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Linde, Moore and Nordahl introduced a generalisation of the honeycomb
dimer model to higher dimensions. The purpose of this article is to describe
a number of structural properties of this generalised model. First, it is shown
that the samples of the model are in one-to-one correspondence with the per-
fect matchings of a hypergraph. This leads to a generalised Kasteleyn theory:
the partition function of the model equals the Cayley hyperdeterminant of
the adjacency hypermatrix of the hypergraph. Second, we prove an identity
which relates the covariance matrix of the random height function directly to
the random geometrical structure of the model. This identity is known in the
planar case but is new for higher dimensions. It relies on a more explicit for-
mulation of Sheffield’s cluster swap which is made possible by the structure
of the honeycomb dimer model. Finally, we use the special properties of this
explicit cluster swap to give a new and simplified proof of strict convexity of
the surface tension in this case.

1. Introduction.

1.1. Background. Random models on shift-invariant Euclidean graphs such as the square
lattice and the hexagonal lattice form a well-known subject of study in both combinatorics and
statistical physics [7]. There are several integrable models which allow for a quantitative anal-
ysis. In the integrable setting, the focus is on deriving quantitative results concerning (asymp-
totics of) partition functions and correlation functions. Examples of such models are the Ising
model [20, 25], ice-type models [18, 22, 26], and the dimer model [8, 24], see also [1]. These
quantitative estimates in turn imply qualitative results, for example (non)uniqueness of shift-
invariant Gibbs measures, and (when the samples are height functions) strict convexity of
the surface tension. Sometimes it is possible to derive qualitative results even in the absence
of quantitative estimates. Georgii [6] provides an excellent overview for the theory of Gibbs
measures for general (nonintegrable) models, and Sheffield [21] derives many key results for
models of height functions in the gradient setting, including strict convexity of the surface
tension in any dimension.

The focus of this paper is a natural generalisation of the hexagonal dimer model (Fig-
ure 1(c)) to arbitrary dimension. The generalised model first appeared in the work of Linde,
Moore and Nordahl [19]. It also belongs to the category of models under consideration in
the thesis of Sheffield [21]. A great deal is known about the original two-dimensional dimer
model: we mention three pivotal developments. The mathematical study of dimers was ini-
tiated by Kasteleyn, Temperley, and Fisher. Kasteleyn [8] and Temperley and Fisher [24]
independently calculated the number of perfect matchings of an n × m grid or, equivalently,
the number of domino tilings of an n × m rectangle. Kasteleyn [9, 10] later showed that the
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FIG. 1. Dimension d = 2; projections onto H of several representations: (a) as a stepped surface or lozenge
tiling, (b) as a height function on the simplicial lattice (Xd,Ed), (c) as a dimer cover or perfect matching of the
dual hexagonal lattice.

number of perfect matchings of any bipartite planar graph equals the determinant of a ma-
trix that is closely related to the adjacency matrix of the concerned graph. Cohn, Kenyon
and Propp [3] proved the variational principle for domino tilings; the scope of their article
includes the hexagonal dimer model. Remarkably, a closed-form solution for the surface ten-
sion is found, something that is not to be expected in higher dimensions. Their derivation of
the closed-form formula relies on a bijection between dimer configurations and height func-
tions, together with an original application of the Kasteleyn theory. Kenyon, Okounkov, and
Sheffield [14] establish a bijection between the set of accessible slopes and the set of ergodic
Gibbs measures. They furthermore classify the ergodic Gibbs measures into three categories
(frozen, liquid and gaseous) which describe qualitatively the behaviour of the random surface.
Their paper contains many more qualitative and quantitative results.

1.2. The honeycomb dimer model in dimension d ≥ 2. Let (Xd,Ed) denote the graph
obtained from the square lattice Z

d+1 by identifying vertices which differ by an integer mul-
tiple of the vector n := e1 + · · · + ed+1. This graph is called the simplicial lattice; its vertices
are equivalence classes of vertices of the square lattice. Let � denote the set of functions
f : Xd → Z which have the property that f (0) ∈ (d +1)Z and f ([x+ei])−f ([x]) ∈ {−d,1}
for any x ∈ Z

d+1 and 1 ≤ i ≤ d + 1. Functions in � are called height functions—see Fig-
ure 1(b). The set � is in bijection with the set of stepped surfaces in R

d+1. Informally, a
stepped surface is a union of unit hypercubes with integer coordinates, such that each hy-
percube is well supported, and such that there is no overhang. Stepped surfaces are related
directly to the three-dimensional interpretation of the familiar picture of lozenge tilings for
d = 2; see Figure 1(a). Each stepped surface is furthermore associated with a tiling of the
hyperplane orthogonal to n; this tiling is essentially obtained by projecting the exposed faces
of the hypercubes of the stepped surface onto this hyperplane. These bijections are all intro-
duced in the work of Linde, Moore and Nordahl [19].

In this article, we are interested in the model of uniformly random height functions when-
ever fixed or periodic boundary conditions are enforced. For fixed boundary conditions, it is
also possible to consider more general Boltzmann measures, in the spirit of the classical pla-
nar dimer model. The purpose of this article is to point out a number of structural properties
of the generalised model which lead to new results.

1.3. The double dimer model and the cluster swap. For the double dimer model, one su-
perimposes two dimer configurations of the same graph. The union of two such dimer covers
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decomposes into a number of isolated edges which appear in both dimer covers, called double
edges, and a number of closed loops of even length, where each edge of the loop is contained
in exactly one of the original dimer covers. If the distribution of the two dimer configurations
is uniformly random, subject say to fixed boundary conditions, then the orientation of each
loop is uniformly random in its two states. More precisely, this means that for each loop, one
can flip a fair coin to decide if each dimer should change the configuration that it belongs to,
without changing the distribution of the product measure. Many results have been obtained
for the double dimer model: see the work of Kenyon and Pemantle [11, 15] for the relevant
literature.

Sheffield introduces cluster swapping in the seminal monograph Random surfaces [21].
The technique employs the same idea of considering two configurations—height functions,
in this case—at once, then identifying and resampling independent structures. The cluster
swap applies to simply attractive potentials, that is, models of height functions which are
induced by a convex nearest-neighbour potential. The setup is much more intricate than for
the original double dimer model. To compensate for the possible change in potential, one first
identifies a ferromagnetic Ising model, then achieves independence through the Edwards–
Sokal representation [5] which in turn derives from the Swendsen–Wang update [23]. The
cluster swap applies directly to the heights of the two height functions; it is not an operation
on their gradients.

1.4. Main results. First, we develop a new construction, the cluster boundary swap, for
the generalised model. This cluster boundary swap is entirely analogous to the resampling
operation in the double dimer model. In particular, the difference of two uniformly random
height functions decomposes as a geometrical structure consisting of boundaries—which
generalise loops—and double edges, and, conditional on this structure, a number of fair coin
flips, one for the orientation of each boundary. Moreover, the operation directly manipulates
the gradients of the two height functions, which works to our advantage. The name cluster
boundary swap is chosen intentionally, as it should be considered a special case of the cluster
swap, adapted and optimised for the special geometrical structure that is present in the gener-
alisation of the honeycomb dimer model to higher dimensions. The author is not aware of a
similar construction for any other model in dimension d > 2; in particular, no generalisation
is known for the dimer model on the two-dimensional square lattice.

Second, we use the cluster boundary swap to obtain an identity which relates the covari-
ance matrix of the random height function f to the geometrical structure of the model. We
prove that the variance of f at a vertex x ∈ Xd is exactly 1

2(d + 1)2 times the expectation
of the number of boundaries separating x from infinity in the product measure. The identity
makes sense for fixed boundary conditions only, but it does apply to general Boltzmann mea-
sures (which includes the uniform probability measure). Similarly, for x,y ∈ Xd , we prove
that the covariance between f at x and y equals 1

2(d + 1)2 times the number of boundaries
that separate both x and y from infinity. This identity is new and was previously known, to
our knowledge, only for two-dimensional dimer models.

Third, we prove that the set of tilings, as introduced in [19], are in one-to-one correspon-
dence with the perfect matchings of a hypergraph which is the natural dual of the simplicial
lattice (Xd,Ed). This hypergraph is d!-regular and d!-partite, in the sense that there is a par-
tition of its vertex set into d!-parts, such that each hyperedge contains exactly one vertex in
each part. We derive a generalised Kasteleyn theory: we prove that the partition function of
any Boltzmann measure equals the Cayley hyperdeterminant of the adjacency hypermatrix of
this hypergraph. It is well known that no Kasteleyn weighting is necessary for the Kasteleyn
theory on the hexagonal lattice. We prove the same here: we may take the adjacency hyper-
matrix without modifications as our Kasteleyn hypermatrix. Unfortunately, this does not by
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the knowledge of the author lead to an explicit formula for the surface tension, nor to an
expression for dimer-dimer correlations in terms of an inverse of the Kasteleyn hypermatrix.

Finally, we use the special properties of the cluster boundary swap—relative to the more
general cluster swap—to greatly streamline the proof in [21] for strict convexity of the surface
tension. Note that strict convexity of the surface tension for d = 2 was first derived in [3] by
means of an explicit calculation. Strict convexity of the surface tension is important, because
it implies that the model is stable on a macroscopic scale. The macroscopic behaviour of
the model is described by a large deviations principle, which in turn implies a variational
principle—these are due to generic arguments which do not require that the surface tension
is strictly convex. If the surface tension is strictly convex, however, then the rate function in
the large deviations principle has a unique minimizer, and consequently the random height
function concentrates around a unique limit shape. See [3, 12, 13] for the variational principle
in the original dimer setting.

1.5. Structure of the article. Section 2 formally introduces the model, and gives an
overview of the several representations of each sample. These constructions derive directly
from [19]. Section 3 describes the probability measures under consideration, by enforcing
fixed or periodic boundary conditions. We construct the cluster boundary swap in Section 4.
In Section 5, we state and prove the identity for the covariance structure of the random height
function, and Section 6 contains the generalised Kasteleyn theory. The purpose of the re-
mainder of the article is to motivate and prove the result of strict convexity of the surface
tension. In Section 7, we introduce gradient Gibbs measures, which play an important role
in the proof, but which are also interesting in their own right. Section 8 motivates the result:
it introduces the surface tension, and describes how it is related to the large deviations prin-
ciple and the variational principle. Strict convexity of the surface tension is finally proven in
Section 9.

2. Stepped surfaces, tilings, height functions. Linde, Moore and Nordahl [19] ob-
served that each sample of the model has three natural representations. The purpose of this
section is to give an overview of these representations, and to state or derive some basic prop-
erties. For details, refer to [19]. Throughout this article, d ≥ 2 denotes the fixed dimension
that we work in.

2.1. Stepped surfaces. Informally, a stepped surface is a union of unit hypercubes with
corners in Zd+1. The hypercubes must be properly stacked without overhang—recall for this
notion the familiar picture of lozenge tilings, which corresponds to d = 2. If a hypercube is
present at some coordinate x ∈ Zd+1, then we require the presence of a hypercube at x−ei for
every 1 ≤ i ≤ d +1; this indeed ensures that every hypercube is well supported, and excludes
overhang.

The formal definition is as follows. If x,y ∈ Rd+1, then write x ≤ y whenever xi ≤ yi for
all i. A set A ⊂ Rd+1 is called closed under ≤ whenever x ∈ A and y ≤ x implies y ∈ A.
Write L(A) for the closure of a set A ⊂Rd+1 under ≤, that is,

L(A) := {
y ∈R

d+1 : y ≤ x for some x ∈ A
}
.

A stepped surface is a strict nonempty subset of Rd+1 of the form L(A) for some A ⊂ Zd+1.
Let � denote the set of stepped surfaces. If F is a stepped surface, then write V (F) for the set
∂F ∩ Zd+1. The set V (F) should be thought of as the discrete boundary of F . It is a simple
exercise to work out that F = L(V (F )). In particular, each stepped surface is characterised
by this discrete boundary.
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2.2. The height function of a stepped surface. Consider a stepped surface F . The height
function associated to F is essentially a function that has the discrete boundary V (F) of F

as its graph. The value of this function at each vertex x ∈ V (F) is given by x1 +· · ·+ xd+1 =
(x,n), where n is the vector e1 + · · · + ed+1 and (·, ·) the natural inner product. This value is
also called the height of the vertex x.

Write (Xd,Ed) for the graph obtained from the square lattice Zd+1 after identifying all
vertices which differ by an integer multiple of n. In particular, each vertex [x] ∈ Xd is an
equivalence class of the form [x] := x + Zn for some x ∈ Zd+1. The 2d + 2 neighbours
of [x] are of the form [x ± ei]. The graph (Xd,Ed) is called the simplicial lattice. It is a
simple exercise to derive from the definition of a stepped surface that |[x] ∩ V (F)| = 1 for
any [x] ∈ Xd . To derive this, observe first that x +Rn intersects ∂F once because F is closed
under ≤, then note that this point of intersection has integral coordinates whenever x does.

The height function associated to F is given by the function

f : Xd → Z, [x] �→ (y,n) where {y} = [x] ∩ V (F).

This is the desired parametrisation of V (F); the set V (F) is equal to

V (f ) := {
x ∈ Z

d+1 : (x,n) = f
([x])}.

The assignment F �→ f is injective because F �→ V (F) is injective.
Let us now identify the image of the map F �→ f . The function f satisfies f ([x]) ≡ (x,n)

mod d +1; we call this the parity condition. Assert furthermore that f ([x+ei]) ≤ f ([x])+1.
This assertion is called the Lipschitz condition.

Suppose that the assertion is false, that is, that instead f ([x + ei]) > f ([x]) + 1. Write y
for the unique vertex in [x]∩V (F ), and write z for the unique vertex in [x+ei]∩V (F ). Then
zj > (y + ei )j ≥ yj for all j . In this case, it is impossible that both z and y are contained in
∂F , because F is closed under ≤. This proves the assertion.

The Lipschitz condition also implies that f ([x + ei]) ≥ f ([x]) − d , since [e1 + · · · +
ed+1] = [n] = [0]. The Lipschitz condition, this new inequality, and the parity condition
imply jointly that the gradient ∇f of f satisfies

∇f
([x], [x + ei]) := f

([x + ei]) − f
([x]) ∈ {−d,1}.

On the other hand, if the flow ∇f satisfies this equation for any x and i and if f ([0]) is an
integer multiple of d + 1, then f also clearly satisfies the parity condition.

A height function is a function f : Xd → Z which satisfies f ([0]) ∈ (d + 1)Z and

∇(
f

([x]), f ([x + ei])) = f
([x + ei]) − f

([x]) ∈ {1,−d}
for all x and i; write � for the set of height functions. If F is a stepped surface, then the
associated height function f is indeed an element of �. The injective map � → �,F �→ f

is in fact a bijection; its inverse is given by the map � : � → �,f �→ L(V (f )). For details,
refer to [19].

2.3. The tiling associated to a stepped surface. If f is a height function, then write

T (f ) := {{x,y} ∈ Ed : ∇f (x,y) = −d
}
.

The set T (f ) characterises ∇f , and therefore it characterises the function f up to constants.
The first goal is to characterise the image of the map f �→ T (f ) over �.

A path (sk)0≤k≤n ⊂ Xd of length n = d + 1 is called a rooted simplicial loop or simply
a simplicial loop if there exists a permutation ξ ∈ Sd+1 such that sk = sk−1 + eξ(k) for any
1 ≤ k ≤ d + 1. This implies that s is closed because [x] + e1 + · · · + ed+1 = [x + n] = [x].
Write Rd for the set of rooted simplicial loops. Sometimes we are not concerned with the



1038 P. LAMMERS

starting points of the loops. In those cases, two loops are considered equal if they are equal
up to indexation—this is equivalent to requiring that the two loops traverse the same set of
edges. Write Ud for the set of unrooted simplicial loops.

Let s denote a simplicial loop. Knowing that ∇f must integrate to zero along this simpli-
cial loop, it is immediate that exactly one of the edges of s is contained in T (f ). Write � for
the set of tilings, that is, the set of subsets T ⊂ Ed with the property that |T ∩ s| = 1 for any
simplicial loop s. To see that the map � → �,f �→ T (f ) is surjective, let T ∈ �, and write
αT for the unique flow on (Xd,Ed) such that

(2.1) αT

([x], [x + ei]) =
{

1 if
{[x], [x + ei]} /∈ T ,

−d if
{[x], [x + ei]} ∈ T .

Then αT = ∇f for some height function f ∈ � if and only if αT is conservative. The flow αT

integrates to zero along any simplicial loop, by definition of a tiling. It is a simple exercise
in group theory to see that this implies that αT integrates to zero along any closed path,
since the graph (Xd,Ed) can be written as the Cayley graph on the generators e1, . . . , ed+1
subject to the relators which are given by all possible permutations of these d + 1 elements—
these relators correspond exactly to the simplicial loops. This proves that T = T (f ) for some
height function f ∈ �, and therefore the map � → �,f �→ T (f ) is surjective. Since T (f )

characterises f up to constants, this also implies that the map 	 : � → (d + 1)Z× �,f �→
(f (0), T (f )) is a bijection.

2.4. The geometrical intuition behind tilings. Let us connect the combinatorial tilings
T ∈ � to the familiar geometric picture of lozenge tilings. If d = 2, then (Xd,Ed) is the
triangular lattice, and the set T ⊂ Ed has the property that T contains exactly one edge of
every triangle. Thus, if we remove the set T from this triangular lattice, then we are left with
a collection of lozenges.

The boundary ∂F ⊂ R
d+1 of a stepped surface is a union of hypercubes of codimension

one with integral coordinates. Write H for the orthogonal complement of n, and write P :
R

d+1 → H for orthogonal projection onto H . For each stepped surface F , the projection map
P restricts to a bijection from ∂F to H . If d = 2, then P maps each two-dimensional square
contained in ∂F , to a lozenge embedded in H , and jointly these lozenges partition H—we
ignore here the fact that the topological boundaries of the lozenges overlap. We observed in
the previous paragraph that each edge in T encodes exactly one of these lozenges. The same
reasoning applies to higher dimensions: the map P maps the hypercubes of codimension 1
which make up ∂F to H , and these projected hypercubes partition the d-dimensional real
vector space H up to overlapping boundaries. Finally, each edge in T encodes exactly one of
these projected hypercubes.

2.5. Lemmas for analysing stepped surfaces.

2.5.1. The map � preserves the lattice structure.

LEMMA 2.1. Let f1 and f2 be height functions and let F1 = �(f1) and F2 = �(f2).
Then:

1. f1 ≤ f2 if and only if F1 ⊂ F2,
2. f1 ∨ f2 is a height function, F1 ∪ F2 is a stepped surface, and �(f1 ∨ f2) = F1 ∪ F2,
3. f1 ∧ f2 is a height function, F1 ∩ F2 is a stepped surface, and �(f1 ∧ f2) = F1 ∩ F2.

Of course, 2 and 3 extend to finite unions, intersections, maxima and minima.

See Lemma 2 in [19] for a proof.
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2.5.2. Local moves. If two height functions agree at all but one vertex, then it is said that
they differ by a local move. A local move is equivalent to adding or removing a single unit
hypercube to the corresponding stepped surface.

LEMMA 2.2. Suppose that R ⊂ Xd is finite and that f and g are height functions that
are equal outside R and satisfy f ≤ g on R. Then there exists a sequence of height functions
(fk)0≤k≤n ⊂ � with:

1. f0 = f and fn = g,
2. for every 0 ≤ k < n, there is a unique x ∈ R such that fk+1 = fk + (d + 1) · 1x.

The sequence is increasing and all functions fk agree to f and g on Xd �R.

See Lemma 3 in [19] for a proof. If f and g agree outside R but neither f ≤ g nor f ≥ g,
then one can first go down from f to f ∧ g and then up from f ∧ g to g. Lemma 2.1 ensures
that f ∧ g is a height function.

2.5.3. The Kirszbraun theorem. Consider a vertex [x] ∈ Xd . Since all elements in [x]
differ from one another by multiples of n, and since n ∈ KerP , there is a unique element
y ∈ H such that {y} = P [x]. Let us identify each vertex [x] ∈ Xd with this corresponding
point y ∈ H . Write gi := P ei = ei − n/(d + 1). The neighbours of x ∈ Xd ⊂ H are then
given by x ± gi .

Define the asymmetric norm ‖ · ‖+ on H by ‖x‖+ := −(d + 1)mini xi . Remark that ‖ · ‖+
is the largest asymmetric norm on H subject to ‖gi‖+ ≤ 1 for all i. In other words, a function
f : Xd →R satisfies the Lipschitz condition introduced in Section 2.2 if and only if

(2.2) f (y) − f (x) ≤ ‖y − x‖+

for all x,y ∈ Xd . A function f : D → R defined on a subset D ⊂ H is called Lipschitz
whenever f satisfies (2.2) for all x,y ∈ D. This definition is consistent with the previous
definition of the Lipschitz property for height functions.

LEMMA 2.3. If a function f : H → R is Lipschitz, then there exists a unique largest
height function g subject to g ≤ f |Xd ; the value of g at each x ∈ Xd is given by g(x) := k,
where k is the largest integer which makes g satisfy the parity condition at x, and which does
not exceed f (x).

If f : H →R is a Lipschitz function, then write �f � for the largest height function subject
to �f � ≤ f |Xd ; its function values are given by the previous lemma. We leave its proof to the
reader. The previous lemma results in a discrete analogue of the Kirszbraun theorem for the
current setting.

LEMMA 2.4. If R ⊂ H and f : R → R is Lipschitz, then f extends to a Lipschitz func-
tion f̄ : H → R. If R ⊂ Xd and f : R → Z is Lipschitz and satisfies the parity condition for
every x ∈ R, then f extends to a height function f̄ ∈ �.

The first assertion is the original Kirszbraun theorem. For the second assertion, let R ⊂ Xd

and f : R → Z be as in the lemma. The function f extends to some Lipschitz function g :
H → R by the Kirszbraun theorem. The previous lemma states that �g� is a height function
that equals f on R. This proves the second assertion.
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3. Random height functions. In this section, we introduce boundary conditions (fixed
or periodic) in order to reduce � to a finite set, and define and study probability measures on
these finite sets. We assert that the model is monotone in boundary conditions, and state an
immediate corollary of this fact by employing the Azuma–Hoeffding inequality.

3.1. Fixed boundary conditions. We reduce � to a finite set by applying fixed boundary
conditions. One can study the uniform probability measure on this finite set. One can also
define more general Boltzmann measures. If R ⊂ Xd , then write Rc for Xd �R. Write Ed(R)

for the set of edges in Ed that are incident to at least one vertex in R.

DEFINITION 3.1. Define, for any height function f and for any tiling T ,

�(R,f ) := {g ∈ � : g|Rc = f |Rc},
�(R,T ) := {

Y ∈ � : Y �Ed(R) = T �Ed(R)
}
.

Call a set R ⊂ Xd a region if R is finite and if Rc is connected.

LEMMA 3.2. Let R ⊂ Xd be a finite set, f a height function and T := T (f ). Then:

1. �(R,f ) and �(R,T ) are finite sets,
2. The map g �→ T (g) restricts to an injection from �(R,f ) to �(R,T ),
3. If R is a region, then the restricted map in the previous statement is a bijection.

PROOF. Without loss of generality, R does not contain 0. If g ∈ �(R,f ) then we must
have g(0) = f (0) and T (g) � Ed(R) = T (f ) � Ed(R). The map g �→ T (g) restricts to
an injection because the gradient ∇g can be reconstructed from T (g), which is sufficient for
reconstructing g as the constant is determined from g(0) = f (0). The logarithm of |�(R,T )|
is bounded by |Ed(R)| log 2 < ∞. We have now proven the first two assertions of the lemma.

Next, we prove that the same restriction map is also surjective whenever R is a region.
Fix Y ∈ �(R,T ) and define g := 	−1(f (0), Y ). It suffices to show that g ∈ �(R,f ), that
is, that g(x) = f (x) for all x ∈ Rc. Let p denote a path from 0 to x through (Xd � R,Ed �

Ed(R)); such a path exists by definition of a region. Then g(x) − f (0) and f (x) − f (0) can
both be calculated in terms of integrals of ∇g and ∇f , respectively over the path p. Since
Y � Ed(R) = T � Ed(R), these gradients are equal on the edges of p, which proves that
g(x) = f (x). �

Fix a finite set R ⊂ Xd and a height function f ∈ �. Write f ± for the pointwise mini-
mum and maximum over all height functions in the finite set �(R,f ). These are also height
function by virtue of Lemma 2.1, and clearly �(R,f ) = {g ∈ � : f − ≤ g ≤ f +}. The same
lemma implies the following result.

LEMMA 3.3. Fix a finite set R ⊂ Xd and a height function f . Write f ± as in the pre-
ceding discussion and define F± := �(f ±). Then � restricts to a bijection from �(R,f ) to
{F ∈ � : F− ⊂ F ⊂ F+}.

Next, we define Boltzmann measures. The uniform probability measures on �(R,f ) and
�(R,T ) are examples of Boltzmann measures. The introduction of Boltzmann measures
allows us to increase the relative probability of tilings containing certain edges.

DEFINITION 3.4. Let R be a region, f a height function and T := T (f ) a tiling. A
positive real function w on Ed(R) is called a weight function. Let Pw be the probability
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measure on the set �(R,T ) such that Pw(Y ) ∝ ∏
e∈Y∩Ed(R) w(e) for any Y ∈ �(R,T ), that

is,

Pw(Y ) := 1

Zw

∏
e∈Y∩Ed(R)

w(e) where Zw := ∑
Y∈�(R,T )

∏
e∈Y∩Ed(R)

w(e).

The probability measure Pw is called a Boltzmann measure and the normalising constant
Zw is called the partition function. The measure Pw is also considered a probability mea-
sure on the sample space �(R,f ) by defining Pw(g) := Pw(T (g)). Write P for Pw with
w identically equal to 1, and write Z for the corresponding partition function. Observe that
Z = |�(R,f )| = |�(R,T )|. The definition of Zw makes sense also when w takes complex
values.

We prove that Zw equals the Cayley hyperdeterminant of a suitable hypermatrix in Sec-
tion 6.

3.2. The periodic setting. Write H ∗ for the natural dual space of the d-dimensional real
vector space H . A linear form s ∈ H ∗ is called a slope.

DEFINITION 3.5. Periodic boundary conditions are characterised by a pair (L, s), where
L ⊂ Xd is a full-rank sublattice and s ∈ H ∗ a slope. A function f : Xd →R is called (L, s)-
periodic if, for any x ∈ Xd and y ∈ L,

f (x + y) = f (x) + s(y).

Write �(L, s) for the set of (L, s)-periodic height functions that map 0 to 0. Call a pair (L, s)

valid if �(L, s) is nonempty.

It is not a priori clear which periodic boundary conditions (L, s) are valid. If f is a height
function, then write f |L and s|L for the restrictions of f and s to L ⊂ Xd ⊂ H respectively.
First, every function f ∈ �(L, s) must satisfy f |L = s|L, so if s|L does not extend to a height
function then �(L, s) is empty. On the other hand, if s|L extends to a height function, then
the minimum amongst all possible extensions is (L, s)-periodic. Therefore, (L, s) is valid if
and only if s|L extends to a height function. Lemma 2.4 imposes a Lipschitz condition and a
parity condition on s|L. Clearly s|L is Lipschitz if and only if s is Lipschitz.

DEFINITION 3.6. Write S for the set of slopes in H ∗ which are Lipschitz, that is,

S :=
{
s ∈ H ∗ : max

i
s(gi ) ≤ 1

}
.

PROPOSITION 3.7. The set S ⊂ H ∗ is a closed d-simplex with extreme points
(si)1≤i≤d+1, where each slope si satisfies, for any j ,

si(gj ) :=
{−d if i = j ,

1 if i �= j .

Introduce also the parity condition for the following result.

LEMMA 3.8. Suppose given periodic boundary conditions (L, s). Then (L, s) is valid
if and only if s ∈ S and s([x]) ≡ (x,n) mod d + 1 for every [x] ∈ L ⊂ Xd . In particular,
if L ⊂ (d + 1)Xd , then (x,n) ∈ (d + 1)Z for every [x] ∈ L, and under this extra condition,
(L, s) is valid if and only if s ∈ S and s(x) ∈ (d + 1)Z for every x ∈ L.
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If L = n(d + 1)Xd for some n ∈ N, then (L, s) is valid if and only if s ∈ S and

s
(
n(d + 1)gi

) = n(d + 1)s(gi ) ∈ (d + 1)Z

for every 1 ≤ i ≤ d + 1, that is, s(gi ) ∈ Z/n.

DEFINITION 3.9. Write Ln := n(d + 1)Xd for every n ∈ N. Define

Sn := {
s ∈ S : s(gi ) ∈ Z/n for every 1 ≤ i ≤ d + 1

}
.

In other words, Sn is precisely the set of slopes s such that (Ln, s) is valid.

Remark that Sn converges to S in the Hausdorff metric, in the sense that every slope s ∈ S
can be approximated by a sequence of slopes (sn)n∈N where sn ∈ Sn for each n.

3.3. Symmetries of the periodic setting. For x ∈ Xd , write θx for the map H → H,y �→
y + x. This map is called a shift, and it is also clearly a symmetry of Xd . Write �(L) for the
group {θx : x ∈ L} for any sublattice L of Xd , and write � := �(Xd).

If f is a function defined on either H or Xd , then write θf for the function defined by
θf (x) := f (θx). If f is a height function and θ ∈ �, then define the height function θ̃f

by θ̃f := θf − f (θ0) + f (0). In other words, θ̃f is the unique height function such that
(θ̃f )(0) = f (0) and θT (θf ) = T (f ). The map θ̃ : � → � is bijective, and θ̃ restricts to a
bijection from �(L, s) to �(L, s) for any periodic boundary conditions (L, s).

Each height function f ∈ �(L, s) is characterised by the �(L)-invariant set T (f ) ⊂ Ed .
This implies in particular that the set �(L, s) is finite, because |�(L, s)| ≤ 2|Ed/�(L)| < ∞.

LEMMA 3.10. Pick valid periodic boundary conditions (L, s), write P for the uniform
probability measure on �(L, s), and write f for the random function in �(L, s). Then θ̃f ∼
f in P for any θ ∈ �. Moreover, Ef (x) = s(x) for every x ∈ Xd .

PROOF. The first assertion is obvious as θ̃ : �(L, s) → �(L, s) is a bijection and P is
uniform on this set. The first assertion implies that the map E(f (·)) : Xd → R is additive.
Therefore, it must extend to a linear form in H ∗. Now L is full-rank and P(f (x) = s(x)) = 1
for every x ∈ L, and therefore E(f (·)) must extend to the linear form s ∈ S ⊂ H ∗. �

3.4. Monotonicity of the random function. Monotonicity in boundary conditions is often
an essential property for understanding the macroscopic behaviour of the system. See Lem-
mas 3 and 4 in [19] for a proof of the following theorem—note that these lemmas apply both
to fixed boundary conditions in the general Boltzmann setting, as well as to periodic bound-
ary conditions. The proof simply says that the Glauber dynamics preserve the monotonicity
and mix to the correct distribution.

THEOREM 3.11 (Monotonicity). Let R be a region, let b1, b2 ∈ �, and fix a weight
function w. Write P1 and P2 for the Boltzmann measures with weight w on �(R,b1) and
�(R,b2) respectively. Write a− and a+ for the infimum and supremum of (b1 − b2)|Rc , re-
spectively. Then there exists a probability distribution P on the pair (f1, f2) ∈ �(R,b1) ×
�(R,b2) with marginals P1 and P2 such that a− ≤ f1 − f2 ≤ a+ almost surely.

Now let (L, s) denote a valid pair of periodic boundary conditions, let b1, b2 ∈ �(L, s),
and fix R ⊂ Xd . Write P1 and P2 for the uniform probability measure on �(L, s) conditioned
on f |R = b1|R and f |R = b2|R respectively. Write a− and a+ for the infimum and supremum
of (b1 −b2)|R respectively. Then there exists a probability distribution P on the pair (f1, f2) ∈
�(L, s)2 with marginals P1 and P2 such that a− ≤ f1 − f2 ≤ a+ almost surely.
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3.5. Pointwise concentration inequalities.

THEOREM 3.12. Let R ⊂ Xd denote a finite set, let b ∈ �, and fix a weight function
w. Write P for the Boltzmann measure with weight w on �(R,b). Fix x ∈ Xd . Then the
following inequalities hold true:

1. Varf (x) ≤ (d + 1)2n,
2. P(f (x) − μ ≥ (d + 1)a) ≤ exp− a2

2n
for all a ≥ 0 whenever n > 0,

3. P(f (x) − μ ≤ (d + 1)a) ≤ exp− a2

2n
for all a ≤ 0 whenever n > 0,

where n = d(Xd,Ed)(x,Rc) and μ = Ef (x).
Now let (L, s) denote a valid pair of periodic boundary conditions, and write P for

the uniform probability measure on �(L, s). Then (1)–(3) remain true for the choices
n = d(Xd,Ed)(x,L) ≤ d(Xd,Ed)(x,0) and μ = Ef (x) = s(x).

PROOF. This is a simple consequence of monotonicity (Theorem 3.11) and the Azuma–
Hoeffding inequality. Focus on fixed boundary conditions; the proof for periodic boundary
conditions is entirely analogous. Let p = (pk)0≤k≤n denote a path of shortest length from
Rc to x. Write (fk)0≤k≤n for the martingale such that fk equals the expectation of f (x)

conditional on the values of f on the vertices in {p0, . . . ,pk}. By Theorem 3.11, we have
|fk − fk+1| ≤ d + 1. The theorem now follows from the Azuma–Hoeffding inequality. �

4. The cluster boundary swap. In the seminal work [21], Sheffield introduces cluster
swapping. This technique is related to the double dimer model, where for uniform probability
measures, the orientation of each loop is uniformly random in the two states, independently
of any other structure that is present. In this section, we introduce the cluster boundary swap.
The cluster boundary swap is a special case of the cluster swap, adapted and optimised for
the special nature of the model under consideration. Its properties are reminiscent of the
double dimer model, because, conditional on the geometrical structure involving boundaries
and double edges, the orientation of each boundary is uniformly random in its two states.

4.1. The boundary graph and the level set decomposition. In Section 2.3, it was proven
that every height function f is characterised by the pair 	(f ) = (f (0), T (f )). In this sec-
tion, f1 and f2 denote height functions, and we write (ai, Ti) := 	(fi) for i ∈ {1,2}. The
difference function f1 − f2 is denoted by g. The goal of this subsection is to understand the
level set structure of g.

LEMMA 4.1. Let s ∈ Rd be a rooted simplicial loop. As one walks along s:

1. The function f1 moves up by 1 exactly d times,
2. The function f1 moves down by d exactly once,
3. Either g remains constant, or it changes value twice,
4. If g is not constant, then the difference between its two values is d + 1.

The lemma follows immediately from the observations in Section 2.3.
Write A � B for the symmetric difference of arbitrary sets A and B .

DEFINITION 4.2. Define the graph Gg = (Vg,Eg) as follows. Its vertex set Vg is given
by

Vg := T1 � T2 = {
e ∈ Ed : g is not constant on e

} ⊂ Ed,
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FIG. 2. The values of g = f1 − f2 along a simplicial loop; d = 4.

and two vertices e1, e2 ∈ Vg ⊂ Ed are neighbours if some simplicial loop travels through both
e1 and e2. The graph Gg is called the boundary graph. For e ∈ Vg , write x−

g (e),x+
g (e) ∈ Xd

for the vertices contained in e ⊂ Xd on which g takes the smaller value and the larger value,
respectively; see Figure 2. For any C ⊂ Vg , we write x±

g (C) := {x±
g (e) : e ∈ C}.

For example, if d = 2, then one can identify each edge of the triangular lattice with the
lozenge obtained by removing that edge. The set Vg is then precisely the set of edges of
lozenges which appear in exactly one of the two configurations. Two edges in Vg are neigh-
bours if they belong to the same triangle of the triangular lattice. Each connected component
of Gg corresponds to the set of edges of the triangular lattice crossed by a nontrivial loop of
the double dimer model.

LEMMA 4.3. Let C ⊂ Vg be a connected component of Gg . Then (Xd,Ed
� C) con-

sists of two connected components, one containing x−
g (C), and the other containing x+

g (C).
Moreover, each of x−

g (C) and x+
g (C) is contained in a connected component of the graph

(Xd,Ed � Vg).

PROOF. Suppose that the Gg-vertices e1 and e2 are neighbours in the graph Gg ; write s
for a simplicial loop passing through both e1 and e2. Then s contains no other edges in Vg

by Proposition 4.1, 3, and therefore x−
g (e1) and x−

g (e2) are connected in the graph (Xd,Ed �

Vg); see also Figure 2. Induct on this argument to see that x−
g (C) is contained in a connected

component of (Xd,Ed �Vg). Identical reasoning applies to the set x+
g (C), and we also learn

that each of x±
g (C) is contained in a connected component of (Xd,Ed �C).

The sets x±
g (C) cover all the endpoints of edges in C, and therefore two possibilities re-

main: either the graph (Xd,Ed � C) is connected, or it consists of two connected compo-
nents, with one containing x−

g (C), and the other containing x+
g (C). To establish the lemma

we must exclude the first possibility. Every simplicial loop intersects C an even number of
times. The group theory arguments that proved that the flow in Section 2.3 was conservative,
imply here that any closed walk through (Xd,Ed) intersects C an even number of times. This
proves that (Xd,Ed �C) is not connected. �

DEFINITION 4.4. A g-level set is a connected component of the graph (Xd,Ed � Vg).
A g-boundary is a connected component of the graph Gg = (Vg,Eg). The g-level sets are
considered subsets of Xd , and the g-boundaries are considered subsets of Vg ⊂ Ed . If E is a
g-boundary, then write X±

g (E) for the g-level set containing x±
g (E). The level set decompo-

sition of g or LSD(g) is an undirected graph, where the vertices are the g-level sets and the
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FIG. 3. The level set decomposition and a cluster boundary swap by M ; d = 2.

edges are the g-boundaries. The g-boundary E connects the g-level sets X−
g (E) and X+

g (E).
Write g for the graph homomorphism g : LSD(g) → (d + 1)Z that assigns the value g(X) to
a g-level set X. The vector field ∇g directs the edges in LSD(g): it orients each g-boundary
E from X−

g (E) to X+
g (E). Write (LSD(g),∇g) for this directed graph.

If d = 2, then the g-boundaries correspond exactly to the loops of the double dimer model.
The g-level sets correspond to the connected components of R2 with all loops of the double
dimer model removed. In Figure 3 we see an example of this graph. Each g-level set con-
tracts into a single LSD(g)-vertex. The LSD(g)-edges are comprised of the g-boundaries
separating the g-level sets.

LEMMA 4.5. The graph LSD(g) is well defined and a tree.

PROOF. It follows from Lemma 4.3 that every ∇g-directed LSD(g)-edge has a well-
defined startpoint and endpoint, and that removing an edge disconnects the graph. �

4.2. The cluster boundary swap.

LEMMA 4.6. Let M ⊂ Vg ⊂ Ed be a union of g-boundaries. Then the sets T ′
i := Ti �M

are tilings for i ∈ {1,2}. Write f ′
1 and f ′

2 for the unique height functions such that 	(f ′
i ) =

(ai, T
′
i ) and define g′ = f ′

1 − f ′
2. Then Gg′ = Gg and LSD(g′) = LSD(g). Moreover, ∇g′

and ∇g are the same except that the g-boundaries contained in M have reversed orientation,
that is, ∇g′ = (−1)1M · ∇g.

PROOF. First, claim that T ′
1 and T ′

2 are tilings. We focus on T ′
1. Let s be a simplicial

loop, and abuse notation by writing s also for the set of edges crossed by this loop. It suffices
to prove that |T ′

1 ∩ s| = 1. Now either s ∩ M is empty, or contains two edges, one from T1
and one from T2. In the former case we have T ′

1 ∩ s = T1 ∩ s and consequently |T ′
1 ∩ s| = 1.

In the latter case, we have T ′
1 ∩ s = T2 ∩ s and consequently |T ′

1 ∩ s| = 1, as desired. This
proves the claim. The appropriate functions f ′

1 and f ′
2 exist because 	 is a bijection from �

to (d + 1)Z× �. Next,

Vg′ := T ′
1 � T ′

2 = (T1 � M) � (T2 � M) = T1 � T2 = Vg,

and consequently Gg′ = Gg and LSD(g′) = LSD(g). Recall the definition of αT in terms of
T in (2.1). We have

∇g′ = αT ′
1
− αT ′

2
= αT1�M − αT2�M = (−1)1M · (αT1 − αT2) = (−1)1M · ∇g;

this follows directly from the fact that M ⊂ T1 � T2 and from the definition of αT . �
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DEFINITION 4.7. Define

(T1, T2) � M := (
T ′

1, T
′
2
) = (T1 � M,T2 � M),

(f1, f2) � M := (
f ′

1, f
′
2
) = (

	−1(a1, T1 � M),	−1(a2, T2 � M)
)
,

whenever these are related as in the previous lemma. Write (f1, f2) ∼ (f ′
1, f

′
2) whenever

(f ′
1, f

′
2) = (f1, f2) � M for some union of g-level sets M , in which case we say that the

two pairs differ by a cluster boundary swap. The relation ∼ is an equivalence relation; write
[(f1, f2)] for the equivalence class of (f1, f2).

REMARK 4.8.

1. If (f ′
1, f

′
2) = (f1, f2) � M , then f ′

1 + f ′
2 = f1 + f2; a cluster boundary swap does not

change the sum of the two involved height functions. To see that this is the case, observe that
M is a subset of T1 � T2, and therefore 1T1�M + 1T2�M = 1T1 + 1T2 and

∇f1 + ∇f2 = αT1 + αT2 = αT1�M + αT2�M = ∇f ′
1 + ∇f ′

2.

2. The cluster boundary swap was formalised in terms of the height functions f1 and f2.
The cluster boundary swap should however be understood as an operation on the gradients
∇f1 and ∇f2 of these height functions. This gradient operation is made into an operation
on the nongradient height functions by choosing the vertex 0 ∈ Xd as a reference vertex at
which the height is held constant.

Figure 3 illustrates a cluster boundary swap. The thick contour is the set M , and the two
difference functions g and g′ are related by g = f1 − f2 and g′ = f ′

1 − f ′
2 where (f ′

1, f
′
2) :=

(f1, f2) � M . Swapping by M effectively inverts the orientation of the corresponding g-
boundary. One can swap any union of g-boundaries. Therefore, one can direct the edges of
LSD(g) in any desired way. We obtain the following theorem.

THEOREM 4.9. The relation ∼ is an equivalence relation on �2. The elements in the
equivalence class of (f1, f2) correspond naturally to the graph homomorphisms from the
tree LSD(g) to (d + 1)Z that map 0 to g(0).

5. The variance and covariance structure. This section is dedicated to a straightfor-
ward application of Theorem 4.9 in the fixed boundary setting.

THEOREM 5.1. Let R be a region not containing 0, let b be a height function, and let
w : Ed(R) → (0,∞) be a weight function. Denote the Boltzmann measure on �(R,b) with
weight w by Pw . Abuse notation by writing Pw for Pw × Pw; write (f1, f2) for the pair of
random functions in this measure, and write g := f1 − f2. Also write f for f1. Then for any
x ∈ Xd , we have

Varw f (x) = 1

2
(d + 1)2

EwdLSD(g)(0,x).

In other words, the variance of f (x) in Pw equals 1
2(d + 1)2 times the Pw-expectation of the

number of g-boundaries that separate x from 0.

PROOF. The random variables f1(x) and f2(x) are i.i.d., and therefore

Varw f (x) = 1

2
Varw

(
f1(x) − f2(x)

) = 1

2
Ew

(
f1(x) − f2(x)

)2 = 1

2
Ewg(x)2.
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It suffices to prove that Ewg(x)2 = (d + 1)2EwdLSD(g)(0,x). In fact, we make the stronger
claim that

Ew

(
g(x)2|[(f1, f2)

]) = (d + 1)2dLSD(g)(0,x).

The left-hand side is σ([(f1, f2)])-measurable by definition. For the right-hand side, observe
that the graph LSD(g) is constant on each equivalence class [(f1, f2)], which means that
dLSD(g)(0,x) is also σ([(f1, f2)])-measurable. The proof of the claim relies on Theorem 4.9.

Assert first that [(f1, f2)] ⊂ �(R,b)2 whenever (f1, f2) ∈ �(R,b)2. The set Rc is con-
nected by the definition of a region, and it contains 0. Therefore, Rc is contained in the g-level
set containing 0. A cluster boundary swap does not alter the values of f1 and f2 on this g-
level set, and therefore f1, f2, f ′

1, f ′
2, and b all assume the same values on Rc provided that

(f ′
1, f

′
2) ∼ (f1, f2) and (f1, f2) ∈ �(R,b)2. This proves the assertion. Next, assert that Pw

conditioned on [(f1, f2)] is uniform on [(f1, f2)]. To see that this is the case, observe that

Pw

(
(f1, f2)

) ∝ ∏
e∈Ed(R)

w(e)(1T (f1)+1T (f2))(e).

Now 1T (f1) + 1T (f2) = 1T (f ′
1)

+ 1T (f ′
2)

whenever (f ′
1, f

′
2) ∼ (f1, f2), which proves the asser-

tion.
Theorem 4.9 now provides the distribution of the function g in the measure Pw conditioned

on [(f1, f2)]. In particular, as LSD(g) is a tree, the distribution of g(x) is given by summing
the outcomes of dLSD(g)(0,x) fair coin flips, each worth ±(d + 1). It is well known that the
expectation of the square of this random variable is (d + 1)2dLSD(g)(0,x), which proves the
claim. �

In fact, the exact same calculation works for the covariance of f (x) with f (y).

THEOREM 5.2. Work in the setting of the previous theorem. Then for any x,y ∈ Xd , we
have

Covw

(
f (x), f (y)

) = 1

2
(d + 1)2

EwdLSD(g)(0, z),

where z is the last LSD(g)-vertex of the LSD(g)-path from 0 to x that also appears in the
LSD(g)-path from 0 to y. In other words, the covariance of (f (x), f (y)) in Pw equals 1

2(d +
1)2 times the expectation of the number of g-boundaries that separate both x and y from 0.

PROOF. Again, we have Covw(f (x), f (y)) = 1
2 Covw(g(x), g(y)), and we prove that

Ew

(
g(x)g(y)|[(f1, f2)

]) = (d + 1)2dLSD(g)(0, z).

The conditioned measure Pw directs the edges of LSD(g) independently and uniformly at
random, as in the previous theorem. Thus, under the conditioned measure Pw , we have(

g(x), g(y)
) ∼ (A + X,A + Y),

where A, X and Y are independent, where A is determined by summing the outcome of
dLSD(g)(0, z) fair independent coin flips each valued ±(d + 1), where X is determined by
flipping dLSD(g)(z,x) coins, and where Y is determined by flipping dLSD(g)(z,y) coins. This
proves the assertion. �
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6. Generalisation of the Kasteleyn theory. Consider fixed boundary conditions (R,f )

and (R,T ) with R a region and T = T (f ). The goal of this section is to show that Z =
|�(R,f )| = |�(R,T )| equals the Cayley hyperdeterminant of the adjacency hypermatrix
of a suitably defined hypergraph. In fact, we have no trouble in generalising to Boltzmann
measures; we show that one can insert the weights w into the adjacency hypermatrix so
that the Cayley hyperdeterminant equals Zw . The hypergraph, which we shall denote by
(Ud,Hd), is dual to the simplicial lattice (Xd,Ed). Recall that Ud is the set of unrooted
simplicial loops that was introduced earlier. In dimension d = 2 we recover exactly the theory
of the dimer model on the hexagonal lattice. (See Figure 1(c).)

6.1. The dual of the simplicial lattice. In this subsection, we define the hypergraph
(Ud,Hd). Consider first the collection of simplicial loops. If s = (sk)0≤k≤d+1 ∈ Rd is a
rooted simplicial loop, then s is characterised by its starting point s0 ∈ Xd and the permuta-
tion ξ ∈ Sd+1 which describes in which order the increments (gi )i appear. This automatically
gives a bijection from Rd to Xd ×Sd+1. Let us agree to index each unrooted loop s ∈ Ud (by
default) such that s1 = s0 + gd+1. There is a unique way of doing so, because the increment
gd+1 appears exactly once in each loop. With this convention, each unrooted loop s ∈ Ud is
characterised by its starting point s0 and the order ξ ∈ Sd in which the remaining increments
{g1, . . . ,gd} appear in the path after the first increment. By adopting the convention, we ob-
tain a bijection from Ud to Xd × Sd . We identify the unrooted loop s with its image under
the bijection, so that every pair (x, ξ) ∈ Xd × Sd denotes also an unrooted simplicial loop.

DEFINITION 6.1. For any e ∈ Ed , write h(e) for the set of unrooted simplicial loops that
traverse e.

Write e = {x,x + gj } ∈ Ed and let us make a number of observations about the set h(e).
First, the assignment e �→ h(e) is injective, because the edge e is the only edge that is tra-
versed by all loops in h(e). Second, there are precisely d! unrooted simplicial loops that
traverse e, since they correspond to the d! ways that we can order the d increments (gi )i �=j

that we need to walk back to x from x + gj . Therefore h(e) contains d! unrooted loops. Fi-
nally, if s1, s2 ∈ h(e) are distinct loops identified with the pairs (x1, ξ1), (x2, ξ2) ∈ Xd × Sd ,
then the permutations ξ1, ξ2 ∈ Sd must be distinct. Conclude that for every ξ ∈ Sd , there is a
unique x ∈ Xd such that (x, ξ) ∈ h(e).

The reason that we introduced the map h is the following. A set T ⊂ Ed is a tiling if and
only if h(T ) is a partition of Ud , the set of simplicial loops. One could rephrase this statement
by saying that h(T ) is a perfect matching of the hypergraph (Ud,h(Ed)).

DEFINITION 6.2. Write Hd for the set {h(e) : e ∈ Ed}. The hypergraph (Ud,Hd) is
called the dual hyperlattice or simply the dual (of the simplicial lattice).

LEMMA 6.3. The map h : T �→ {h(e) : e ∈ T } is a bijection from � to the set of perfect
matchings of the hypergraph (Ud,Hd).

Note that (Ud,Hd) is really dual to (Xd,Ed) because the map h is a bijection from Ed to
Hd . The hyperlattice is d!-uniform, because every hyperedge h(e) contains d! elements. It is
also d!-partite with the partition {Xd × {ξ} : ξ ∈ Sd}, because every hyperedge h(e) contains
one loop in each member Xd ×{ξ}. The d!-partite structure of the dual of the simplicial lattice
is special and it is a feature that distinguishes the simplicial lattice from other lattices (in
particular, the author is not aware of a similar construction for the square lattice in dimension
larger than two). The d!-partite structure enables us to generalise the Kasteleyn theory.
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6.2. The approach suggested by the classical dimer theory. The purpose of this section
is to demonstrate that the size of Z = |�(R,f )| = |�(R,T )| equals the Cayley hyperde-
terminant of a suitable adjacency hypermatrix. First, recall how this works in the Kasteleyn
theory for the dimer model on the hexagonal lattice. If d = 2, then d! = 2, that is, (Ud,Hd)

is a regular bipartite graph. In fact, it is really the planar dual of the triangular lattice: the
hexagonal lattice. The vertex set Ud is split into its two parts: a set of black and a set of white
vertices. A dimer cover (i.e., a perfect matching of the graph) matches each black vertex to
one white vertex. This is illustrated by Figure 1(c). The dimer cover is thus encoded by a
bijective map σ from the set of black vertices to the set of white vertices; each dimer is of the
form {b,σ (b)} with b ranging over the set of black vertices. To calculate the number of dimer
covers, one needs to count the bijections σ from the black vertices to the white that produce
a dimer cover. If K is an n × n matrix, then DetK is defined as (this is the Leibniz formula)

(6.1) DetK = ∑
σ∈Sn

[
Signσ

n∏
k=1

K
(
k, σ (k)

)]
.

If the matrix K is suitably chosen, then the term in the square brackets reduces to the indicator
function of the event that σ encodes a dimer cover, in which case DetK equals the number
of dimer covers. This is the Kasteleyn theory for dimer models. These observations suggest
the following approach, consisting of four steps:

1. First, encode each tiling as a tuple of bijections. It turns out that we need d! − 1 bi-
jections in each tuple, because the graph (Ud,Hd) is d!-partite, and because we need one
bijection for each colour beyond the first. This is Lemma 6.4.

2. Second, we show that applying fixed boundary conditions fixes the bijections at all but
a finite number of points. Each tiling Y ∈ �(R,T ) is thus encoded as a (d! − 1)-tuple of
bijections between finite sets. This is Lemma 6.6.

3. Third, we define a rank d! adjacency hypermatrix K and construct the Cayley hyperde-
terminant for this hypermatrix, such that the each nonzero term in the sum in the definition
of DetK corresponds to a tiling Y ∈ �(R,T ). These are Definitions 6.7 and 6.8.

4. Finally, each nonzero term in this sum takes value 1 or −1. This is due to the signs
that appear in the determinant formula (note that the sign also appears in (6.1)). It takes some
effort to show that all nonzero terms have the same sign. This is Lemma 6.9.

Once this has all been done, it is clear that Z = |�(R,f )| = |�(R,T )| = ±DetK . The dual
hyperlattice (Ud,Hd) plays a crucial role in the analysis. Fix, throughout the remainder of
this section, an enumeration {ξ1, . . . , ξd!} = Sd .

6.3. The Kasteleyn theory in dimension d ≥ 2. We start with Step 1 of the proposed ap-
proach. Let Y ∈ � be a tiling of (Xd,Ed), so that h(Y ) is a perfect matching of (Ud,Hd).
Each hyperedge h(e) ∈ h(Y ) contains one simplicial loop in each of the d! parts of the parti-
tion of Ud . The bijections corresponding to Y are the unique maps

(6.2) σi : Xd × {
ξ1} → Xd × {

ξ i}
such that

(6.3)
{
s, σ2(s), σ3(s), . . . , σd!(s)

} ∈ h(Y )

for every unrooted simplicial loop s ∈ Xd × {ξ1}. All elements of h(Y ) are given by ranging
s over Xd × {ξ1} in (6.3). This is completely analogous to the dimer model.

Suppose given arbitrary bijections (σi)2≤i≤d! as in (6.2). Then the set of sets of simplicial
loops

(6.4)
{{

s, σ2(s), . . . , σd!(s)
} : s ∈ Xd × {

ξ1}}
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is automatically a partition of Ud = Xd × Sd , because each map σi is a bijection and there-
fore each loop (x, ξ i) appears precisely once. Conclude that (6.4) is a perfect matching of
(Ud,Hd) if and only if (6.4) is a subset of the hyperedge set Hd . This yields the following
result: Step 1 of the suggested approach.

LEMMA 6.4. The set of (d! − 1)-tuples of bijections(
σi : Xd × {

ξ1} → Xd × {
ξ i})

2≤i≤d! satisfying
{
s, σ2(s), . . . , σd!(s)

} ∈ Hd

for every loop s ∈ Xd × {ξ1} is in bijection with the perfect matchings of (Ud,Hd). The
perfect matching of a tuple (under this bijection) is given by ranging s over Xd × {ξ1}; this
is precisely the set in (6.4).

Now consider Step 2 of the suggested approach. Suppose given a region R and a tiling T ,
and consider a tiling Y ∈ �(R,T ). By definition, Y ∈ �(R,T ) if and only if Y � Ed(R) =
T �Ed(R). Therefore all loops traversing T �Ed(R) must be matched in the same way as
in T , and the loops traversing T ∩Ed(R) can be matched differently. However, the loops that
are matched differently are not allowed to produce new hyperedges outside the set h(Ed(R)),
since we want Y �Ed(R) = T �Ed(R). We first need to identify, for each part of the partition
{Xd × {ξ i} : 1 ≤ i ≤ d!} of Ud , the set of loops traversing T ∩ Ed(R), that is, the loops that
are allowed to be matched differently. This motivates the following definition.

DEFINITION 6.5. Define, for a fixed region R and a fixed tiling T , and for 1 ≤ i ≤ d!,
Xi := {(

x, ξ i) : the loop
(
x, ξ i) intersects T ∩ Ed(R)

}
= {(

x, ξ i) : the loop
(
x, ξ i) does not intersect T �Ed(R)

} ⊂ Xd × {
ξ i}.

Observe that |Xi | = |T ∩ Ed(R)|, and therefore the sets Xi all have the same, finite size.
The sets Xi contain the loops that are allowed to match differently. This is Step 2 of the
suggested approach.

LEMMA 6.6. Let R be a region and T a tiling. The set of (d! − 1)-tuples of bijections

(σi : X1 → Xi)2≤i≤d! satisfying
{
s, σ2(s), . . . , σd!(s)

} ∈ h
(
Ed(R)

)
for every loop s ∈ X1 is in bijection with the set of perfect matchings h(Y ) corresponding to
tilings Y ∈ �(R,T ). The perfect matching of a tuple (under this bijection) is{{

s, σ2(s), . . . , σd!(s)
} : s ∈ X1

} ∪ {
h(e) : e ∈ T �Ed(R)

}
.

The Kasteleyn hypermatrix and its determinant are now straightforwardly defined.

DEFINITION 6.7. Let R be a region and T a tiling. Define

K : X1 × · · · × Xd! → {0,1}, (s1, . . . , sd!) �→ 1
({s1, . . . , sd!} ∈ h

(
Ed(R)

))
,

where 1(·) equals one if the statement inside holds true and zero otherwise. The map K is
called the Kasteleyn hypermatrix.

From this definition and the previous lemma it follows that

∣∣�(R,T )
∣∣ = ∑

σ2:X1→X2,...,σd!:X1→Xd!

[ ∏
s∈X1

K
(
s, σ2(s), . . . , σd!(s)

)]
,



A GENERALISATION OF THE DIMER MODEL 1051

where the sum is over bijective maps only. This because the product produces a 1 if the tuple
(σi)2≤i≤d! corresponds to an element of �(R,T ) and zero otherwise. Recall that |X1| = · · · =
|Xd!| = |T ∩Ed(R)| and write n for this finite number. To simplify notation, we identify each
set Xi with [n] := {1, . . . , n}, so that the previous equality is written

(6.5)
∣∣�(R,T )

∣∣ = ∑
σ2,...,σd!∈Sn

[
n∏

k=1

K
(
k, σ2(k), . . . , σd!(k)

)]
.

The expression on the right looks similar to the definition of the determinant of a matrix, and
if we insert the signs of the permutations then we obtain precisely the Cayley hyperdetermi-
nant.

DEFINITION 6.8. Suppose given a map A : [n]m →C for some n ∈N, m ∈ 2N. Define

DetA := ∑
σ2,...,σm∈Sn

([
m∏

i=2

Signσi

][
n∏

k=1

A
(

k , σ2(k), . . . , σm(k)
)])

(6.6)

= 1

n!
∑

σ1,...,σm∈Sn

([
m∏

i=1

Signσi

][
n∏

k=1

A
(
σ1(k), σ2(k), . . . , σm(k)

)])
.(6.7)

This expression is called the Cayley hyperdeterminant of A.

The equality in the definition is straightforwardly verified, and it requires m to be even. If
we replace A by K in (6.6) then (6.5) and (6.6) are the same, except that some signs appear
in (6.6) that do not appear in (6.5). We conclude that the nonzero terms of the sum in (6.6)
correspond precisely to the elements of �(R,T ). This is Step 3 of the proposed approach. In
order to prove that |�(R,T )| = ±DetK , it suffices to show that all terms of the sum in the
definition of DetK have the same sign (this is Step 4).

LEMMA 6.9. Let R be a region and let T be a tiling. Write K for the Kasteleyn hyper-
matrix. Then all nonzero terms in the sum in the definition of DetK have the same sign.

PROOF. Let R, T and K be as in the lemma. We want to show that all terms of the
sum in (6.6) (with A replaced with K) have the same sign. The idea is to show that the sign
is invariant under making a local move as defined in Section 2.5.2. Write f for the unique
height function such that 	(f ) = (0, T ). The nonzero terms in (6.6) correspond bijectively
(through the bijections that we have set up in Lemma 3.2, 3 and in Lemma 6.6) to the height
functions in �(R,f ). We pick two height functions f ′, f ′′ ∈ �(R,f ) and prove that the
corresponding terms in (6.6) have the same sign. By Lemma 2.2, we may assume, without
loss of generality, that f ′′ = f ′ + (d + 1) · 1x for some x ∈ R. Let T ′, T ′′ ∈ �(R,T ) be the
tilings corresponding to f ′, f ′′ respectively. Recall that

T ′ = {{y,y + gi} ∈ Ed : ∇f ′(y,y + gi ) = −d
}
,

and for T ′′ we have an identical expression in terms of f ′′. Remark that f ′′ = f ′ except at
the point x, and therefore ∇f = ∇f ′ except at the edges incident to x. Since f ′′ = f ′ + (d +
1) · 1x and since both f ′ and f ′′ are height functions, we must have

∇f ′(x,x + gi ) = ∇f ′′(x − gi ,x) = 1,

∇f ′(x − gi ,x) = ∇f ′′(x,x + gi ) = −d,
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and therefore

T ′
� T ′′ = {{x,x − gi} : 1 ≤ i ≤ d + 1

}
,

T ′′
� T ′ = {{x,x + gi} : 1 ≤ i ≤ d + 1

}
.

(6.8)

This means that all loops are matched the same (in the matchings h(T ′) and h(T ′′)), except
for the loops traversing the vertex x. In order to prove the lemma, we work out the effect of
this difference on the signs in (6.6). Let (σ ′

i )2≤i≤d! denote the bijections from Lemma 6.6
corresponding to T ′. This means that{{

s, σ ′
2(s), . . . , σ

′
d!(s)

} : s ∈ X1
} = h

(
T ′ ∩ Ed(R)

)
.

Define, for each 1 ≤ i ≤ d!, the bijections

δi : Xi → Xi,
(
x, ξ i) �→

{(
x + gj , ξ

i) if
(
x, ξ i) traverses {x − gj ,x} for some j,(

x, ξ i) if
(
x, ξ i) does not traverse x.

Note that δi is a permutation consisting of one cycle of length d + 1. Claim that

(6.9)
{{

δ1(s), δ2 ◦ σ ′
2(s), . . . , δd! ◦ σ ′

d!(s)
} : s ∈ X1

} = h
(
T ′′ ∩ Ed(R)

)
.

To support the claim, recall (6.8) and observe simply that{
δ1(s), δ2 ◦ σ ′

2(s), . . . , δd! ◦ σ ′
d!(s)

}
=

{
h
({x,x + gi}) if

{
s, σ ′

2(s), . . . , σ
′
d!(s)

} = h
({x,x − gi}) for some i,{

s, σ ′
2(s), . . . , σ

′
d!(s)

}
otherwise.

This proves the claim. Since δ1 : X1 → X1 is a bijection, the sets in (6.9) are equal to{{
s, δ2 ◦ σ ′

2 ◦ δ−1
1 (s), . . . , δd! ◦ σ ′

d! ◦ δ−1
1 (s)

} : s ∈ X1
}

This implies that the bijections from Lemma 6.6 corresponding to T ′′ are, for 2 ≤ i ≤ d!,
σ ′′

i = δi ◦ σ ′
i ◦ δ−1

1 : X1 → Xi.

Now note that Sign δi = (−1)d (since δi is a cycle of length d + 1). Conclude that Sign δi ·
Sign δ−1

1 = 1, and therefore σ ′
i and σ ′′

i have the same sign in (6.6), for all i. �

We have completed the final step of the approach that was suggested by the Kasteleyn
theory for dimer covers. This yields the following theorem.

THEOREM 6.10. Let R be a region, let f be a height function, and let T = T (f ). Write
K for the Kasteleyn hypermatrix. Then Z = |�(R,f )| = |�(R,T )| = ±DetK .

6.4. Boltzmann measures. Recall the definition of a Boltzmann measure in Section 3.1.
The number |�(R,f )| = |�(R,T )| equals the partition function Z of the uniform prob-
ability measures on �(R,f ) and �(R,T ). The Kasteleyn theory is easily generalised to
Boltzmann measures by inserting the weights into the Kasteleyn hypermatrix.

DEFINITION 6.11. Let R be a region, T a tiling, and w : Ed(R) → C any (complex-
valued) weight function. Define

Kw : X1 × · · · × Xd! →C,

(s1, . . . , sd!) �→ 1
({s1, . . . , sd!} ∈ h

(
Ed(R)

)) · w(
h−1({s1, . . . , sd!})).

The map Kw is called the weighted Kasteleyn hypermatrix.

By comparing the definition of Zw with the definition of the Cayley hyperdeterminant, and
taking into account Lemma 6.9, it is readily verified that Zw = ±DetKw .
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6.5. Explicit calculations. Two natural questions arise, which unfortunately we are not
able to answer. First, one may ask if it is possible to find a simple expression for the partition
function in the case of the torus, in order to derive a closed-form formula for the surface
tension. This does not appear to be the case. The Cayley hyperdeterminant is invariant under
a change of basis, and it is therefore meaningful to perform a Fourier transform on K . The
transformed hypermatrix is “diagonal”, in the sense that its rank-d! hyperdeterminant reduces
to the permanent of a hypermatrix of rank d! − 1. This leads to the desired formula only
in dimension two. Second, one may ask if it is possible to derive results on dimer-dimer
correlations. The absence of a natural inverse for K leads the author to believe that also this
second question is more difficult in the general case.

7. Gradient Gibbs measures. In previous sections, we introduced fixed boundary con-
ditions and periodic boundary conditions, which enabled us to study probability measures on
finite subsets of �. This section introduces shift-invariant gradient Gibbs measures, which
prove to be an effective tool for studying the large-scale behaviour of the model. While gra-
dient Gibbs measures are interesting in their own right, their main purpose here are their use
in the proof of strict convexity of the surface tension in Section 9.

7.1. Definition. Write f for the random function in �. Define for any R ⊂ Xd ,

F := σ
(
f (x) : x ∈ Xd)

, FR := σ
(
f (x) : x ∈ R

)
,

F∇ := σ
(
f (x) − f (y) : x,y ∈ Xd)

, F∇
R := σ

(
f (x) − f (y) : x,y ∈ R

)
.

Note that F∇
R = F∇ ∩ FR is finite whenever R is finite because it is generated by finitely

many random variables, each taking finitely many values. Write P(�,X ) for the collection of
probability measures on the measurable space (�,X ) for any σ -algebra X on �. Probability
measures in P(�,F∇) are called gradient measures.

A gradient measure μ ∈ P(�,F∇) is called shift-invariant whenever μ(θ̃A) = μ(A) for
any A ∈ F∇ and θ ∈ �, where θ̃A := {θ̃f : f ∈ A}. In other words, a gradient measure μ

is shift-invariant whenever ∇f and θ∇f have the same law in μ for every θ ∈ �. The set
of shift-invariant gradient measures is denoted by P�(�,F∇). If μ ∈ P�(�,F∇), then it
follows from shift-invariance that the map μ(f (·) − f (0)) : Xd → R is additive over Xd .
Therefore there exists a unique s ∈ H ∗ such that s(x) = μ(f (x) − f (0)) for every x ∈ Xd ,
and we must have s ∈ S because s(gi) = μ(f (gi )−f (0)) ≤ 1 for every 1 ≤ i ≤ d + 1. Write
s(μ) for s, the slope of μ ∈ P�(�,F∇).

Let (L, s) denote valid periodic boundary conditions and let μ denote the probability mea-
sure that is uniformly random in the finite set �(L, s). Lemma 3.10 implies that μ restricts
to a shift-invariant gradient measure of slope s(μ) = s.

Let us now introduce the notion of a Gibbs measure. Fix a measure μ ∈ P(�,F). The
measure μ is called a Gibbs measure if for every finite R ⊂ Xd , the distribution of f in μ is
the same as the distribution of a sample f obtained by first sampling g from μ, then sampling
f from �(R,g) uniformly at random. The definition is formalised in terms of specifications
and the Dobrushin–Lanford–Ruelle (DLR) equations. For each finite R ⊂ Xd , let γR denote
the probability kernel from (�,FRc) to (�,F) such that for any f ∈ �, the probability
measure γR(·, f ) is uniform in �(R,f ). It is obvious from the definition that �(R,f ) is
invariant under changing the values of f on R, so that γR(A, ·) is indeed FRc-measurable for
every A ∈ F . The kernels γR satisfy the consistency condition; if S ⊂ R, then γRγS = γR .
The collection of probability kernels γR is called a specification, and a measure μ ∈ P(�,F)

is called a Gibbs measure if μ satisfies the DLR equation

(7.1) μ = μγR
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for each finite R ⊂ Xd . This is equivalent to our previous, informal description. By the con-
sistency condition it is sufficient to check the DLR equations for an increasing exhaustive se-
quence of finite subsets of Xd . Each kernel γR restricts to a kernel from (�,F∇

Rc) to (�,F∇).
We shall write γ ∇

R for this restriction. A gradient measure μ ∈ P(�,F∇) is called a gradient
Gibbs measure if

μ = μγ ∇
R

for each finite subset R of Xd .

7.2. Existence and concentration.

THEOREM 7.1. For each slope s ∈ S , there is a shift-invariant gradient Gibbs measure
μ ∈ P�(�,F∇) of slope s such that, for any x,y ∈ Xd , we have the bounds:

1. Varμ(f (y) − f (x)) ≤ (d + 1)2n,

2. μ(f (y) − f (x) − s(y − x) ≥ (d + 1)a) ≤ exp− a2

2n
for all a ≥ 0 whenever n > 0,

3. μ(f (y) − f (x) − s(y − x) ≤ (d + 1)a) ≤ exp− a2

2n
for all a ≤ 0 whenever n > 0,

where n = d(Xd,Ed)(x,y).

The topology of local convergence or L-topology on P(�,X ) is the coarsest topology
that makes the evaluation map μ �→ μ(A) continuous for every finite R ⊂ Xd and for any
A ∈ X ∩FR . Constructing (gradient) Gibbs measures on P(�,X ) is much easier whenever
choosing X = F∇ and not X = F , because F∇

R is finite for finite R ⊂ Xd—see the following
lemma.

LEMMA 7.2. The set P(�,F∇) is compact in the topology of local convergence.

PROOF. The proof is entirely straightforward. Let (μn)n∈N denote a sequence of mea-
sures in P(�,F∇) and let (�m)m∈N denote an increasing exhaustive sequence of finite sub-
sets of Xd . Fix m ∈ N. The σ -algebra F∇

�m
is finite and therefore there exists a subsequence

(kn)n∈N ⊂ N such that μkn converges on F∇
�m

as n → ∞. By a standard diagonalisation ar-
gument, we may assume that convergence occurs for all m ∈ N. The limiting measure exists
by the Kolmogorov extension theorem. �

PROOF OF THEOREM 7.1. Let s ∈ S be the slope of interest. Let (sn)n∈N be a sequence
of slopes converging to s with sn ∈ Sn for every n. Write μn for the uniform probability
measure on �(Ln, sn), for every n ∈ N. Each measure μn restricts to a shift-invariant gradient
measure in P�(�,F∇), and s(μn) = sn.

Now apply the previous lemma to obtain a subsequence (kn)n∈N along which the sequence
of gradient measures (μn)n∈N converges in the topology of local convergence, say to μ ∈
P(�,F∇). The limit μ must be shift-invariant as all measures (μn)n∈N are shift-invariant.
At each vertex x ∈ Xd we have

μ
(
f (x) − f (0)

) = lim
n→∞μkn

(
f (x) − f (0)

) = lim
n→∞ skn(x) = s(x),

which means that s(μ) = s. One shows similarly that (1)–(3) follow from Theorem 3.12.
It suffices to prove that the gradient measure μ is a Gibbs measure, that is, that μγ ∇

R = μ

for every finite R ⊂ Xd . Fix a finite subset R ⊂ Xd . Now suppose that μγ ∇
R equals μ on F∇

S

for any finite S ⊂ Xd . Then the two measures must be the same, by the uniqueness statement
of the Kolmogorov extension theorem. It thus suffices to prove that μγ ∇

R equals μ on F∇
S for
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any finite S ⊂ Xd . We may assume that R ⊂ S and ∂R ⊂ S by expanding S if necessary. By
using shift-invariance, we may finally assume that 0 /∈ S.

We make the stronger claim that already in the nongradient setting and before taking limits,
we have

(7.2) μnγR|FS
= μn|FS

for n sufficiently large. The distribution μn is not invariant under resampling f on R. How-
ever, if R + x and R + y are disjoint and not adjacent for any x,y ∈ Ln distinct, then μn

is invariant under resampling f on R, then translating this modification to R + x for each
x ∈ Ln � {0}. Thus, if n is so large that S and R + x are disjoint for any x ∈ Ln � {0}, then
(7.2) holds true because the additional modifications do not affect the values of μn on the
σ -algebra FS . This proves the claim. �

For any n ∈ N, let �n denote a centred box of sides 2n, that is,

�n := {a1g1 + · · · + adgd : −n ≤ a1, . . . , ad < n} ⊂ Xd.

Note that |�n| = (2n)d .

PROPOSITION 7.3. Let μ denote a measure of Theorem 7.1 of slope s ∈ S . Then μ-
almost surely

(7.3) lim
n→∞

1

n

∥∥(
f − f (0)

)|�n − s|�n

∥∥∞ = 0.

This follows from a union bound and the inequalities in Theorem 7.1.

8. The surface tension and the variational principle. The purpose of this section is
to give an overview of three closely related concepts which describe the macroscopic be-
haviour of the model. These motivate the study of strict convexity of the surface tension in
Section 9. First, there is indeed the surface tension, which describes the asymptotic number
of height functions approximating a certain slope. Second, there is the large deviations prin-
ciple, which describes the asymptotic number of height functions approximating an arbitrary
continuous profile. The rate function is the integral of the surface tension over the gradient
of the continuous profile of interest. Third, there is the variational principle, which is a direct
corollary of the large deviations principle, and describes the typical macroscopic behaviour
of the random height function. The surface tension is usually convex, making that the rate
function in the large deviations principle is also convex. In the next section, we shall also
prove that the surface tension is strictly convex, which implies that the rate function has a
unique minimiser, which in turn implies concentration around a single continuous profile in
the variational principle. For the results in this section, we refer to [21] and [16].

8.1. The surface tension.

DEFINITION 8.1. Recall the definition of �f � for Lipschitz functions f : H → R on
Page 1039. Recall also the definition of �n ⊂ Xd at the end of the previous section (Page
1055). The surface tension is the function σ : S →R defined by

σ(s) := lim
n→∞− 1

|�n| log
∣∣�(

�n, �s�)∣∣.
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For convergence of the limit in the definition of σ(s), we refer to Section 4 in [16]. The
argument is effectively a supermultiplicativity argument: if A,B ⊂ Xd are finite and disjoint
with no vertex of A adjacent to a vertex of B , then |�(A ∪ B,f )| = |�(A,f )| · |�(B,f )|,
and if A ⊂ B , then |�(A,f )| ≤ |�(B,f )|. In fact, the definition of σ(s) is stable under
modifications of order o(n) to �s� as n → ∞; see Lemma 4.5 in [16] for the following result.

THEOREM 8.2. If s ∈ S , and if (fn)n∈N ⊂ � satisfies ‖fn|�n − s|�n‖∞ = o(n) as n →
∞, then

σ(s) = lim
n→∞− 1

|�n| log
∣∣�(�n,fn)

∣∣.
The previous result implies immediately that σ is continuous; see also Lemma 4.3 in [16].

THEOREM 8.3. The surface tension σ : S →R is continuous.

8.2. The large deviations principle. Before stating the large deviations principle, we
must introduce a suitable topological space to work in, and we must specify how a sequence
of fixed boundary conditions converges to a continuous boundary profile. This is the purpose
of the following definition.

DEFINITION 8.4. Write Lip(D) for the collection of real-valued Lipschitz functions on
D for any D ⊂ H . A domain is a bounded open set D ⊂ H such that ∂D has zero Lebesgue
measure. A boundary profile is a pair (D,b) where D is a domain and b ∈ Lip(∂D). An
approximation of (D,b) is a sequence of pairs ((Dn, bn))n∈N such that Dn ⊂ Xd is finite and
bn ∈ � for any n ∈ N, and such that

1

n
Dn → D,

1

n
Graphbn|∂Dn → Graphb

in the Hausdorff topologies on H and H ×R respectively as n → ∞.
If (D,b) is a boundary profile with approximation ((Dn, bn))n∈N, then write (γn)n∈N for

the sequence of measures defined by γn := γDn(·, bn), the uniform probability measure in the
finite set �(Dn,bn). The topological space for the large deviations principle associated with
this sequence is the set Lip(D̄) endowed with the topology of uniform convergence—which
is equivalent to the topology of pointwise convergence as D̄ is compact. We must bring all
samples from each measure γn to the space Lip(D̄) for the large deviations principle to make
sense. For each n ∈ N, define the map Kn : � → Lip(D̄) as follows. First, for each f ∈ �,
define f̄ to be the smallest Lipschitz extension of f to H . Define each map Kn by

Kn(f ) : D̄ →R, x �→ 1

n
f̄ (nx).

Finally, let λ denote the unique translation-invariant measure on H for which{
a1g1 + · · · + adgd : a1, . . . , ad ∈ [0,1]} ⊂ H

has measure one.

THEOREM 8.5. Let (D,b) denote a boundary profile with approximation ((Dn, bn))n∈N
and associated measures γn := γDn(·, bn). Write γ ∗

n for the pushforward of γn along Kn.
Then the sequence of measures (γ ∗

n )n∈N satisfies a large deviations principle in the topolog-
ical space Lip(D̄) with speed nd and rate function

I (f ) := −P(D,b) +
⎧⎨
⎩

∫
D

σ(∇f )dλ if f |∂D = b,

∞ otherwise,
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where P(D,b) is called the pressure of the boundary profile (D,b), defined to be the unique
constant such that the minimum of I is 0, and equal to

P(D,b) = lim
n→∞− 1

nd
log

∣∣�(Dn,bn)
∣∣.

We shall continue using the definitions of I and P(D,b) in the sequel. The large deviations
principle was proven in a much more general setting by Sheffield in [21]. The large deviations
principle with boundary conditions is stated in Section 7.3.2. The large deviations principle
in [21] does not only address the macroscopic profile of each height functions but also its
“local statistics” within macroscopic regions, something we are not concerned with here. In
[21] it is required that the boundary profile is “not taut”. This requirement is however only
necessary to understand the local statistics, and may be omitted when one is interested in
the macroscopic profile only. For a more recent and elementary proof of the large deviations
principle for the macroscopic profile only, we refer to Theorem 2.17 in [16].

8.3. The variational principle. The variational principle is a direct corollary of the large
deviations principle. Note that the set of minimisers of I in Theorem 8.5 is exactly the set of
minimisers of ∫

D
σ(∇f )dλ

over all functions f ∈ Lip(D̄) which restrict to b on ∂D.

THEOREM 8.6. Assume the setting of Theorem 8.5. Let A denote an open neighbourhood
of {I = 0} ⊂ Lip(D̄). Then γ ∗

n (A) → 1 as n → ∞. In particular, if σ is strictly convex, then
I has a unique minimiser f ∗ ∈ Lip(D̄), and in that case γ ∗

n (A) → 1 as n → ∞ for any open
neighbourhood A of f ∗.

9. Strict convexity of the surface tension. In [3], the authors find an explicit formula
for σ for the case d = 2 by appealing to the integrable nature of the model. A direct corol-
lary is that the surface tension is strictly convex. In [21], Sheffield proves that the surface
tension related to any simply attractive model is strictly convex. In particular, this implies the
following theorem.

THEOREM 9.1. For any d ≥ 2, the surface tension is strictly convex on the interior of S .

The proof of Sheffield relies crucially on cluster swapping. The purpose of the section is
to give an alternative proof of Theorem 9.1, which is simpler than the proof in [21] due to the
special nature of the cluster swap in the particular setting of this article.

9.1. The specific entropy. First, we give an alternative characterisation of σ(s) in terms
of the shift-invariant gradient Gibbs measure of slope s whose existence is guaranteed by
Theorem 7.1. For this, we require the notions of entropy and specific entropy. Let (X,X ) be
an arbitrary measurable space endowed with a probability measure μ and a nonzero finite
measure ν. Then the relative entropy of μ with respect to ν, denoted H(μ, ν), is defined by

H(μ, ν) :=
{
ν(h logh) = μ(logh) if μ � ν and h = dμ/dν,

∞ if μ �� ν.

If A is a sub-σ -algebra of X , then write HA(μ, ν) for H(μ|A, ν|A). It is well known that μ

minimises H(·, ν) over all probability measures if and only if μ is the normalised version of
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ν, in which case H(μ, ν) = − logν(X). Also, if ν is a counting measure, then h ≤ 1, and in
that case H(μ, ν) ≤ 0.

If R is a finite subset of Xd , then write DR : � → ZR×R for the map satisfying

(DRf )(x,y) = f (y) − f (x)

for every f ∈ �, x,y ∈ R. Call DR the differences map. Note that ImDR is finite, and that
F∇

R = σ(DR). Stronger: DR may be seen as a bijection from F∇
R to the powerset of ImDR .

Write λR for the pullback of the counting measure on ImDR along the map DR—λR is a
measure on (�,F∇

R ) of size λR(�) = | ImDR| ∈ Z>0.

REMARK 9.2. If R is connected and f ∈ �, then the values of DRf can be recovered
from the values of ∇f on the edges of Ed which are contained in R, by integrating ∇f along
the appropriate paths through R. Thus, for connected sets R ⊂ Xd , one should think of the
map DR as an alternative for the map

f �→ (∇f )|Ed∩(R×R)

in the above construction. This also implies that | ImDR| ≤ 2|R| whenever R is connected.

Let μ ∈ P(�,F∇) and R ⊂ Xd finite. Then the entropy of μ in R, denoted HR(μ), is
defined by

HR(μ) := HF∇
R

(
μ,λR) = ∑

x∈ImDR

μ(DRf = x) logμ(DRf = x) ∈ [− log | ImDR|,0
]
.

The specific entropy of μ, denoted H(μ), is defined to be the limit

H(μ) := lim
n→∞

1

|�n|H�n(μ) = lim
n→∞

1

|�n|HF∇
�n

(
μ,λ�n

)
whenever the sequence is convergent. Otherwise simply replace the limit by the limit inferior
to obtain a well-defined limit. It can in fact be shown that the sequence is always convergent
(see, e.g., [21], Chapter 2), but we shall not rely on this fact.

THEOREM 9.3. Let μ denote a measure of Theorem 7.1 of slope s ∈ S . Then H(μ) =
σ(s).

PROOF. Let μ denote any gradient Gibbs measure for now. Write hR for the Radon–
Nikodym derivative

hR :=
dμ|F∇

R

dλR

for any finite R ⊂ Xd . Fix R,S ⊂ Xd finite with S ∪ ∂S ⊂ R. As μ is Gibbs, we know that
μ is uniformly random in �(S,f ) whenever μ is conditioned on the values of f on Sc. This
implies immediately that

hR = 1

|�(S,f )|h
R�S.

The function |�(S, ·)| is F∇
∂S -measurable as the model is Markov, and consequently hR is

F∇
R�S-measurable.
Let now μ be a measure of Theorem 7.1 of slope s ∈ S , and pick n ∈ N. Then

(2n)−dH�n(μ) = (2n)−dμ
(
logh�n

) = (2n)−dμ
(
logh�n��n−1 − log

∣∣�(�n−1, f )
∣∣)

(9.1)
= (2n)−dH�n��n−1(μ) + μ

(−(2n)−d log
∣∣�(�n−1, f )

∣∣).
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The first term in (9.2) vanishes as n → ∞ because �n � �n−1 is connected as a subset of
(Xd,Ed): ∣∣H�n��n−1(μ)

∣∣ ≤ log | ImD�n��n−1 | ≤ |�n ��n−1| log 2 = O
(
nd−1)

.

The term within the expectation in (9.2) converges to σ(s) pointwise by Proposition 7.3 and
Theorem 8.2. We may apply the dominated convergence theorem because the expression
within the expectation is always absolutely bounded by log 2, since 0 ≤ log |�(�n−1, f )| ≤
|�n−1| log 2 ≤ (2n)d log 2. �

Before proceeding, let us quote an important result from the literature.

THEOREM 9.4. Let μ ∈ P�(�,F∇) denote a measure which satisfies the concentration
of (7.3) for some s ∈ S , but which is not a Gibbs measure. Then H(μ) > σ(s).

PROOF OVERVIEW. Write μn,g for the measure μ conditioned on f (x) = g(x) for all
x ∈ �n ��n−1. Then

H�n(μ) = H�n��n−1(μ) +
∫

H�n

(
μn,g)

dμ(g).

This is the same decomposition as in the proof of the previous theorem. For fixed g, the
integrand in this display is clearly minimised if μ is a Gibbs measure, because μn,g is then
uniformly random in all extensions of g|�n��n−1 to �n. This proves that H(μ) ≥ σ(s) when-
ever μ is concentrated as in (7.3); the difficulty is in proving the strict inequality whenever
μ is not Gibbs. If μ is not Gibbs, then the integral in the display will for some n be strictly
larger than if μ were Gibbs, but it is nontrivial to demonstrate that this difference survives the
normalisation by |�n| in the definition of H(μ). This follows from a standard superadditivity
argument; see Lemma 4.1 in [17] or Theorem 15.37 in [6]. See Theorem 2.5.2 in [21] for a
proof of the current theorem in full detail. �

9.2. The product setting. For the double dimer model, the cluster swap and the level set
decomposition developed in this article, it is essential to work in the product setting. We shall
introduce some straightforward technical machinery before proceeding; essentially we must
adapt the constructions and results from Section 7 and from the previous subsection to the
product setting. Write

F2∇ := F∇ ×F∇, γ 2
R := γR × γR, λR

2 := λR × λR,

F2∇
R := F∇

R ×F∇
R , γ 2∇

R := γ ∇
R × γ ∇

R .

Let P(�2,F2∇) denote the collection of probability measures on (�2,F2∇); such measures
are called double gradient measures. If μ ∈ P(�2,F2∇), then we shall by default write
(f1, f2) for the pair of random height functions, and g := f1 − f2 for the random difference.
Write P�(�2,F2∇) for the collection of shift-invariant measures μ ∈ P(�2,F2∇); the mea-
sure μ is called shift-invariant if μ(θ̃A × θ̃B) = μ(A × B) for every θ ∈ � and A,B ∈ F∇ .
This is equivalent to requiring that (∇f1,∇f2) and (θ∇f1, θ∇f2) have the same law in μ for
each shift θ ∈ �.

The kernel γ 2
R = γR × γR is simply the kernel from (�2,F2

Rc) to (�2,F2) with the
property that the probability measure (γR × γR)(·, (f1, f2)) is uniformly random in the set
�(R,f1)×�(R,f2), and it restricts naturally to the kernel γ 2∇

R = γ ∇
R × γ ∇

R —this is a prob-
ability kernel from (�2,F2∇

Rc ) to (�2,F2∇). A double gradient measure μ is called a double
gradient Gibbs measure if it satisfies, for every finite R ⊂ Xd , the DLR equation

μ = μγ 2∇
R .
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If μ is the product of two gradient Gibbs measures μ1 and μ2, then μ is also Gibbs as

μ = μ1 × μ2 = (
μ1γ

∇
R

) × (
μ2γ

∇
R

) = (μ1 × μ2)
(
γ ∇
R × γ ∇

R

) = μγ 2∇
R .

Now let μ ∈ P(�2,F2∇) and R ⊂ Xd finite. The entropy of μ in R, denoted H2
R(μ), is

defined by

H2
R(μ) := HF2∇

R

(
μ,λR

2
)
.

The specific entropy of μ, denoted H2(μ), is defined to be the limit

H2(μ) := lim
n→∞

1

|�n|H
2
�n

(μ) = lim
n→∞

1

|�n|HF2∇
�n

(
μ,λ

�n

2

)
whenever the limit is convergent, and the limit inferior otherwise.

The direct generalisation of Theorems 9.3 and 9.4 to the product setting reads as follows.

THEOREM 9.5. Let μ ∈ P�(�2,F2∇) denote a shift-invariant product measure such
that

(9.2) lim
n→∞

1

n

∥∥(
fi − fi(0)

)|�n − si |�n

∥∥∞ = 0

almost surely for i ∈ {1,2} and for some fixed slopes s1, s2 ∈ S . Then H2(μ) ≥ σ(s1)+σ(s2),
with equality if and only if μ is a Gibbs measure.

9.3. Proof overview. Fix throughout this section two distinct Lipschitz slopes s1, s2 ∈ S
such that their average sa := (s1 + s2)/2 lies in the interior of S . The ultimate goal of this
section is to prove that 2σ(sa) < σ(s1)+σ(s2), which implies Theorem 9.1: that σ is strictly
convex on the interior of S .

In the remainder of this section, let μi denote the shift-invariant gradient Gibbs measure of
Theorem 7.1 of slope si for each i ∈ {1,2}, and fix μ := μ1 × μ2. Then μ is a shift-invariant
double gradient Gibbs measure. Moreover, μ has the concentration of (9.2), and therefore
Theorem 9.5 implies that H2(μ) = σ(s1) + σ(s2).

The sets T (f1) and T (f2), the graph Gg = (Vg,Eg), the g-level sets, the g-boundaries,
and the directed graph (LSD(g),∇g) are all invariant under adding constants to f1 and f2,
as each of them is characterised entirely by the gradients ∇f1, ∇f2 and ∇g := ∇f1 − ∇f2.
The gradient ∇g also determines X±

g (E) for any g-boundary E.

LEMMA 9.6. It is μ-almost certain that LSD(g) contains a subgraph that is graph iso-
morphic to Z. Moreover, every g-level set and every g-boundary involved in such a subgraph
of LSD(g) is unbounded.

This lemma is essential in understanding the geometry of LSD(g). It is expected that the
difference function g = f1 − f2 of a typical sample from μ looks somewhat like the leftmost
subfigure of Figure 4.

PROOF OF LEMMA 9.6. As sg := s1 − s2 �= 0, there exists an index 1 ≤ i ≤ d + 1 such
that sg(gi ) �= 0. Fix such an i, and write p for the Z-indexed path p := (pk)k∈Z := (kgi )k∈Z
through (Xd,Ed). Write qk for the g-level set containing pk for each k ∈ Z. For each k ∈
Z the vertices pk and pk+1 are either contained in the same g-level set, or in two distinct
neighbouring g-level sets. We consider q := (qk)k∈Z a walk through LSD(g) although q
is not a walk in the strict sense: it may visit the same g-level set multiple times in a row.
Proposition 7.3 says that μ-almost surely g(pk) − g(p0) = ksg(gi ) + o(k) as k → ∞ or
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FIG. 4. Difference samples from three different measures; �m is a trifurcation box.

k → −∞. This implies that there is a well-defined and unique loop-erased bi-infinite version
of the path q up to indexation, which is the desired Z-isomorphic subgraph of LSD(g). This
proves the first part of the lemma.

Focus on the second statement, which is deterministic in nature. Fix a g-boundary E ⊂ Ed

that is an edge of a subgraph of LSD(g) that is isomorphic Z. Then removing E from LSD(g)

disconnects LSD(g) and separates the graph into two infinite components. In particular, this
implies that the graph (Xd,Ed � E) consists of two infinite connected components. If E

were finite, then one of the two connected components of (Xd,Ed � E) had to be finite,
and therefore we conclude that E is infinite. The g-boundary E connects the two g-level
sets X−

g (E) and X+
g (E) when considered an LSD(g)-edge, and these must also be infinite

as one of them contains the infinite set x−
g (E) and the other x+

g (E). This proves the second
statement of the lemma. �

We now give an overview of the remainder of the proof. The key idea is to construct
a new shift-invariant double gradient measure μ̂ ∈ P�(�2,F2∇). Write f̂1, f̂2 and ĝ :=
f̂1 − f̂2 for the random functions in μ̂. To sample from μ̂, first draw a pair (f1, f2) from
the original measure μ = μ1 × μ2. Then obtain (f̂1, f̂2) from (f1, f2) by flipping a fair coin
for every g-boundary in order to determine wether or not to reverse the orientation of that g-
boundary. In other words, we rerandomise the orientation of each g-boundary. In the measure
μ̂, the orientations of the edges in the graph (LSD(ĝ),∇ĝ) are thus uniformly random and
independent of all other structure that is present. First, we show that the resampling operation
does not affect the specific entropy, that is,

H2(μ̂) = H2(μ) = σ(s1) + σ(s2).

Second, we prove that for i ∈ {1,2} we μ̂-almost surely have

(9.3) lim
n→∞

1

n

∥∥(
f̂i − f̂i(0)

)|�n − sa|�n

∥∥∞ = 0.

Note that the concentration of the gradient of either function is around the average slope sa .
Third, we prove that μ̂ is not Gibbs. Theorem 9.5 therefore implies that H2(μ̂) > 2σ(sa), the
desired result.

Let us elaborate on the third step, before proceeding. Suppose that μ̂ is Gibbs, in order to
derive a contradiction. A trifurcation box of ĝ is a finite subset of Xd of the form R = θ�n

such that, for some infinite ĝ-level set X ⊂ Xd , removing R from X means breaking X

into at least three infinite components. We show that ĝ has a trifurcation box with positive
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probability in the measure μ̂γ 2∇
�m

for m sufficiently large: see the middle and rightmost sub-

figures in Figure 4. If μ̂ were Gibbs then μ̂ = μ̂γ 2∇
�m

, and therefore a sample ĝ from μ̂ has
a trifurcation box with positive probability. Trifurcation boxes do almost surely not occur in
shift-invariant measures, by a simple geometrical argument described by Burton and Keane
in their celebrated paper [2]. This proves that μ̂ is not Gibbs.

9.4. Detailed proof.

LEMMA 9.7. The specific entropy of μ̂ equals the specific entropy of μ.

PROOF. We prove the stronger statement that H2
�n

(μ̂) = H2
�n

(μ)+O(nd−1) as n → ∞.
Fix n ∈N large. The measure μ is Gibbs and therefore satisfies the DLR equation

μ = μγ 2∇
�n

.

This implies in particular that the distribution of a sample (f1, f2) from μ is invariant under
subsequently rerandomising the orientation of each g-boundary that is contained in Ed(�n).
As this is true for all n, we derive that the distribution of the sample is in fact invariant under
rerandomising the orientation of any finite g-boundary. Thus, to sample (f̂1, f̂2) from μ̂,
one may first sample a pair (f1, f2) from μ, then rerandomise the orientation of only the g-
boundaries which are infinite. Write μ̃ for the corresponding coupling of μ and μ̂, and write
(f1, f2, f̂1, f̂2) for the random 4-tuple in μ̃.

Write H2
A,B(μ̃) for HF2∇

A ×F2∇
B

(μ̃, λA
2 × λB

2 ) for A,B ⊂ Xd finite and claim that:

1. H2
�n

(μ) =H2
�n,�n��n−1

(μ̃) + O(nd−1),

2. H2
�n

(μ̂) =H2
�n��n−1,�n

(μ̃) + O(nd−1),

3. H2
�n,�n��n−1

(μ̃) =H2
�n,�n

(μ̃) = H2
�n��n−1,�n

(μ̃).

It is clear that these three claims jointly imply the lemma.
Focus on the first claim, and consider thus the measures

μ|F2∇
�n

, μ̃|F2∇
�n

×F2∇
�n��n−1

.

The first claim is intuitive: the restriction of μ records the values of D�n(f1) and D�n(f2),
and the restriction of μ̃ records also the values of D�n��n−1(f̂1) and D�n��n−1(f̂2). In-
formally, the extra information that the restriction of μ̃ records is of order nd−1, because
log | ImD�n��n−1 |2 = O(nd−1). We now formalise this idea. For x ∈ (ImD�n)

2, we write
μ̂x for the measure μ̃ conditioned on the event {(D�nf1,D�nf2) = x} and projected onto the
product of the third and fourth component of the product measurable space (�,F∇)4. Then
a standard entropy calculation implies that

H2
�n,�n��n−1

(μ̃) =H2
�n

(μ) +
∫

H2
�n��n−1

(
μ̂x)

dμ
(
(D�nf1,D�nf2) = x

)
,

see Theorems D.3 and D.13 of [4] or Lemma 2.1.3 of [21]. As in the proof of Theorem 9.3,
we have ∣∣H2

�n��n−1

(
μ̂x)∣∣ ≤ log | ImD�n��n−1 |2 = O

(
nd−1)

.

This proves the first claim. The second claim follows by identical reasoning.
Focus on the third claim, in particular on the equality on the left—the equality on the right

shall follow by the same arguments. For the equality on the left it suffices to demonstrate that,
with μ̃-probability one, the tuple

(9.4) (D�nf1,D�nf2,D�nf̂1,D�nf̂2)
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can be reconstructed almost surely from

(9.5) (D�nf1,D�nf2,D�n��n−1 f̂1,D�n��n−1 f̂2).

We know that (f1, f2) and (f̂1, f̂2) differ by cluster boundary swaps, where all boundaries
which are swapped, are infinite. To recover (9.4) from (9.5), we must therefore understand
wether or not each infinite boundary which intersects �n−1, should be swapped or not. How-
ever, as each such boundary is infinite, it must intersect �n � �n−1, and its orientation for
(f̂1, f̂2) can therefore be read off from (9.5). �

LEMMA 9.8. Equation (9.3) holds true μ̂-almost surely for i ∈ {1,2}.

PROOF. It suffices to prove that μ̂-almost surely

lim
n→∞

1

n

∥∥(
f̂1 − f̂1(0)

)|�n + (
f̂2 − f̂2(0)

)|�n − 2sa|�n

∥∥∞ = 0,(9.6)

lim
n→∞

1

n

∥∥(
f̂1 − f̂1(0)

)|�n − (
f̂2 − f̂2(0)

)|�n

∥∥∞ = 0.(9.7)

First focus on (9.6). Recall the definition of μ; Proposition 7.3 implies that almost surely

lim
n→∞

1

n

∥∥(
f1 − f1(0)

)|�n + (
f2 − f2(0)

)|�n − (s1 + s2)|�n

∥∥∞ = 0.

Recall that the sum of two height functions is invariant under a cluster boundary swap, and
that 2sa = s1 + s2. The previous display therefore implies (9.6). For (9.7), we must show that
μ̂-almost surely

(9.8) lim
n→∞

1

n

∥∥(
ĝ − ĝ(0)

)|�n

∥∥∞ = 0

Fix some x ∈ Xd ; we are interested in the distribution of ĝ(x) − ĝ(0). The distribution of
ĝ(x) − ĝ(0) conditional on LSD(ĝ) is given by summing dLSD(ĝ)(0,x) ≤ d(Xd,Ed)(0,x) fair
coins each valued ±(d + 1). This follows immediately from the definition of the measure μ̂.
Application of the Azuma–Hoeffding inequality yields, for a ≥ 0 and x �= 0,

μ̂
(∣∣ĝ(x) − ĝ(0)

∣∣ ≥ (d + 1)a
) ≤ 2 exp− a2

2d(Xd,Ed)(0,x)
.

A union bound now implies (9.8). �

LEMMA 9.9. The double gradient measure μ̂ is not Gibbs.

PROOF. Define the F2∇ -measurable event

I (n) :=
{
ĝ takes the same value on three distinct infinite ĝ-level sets
that all intersect �n, one of which contains 0

}
⊂ �2,

and claim that μ̂(I (n)) > 0 for n ∈ N sufficiently large. First, a cluster boundary swap leaves
LSD(g) invariant, and therefore Lemma 9.6 holds true for g replaced with ĝ and μ with μ̂.
Therefore, it is μ̂-almost certain that LSD(ĝ) contains a Z-indexed self-avoiding walk p =
(pk)k∈Z. Let p be chosen deterministically in terms of LSD(ĝ), so that (ĝ(pk+1)− ĝ(pk))k∈Z
is a sequence of i.i.d. random variables each distributed uniformly in ±(d + 1), independent
of LSD(ĝ). In particular, the event {ĝ(pk±2) − ĝ(pk) = 0} has probability 1

4 for each fixed k.
As μ̂ is shift-invariant, we may choose p such that μ̂(0 ∈ p0) > 0. Choose n ∈ N sufficiently
large such that, conditional on {0 ∈ p0}, the set �n intersects p±2 with positive probability.
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Note that ĝ(p±2) − ĝ(p0) = 0 with probability 1
4 independently of the occurrence of both

previous events, and therefore the original event I (n) has positive probability. This is the
claim. Fix n ∈ N such that ε := 1

2 μ̂(I (n)) > 0. See the middle display in Figure 4 for the
level set decomposition of the difference function ĝ corresponding to a sample from the
event I (n).

If h and h′ are real-valued functions defined on two disjoint subsets A and A′ of Xd

respectively, then write hh′ for the unique function on A ∪ A′ which equals h on A and h′ on
A′. Next, define for m ≥ n the F2∇ -measurable event

L(m) := {
the function

(
f̂1 − f̂1(0)

)|�n

(
f̂2 − f̂2(0)

)|�c
m

extends to a height function
}

= {
the function

(
f̂1 − f̂1(0)

)|�n

(
f̂2 − f̂2(0)

)|�c
m

is Lipschitz
} ⊂ �2,

and claim that μ̂(L(m)) → 1 as m → ∞. Recall that (9.3) holds true for i = 2 with μ̂-
probability one. Therefore it suffices to show that the function(

f̂1 − f̂1(0)
)|�n

(
f̂2 − f̂2(0)

)|�c
m

is Lipschitz for m sufficiently large whenever f̂2 satisfies (9.3). To see this, write h±
m for

the largest and smallest functions in �(�m, f̂2 − f̂2(0)), respectively. In other words, the
functions h±

m are the largest and smallest extensions of (f̂2 − f̂2(0))|�c
m

to Xd which are
height functions. Note that there exist constants α± > 0 such that h±

m(0) = ±α±m + o(m)

as m → ∞ due to (9.3) and because sa is in the interior of the set of Lipschitz slopes. In
particular,

h+
m|�n ≥ (

f̂1 − f̂1(0)
)|�n, h−

m|�n ≤ (
f̂1 − f̂1(0)

)|�n

for m sufficiently large. This proves the claim. Fix m so large that μ̂(L(m)) ≥ 1 − ε, which
implies that μ̂(I (n) ∩ L(m)) ≥ ε > 0.

Define for x ∈ Xd the F2∇ -measurable event

T (x) :=
{(

Xd,Ed �
(
Vĝ ∪ Ed(�m + x)

))
has three infinite connected

components that are contained in a single ĝ-level set

}

=
⎧⎨
⎩

(
Xd,Ed �

(
Vĝ ∪ Ed(�m + x)

))
has three infinite connected

components that are contained in one connected component of(
Xd,Ed � Vĝ

)
⎫⎬
⎭ ⊂ �2;

we shall first focus on T := T (0). See the rightmost subfigure in Figure 4 for the level set
decomposition of the difference function ĝ corresponding to a sample from T . We claim
that �(�m,f1) × �(�m,f2) intersects T whenever (f1, f2) ∈ I (n) ∩ L(m). Fix such a pair
(f1, f2) and assume, without loss of generality, that f1(0) = f2(0) = 0. Assert first that there
exists a height function f ′′ which equals f1 on �n and which equals f2 on �c

m, and which at
any vertex x takes values between f1(x) and f2(x). The following construction works: write
first f ′ for a height function which extends f1|�nf2|�c

m
to Xd , then define f ′′ by

f ′′ := (
f ′ ∨ (f1 ∧ f2)

) ∧ (f1 ∨ f2).

This proves the assertion. Now f ′′ ∈ �(�m,f2) as f ′′ equals f2 on �c
m. Moreover, as at

each vertex the value of f ′′ is in between the values of f1 and f2, we have {f1 = f2} ⊂ {f1 =
f ′′} ⊂ Xd , and we also know that �n ⊂ {f1 = f ′′}. This implies that (f1, f

′′) ∈ T , since
the three connected components of {f1 = f2} are contained in a single connected compo-
nent of {f1 = f ′′}, and because {f1 = f2} � �m = {f1 = f ′′} � �m, that is, removing �m

disconnects these three components again.
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Suppose that μ̂ is a Gibbs measure, in order to derive a contradiction. Then the event
T must occur with positive probability for μ̂, since μ̂(I (n) ∩ L(m)) > 0, and since T has
positive probability for

γ 2∇
�m

(·, (f̂1, f̂2)
)

whenever (f̂1, f̂2) ∈ I (n) ∩ L(m). The argument of Burton and Keane [2] dictates that tri-
furcation boxes do almost surely not occur in shift-invariant probability measures. In other
words, μ̂(T ) = 0. This is the desired contradiction. To see that μ̂(T ) = 0, observe that
μ̂(T (x)) is independent of x, implying that trifurcation boxes must occur with positive den-
sity whenever μ̂(T ) > 0. This is impossible due to geometrical constraints of the amenable
graph (Xd,Ed). �

This establishes Theorem 9.1.
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