ν0

∫
�

[
f (x) − ρ(x)

]2 dx.(1.7)

Most of our technical work is devoted to making this δ → 0 approximation rigorous. Namely,
we prove that, as δ → 0, ρδ

t ⇒ ρt where ρt follows the W2 gradient flow for the risk R(ρ).

1Throughout, P2(X ) denotes the space of probability distributions on X , endowed with Wasserstein metric
W2.

2An argument indicating convergence in a time polynomial in d was put forward in [47], but for a different type
of continuous flow.
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Remarkably, the risk function R(ρ) is strongly displacement convex (provided f is
strongly concave). A long line of work in PDE and optimal transport theory establishes
dimension-free convergence rates for its W2 gradient flow [10–12]. Namely, if f is α-strongly
concave, then R(ρt ) ≤ R(ρ0)e

−2αt . By using the approximation results outlined above, we
obtain global convergence for SGD. With high probability,

RN

(
wk) ≤ RN

(
w0)

e−2αkε + err(N,d, ε, δ),(1.8)

where the error term err vanishes as N → ∞, ε, δ → 0 in a suitable order.
This result implies that SGD converges exponentially fast to a near-global optimum with

a rate that is controlled by the convexity parameter α.
Our bounds are not sharp enough to provide quantitative control on the error term

err(N,d, ε, δ), especially in high dimension. Nevertheless, the convergence rate predicted
by our asymptotic theory is in excellent agreement with numerical simulations; cf. Section 4.
Explaining this surprising quantitative agreement is an outstanding challenge.

2. Related literature. The present work ties in several lines of research, some of which
were already mentioned in the Introduction. A substantial amount of work has been devoted
to analyzing two-layer neural networks and developing algorithms with convergence guaran-
tees; see, for example, [4, 44, 48]. However, these approaches are typically based on tensor
factorization or similar initialization steps that are not used in practice, and do not scale well
(although polynomially) in high dimension.

The landscape of empirical risk minimization was also studied in a number of papers;
see, for example, [24, 40]. However, global convergence was only proved in the extremely
overparametrized regime in which the neural network essentially behaves as kernel ridge
regression [19].

Classical theory of neural networks was largely devoted to the two-layer case [2], although
the focus was on representation and approximation questions [5, 16], as well as on general-
ization error. It was already clear in that context that a two-layer network is conveniently
characterized by the empirical distribution of the hidden neurons, and that it is useful to relax
this from a distribution with N atoms, to a general probability measure. This representa-
tion plays an important role, for instance, in [6], and was exploited again under the label of
“convex neural networks” in [7].

Over the last year, several groups independently revisited this connection, with the ob-
jective of understanding the landscape structure of two-layer networks, and the dynamics of
gradient descent methods [14, 28–30, 36, 39]. In particular, it was proven in [29] that, un-
der certain smoothness condition on the underlying data distribution, the gradient descent
evolution is well approximated by a Wasserstein gradient flow, provided that the number of
neurons exceeds the data dimensions. As mentioned above, the algorithm treated here differs
from the ones analyzed in earlier work, because the weights wi are constrained to lie in the
convex set �δ . We enforce this constraint by using projected SGD, that is, projecting at each
step the weights onto the set �δ . We generalize the analysis of [29], obtaining convergence
to a PDE with Neumann (reflecting) boundary conditions. As in [29], we build on ideas that
were first developed in the context of interacting particle systems [17, 41].

The Wasserstein gradient flow approach was used in [14, 29] to establish global conver-
gence results. However, these results fall short of our objectives for several reasons:

• The global convergence result of [14] rely on certain homogeneity properties of the neurons
that are lacking here. We could obtain homogeneity by adding coefficients to equation
(1.4), that is, considering f̂ (x;w) = ∑N

i=1 aiK
δ(x − wi ) and minimizing the risk with

respect to the coefficients ai . As mentioned above, we refrain from introducing coefficients
not to oversimplify the problem: when N → ∞, it is sufficient to fit the coefficients ai to
achieve vanishing risk. Fitting the ai ’s is a least squares problem.
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• Most importantly, the techniques [14, 29] do not establish any convergence rates. This
is not surprising, as those results hold under weak assumptions on the data distribution
and the activation function. In particular, [14, 28, 29] cover general risk functions of the
form (1.2) under certain smoothness and boundedness conditions on σ and on the func-
tions V (w) = −E{f (x)σ (x;w)}, U(w1,w2) = E{σ(x;w1)σ (x;w2)}. In such a general
setting, [29] provides examples in which the Wasserstein gradient flow has multiple fixed
points, which are singular with respect to the Lebesgue measure. Global convergence is
established in [14, 29] by proving that PDE solution ρt has a strictly positive density. How-
ever, it is difficult to imagine this condition to hold in a quantitative dimension-independent
manner.

In contrast, our results are a first step toward dimension-independent convergence rate,
in a more restricted setting than [14, 28, 29].

In summary, our results do not subsume earlier work, that assumes a more general setting,
but rather establish stronger results in narrower context. Indeed, we believe that specific
structural conditions must be imposed on the data distribution and activation function for
the Wasserstein gradient flow approach to yield quantitative convergence rates. This paper
presents one specific set of assumptions. Although our results are not strong enough to estab-
lish nonasymptotic convergence rates, they point clearly in that direction.

3. Model and assumptions.

3.1. Notation. We will use lowercase boldface for vectors, for example, x,y, . . . , upper-
case for random variables, for example, X,Y, . . . , and uppercase boldface for random vectors,
for example, X,Y , . . . . The scalar product of two vectors is denoted by 〈x,y〉 = ∑d

i=1 xiyi ,
and the 	2 norm of a vector is denoted by |x|. The Euclidean ball in R

d with center x and
radius r is denoted by B(x; r). Given a set � ⊆R

d , we denote by |�| its volume.
We will refer to several function spaces in what follows. The most common is the space of

pth integrable functions L p(X ) on a measure space (X ,F,μ). Given a function f : X →R,
we denote by ‖f ‖L p(X ) its L p norm, namely ‖f ‖p

L p(X ) = ∫
X |f (x)|pμ(dx). For S ⊆ R

m,

C k(S) denotes the space of continuous functions f : S → R with continuous derivatives up
to order k. In particular, C (S) denotes the space of continuous real-valued functions defined
on S. In addition, for T ∈ R+ and a metric space M (with distance dM), C ([0, T ],M) de-
notes the set of continuous functions f : [0, T ] → M, endowed with the distance between
two functions f,g ∈ C ([0, T ],M) defined as dC ([0,T ],M)(f, g) ≡ supt∈[0,T ] dM(f (t), g(t)).
For a function f : S → R, we let ‖f ‖Lip ≡ supx �=y∈S |f (x) − f (y)|/|x − y| be the Lips-
chitz constant of the function f . Finally, as mentioned above, P2(X ) denotes the space of
probability distributions on X , endowed with the Wasserstein metric W2.

Throughout the paper, we use C to denote finite constants, which can vary from point to
point. When these constants can depend on some of the problem parameters, for example, a,
b, c, we will write C(a, b, c). When they are absolute numerical constants, we will emphasize
this by writing C∗. (In particular, a constant C∗ is independent of the dimension d and of the
domain �.)

3.2. Data. As mentioned above, we are given data (yj ,xj ) ∼i.i.d. P where xj ∼ Unif(�),
with � ⊂R

d a compact convex set, and yj = f (xj )+ εj , with f : � →R≥0. We assume the
εj to be i.i.d. σ 2-sub-Gaussian random variables with E(εj |xj ) = 0. We assume the function
f to be concave and smooth.

Our formal assumptions on the set � and the function f are as follows:

(A1) � ⊇ B(0; r), with r > 0, is a compact convex set with C 2 boundary.



TWO-LAYER NEURAL NETWORKS AND DISPLACEMENT CONVEXITY 3625

(A2) f : � →R≥0 uniformly concave, that is, there exists α > 0 such that

(3.1)
〈
y,∇2f (x)y

〉 ≤ −α|y|2 ∀x ∈ �,y ∈R
d,

where ∇2f denotes the Hessian of f .
(A3) f ∈ C ∞(�), with ‖f ‖L ∞(�),‖∇f ‖L ∞(�) ≤ C∗ for an absolute constant C∗.

Without loss of generality, we can also assume that
∫
� f (x)dx = 1. As f has nonnegative

range, this is equivalent to assuming that f is a density. As a running example, we will use
� = B(0; r), where we remind r is defined in Assumption (A1).

REMARK 3.1. The assumption xj ∼ Unif(�) is quite strong but simplifies our analysis.
We believe our approach can be generalized to a broader family of probability distributions
for the covariates xj , but defer these generalizations to future work.

3.3. Neural network and SGD. Let K ∈ C 2(Rd) be a nonnegative symmetric first-order
kernel with compact support. Formally, we assume that

(A4)

∫
K(x)dx = 1, K(x) ≥ 0,

∫
K(x)x dx = 0,(3.2)

K(−x) = K(x), supp(K) ⊆ B(0, c0).(3.3)

The assumptions of symmetry and compact support are not crucial, but simplify some of
the technical details later. We will further assume ‖∇K‖L ∞(Rd ), ‖∇2K‖L ∞(Rd ) and c0 to
be independent of the ambient dimension d . Notice that this requirement follows from the
differentiability and compact support assumptions if K(x) = κ(‖x‖2) is a radial function.

For δ > 0, let Kδ(x) = δ−dK(x/δ). We try to fit the function (1.4) with parameters w =
(w1, . . . ,wN). These parameters are constrained to wi ∈ �δ , which is a suitable scaling of
�, as defined in the following. Given δ < r/c0, with r defined in (A1), define

�δ = λδ�,

where

(3.4) λδ = sup
{
λ ≥ 0 : λ� ⊕ B(0, c0δ) ⊆ �

}
.

For two sets A,B ⊆ R
d , their Minkowski sum is defined as A ⊕ B = {x + y : x ∈ A,y ∈ B}.

Note that λδ ∈ [0,1] for all δ. Furthermore, � ⊇ B(0; r) implies λδ > 0 for all δ < r/c0.
Finally, λδ=0 = 1, whence �δ=0 = �. In our running example, �δ = B(0; r − c0δ) is a ball
of slightly smaller radius. Clearly, since � is convex, �δ is convex as well.

We use stochastic gradient descent to minimize the population risk (1.2). At each step, we
use a new data point (yk,xk), thus the sample size is equal to the number of iterations of the
algorithm. Assuming for simplicity constant step size ε > 0, we update the parameters by

wk+1
i = P

{
wk

i − ε∇Kδ(xk+1 − wk
i

)(
yk+1 − f̂

(
xk+1;wk)) + √

2ετgk+1
i

}
.(3.5)

Here, gk+1
i ∼ N(0, I d) is Gaussian noise which we take to be i.i.d. across time and neuron

indices, k and i, and P is the orthogonal projector onto �δ :

P(z) = arg min
{|z − x| : x ∈ �δ}.(3.6)

The noise term
√

2ετgk+1
i is added mainly for technical reasons. Namely, it allows us to

control the smoothness of the solutions of the resulting PDE. In simulations, we do not find
it useful, and we believe that a more careful analysis would be able to establish smoothness
without the noise term.
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Again, in our running example, we have

P(z) =
{
z if |z| ≤ r − c0δ,

(r − c0δ)z/|z| if |z| > r − c0δ.
(3.7)

We initialize SGD with (w0
i )i≤N ∼i.i.d. ρδ

init ∈ P2(�
δ), where ρδ

init is a scaling of a fixed
distribution ρinit ∈ P2(�), that is, ρδ

init(S) = ρinit(S/λδ). We assume that the initialization is
smooth:

(A5) ρinit ∈ C ∞(�δ).

3.4. PDE model, δ > 0. In the N → ∞ limit, the population risk is approximated by
the effective risk Rδ : P2(�

δ) → R defined in equation (1.6). We emphasize that ρ is a
probability distribution supported on �δ . Note that

inf
ρ

Rδ(ρ) ≤ Rδ(f ) = ν0

∫
�

[
f (x) − Kδ ∗ f (x)

]2 dx.(3.8)

In particular, limδ→0 infρ∈P2(�) R
δ(ρ) = 0.

Our first main result is that the dynamics of SGD is well approximated by the following
PDE (see Section 5.1 for a formal statement):

∂tρt (w) = ∇ · (
ρt (w)∇�(w;ρt )

) + τ�ρt (w),

�(w;ρ) ≡ −ν0K
δ ∗ f (w) + ν0K

δ ∗ Kδ ∗ ρ(w),
(3.9)

with initial and boundary conditions

ρ0 = ρδ
init,〈

n(w), ρt (w)∇�(w;ρt) + τ∇ρt(w)
〉 = 0 ∀w ∈ ∂�δ,

(3.10)

where n(x) denotes the inward normal vector to ∂�δ at x.
A rigorous definition of solutions of this PDE, along with some of their properties, is

given in Appendix B. In Appendix C, we discuss the connection between the PDE (3.9) and
the so-called “nonlinear dynamics,” that is, a stochastic differential equation that captures the
trajectories of the weights wk

i . Using this connection, we prove existence and uniqueness of
weak solutions of equation (3.9). In the proofs, we will often assume ν0 = 1, which amounts
to a rescaling of time t .

For τ = 0, the evolution defined by equation (3.9) corresponds to the gradient flow in
Wasserstein metric for the risk function Rδ(ρ). For τ > 0, it is the gradient flow for the free
energy functional Fδ(ρ) defined below

Fδ(ρ) = 1

2
Rδ(ρ) − τS(ρ), S(ρ) = −

∫
ρ(w) logρ(w)dw.(3.11)

3.5. Limit PDE, δ = 0. As mentioned above, in the limit δ → 0 the risk function Rδ(ρ)

is well approximated by R : L 2(�) → R, where R(ρ) = ν0‖f − ρ‖2
L 2(�)

; cf. equation
(1.7).

The corresponding Wasserstein gradient flow is also known as the viscous porous medium
equation [45] and it is given by

∂tρt (w) = −ν0∇ · (
ρt (w)∇f (w)

) + ν0

2
�

(
ρ2

t (w)
) + τ�ρt(w),(3.12)
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with initial and boundary conditions

ρ0 = ρinit,〈
n(w), ν0ρt (w)∇(

f (w) − ρt (w)
) − τ∇ρt(w)

〉 = 0 ∀w ∈ ∂�.
(3.13)

In Appendix A, we give the definition of a weak solution for the PDE (3.12) with initial
and boundary conditions (3.13). We also prove that the weak solution of the PDE (3.12) is
unique, under a mild integrability condition. Again, in proofs we will assume without loss of
generality ν0 = 1.

As in the δ > 0 case, the evolution defined by equation (3.12) is the gradient flow for
the free energy F(ρ) = (1/2)R(ρ) − τS(ρ). Our analysis uses a key property of the risk
function R(ρ) = ν0‖f − ρ‖2

L 2(�)
(and the free energy): displacement convexity [26]. For

the reader’s convenience, we recall its definition here, referring to [1, 37, 46] for further
background. Given two probability measures ρ0, ρ1 ∈ P2(�), their W2 distance is defined
by

W2(ρ0, ρ1)
2 = inf

γ∈�(ρ0,ρ1)

∫
‖x − y‖2

2γ (dx,dy),(3.14)

where the infimum is taken over the set �(ρ0, ρ1) of couplings of ρ0, ρ1 (i.e., probabil-
ity measures on � × � whose first marginal coincides with ρ0, and second with ρ1). The
infimum is achieved by weak compactness of P2(�).

The metric space (P2(�),W2) is a “length space,” and in particular it is possible to con-
struct geodesics, that is, paths of minimum length connecting any two probability measures
ρ0, ρ1. Geodesics have a simple description. Let γ∗ be the coupling achieving the infimum
in the definition of W2(ρ0, ρ1). Letting (X0,X1) ∼ γ∗, we define ρt to be the distribution of
Xt = (1 − t)X0 + tX1. The curve t �→ ρt , indexed by t ∈ [0,1] turns out to be the geodesic
between ρ0 and ρ1 in (P2(�),W2).

Displacement convexity is convexity along geodesics. Namely, a function F : P2(�) →R

is λ-strongly displacement convex if for any two distributions ρ0, ρ1 ∈ P2(�),

(1 − t)F(ρ0) + tF(ρ1) −F(ρt ) ≥ 1

2
λt (1 − t)W2(ρ0, ρ1)

2 ∀t ∈ [0,1].(3.15)

A useful observation is that displacement convexity implies that all local minima of F are
global minimizer. Indeed, by (3.15) it is straightforward to see that F has at most one global
minimizer ρ∗. Also, for every other point ρ, the geodesic between ρ and ρ∗ is a strictly
decreasing path for the function F . Now, suppose that ρ̄ �= ρ∗ is a local minimum. Then
there exists a neighborhood U around ρ̄ such that, for any ρ ∈ U , F(ρ) ≥ F(ρ̄). However,
the strictly decreasing path between ρ̄ and ρ∗ passes through the neighborhood U , which
leads to a contradiction and so ρ = ρ∗

It follows from [26] that the risk function R(ρ) and the free energy F(ρ) are strongly
displacement convex.

REMARK 3.2. The concavity assumption on the regression function f (Assumption
(A2)) defines a nonparametric class under which global convergence can be established, with
convergence rates uniquely determined by the curvature α (in the limit N → ∞, δ → 0).
Nonparametric estimation of concave functions has attracted considerable attention over
recent years (see, e.g., [13, 22]), and is—by itself—an interesting domain of applicabil-
ity.

However, our projected SGD algorithm is potentially applicable to any data set, and will
return a meaningful estimate f̂ regardless of f being concave or not. Indeed, our numerical
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simulations in Section 4.4 indicate convergence to a near-global optimum even for noncon-
cave functions f .

From a mathematical point of view, Assumption (A2) is only used to show the conver-
gence of the solution of the viscous porous medium equation (limit PDE, δ = 0) to the
unique global minimizer of the free energy F(ρ) = (1/2)R(ρ) − τS(ρ), as formally stated
in Theorem F.8. Concavity is not needed for the other results in the paper, namely approx-
imating the SGD trajectory with the solution of the PDE (δ > 0), see Theorem 5.1, and
the convergence of the solution of the PDE (δ > 0) to the solution of the viscous porous
medium equation, see Theorem 5.2. We therefore conjecture that a more general analy-
sis can relax the concavity assumption and show that as N → ∞ and δ → 0, SGD con-
verges to the global minimizer in a more general setting. We defer this investigation to future
work.

4. Numerical illustrations. In this section, we provide some simple numerical illustra-
tions of our setting, and compare numerical results with the predictions of the Wasserstein
gradient flow theory.

It is easy to construct examples of strongly concave functions, satisfying our assump-
tions. One can start from any strongly concave continuous function f0 on a compact con-
vex set �, add a constant to make it nonnegative, and multiply it by a constant to nor-
malize its integral. The resulting function f (x) = (c1 + f0(x))/c2 satisfies our condi-
tions. Notable examples of concave functions are given by log-moment generating func-
tions f0(x) = − logEZ exp{〈x,Z〉}, where the random variable Z satisfies mild assumptions
(e.g., it is bounded and its distribution is not supported on a proper subspace of R

d ). In
general, given any function g0 that is twice differentiable on the closure of �, the function
f0(x) = g0(x) − c∗‖x‖2

2 is strongly concave for c∗ large enough.

4.1. A one-dimensional concave function. We set � = [−1,1] and f (x) = (1 −
ex−1)/(1 − e−2) (we choose the normalization so that

∫ 1
−1 f (x)dx = 1). Note that f is

uniformly concave in [−1,1]. We set the kernel K as follows:

K(x) = Cdκ
(|x|), κ(t) =

{
1 − t2 − 2t3 + 2t4 for t ≤ c0 = 1,

0 otherwise,
(4.1)

where Cd is a normalization constant ensuring that
∫ 1
−1 K(x)dx = 1. The initialization ρinit

is a truncated Gaussian: ρinit(x) = c · exp(−x2/(2σ 2))1[−1,1](x), with σ = 1/3.
We find empirically that standard stochastic gradient descent (SGD) without the projection

P onto �δ works well in this example, and consider this algorithm for simplicity in our first
illustrations. We pick N = 200, τ = 0 (noiseless SGD), and constant step size ε = 10−6.
In Figure 1, left column, we plot the true function f (·) together with the neural network
estimate f̂ (·;wk) at several points in time t (time is related to the number of iterations k

via t = kε). Different plots correspond to different values of δ with δ ∈ {1/5,1/10,1/20}.
We observe that the network estimates f̂ (·;wk) seem to converge to a limit curve which is an
approximation of the true function f . As expected, the quality of the approximation improves
as δ gets smaller.

In the right column, we report the evolution of the population risk (1.2) normalized by
‖f ‖2

L 2(�)
. For comparison, we plot the evolution of the risk (1.7) as predicted by the limit

PDE (3.12) with τ = 0. We solve the PDE (3.12) numerically using a finite difference scheme
that enforces the conservation law

∫
ρ(x, t)dx = 1; see, for example, [43]. In the finite differ-

ence scheme, we choose time step and spatial step �t = 10−5 and �x = 10−2, respectively.
The curve obtained by this numerical solution appears to capture well the evolution of SGD
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FIG. 1. Dynamics of SGD update (3.5) at different times t and for different values of δ.

toward optimality. The main difference is that, while the PDE (3.12) corresponds to δ = 0,
and hence evolves toward a global optimum at zero risk, SGD converges to a nonzero risk
value, which can be interpreted as the approximation error, decreasing with δ.

In Figure 2, we illustrate the numerical solution of the PDE (3.12) by plotting (i) the
regression function f together with the PDE solution ρt (which coincides with the prediction
f̂ at δ = 0) at several times t , and (ii) the PDE prediction for the risk R(ρt ) (1.7) normalized
with respect to ‖f ‖2

L 2(�)
(this plot aggregates data from Figures 1(b), (d), (f)). We also

compare the risk (1.7) to the population risk RN(wk) achieved by SGD for different values
of δ. Note that, as δ becomes smaller, the risk converges to the predicted curve. The risk
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FIG. 2. Dynamics of limit PDE (3.12) at different times t .

of the limit PDE (3.12) converges to 0 exponentially fast in t , as predicted by the strong
displacement convexity of R(ρ).

In Figure 3, we consider the SGD algorithm with projection P; see (3.5). We pick N =
200, τ = 0, ε = 10−6 and δ = 1/20. On the left, we illustrate the evolution of the value
of 40 weights chosen at random; and on the right, we plot the histogram of their empirical
distribution at t = 5. Note that this histogram matches well the regression function f plotted
in black.

4.2. A two-dimensional concave example. Next, we consider a two-dimensional exam-
ple. We set � = [−1,1]2 and

(4.2) f (x) = c1 − log(e〈q1,x〉 + e〈q2,x〉)
c2

,

with q1 = (2.5127,−2.4490), q2 = (0.0596,1.9908) and where c1 and c2 are chosen so that
f is nonnegative and

∫
� f (x)dx = 1. The kernel K is given by K(x) = Cdκ(|x|), where κ is

defined in (4.1) and Cd is a normalization constant ensuring that
∫

B(0;1) K(x)dx = 1. Again,
the initialization ρinit is a truncated Gaussian: ρinit(x) = c · exp(−|x|2/(2σ 2))1[−1,1]2(x),
with σ = 1/3. We compare the normalized risk of SGD with no projection P (N = 2000,
τ = 0 and ε = 10−6) for δ ∈ {1/3,1/5,1/10} with that of the limit PDE (3.12). Figure 4
shows that, already at δ = 1/10, the risk of SGD converges to the predicted curve and the risk
of the limit PDE (3.12) tends to 0 exponentially fast in t .

FIG. 3. Evolution of the value of 40 weights chosen at random and histogram of their empirical distribution at
time t = 5.
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FIG. 4. Normalized risk of SGD for different values of δ compared with that of the limit PDE for a two-dimen-
sional example.

4.3. Comparing feature learning to random features. As discussed in the Introduction,
it is useful to consider the more general model

f̂ (x;w,a) =
N∑

i=1

aiK
δ(x − wi ),(4.3)

with parameters a = (a1, . . . , aN) as well as w = (w1, . . . ,wN). This setting allows to com-
pare two different approaches:

(i) Random feature regression: the weights w are chosen independently of the labels yi

(we allow for dependence on the covariates xi ).
(ii) Feature learning: the weights w depend on the data (yi,xi ).

In order to compare these two approaches, we assume to be given i.i.d. data {(yi,xi )}i≤n,
with xi ∼ Unif(�), yi = f (xi ) and determine the parameters a by the same method, ridge
regression. More explicitly, define the matrix Z ∈ R

n×N as (Z)i,j = Kδ(xi − wj ). Then we
estimate a via

(4.4) â = (
ZTZ + λI

)−1
ZTy,

where λ is chosen via cross-validation on a hold-out set, comprising 10% of the samples.
In Figure 5, we compare the performance of three different ways to construct the weights

w: “random w,” we choose the weights wi independently and uniformly at random in � (blue
triangles pointing down); “w = data points,” we choose the weights wi uniformly at random
among the data points (green circles); “optimized w,” we use the output of the projected SGD
algorithm of the previous sections (red triangles pointing up). The first two can be regarded
as “random features” approaches, while the latter is a “feature learning” method.

For the optimized w, we use exactly the same algorithm in as in (3.5) (without coefficients
a in the SGD update), with the only difference that each SGD step is carried out with respect
to an independent sample from the empirical data, with replacement. SGD is stopped after
kmax iteration, and the coefficient â is computed according to (4.3). Notice that this procedure
is probably suboptimal, and it would be better to optimize a and w jointly: we choose this
simpler two-stage procedure to have a more direct application of the algorithm analyzed in the
paper, and a comparison with the random feature methods. We set τ = 0 (noiseless SGD),
and constant step size ε = 5 · 10−4. The number of iterations kmax ∈ {5 · 103,15 · 103,5 ·
104,15 · 104,5 · 105,15 · 105} is chosen via cross-validation, by using the same hold-out set
employed to optimize λ.

We set � = [−1,1]4 and define yj = f (xj ), where f (x) takes the form (4.2) with q1 =
(−0.3832,0.3074,−0.3198,0.4792) and q2 = (0.3502,−0.1471,0.1685,0.0546). Again,
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FIG. 5. Generalization error achieved by fitting a from the data for three different choices of the weights w: in
red, the wi ’s are optimized before-hand via SGD, as suggested in this paper; in blue, the wi ’s are uniform in �;
and in green, the wi ’s are equal to random data points.

c1 and c2 are chosen so that f is nonnegative and
∫
� f (x)dx = 1; the kernel K is

given by K(x) = Cdκ(|x|), where κ is defined in equation (4.1) and Cd ensures that∫
B(0;1) K(x)dx = 1.

After estimating wi and ai by either methods, we generate a test set of 10,000 samples and
use it to estimate the generalization error. We perform 20 independent trials of the experiment,
and we plot the average risk normalized by ‖f ‖2

L 2(�)
together with the error bar at 1 standard

deviation. In Figure 5(a), we fix the number of neurons N = 200 and we plot the normalized
risk as a function of the number of data points n. In Figure 5(b), we fix the number of samples
n to 2000 and we plot the normalized risk as a function of the number of neurons N . The
data set used for cross-validation has size max(n/10,40). Note that feature learning leads to
improved performance in both settings. The improvement becomes more pronounced with
the sample size n, presumably because a better set of weights wi can be learnt. On the other
hand, when the number of neurons N becomes very large, random wi’s are already covering
� densely enough, and there is no significant advantage in feature learning.

4.4. A nonconcave one-dimensional example. We set � = [−1,1] and f (x) = (x +
sin(5x−π/2)−c1)/c2, where c1 and c2 are chosen so that f is nonnegative and

∫
� f (x)dx =
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FIG. 6. Dynamics of SGD update (3.5) at different times t and for different values of δ for a nonconcave target
function f .

1. Note that the target function f is bimodal, thus it is not concave. We perform the same nu-
merical experiment described in Section 4.1. In Figure 6, left column, we plot the true func-
tion f (·) together with the neural network estimate f̂ (·;wk) at several points in time t , where
different plots correspond to different values of δ ∈ {1/5,1/10,1/20}. In the right column,
we report the evolution of the population risk (1.2) normalized by ‖f ‖2

L 2(�)
. In Figure 7, we

plot (i) the regression function f together with the PDE solution ρt at several times t , and (ii)
the PDE prediction for the risk R(ρt ) (1.7) (normalized with respect to ‖f ‖2

L 2(�)
) compared

with the population risk RN(wk) achieved by SGD for different values of δ. Even if the target
function is not concave, the results are similar to those presented in the concave case: (i) the
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FIG. 7. Dynamics of limit PDE (3.12) at different times t for a nonconcave target function f .

network estimates f̂ (·;wk) seem to converge to a limit curve which is an approximation of
the true function f , (ii) the quality of the approximation improves as δ gets smaller and (iii)
the risk of the limit PDE (3.12) converges to 0 exponentially fast in t .

4.5. Failure for small N . We repeat the same experiment described in Section 4.1 for a
smaller number of neurons N = 20. As can be seen in Figures 8 and 9, the quality of the
approximation becomes worse as δ gets smaller. This is expected because with small number
of activations, reducing their bandwidth δ leads to a worse performance as they are all zero
on a large part of the space. Put differently, the number of neurons is too small to guarantee
convergence of SGD to the predictions of the Wasserstein gradient flow theory.

5. Main results.

5.1. Convergence of SGD to the PDE (3.9) at δ > 0 fixed. We now state our result con-
cerning the convergence of the SGD dynamics (3.5) to the PDE (3.9). Note that this result
does not require concavity of f . Its proof is presented in Appendix D.

THEOREM 5.1. Assume that conditions (A1), (A3)–(A5) hold. Consider the SGD update
(3.5) with initialization (w0

i )i≤N ∼i.i.d. ρ
δ
init and constant step size ε. For t ≥ 0, let ρt be the

unique solution of the PDE (3.9) with initial and boundary conditions (3.10), and assume
supp(ρδ

init) ⊆ B(0, r) Then, for any fixed t ≥ 0, ρ
(N)
�t/ε� ⇒ ρt almost surely along any sequence

(N,ε = εN ) such that N → ∞, εN → 0.
Furthermore, for any δ ≤ 1, T ≥ 1, ε ≤ 1, p ∈N, and for any g :Rd →R with ‖g‖Lip ≤ 1,

the following happens with probability at least 1 − z−2p:

sup
k∈[0,T /ε]∩N

∣∣∣∣∣
N∑

i=1

g
(
wk

i

) −
∫

g(w)ρkε(dw)

∣∣∣∣∣ ≤ zerr(N,d, ε, δ)eC∗pδ−(d+2)T ,

sup
k∈[0,T /ε]∩N

∣∣RN

(
wk) − Rδ(ρkε)

∣∣ ≤ zerr(N,d, ε, δ)eC∗pδ−(d+2)T ,

(5.1)

where

(5.2) err(N,d, ε, δ) =
√

d

N
∨ (

δ−2d−1r
(
d2ε log(1/ε)

)1/4)
.
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FIG. 8. Dynamics of SGD update (3.5) at different times t and for different values of δ when the number of
neurons is too small (N = 20).

Our proof is based on the same approach developed in [29]. We prove that solutions of the
PDE (3.9) are in correspondence with distributions over trajectories (Xt )t≥0 in � satisfying
the following stochastic differential equation:

dXt = −∇�(Xt , ρt )dt + √
2τ dB t + d�t ,(5.3)

where (B t )t≥0 is a standard Brownian motion and d�t is the boundary reflection (in the sense
of a Skorokhod problem). The density ρt is determined, self consistently, via ρt = Law(Xt ).
We prove existence and uniqueness of solutions to this problem, and refer to the correspond-
ing stochastic process (Xt )t≥0 as nonlinear dynamics. This in turn implies existence and
uniqueness of the solutions of the PDE (3.9).
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FIG. 9. Normalized risk of the limit PDE (3.12) and of the SGD update (3.5) when the number of neurons is too
small (N = 20).

We next construct a coupling between the network weights (wk
1, . . . ,w

k
N) ∈ (�δ)N , and N

i.i.d. trajectories of the nonlinear dynamics (Xt
1, . . . ,X

t
N ) ∈ (�δ)N . Controlling the expected

distance in this coupling yields Theorem 5.1.

REMARK 5.1. The error term in equation (5.1) is completely analogous to the error in
a similar theorem proved in [29]. The constant δ−d appearing here is obtained by bounding
the Lipschitz constant of ∇�(w;ρ). As already mentioned, the main technical difficulty with
respect to [29] is posed by the Neumann (reflecting) boundary conditions. Indeed, even if we
are given a solution of the PDE (3.9), existence and uniqueness of solutions of the Skorokhod
problem (5.3) is a highly nontrivial fact first established in [25, 42]. As a consequence, while
the main proof idea is similar to the one in [29], its implementation is significantly different.

REMARK 5.2. As discussed in Appendix D, our proof applies to a more general ver-
sion of the PDE (3.9) and correspondingly of the SGD dynamics (3.5), where � takes the
form �(w, ρ) = V (w) + ∫

U(w,w′)ρ(dw′), for V : � → R, U : � × � → R two smooth
functions. The SGD update (3.5) is generalized as in [29], and Theorem 5.1 holds with the
terms containing δ (i.e., δ−2d−1 and δ−(d+2)) replaced by a constant that depends uniquely
on ‖∇V ‖L ∞(�), ‖∇U‖L ∞(�×�), ‖∇2V ‖L ∞(�), ‖∇2U‖L ∞(�×�).

5.2. Convergence to the solutions of porous medium equation. We next prove that the
solution of the PDE (3.9) converges, as δ → 0, to the unique solution of the porous medium
equation (3.12). As for Theorem 5.1, this result does not rely on the concavity assumption
for f .

THEOREM 5.2. Assume that conditions (A1) and (A3)–(A5) hold. Denote by ρδ the
unique solution of the PDE (3.9) with initial condition ρδ

0 = ρinit. Then

(a) The porous medium equation (3.12) admits a weak solution ρ : (t,x) �→ ρt (x) with
initial and boundary conditions (3.13). Further, this solution is unique under the additional
condition ρ ∈ L 4([0, T ] × �).

(b) For almost all t ∈ [0, T ], we have ρδ
t → ρt in L 2(�) as δ → 0.

While this statement is very natural at a heuristic level, its proof is actually the bulk of our
technical work. Similar approximation results have been proved in the past by Oelschläger,
Philipowski, Figalli [20, 31, 33], but they do not apply directly to the present case unless
f = 0 (also, we have to deal with different boundary conditions).
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Our proof follows a classical compactness argument, generalizing the approach of [20].
Namely, we consider the sequence of trajectories (ρδ

t )t∈[0,T ] indexed by the width δ. We prove
that that this family is bounded and equicontinuous in C ([0, T ],P2(�)), and hence admits
converging subsequences (ρ

δn
t )t∈[0,T ] → (ρt )t∈[0,T ]. We next prove that any such converging

subsequence converges in L 2(� × [0, T ]) and that the limit is a weak solution of the porous
medium equation (3.12). Unfortunately, uniqueness of weak solutions of the PME (3.12) is—
to the best of our knowledge—an open problem. However, we generalize methods from [31]
to show that any subsequential limit is actually in L 4(� × [0, T ]), and prove that the weak
solution is unique under this condition. This allows us to conclude that (ρδ

t )t∈[0,T ] converges
to this unique weak solution (ρt )t∈[0,T ].

5.3. Global convergence of SGD. Let us now state the main result of this paper: SGD
converges to a model with nearly optimal risk.

THEOREM 5.3. Assume that conditions (A1)–(A5) hold, and recall that α > 0 is the
concavity parameter of the function f , that is, 〈y,∇2f (x)y〉 ≤ −α|y|2 for all x ∈ �, y ∈ R

d .
Consider the SGD update (3.5) with initialization (w0

i )i≤N ∼i.i.d. ρinit and constant step
size ε. Assume supp(ρinit) ⊆ B(0; r). Then, for any k ≤ T/ε, the following holds with proba-
bility at least 1 − 1/z:

RN

(
wk) ≤ RN

(
w0)

e−2αkε + 2τ�′(k, ε, d) + �(N,ε,T , d, δ, z),(5.4)

where

�′(k, ε, d) = log |�| − (
1 − e−2αkε)S(f ) − S(ρinit)e

−2αkε,(5.5)

lim
δ→0

lim
N→∞,ε→0

�(N,ε,T , d, δ, z) = 0.(5.6)

REMARK 5.3. The error term 2τ�′(k, ε, d) in equation (5.4) is always nonnegative. In
fact, �′(k, ε, d) ≥ 0 as S(ρ) ≤ log |�| for any ρ ∈ P2(�). Furthermore, by applying Jensen’s
inequality, we have that, for any ρ ∈ P2(�),

S(ρ) = −
∫

ρ(x) logρ(x)dx ≥ − log
∫

ρ(x)2 dx = −2 log‖ρ‖L 2(�),

which gives the following upper bound:

�′(k, ε, d) ≤ log |�| + 2
∣∣log‖f ‖L 2(�)

∣∣ + 2
∣∣log‖ρinit‖L 2(�)

∣∣.
Recall that τ controls the variance of the noise, which is added at each step of the SGD
algorithm for technical purposes. Thus, we can take τ sufficiently small so that the term
2τ�′(k, ε, d) is arbitrarily small.

REMARK 5.4. The proof of Theorem 5.3 provides a somewhat more explicit expression
for the error term �(N,ε,T , d, δ, z) in equation (5.4). Namely, for an arbitrary but fixed
p ∈ N,

�(N,ε,T , d, δ, z) = �1(N, ε, T , d, z) + �2(δ, T , d),(5.7)

�1(N, ε, T , d, z) = 2
(√

d

N
∨ (

rδ−2d−1(
d2ε log(1/ε)

)1/4))
(5.8)

· exp
{√

2C∗δ−(d+2)T log(z)
}
,

lim
δ→0

�2(δ, T , d) = 0.(5.9)
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The term �1 bounds the error due to describing the SGD dynamics using the PDE (3.9). It
vanishes when N → ∞, ε → 0, under the stated conditions. The term �2 captures the error
due to approximating the PDE (3.9) with the porous medium equation (3.12). Finally, the
term e−2αkε describes the convergence to equilibrium of the solution of the porous medium
equation.

The proof of Theorem 5.3 is presented in Appendix F and relies crucially on regularity
results for the PDE (3.9) which are established in Appendix E.

More specifically, the proof is based on three steps, which we spell out once more:

(i) We approximate the dynamics of SGD by the PDE (3.9) at δ > 0 fixed. In doing so,
we incur an error �1 which is controlled using Theorem 5.1.

(ii) We approximate the solution ρδ
t of the PDE (3.9) at δ > 0 using the solution ρt of the

porous medium equation (3.12), as stated in Theorem 5.2.
(iii) We use results from [10–12] to prove that the latter solution converges exponentially

fast to the global optimum, with rate O(e−2αt ).

Given Theorems 5.1, 5.2 and the results of [10–12], this proof is relatively direct. We em-
phasize that, unlike Theorems 5.1, 5.2, the proof Theorem 5.3 relies in a crucial way on
our structural assumptions, namely the concavity of f , and the structure of the bump-like
activation Kδ(x − wi ).

REMARK 5.5. If we settle for the less ambitious goal of proving global convergence
without the explicit dimension-independent rate e−2αkε , and there are no boundary condi-
tions (� = R

d ), we can achieve this goal using [29], Theorem 5. This result guarantees con-
vergence in a number of SGD steps that potentially depends on τ (the noise injected in SGD)
as well as the dimensions d , and the width δ, but does not require to assume strong concavity
of f . On the other hand, numerical experiments are consistent with the conclusion that rates
are independent of these parameters; cf., for example, Figure 1 where dependence on δ is
explored.

6. Discussion. It is instructive to compare the general strategy followed in this paper
(and in related work, e.g., [28, 29]) and the results we obtain, to a more classical approach in
theoretical statistics. For the sake of clarity, we will abstract away most of the details of the
present problem, and focus on the most important differences.

Consider a general setting in which we want to minimize the population risk R(w) =
Ey,xL(w;y,x), where L is a nonconvex loss function and w ∈ R

D are parameters (in our
problem w = (w1, . . . ,wN) are the first-layer weights and D = dN ). We are given n i.i.d.
samples {(yj ,xj )}j≤n.

A standard theoretical analysis of this problem uses empirical risk minimization. Namely,
we define the empirical risk R̂n(w) = Êy,xL(w;y,x) (with Ên denoting the empirical av-
erage), and compute the minimizer ŵn ∈ arg minw R̂n(w), for instance by gradient descent.
Theoretical analysis proceeds—conceptually—in two steps. First, one proves that the empir-
ical risk minimizer is a near-minimizer of the population risk. Namely,

R(ŵn) ≤ min
w

R(w) + err(D,n).(6.1)

This is normally proved through a uniform convergence argument to establish a bound
supw |R̂n(w) − R(w)| ≤ err(D,n)/2. Here, err(D,n) is an error term that (hopefully) van-
ishes as n → ∞ for D fixed. Second, one proves that gradient descent (with respect to the
cost function R̂n) converges to a minimizer ŵn. This is achieved by showing that, with high
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probability, the landscape w �→ R̂n(w) satisfies some strong conditions that guarantee con-
vergence of gradient descent (or other algorithms). For instance, one desirable (although not
sufficient) property is that R̂n does not have local minima other than the global minima, pro-
vided that the sample size is large enough. A substantial literature applies this general scheme
(with significant refinements) to a variety of nonconvex problems in high dimensional statis-
tics, including phase retrieval, clustering, matrix completion, error-in-variables models and
so on. We refer to [27] for examples and a more detailed survey.

Unfortunately, this approach runs into substantial difficulties when treating complex mod-
els such as multilayer neural networks. We can name at least two sources of difficulties. First
of all, the number of parameters D in the model is often comparable with the sample size n

and, therefore, uniform convergence of the empirical risk to population risk does not hold.
For instance, in the present model, we could use a number of parameters Nd � n: indeed,
such an example is considered in Figure 5(a), where Nd = 800 and n ∈ {100, . . . ,2000}. Of
course, this problem can be addressed by constraining other measures of complexity than
the number of parameters [6], but the common practice is not to add such regularizers in the
training.

The second source of difficulties is that studying the risk landscape, and ruling out lo-
cal minima is extremely difficult, even if we limit ourselves to the n = ∞ limit, that is, the
population risk R(w). In two-layers neural networks, part of this difficulty is due to the fact
that the risk (1.2) is invariant under permutations of the N neurons, and hence it has (generi-
cally) at least N ! global minima related by permutations, and a large number of saddle points
connecting them.

The approach pursued in this paper builds on two simple remarks, which are connected to
the previous difficulties:

(i) Uniform convergence of the empirical risk R̂n(w) to the population risk R(w) is not
necessary, nor it is necessary to control the random deviations of the whole landscape of the
empirical risk. What is instead important is to control the landscape of the empirical risk
along the trajectory of gradient descent from a given initialization.

A convenient way to implement this idea is to consider SGD in a one-pass setting in which
each sample is used only once. In the limit of small step size, this converges to gradient flow
with respect to R(w).

(ii) Absence of local minima in the population landscape R(w) is not necessary either.
What is instead important is absence of local minima along the gradient flow trajectory for
R(w) or, more precisely, the fact that the gradient flow trajectory converges to a global mini-
mum.

These remarks suggest the following proof strategy. Let w(t) denote the gradient flow
trajectory from a given initialization w(0) = w0 (namely ẇ(t) = −∇R(w(t))), and wk be the
(random) parameters produced after k SGD steps. We first prove that gradient flow converges
to a global optimum, possibly with explicit convergence rate �(t):

R
(
w(t)

) ≤ min
w

R(w) + �(t),(6.2)

where �(t) → 0 as t → ∞. We then show that the SGD trajectory, after k steps, is well
approximated by the gradient flow for R(w) provided the step size ε is small. For instance,
we might prove that there exists a numerical constant c0 such that, for any kε ≤ T , with high
probability ∣∣R(

wk) − R
(
w(kε)

)∣∣ ≤ εc0err(T ).(6.3)

The reader might recognize that the last estimate is analogous to the one obtained in Theo-
rem 5.1, while the estimate (6.2) is what we obtain from displacement convexity (after taking
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the limit δ → 0 using Theorem 5.2). Putting the two estimates together, and recalling that we
can run a total of n SGD steps (in the one-pass setting), we get

R(ŵ) ≤ min
w

R(w) + �(nε) + εc0err(nε),(6.4)

where we set ŵ = wk . The error is reminiscent of a bias-variance tradeoff: the first term is
a bias due to early stopping; the second is instead the stochastic approximation error. We
can now optimize n as to minimize this error. For instance, if �(t) = e−c1t , and err(T ) =
ec2T , we can choose ε ∝ (logn/n), yielding R(ŵ) ≤ minw R(w) + C(logn)c0/nc′

where
c′ = c0c1/(c1 + c2).

In summary, within the present approach, the generalization error is bounded via a tradeoff
between the convergence rate of gradient flow in the population risk, and the error of approx-
imating the gradient flow by SGD. A side benefit of this proof strategy is that it guarantees
the existence of an efficient algorithm to compute the weights ŵ.

As mentioned, the above discussion omits several challenges that are posed by the
model treated in this paper. Most notably: (1) We are trying to optimize N weight vectors
w1, . . . ,wN ∈ R

d , but the loss only depends on the empirical distribution of these vectors
ρ̂(N) = N−1 ∑N

i=1 δwi
. It is therefore natural to define a gradient flow in the space of proba-

bility distributions, which is nothing but the PDE (3.9). This also helps addressing the chal-
lenge posed by the fact that, as N increases, the dimension of the parameter space increases
and convergence to the population behavior might fail. We are embedding all the values of
N in the space P(Rd). (2) We cannot prove a bound of the form (6.2) for the original PDE
(3.9) and have to approximate this by the porous medium equation (3.12).

Because of these additional challenges, our bounds are not nearly as neat as in equations
(6.2), 6.3 and depend on the additional parameters d , δ: in particular, the approximation by
the porous medium equation in Theorem 5.2 is nonquantitative. We therefore refrain from
optimizing the tradeoff between convergence rate of gradient flow, and error in stochastic ap-
proximation, which would result in suboptimal statistical guarantees, and defer this objective
to future work.
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