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We address propagation of chaos for large systems of rough differential
equations associated with random rough differential equations of mean field
type

dXt = V
(
Xt ,L(Xt )

)
dt + F

(
Xt ,L(Xt )

)
dWt ,

where W is a random rough path and L(Xt ) is the law of Xt . We prove
propagation of chaos, and provide also an explicit optimal convergence rate.
The analysis is based upon the tools we developed in our companion paper
(Electron. J. Probab. 25 (2020) 21) for solving mean field rough differential
equations and in particular upon a corresponding version of the Itô-Lyons
continuity theorem. The rate of convergence is obtained by a coupling argu-
ment developed first by Sznitman for particle systems with Brownian inputs.
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1. Introduction. The study of mean field stochastic dynamics and interacting diffusions
/ Markov processes finds its roots in Kac’s simplified approach to kinetic theory [36] and
McKean’s work [41] on nonlinear parabolic equations. It provides the description of evo-
lutions (μt )t≥0 in the space of probability measures under the form of a pathspace random
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dynamics

dXt(ω)= V
(
Xt(ω),μt

)
dt + F

(
Xt(ω),μt

)
dWt(ω),

μt := L(Xt),
(1.1)

where L(A) stands for the law of a random variable A over a probability space (�,F,P) con-
taining ω and relates it to the empirical behaviour of large systems of interacting dynamics.
The main emphasis of subsequent works has been on proving propagation of chaos and other
limit theorems, and giving stochastic representations of solutions to nonlinear parabolic equa-
tions under more and more general settings; see, for instance, [10, 11, 23, 24, 31, 35, 42, 47,
48]. Classical stochastic calculus makes sense of equation (1.1) only when the process W is
a semimartingale under P, for some filtration, and the integrand is predictable. However, this
setting happens to be too restrictive in a number of situations, especially when the diffusivity
is random. This prompted several authors to address equation (1.1) by means of rough paths
theory. Indeed, one may understand rough paths theory as a natural framework for providing
probabilistic models of interacting populations, beyond the realm of Itô calculus. Cass and
Lyons [18] did the first study of mean field random rough differential equations and proved
the well-posed character of equation (1.1), and propagation of chaos for an associated system
of interacting particles, under the crucial assumption that there is no mean field interaction in
the diffusivity, that is, F(x,μ)= F(x), and that the drift depends linearly on the mean field in-
teraction. Bailleul extended partly these results in [4] by proving well-posedness of the mean
field rough differential equation (1.1) in the case where the drift depends nonlinearly on the
interaction term and the diffusivity is still independent of the interaction, and by proving an
existence result when the diffusivity depends on the interaction. Another breakthrough came
with our earlier arXiv deposit [6], in which we explained how to handle the case when F truly
depends on the interaction term by making a systematic use of Lions’ approach to differential
calculus on Wasserstein space. To make the content more accessible, we eventually decided
to split [6] into two parts: While the current work is mainly inspired from the second half
of [6], our companion article [5] corresponds to the first half of [6]; Therein, we address the
well-posedness of the mean field rough equation (1.1) for a genuinely nonlinear F.

In fact, as explained in [5], the general case may be easily reduced to the study of the
simpler equation

(1.2) dXt(ω)= F
(
Xt(ω),L(Xt)

)
dWt(ω),

which is precisely the version we address in this paper. To make it clear, the purpose of the
present article is to prove that, under suitable assumptions, the solution of (1.2) coincides
with the limit (in a convenient sense), as n tends to ∞, of the n-particle system

Xi
t (ω)=Xi

0(ω)+
∫ t

0
F

(
Xi
s(ω),

1

n

n∑
j=1

δ
X
j
s (ω)

)
dWi

s (ω), t ≥ 0,(1.3)

for 1 ≤ i ≤ n, where (Xi
0(·),Wi(·))1≤i≤n is a collection of independent and identically dis-

tributed variables with the same distribution as (X0(·),W(·)), the first component being re-
garded as a random variable with values in R

d and the second one as a random variable
with values in the space of continuous functions. Of course, equation (1.3) must be un-
derstood as a rough differential equation driven by the signal (W 1(ω), . . . ,Wn(ω)) with
(X1(ω), . . . ,Xn(ω)) as output. As it is well known, this requires to lift (W 1(ω), . . . ,Wn(ω))

into an enhanced rough path W (n)(ω) and henceforth to define the various iterated integrals.
Asking the paths W(ω), ω ∈ �, to have a finite p-variation for 2 ≤ p < 3, this prompts us
to assume that, instead of ((X1

0(·),W 1(·)), . . . , (Xn
0 ,W

n(·))), we have in fact n independent
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copies (Xi
0(·),Wi(·),Wi(·))1≤i≤n of the triple (X0(·),W(·),W(·)), where W(ω) is the it-

erated integral of W(ω) and W
i (ω) is the iterated integral of Wi(ω). Of course, it is also

needed to define the iterated integrals of Wj(ω) with respect to Wi(ω), for j �= i. Not only
we assume below that such iterated integrals do indeed exist, but we make the additional
assumption that there is a measurable map I giving W

i,j (ω) from Wi(ω) and Wj(ω), that is

(1.4) W
i,j (ω)= I

(
Wi(ω),Wj (ω)

)
, i �= j.

In words, (1.4) says that there exists a measurable way to construct the iterated integral of
two independent copies of the signal in the limiting equation (1.2). Hence, (1.4) should be
really regarded as an intrinsic property of (1.2) and not as a specific feature of the particle
system (1.3).

More generally, it is in fact a key point in the subsequent analysis to draw a parallel be-
tween the underlying rough path used to give a meaning to (1.3) and the notion of extended1

rough set-up used in [5] to address (1.2). We provide a reminder of the latter notion in Sec-
tion 2. Basically, it says that, in order to solve (1.2), we must not only lift, for a given ω ∈�,
the trajectory W(ω) into an enhanced rough path (W(ω),W(ω)), but we must in fact lift
the whole trajectory (W(ω),W(·)), the second component being seen as a path with val-
ues in some L

q(�,F,P;Rm) space, where m is the dimension of the signal. Then, we call
extended rough path set-up the enhancement of (W(ω),W(·)).

The striking fact of our analysis is then based upon an observation noticed first by Tanaka
in his seminal work [49] on limit theorems for mean field type diffusions, and used crucially
by Cass and Lyons in their seminal work [18]. We refer to it as Tanaka’s trick. It says that,
for a given ω ∈�, the particle system (1.3) itself may be interpreted as a mean field equation,
but with respect to the empirical measure of the driving noise. Adapted to the rough paths
theory, it says that, for any fixed ω ∈�, the path

W (n)(ω)= ((
Wi(ω)

)
1≤i≤n,

(
W

i,j (ω)
)
1≤i,j≤n

) =: (
W(n)(ω),W(n)(ω)

)
,

which underpins the rough structure used to solve (1.3), may be seen as an extended rough
set-up on its own—below, we just say a rough set-up) but defined on the finite probability
space (

{1, . . . , n},P({1, . . . , n}), 1

n

n∑
i=1

δi

)
,

where P({1, . . . , n}) denotes the collection of subsets of {1, . . . , n}, instead of the former
probability space (�,F,P). We call this set-up the empirical rough set-up, and we make its
construction entirely clear in the sequel of the paper. For sure, given the iterated integrals of
the signal (W 1(ω), . . . ,Wn(ω)), the rough integral (1.3) should be interpreted in the usual
sense, as given by standard Lyons’ rough paths theory. In short, this requires to expand lo-
cally the integrand in (1.3), which in turns requires to have a convenient notion of derivative
with respect to the measure argument. In this regard, a crucial fact in [5] is to use Lions’
approach [12, 14, 38] to differential calculus on the space P2(R

d) of probability measures on
R
d with a finite square moment, the so-called d-dimensional Wasserstein space, d denoting

here and throughout the dimension of the output in (1.2) (we refer to Section 2.5 for a longer
discussion on the connection with other notions of derivatives on the Wasserstein space). The
core of our analysis in Section 4 is that, whenever Wasserstein derivatives on P2(R

d) are
projected, through empirical measures, into classical derivatives on (Rd)n, as it is needed

1In fact, the term extended does not appear in [5], but it is here of a convenient use to distinguish from the
standard rough set-up used to solve the particle system (1.3).
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to differentiate the integrand in (1.3), the resulting solution for (1.3), as given by standard
rough paths theory, coincides with the solution obtained by interpreting (1.3) as a mean field
rough equation driven by the aforementioned empirical rough set-up—see Section 3 for re-
minders on solvability results for mean field rough equations. In this way, the convergence of
solutions of (1.3) to solutions of (1.2) as n tends to ∞ is reduced to a form of continuity of
the solutions to mean field rough differential equations with respect to the underlying rough
set-up. We called the latter continuity of the Itô-Lyons solution map, see Theorem 5.4 of our
companion work [5]. Our first main result, Theorem 4.3, shows that, for a sufficiently large
class of input signals, propagation of chaos is in fact a consequence of the continuity of the
Itô-Lyons solution map for mean field rough differential equations. At this stage, it is worth
mentioning that it is precisely in the requirements of the continuity of the Itô-Lyons map that
the structure condition (1.4) about the cross-iterated integrals comes in. In [5], a rough set-up
that satisfies (1.4) is said to be strong.

While the proofs of both our first main result and the underlying continuity property of
the Itô-Lyons solution map are mostly based on compactness arguments, our second main
result is to elucidate, under slightly stronger assumptions the convergence rate in the propa-
gation of chaos; see Theorem 5.1 in Section 5. The strategy is directly inspired from original
Sznitman’s coupling argument for mean field systems driven by Brownian signals, see [47].
Although the proof is much more involved than in the Brownian setting, we recover the same
rate of convergence: It coincides with the rate of convergence (in Wasserstein metric) of the
empirical measure of an n-sample of (sufficiently integrable) i.i.d. variables to their common
distribution. In particular, the speed decays with the dimension.

As in [5], our analysis holds for continuous rough paths whose p-variation, for some
p ∈ [2,3), is finite and has sub-exponential tails and for which the so-called local accu-
mulated variation—that counts the increments of the signal of a given size over a bounded
interval—has super-exponential tails, see [5], Theorem 1.1. Among others, our results apply
to continuous centred Gaussian signals defined over some time interval [0, T ] that have inde-
pendent components and whose covariance function has finite ρ-two dimensional variation,
for some ρ ∈ [1,3/2).

For the sake of completeness, it is worth adding that there has been a number of works re-
cently using probabilistic tools to investigate mean field problems, or connecting probabilistic
and analytical approaches. We emphasize Barbu and Röckner’s study [8] of the solvability
of McKean-Vlasov equations with local interactions by means of the superposition principle,
and Coghi and Gess’ work [21] on stochastic nonlinear nonlocal Fokker–Planck equations
that arise in the mean field limit of weakly interacting diffusions with a common noise. Even
though it is purely analytic, Jabin and Wang’s work [33] on quantitative estimates of propa-
gation of chaos for particle systems with a singular interaction kernel should be read at the
light of a probabilistic intuition. The literature at the intersection of rough paths theory and
mean field dynamics is sparser. Cass and Lyons launched the subject in [18] by proving a
well-posedness result for a mean field rough differential equation with no interaction in the
diffusivity and a linear interaction in the drift, and a propagation of chaos result. The well-
posedness result was generalised by Bailleul under a different set of assumptions in [4] for
mean field rough differential equations with no interaction in the diffusivity and a nonlinear
interaction in the drift. The setting happens to be much simpler for equations with an ad-
ditive noise, as no rough paths are needed and propagation of chaos, central limit theorem
and large deviation results can be proved, as shown by Coghi, Deuschel, Friz and Maurelli
in [19]. Coghi and Nilssen developed in [22] a variant of Bailleul and Riedel’s approach of
rough flows [7] to study rough nonlocal mean field type Fokker–Planck equations subjected
to a rough common noise (meaning that, in [22], the process (μt )0≤t≤T in (1.1) becomes
random under the action of an additional noise that is precisely assumed to be a rough path;
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obviously, there is no common noise in our model) but to an idiosyncratic Brownian noise
(to make it clear, the idiosyncratic noise should be regarded as W in (1.1); of course, a sub-
stantial difference is that, in our framework, W may not be a Brownian motion). Last, Cass,
dos Reis and Salkeld [16] used rough paths theory to investigate in depth support theorems
for solutions of McKean Vlasov equations driven by a Brownian motion.

The present work leaves wide open the question of refining the strong law of large num-
bers given by the propagation of chaos result stated in Theorem 4.3. A central limit theorem
for the fluctuations of the empirical measure of the particle system is expected to hold under
reasonable conditions on the common law of the rough drivers. Large and moderate devia-
tion results would also be most welcome. In a different direction, it would be interesting to
investigate the propagation of chaos phenomenon for systems of interacting rough dynam-
ics subject to a common noise. Very interesting things happen in the Itô setting in relation
with mean field games [13, 37]. Also, one would get a more realistic model of natural phe-
nomena by working with systems of particles driven by nonindependent noises. Individuals
with close initial conditions could have drivers strongly correlated while individuals started
far apart could have (almost-)independent drivers. Limit mean field dynamics are likely to
be different from the results obtained here—see [20] for a result in this direction in the Itô
setting. We invite the reader to make her/his own mind about these problems.

The paper is organized as follows. We recall in Section 2 the construction of a rough
set-up, as introduced in [5]. We provide in Section 3 a sketchy presentation of related solv-
ability results for equation (1.2), including a review of the main assumptions that we need
on the diffusivity F. Convergence of the particle system (1.3) is established in Section 4.
The convergence rate is addressed in Section 5, under additional regularity assumptions on
F and integrability assumptions on the signal. Proofs of some technical results are given in
Appendixes A.1 and A.2.

Notations. We gather here a number of notations that will be used throughout the text.

• We set S2 := {(s, t) ∈ [0,∞)2 : s ≤ t}, and ST2 := {(s, t) ∈ [0, T ]2 : s ≤ t}.
• We denote by (�,F,P) an atomless Polish probability space, F standing for the com-

pletion of the Borel σ -field under P, and denote by 〈·〉 the expectation operator, by 〈·〉r ,
for r ∈ [1,+∞], the L

r -norm on (�,F,P) and by 〈〈·〉〉 and 〈〈·〉〉r the expectation operator
and the L

r -norm on (�2,F⊗2,P⊗2). When r is finite, Lr (�,F,P;R) is separable as � is
Polish.

• As for processes X• = (Xt)t∈I , defined on a time interval I , we often write X for X•.

2. From probabilistic rough structures to rough integrals.

2.1. Overview on probabilistic rough structures. We here provide a brief reminder of the
content of Section 2 in [5]. We refer the reader to the paper for a complete review. Throughout
the section, we work on a finite time horizon [0, T ], for a given T > 0.

The first level of the rough path structure used to give a meaning to (1.2) is defined as an
ω-indexed pair of paths

(2.1)
(
Wt(ω),Wt(·))0≤t≤T ,

where (Wt(·))0≤t≤T is a collection of q-integrable Rm-valued random variables on (�,F,P),
which we regard as a deterministic L

q(�,F,P;Rm)-valued path, for some exponent q ≥ 8,
and (Wt(ω))0≤t≤T stands for the realizations of these random variables along the outcome
ω ∈�; so the pair (2.1) takes values in R

m×L
q(�,F,P;Rm). The second level has the form
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of an ω-dependent two-index path with values in (Rm ×L
q(�,F,P;Rm))⊗2 and is encoded

in matrix form as

(2.2)

(
Ws,t (ω) W

⊥⊥
s,t (ω, ·)

W
⊥⊥
s,t (·,ω) W

⊥⊥
s,t (·, ·)

)
0≤s≤t≤T

,

where:

• Ws,t (ω) is in (Rm)⊗2 � R
m×m,

• W
⊥⊥
s,t (ω, ·) is in R

m ⊗L
q(�,F,P;Rm)� L

q(�,F,P;Rm×m),
• W

⊥⊥
s,t (·,ω) is in L

q(�,F,P;Rm)⊗R
m � L

q(�,F,P;Rm×m),
• W

⊥⊥
s,t (·, ·) is in L

q(�⊗2,F⊗2,P⊗2;Rm×m), the realizations of which read in the form
�2 � (ω,ω′) �→ W

⊥⊥
s,t (ω,ω

′) ∈ R
m×m and the two sections of which are precisely given

by W
⊥⊥
s,t (ω, ·) :� � ω′ �→W

⊥⊥
s,t (ω,ω

′), and W
⊥⊥
s,t (·,ω) � ω′ �→W

⊥⊥
s,t (ω

′,ω), for ω ∈�.

A convenient form of Chen’s relations is required, for any ω ∈�,

Wr,t (ω)= Wr,s(ω)+Ws,t (ω)+Wr,s(ω)⊗Ws,t (ω),

W
⊥⊥
r,t (·,ω)= W

⊥⊥
r,s(·,ω)+W

⊥⊥
s,t (·,ω)+Wr,s(·)⊗Ws,t (ω),

W
⊥⊥
r,t (ω, ·)= W

⊥⊥
r,s(ω, ·)+W

⊥⊥
s,t (ω, ·)+Wr,s(ω)⊗Ws,t (·),

W
⊥⊥
r,t (·, ·)= W

⊥⊥
r,s(·, ·)+W

⊥⊥
s,t (·, ·)+Wr,s(·)⊗Ws,t (·),

(2.3)

for any 0 ≤ r ≤ s ≤ t ≤ T , with notation fr,s := fs − fr , for a function f from [0,∞)

into a vector space. In (2.3), we denoted by X(·) ⊗ Y(·), for any two X and Y in
L
q(�,F,P;Rm), the random variable (ω,ω′) �→ (Xi(ω)Yj (ω

′))1≤i,j≤m defined on �2. It
is in L

q(�2,F⊗2,P⊗2;Rm×m). The notation ⊥⊥ in W
⊥⊥ is used to indicate that W⊥⊥

s,t (·, ·)
should be thought of as the random variable

(
ω,ω′) �→

∫ t

s

(
Wr(ω)−Ws(ω)

) ⊗ dWr

(
ω′).

Since �2 � (ω,ω′) �→ (Wt(ω))t≥0 and �2 � (ω,ω′) �→ (Wt(ω
′))t≥0 are independent under

P
⊗2, we then understand W

⊥⊥
s,t as an iterated integral for two independent copies of the noise.

We refer to Examples 2.1 and 2.2 in [5]. In the end, we denote by W (ω) the so-called rough
set-up specified by the ω-dependent collection of maps given by (2.1) and (2.2).

2.2. Regularity of the rough set-up. Following [5], we use the notion of p-variation to
handle the regularity of the various trajectories in hand. Throughout, the exponent p is taken
in the interval [2,3). For a continuous function G from the simplex ST2 into some R�, we set,
for any p′ ≥ 1,

‖G‖p′
[0,T ],p′−v := sup

0=t0<t1···<tn=T

n∑
i=1

|Gti−1,ti |p
′
,

and define for any function g from [0, T ] into R
�, ‖g‖p[0,T ],p−v := ‖G‖p[0,T ],p−v as the p-

variation seminorm of its associated two index function Gs,t := gt − gs . Similarly, for a
random variable G(·) on � with values in C(ST2 ;R�), and p′ ≥ 1, we define its p′-variation
in L

q as

〈
G(·)〉p′

q;[0,T ],p′−v := sup
0=t0<t1···<tn=T

n∑
i=1

〈
Gti−1,ti (·)

〉p′
q ,(2.4)
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and define for a random variable G(·) on �, with values in C([0, T ];R�),〈
G(·)〉p′

q;[0,T ],p′−v := 〈
G(·)〉p′

q;[0,T ],p′−v,

as the p′-variation seminorm in L
q of its associated two-index function ST2 � (s, t) �→

Gs,t (·)=Gt(·)−Gs(·). Lastly, for a random variable G(·, ·) from (�2,F⊗2) into C(ST2 ;R�),
we set 〈〈

G(·, ·)〉〉p′
q;[0,T ],p′−v := sup

0=t0<t1···<tn=T

n∑
i=1

〈〈
Gti−1,ti (·, ·)

〉〉p′
q .(2.5)

Given these definitions, we require from the rough set-up W that:

• For any ω ∈ �, the path W(ω) is in the space C([0, T ];Rm), and the map W : � � ω �→
W(ω) ∈ C([0, T ];Rm) is Borel-measurable and q-integrable.

• For any ω ∈�, the two-index path W(ω) is in C(ST2 ;Rm×m), and the map W :� � ω �→
W(ω) ∈ C(ST2 ;Rm×m) is Borel-measurable and q-integrable.

• For any (ω,ω′) ∈�2, the two-index path W
⊥⊥(ω,ω′) is an element of C(ST2 ;Rm×m), and

the map W
⊥⊥ : �2 � (ω,ω′) �→ W

⊥⊥(ω,ω′) ∈ C(ST2 ;Rm×m) is Borel-measurable and q-
integrable.

Moreover, we may set, for some fixed p ∈ [2,3) and for all 0 ≤ s ≤ t ≤ T and ω ∈�,

v(s, t,ω) := ∥∥W(ω)
∥∥p[s,t],p−v + 〈

W(·)〉pq;[s,t],p−v

+ ∥∥W(ω)
∥∥p/2
[s,t],p/2−v + 〈

W
⊥⊥(ω, ·)〉p/2

q;[s,t],p/2−v

+ 〈
W

⊥⊥(·,ω)〉p/2
q;[s,t],p/2−v + 〈〈

W
⊥⊥(·, ·)〉〉p/2

q;[s,t],p/2−v,

(2.6)

and we assume that, for any positive finite time T and any ω ∈�, the quantity v(0, T ,ω) is
finite. Importantly, ω �→ (v(s, t,ω))(s,t)∈ST2 is a random variable with values in C(ST2 ;R+)
and is super-additive, namely, for any 0 ≤ r ≤ s ≤ t ≤ T , and ω ∈�,

v(r, t,ω)≥ v(r, s,ω)+ v(s, t,ω).

We then assume 〈v(0, T , ·)〉q < ∞, which implies, by Lebesgue’s dominated convergence
theorem, that the function ST2 � (s, t) �→ 〈v(s, t, ·)〉q is continuous. We assume that it is of
bounded variation on [0, T ], that is,

(2.7)
〈
v(·)〉q;[s,t],1−v := sup

0≤t1<···<tK≤T

K∑
i=1

〈
v(ti−1, ti, ·)〉q <∞.

We then call a control any family of random variables (ω �→w(s, t,ω))(s,t)∈ST2 that is jointly
continuous in (s, t) and that satisfies,

(2.8) w(s, t,ω)≥ v(s, t,ω)+ 〈
v(·)〉q;[s,t],1−v,

together with 〈
w(s, t, ·)〉q ≤ 2w(s, t,ω),

w(r, t,ω)≥w(r, s,ω)+w(s, t,ω), r ≤ s ≤ t.
(2.9)

A typical choice to get (2.8) and (2.9) is to choose

(2.10) w(s, t,ω) := v(s, t,ω)+ 〈
v(·)〉q;[s,t],1−v.
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2.3. Controlled trajectories. With a rough set-up at hands on a given finite time interval
[0, T ], we define an associated notion of controlled path and rough integral in the spirit of
Gubinelli [32]. Again, we refer to [5] for details, see Definition 3.1 therein.

DEFINITION 2.1. An ω-dependent continuous R
d -valued path (Xt(ω))0≤t≤T is called

an ω-controlled path on [0, T ] if its increments can be decomposed as

(2.11) Xs,t (ω)= δxXs(ω)Ws,t (ω)+E
[
δμXs(ω, ·)Ws,t (·)] +RX

s,t (ω),

where (δxXt(ω))0≤t≤T belongs to C([0, T ];Rd×m) and (δμXt(ω, ·))0≤t≤T to C([0, T ];
L

4/3(�,F,P;Rd×m)), (RX
s,t (ω))s,t∈ST2 is in the space C(ST2 ;Rd), and∣∣∣∣∣∣X(ω)∣∣∣∣∣∣�,[0,T ],w,p := ∣∣X0(ω)

∣∣ + ∣∣δxX0(ω)
∣∣ + 〈

δμX0(ω, ·)〉4/3

+ ∣∣∣∣∣∣X(ω)∣∣∣∣∣∣[0,T ],w,p <∞,

where ∣∣∣∣∣∣X(ω)∣∣∣∣∣∣[0,T ],w,p := ∥∥X(ω)∥∥[0,T ],w,p + ∥∥δxX(ω)∥∥[0,T ],w,p
+ 〈

δμX(ω, ·)〉[0,T ],w,p,4/3 + ∥∥RX(ω)
∥∥[0,T ],w,p/2,

with ∥∥X(ω)∥∥[0,T ],w,p := sup
∅ �=(s,t)⊂[0,T ]

|Xs,t (ω)|
w(s, t,ω)1/p

, and similarly for δxX

〈
δμX(ω, ·)〉[0,T ],w,p,4/3 := sup

∅ �=(s,t)⊂[0,T ]
〈δμXs,t (ω, ·)〉4/3

w(s, t,ω)1/p
,

∥∥RX(ω)
∥∥[0,T ],w,p/2 := sup

∅ �=(s,t)⊂[0,T ]
|RX

s,t (ω)|
w(s, t,ω)2/p

.

We call δxX(ω) and δμX(ω, ·) in (2.11) the derivatives of X(ω).

We then define the notion of random controlled trajectory, which consists of a collection
of ω-controlled trajectories indexed by the elements of �.

DEFINITION 2.2. A family of ω-controlled paths (X(ω))ω∈� such that X, δxX, δμX
and RX are measurable from � into C([0, T ];Rd), C([0, T ];Rd×m), C([0, T ];L4/3(�,F,P;
R
d×m)) and C(ST2 ;Rd), and satisfy

(2.12)
〈
X0(·)〉2 + 〈∣∣∣∣∣∣X(·)∣∣∣∣∣∣[0,T ],w,p

〉
8 <∞

is called a random controlled path on [0, T ].
It is proven in [5], Lemma 3.3, that a random controlled trajectory induces a continuous

path t �→ Xt(·) from [0, T ] to L
2(�,F,P;Rd). On another matter, the reader may observe

that we do not require any integrability property on the initial conditions δxX0 and δμX0 of
the two derivative processes. In fact, it must be understood that, when dealing with solutions
to (1.2), both δxX0 and δμX0 are automatically prescribed: δxX0(ω)= F(X0(ω),L(X0)) and
δμX0(ω, ·) = 0, see the forthcoming Theorem 2.3 for more details. Simple bounds for both
δxX0 and δμX0 then easily follow. Lastly, as it is explained in our companion paper [5], see
Definition 3.1 therein, the values of 4/3 and 8 in Definition 2.2 are somewhat arbitrary. In
particular, the analysis could be managed with other exponents provided that a certain trade-
off between the two of them (here 4/3 and 8) still holds. To make it clear, 4/3 should be here
regarded as the conjugate exponent of 4; and the reader may easily guess that 8 shows up in
the computations when squaring some fourth moments.
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2.4. Rough integral. As for the construction, of the rough integral, we recall the follow-
ing statement from [5], Theorem 3.4.

THEOREM 2.3. There exists a universal constant c0 and, for any ω ∈ �, there exists a
continuous linear map(

Xt(ω)
)
0≤t≤T �→

(∫ t

s
Xs,u(ω)⊗ dWu(ω)

)
(s,t)∈ST2

from the space of ω-controlled trajectories equipped with the norm ||| · |||�,[0,T ],p , onto the
space of continuous functions from ST2 into R

d ⊗R
m with finite norm ‖ · ‖[0,T ],w,p/2, with w

in the latter norm being evaluated along the realization ω, that satisfies for any 0 ≤ r ≤ s ≤
t ≤ T the identity∫ t

r
Xr,u(ω)⊗ dWu(ω)

=
∫ s

r
Xr,u(ω)⊗ dWu(ω)+

∫ t

s
Xs,u(ω)⊗ dWu(ω)+Xr,s(ω)⊗Ws,t (ω),

together with the estimate∣∣∣∣∫ t

s
Xs,u(ω)⊗ dWu(ω)− δxXs(ω)Ws,t (ω)−E

[
δμXs(ω, ·)W⊥⊥

s,t (·,ω)
]∣∣∣∣

≤ c0|||X(ω)|||[0,T ],w,pw(s, t,ω)3/p.
(2.13)

Above, δxXs(ω)Ws,t (ω) is the product of a d × m matrix and an m × m matrix, so it
gives back a d × m matrix, with components (δxXs(ω)Ws,t (ω))i,j = ∑m

k=1(δxX
i
s(ω))k ×

(Ws,t (ω))k,j , for i ∈ {1, . . . , d} and j ∈ {1, . . . ,m}, and similarly for E[δμXs(ω, ·)W⊥⊥
s,t (·,

ω)]. As usual, the above construction allows us to define an additive process setting∫ t

s
Xu(ω)⊗ dWu(ω) :=

∫ t

s
Xs,u(ω)⊗ dWu(ω)+Xs(ω)⊗Ws,t (ω),

for 0 ≤ s ≤ t ≤ T . We can thus consider the integral process (
∫ t

0 Xs(ω)⊗ dW s(ω))0≤t≤T as
an ω-controlled trajectory with values in R

d×m, with(
δx

[∫ ·
0
Xs(ω)⊗ dW s(ω)

]
t

)
(i,j),k

= (
Xt(ω)

)
iδj,k,

for i ∈ {1, . . . , d} and j, k ∈ {1, . . . ,m}, where δj,k stands for the usual Kronecker symbol,
and with null μ-derivative.

When the trajectory X(ω) takes in values in R
d ⊗ R

m rather than R
d , the integral∫ t

0 Xs(ω)⊗ dW s(ω) belongs to R
d ⊗R

m ⊗R
m. We then set for i ∈ {1, . . . , d}(∫ t

0
Xs(ω)dW s(ω)

)
i

:=
m∑
j=1

(∫ t

0
Xs(ω)⊗ dW s(ω)

)
i,j,j

,

and consider
∫ t

0 Xs(ω)dW s(ω) as an element of Rd .

2.5. Stability of controlled paths under nonlinear maps. A key fact in [5] is to use regu-
larity properties of functions defined on Wasserstein space through a lifting procedure to an
L2 space standing above the probability space. We refer the reader to Lions’ lectures [38], to
the lecture notes [12] of Cardaliaguet or to Carmona and Delarue’s monograph [14], Chap-
ter 5, for basics on the subject. Among others, the latter addresses the connection with other
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forms of derivatives on the Wasserstein space, such as flat or intrinsic derivatives. Flat deriva-
tives are inherited from the linear structure of the space of (hence nonnormalized) signed
measures and are also called, depending on the definition, extrinsic or convexity extrinsic
derivatives, see for instance [44, 45]. Intrinsic derivatives were described by [3, 39, 50] after
the pioneering works [34, 43] on gradient flows on the space of probability measures; a fine
comparison with Lions’ approach is carried out in the recent work [30]. The typical example
for a lift in L2 is to consider an ordinary differential equation driven by some vector field
b starting from some random variable; it provides a lift of the solution to a Fokker–Planck
equation together with a systematic way to identify derivatives of functionals of a measure
argument in the direction b. To the best of our knowledge, this latter idea goes back to the
earlier works [1, 2].

• Recall (�,F,P) stands for an atomless probability space, with � a Polish space and F its
Borel σ -algebra. Fix a finite dimensional space E = R

k and denote, for r ≥ 1, by L
r :=

L
r (�,F,P;E) the space of E-valued random variables on � with finite r moment. We

equip the space Pr (E) := {L(Z);Z ∈ L
r} with the r-Wasserstein distance

(2.14) dr (μ1,μ2) := inf
{‖Z1 −Z2‖r;L(Z1)= μ1,L(Z2)= μ2

}
.

When r = 2, an R
k-valued function u defined on P2(E) is canonically extended to L

2 by
setting, for any Z ∈ L

2, U(Z) := u(L(Z)).
• The function u is then said to be differentiable at μ ∈ P2(E) if its canonical lift is Fréchet

differentiable at some pointZ such that L(Z)= μ; we denote by ∇ZU ∈ (L2)k the gradient
of U at Z. The function U is then differentiable at any other point Z′ ∈ L

2 such that
L(Z′)= μ, and the laws of ∇ZU and ∇Z′U are equal, for any such Z′.

• The function u is said to be of class C1 if its canonical lift is of class C1. If u is of class C1

on P2(E), then ∇ZU is σ(Z)-measurable and given by an L(Z)-dependent function Du

from E to Ek such that

(2.15) ∇ZU = (Du)(Z).

In order to emphasize the fact that Du depends upon L(Z), we shall write Dμu(L(Z))(·)
instead of Du(·). Importantly, this representation is independent of the choice of the proba-
bility space (�,F,P) and can be easily transported from one probability space to another.

Throughout the paper, we regard the function F in (1.2) as a map from R
d ×L

2(�,F,P;
R
d) into the space L(Rm,Rd)∼= R

d ⊗R
m of linear mappings from R

m to R
d . Intuitively, we

identify the coefficient driving equation (1.2) with its lift F̂. Following [5], Section 3.3, we
require F to satisfy the following regularity assumptions.

REGULARITY ASSUMPTIONS 1. Assume that F is continuously differentiable in the
joint variable (x,Z), that ∂xF is also continuously differentiable in (x,Z) and that
there is some positive finite constant 
 such that |F(x,μ)|, |∂xF(x,μ)|, |∂2

xF(x,μ)|,
‖∇ZF(x,Z)‖2 and ‖∂x∇ZF(x,Z)‖2 are bounded by 
, for any x ∈ R

d , μ ∈ P2(R
d) and

Z ∈ L
2(�,F,P;Rd). Assume moreover that, for any x ∈ R

d , the mapping Z �→ ∇ZF(x,Z)
is a 
-Lipschitz function of Z ∈ L

2(�,F,P;Rd).

We recall below that, for an ω-controlled path X(ω) and for an R
d -valued random con-

trolled path Y(·), F(X(ω),Y (·)) := (F(Xt(ω),Yt (·)))0≤t≤T may be also expanded in the form
of an ω-controlled trajectory. As explained in [5], (3.8), it suffices for our purpose to provide
the form of the expansion when δμX(ω)≡ 0 and δμY (·)≡ 0.
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PROPOSITION 2.4. Let X(ω) be an ω-controlled path and Y(·) be an R
d -valued random

controlled path. Assume that δμX(ω) ≡ 0 and δμY (·) ≡ 0 and that sup0≤t≤T (|δxXt(ω)| ∨
〈δxYt (·)〉∞) <∞. Then, F(X(ω),Y (·)) is an ω-controlled path with

δx
(
F

(
X(ω),Y (·)))t = ∂xF

(
Xt(ω),Yt (·))δxXt(ω),

which is understood as (
∑d

�=1 ∂x�F
i,j (Xt (ω),Yt (·))(δxX�

t (ω))k)i,j,k , with i, k ∈ {1, . . . , d}
and j ∈ {1, . . . ,m}, and (with a similar interpretation for the product)

δμ
(
F

(
X(ω),Y (·)))t =DμF

(
Xt(ω),L(Yt )

)(
Xt(·))δxYt (·).

2.6. Local accumulation. In order to proceed with the analysis of (1.3), we make use of
the notion of local accumulation. Following [5], we define it as follows. Given a nondecreas-
ing2 continuous positive valued function � on S2, a nonnegative parameter s and a positive
threshold α, we define inductively a sequence of times setting τ0(s, α) := s, and

(2.16) τ�n+1(s, α) := inf
{
u≥ τ�n (s,α) :� (

τ�n (s,α), u
) ≥ α

}
,

with the understanding that inf∅ := +∞. For t ≥ s, set

(2.17) N�

([s, t], α) := sup
{
n ∈N : τ�n (s,α)≤ t

}
.

We call N� the local accumulation of � (of size α if we specify the value of the threshold):
N�([s, t], α) is the largest number of disjoint open sub-intervals (a, b) of [s, t] on which
�(a,b) is greater than or equal to α. When �(s, t)=w(s, t,ω)1/p with w a control satisfy-
ing (2.8) and (2.9) and when the framework makes it clear, we just write N([s, t],ω,α) for
N�([s, t], α). Similarly, we also write τn(s,ω,α) for τ�n (s,α) when �(s, t) = w(s, t,ω).
We will also use the convenient notation

τ�n (s, t, α) := τ�n (s,α)∧ t.

3. Analysis of the mean field rough differential equation.

3.1. Solving the equation. The following notion of solution to (1.2) is taken from [5],
Definition 4.1.

DEFINITION 3.1. Let W together with its enhancement W satisfy the assumption of
Section 2.2 on a finite interval [0, T ]. A solution to (1.2) on the time interval [0, T ], with
initial condition X0(·) ∈ L

2(�,F,P;Rd), is a random controlled path X(·) such that for
P-a.e. ω the paths X(ω) and X0(ω)+ ∫ ·

0 F(Xs(ω),Xs(·)) dW s(ω) coincide.

We formulate here the regularity assumptions on F(x,μ) used in [5], in addition to Regu-
larity assumptions 1, to show the well-posed character of Equation (1.2). Below, we denote
by (�̃, F̃, P̃) a copy of (�,F,P), and given a random variable Z on (�,F,P), write Z̃ for
its copy on (�̃, F̃, P̃).

REGULARITY ASSUMPTIONS 2.

• The function ∂xF is differentiable in (x,μ).
• For each (x,μ) ∈ R

d×P2(R
d), there exists a version ofDμF(x,μ)(·) ∈ L2

μ(R
d;Rd⊗R

m)

such that the map (x,μ, z) �→DμF(x,μ)(z) from R
d × P2(R

d)× R
d to R

d ⊗ R
m ⊗ R

d

is of class C1, the derivative in the direction μ being understood as before.

2In the sense that �(a,b)≥�(a′, b′) if (a′, b′)⊂ (a, b).
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• The function (x,Z) �→ ∂2
xF(x,L(Z)) from R

d ×L
2(�,F,P;Rd) to R

d ⊗R
m ⊗R

d ⊗R
d

is bounded by 
 and 
-Lipschitz continuous.
• The two derivative functions (x,Z) �→ ∂xDμF(x,L(Z))(Z(·)) (which is the same

as (x,Z) �→ Dμ∂xF(x,L(Z))(Z(·)) by Schwarz’ theorem) and (x,Z) �→ ∂zDμF(x,
L(Z))(Z(·)) are bounded by 
 and 
-Lipschitz continuous from R

d × L
2(�,F,P;Rd)

to L
2(�,F,P;Rd ⊗R

m ⊗R
d ⊗R

d).
• For each μ ∈ P2(R

d), we denote by D2
μF(x,μ)(z, ·), the derivative of DμF(x,μ)(z) with

respect to μ—which is indeed given by a function. For z′ ∈ R
d , D2

μF(x,μ)(z, z′) is an
element of Rd ⊗R

m ⊗R
d ⊗R

d . We assume that

(x,Z) �→D2
μF

(
x,L(Z)

)(
Z(·), Z̃(·)),

from R
d ×L

2(�,F,P;Rd) to L
2(�×�̃,F ⊗ F̃,P⊗ P̃;Rd ⊗R

m⊗R
d ⊗R

d), is bounded
by 
 and 
-Lipschitz continuous.

The two functions F(x,μ)= ∫
f (x, y)μ(dy) and F(x,μ)= g(x,

∫
yμ(dy)), for functions

f,g ∈ C3
b (meaning that f and g are bounded and have bounded derivatives of order 1, 2

and 3), satisfy the Regularity assumptions 1 and 2. The following property is taken from [5],
Propositions 4.3 and (4.21).

PROPOSITION 3.2. Let F satisfy Regularity assumptions 1 and 2 and w be a control
satisfying (2.8) and (2.9). Consider two ω-controlled paths X(ω) and X′(ω) with possi-
bly different initial conditions (X0(ω), δxX0(ω)) and (X′

0(ω), δxX
′
0(ω)), defined on a time

interval [0, T ], together with two random controlled paths Y(·) and Y ′(·), with possibly
different initial conditions (Y0(ω), δxY0(ω)) and (Y ′

0(ω), δxY
′
0(ω)), all of them satisfying

δμX(ω)≡ δμX
′(ω)≡ 0 and δμY (·)≡ δμY

′(·)≡ 0 together with

(3.1)
∣∣δxX(ω)∣∣ ∨ ∣∣δxX′(ω)

∣∣ ∨ 〈
δxY (·)〉∞ ∨ 〈

δxY
′(·)〉∞ ≤
,

and the size estimates〈∣∣∣∣∣∣Y(·)∣∣∣∣∣∣[0,T ],w,p
〉2
8 ≤L0,

〈∣∣∣∣∣∣Y ′(·)∣∣∣∣∣∣[0,T ],w,p
〉2
8 ≤ L0,(3.2) ∣∣∣∣∣∣X(ω)∣∣∣∣∣∣2[t0i ,t0i+1],w,p ≤L0,

∣∣∣∣∣∣X′(ω)
∣∣∣∣∣∣2[t0i ,t0i+1],w,p ≤ L0,(3.3)

for i ∈ {0, . . . ,N0}, for some L0 ≥ 1, and N0 = N([0, T ],ω,1/(4L0)) given by (2.17), and
for the sequence (t0i = τi(0, T ,ω,1/(4L0)))i=0,...,N0+1 given by (2.16).

Then, we can find a constant γ depending on L0 and 
 such that, for any partition
(ti)i=0,...,N included in (t0i )i=0,...,N0 and satisfying w(ti, ti+1,ω)

1/p ≤ 1/(4L) for some
L≥ L0, we have∣∣∣∣∣∣∣∣∣∣∣∣∫ ·

ti

(
F

(
Xr(ω),Yr(·)) − F

(
X′
r (ω),Y

′
r (·)

))
dW r (ω)

∣∣∣∣∣∣∣∣∣∣∣∣[ti ,ti+1],w,p
≤ γ

(∣∣�X0(ω)
∣∣ + ∣∣δx�X0(ω)

∣∣) + 〈
�Y0(·)〉4 + 〈

δx�Y0(·)〉4
+ γw(0, ti ,ω)

1/p(∣∣∣∣∣∣�X(ω)∣∣∣∣∣∣[0,ti ],w,p + 〈∣∣∣∣∣∣�Y(·)∣∣∣∣∣∣[0,T ],w,p
〉
8

)
+ γ

4L

(∣∣∣∣∣∣�X(ω)∣∣∣∣∣∣[ti ,ti+1],w,p + 〈∣∣∣∣∣∣�Y(·)∣∣∣∣∣∣[0,T ],w,p
〉
8

)
,

(3.4)

where �Xt(ω) :=Xt(ω)−X′
t (ω), �Yt(·) := Yt (·)− Y ′

t (·), t ∈ [0, T ].

In [5], Proposition 3.2 is used to prove the following existence and uniqueness result, see
Theorems 1.1 and 4.4 therein, to which we add the final estimate in the statement.



956 I. BAILLEUL, R. CATELLIER AND F. DELARUE

THEOREM 3.3. Let F satisfy Regularity Assumptions 1 and 2 and let w be a control sat-
isfying (2.8) and (2.9). Assume there exists a positive time horizon T such that the random
variables w(0, T , ·) and (N([0, T ], ·, α))α>0 have sub and super exponential tails respec-
tively, in the sense that

P
(
w(0, T , ·)≥ t

) ≤ c1 exp
(−tε1

)
,

P
(
N

([0, T ], ·, α) ≥ t
) ≤ c2(α) exp

(−t1+ε2(α)
)
,

(3.5)

for some positive constants c1 and ε1, and possibly α-dependent positive constants c2(α) and
ε2(α). Then, for any d-dimensional square-integrable random variable X0, the mean field
rough differential equation (1.2) has a unique solution defined on the whole interval [0, T ].
Moreover, there exist four positive real numbers γ0, L0, L and η0 (with γ0, η0 > 1), only
depending on 
 and T , such that, for any subinterval [S1, S2] ⊂ [0, T ] for which〈

N
([S1, S2], ·,1/(4L0)

)〉
8 ≤ 1,

and 〈[
γ

(
1 +w(0, T , ·)1/p)]N([S1,S2],·,1/(4L))〉

32 ≤ η0,

it holds, for any ω ∈�∣∣∣∣∣∣X(ω)∣∣∣∣∣∣[S1,S2],w,p ≤ [
C

(
1 +w(0, T ,ω)1/p

)]2N([0,T ],ω,1/(4L))
,

for a constant C depending only on 
 and T .

PROOF. We just address the derivation of the last inequality since the latter is not given in
[5], Theorem 4.4. The key point is to sum over n≥ 1 in [5], (4.30), replacing [0, S] therein by
[S1, S2], which is indeed licit provided that 〈N([S1, S2], ·,1/(4L0))〉8 ≤ 1, see, for instance,
[5], (4.23), and 〈[γ0(1 +w(0, T , ·)1/p)]N([S1,S2],·,1/(4L))〉32≤ η0 for η0 small enough, see [5],
(4.29). �

3.2. Strong rough set-ups and continuity of the Itô-lyons solution map. Uniqueness in
law of the solutions to (1.2) is proven in [5], Theorem 5.3, under the additional assumption
that the set-up satisfies the following definition.

DEFINITION 3.4. A rough set-up is called strong if there exists a measurable mapping I
from C([0, T ];Rm)2 into C(ST2 ;Rm ⊗R

m) such that

(3.6) P
⊗2({(

ω,ω′) ∈�2 :W⊥⊥(
ω,ω′) = I

(
W(ω),W

(
ω′))}) = 1.

For our prospect, the following continuity theorem is of crucial interest; see3
 [5], Theorem

5.4.

THEOREM 3.5. Let F satisfy the same assumptions as in Theorem 3.3. Given a time
interval [0, T ] and a sequence of probability spaces (�n,Fn,Pn), indexed by n ∈ N, let, for
any n, Xn

0(·) := (Xn
0(ωn))ωn∈�n be an R

d -valued square-integrable initial condition and

W n(·) := (
Wn(ωn),W

n(ωn),W
n,⊥⊥(

ωn,ω
′
n

))
ωn,ω′

n∈�n

3 Here, we feel useful to say a word about the proof of Theorem [5], Theorem 5.4. The proof of Step 2b therein
is a bit short. The reader may indeed wonder why K therein may be chosen independently of n. In fact, it suffices
to observe, with the same notations as therein, that we can render P(Nn([Sj ,Sj+1], ·,1/(4L0))≥ 1) as small as
needed, uniformly in n. This follows from the fact that P(Nn([Sj ,Sj+1], ·,1/(4L0))≥ 1)= P(wn(Sj , Sj+1, ·)≥
1/(4L0))≤ 4L0〈wn(Sj , Sj+1, ·)〉. By the second item in the assumption of Theorem 3.5, the last term is less than
C(Sj − Sj+1), for C independent of n.
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be an m-dimensional rough set-up with corresponding control wn, as given by (2.10), and
local accumulated variation Nn, for fixed values of p ∈ [2,3) and q > 8. Assume that:

• the collection (Pn ◦ (|Xn
0(·)|2)−1)n≥0 is uniformly integrable;

• for positive constants ε1, c1 and (ε2(α), c2(α))α>0, the tail assumption (3.5) hold for wn

and Nn, for all n≥ 0;
• associating vn with each Wn(·) as in (2.6), the functions (ST2 � (s, t) �→ 〈vn(s, t, ·)〉2q)n≥0

are uniformly Lipschitz continuous.

Assume also that:

• there exist, on another probability space (�,F,P), a square integrable initial condition
X0(·) with values in R

d and a strong rough set-up

W (·) := (
W(ω),W(ω),W⊥⊥(

ω,ω′))
ω,ω′∈�

with values in R
m, such that the law under the probability measure P

⊗2
n of the random

variable

�2
n � (

ωn,ω
′
n

) �→ (
Xn

0(ωn),W
n(ωn),Wn(ωn),W

⊥⊥
n

(
ωn,ω

′
n

))
,

seen as a random variable with values in the space R
d×C([0, T ];Rm) × {C(ST2 ;Rm ⊗

R
m)}2, converges in the weak sense to the law of

�2 � (
ω,ω′) �→ (

X0(ω),W(ω),W(ωn),W
⊥⊥(
ω,ω′)).

Then, W (·) satisfies the requirements of Theorem 3.3 for some p′ ∈ (p,3) and q ′ ∈ [8, q),
with control w therein given by (2.10). Moreover, if Xn(·), resp. X(·), is the solution of the
mean field rough differential equation driven by Wn(·), resp. W (·), then Xn(·) converges in
law to X(·) on C([0, T ];Rd).

4. Particle system and propagation of chaos. We now have all the ingredients to write
down the limiting mean field rough differential equation (1.2) as the limit of a system of
particles driven by rough signals (1.3).

4.1. Empirical rough set-up. We recall the framework used to address (1.3). The ini-
tial conditions (Xi

0(·))1≤i≤n are R
d -valued variables with the same distribution as X0 (in the

statement of Theorem 3.3) and the enhanced signals (Wi(·),Wi (·))1≤i≤n are Rm⊕R
m⊗R

m-
valued with the same distribution as (W(·),W(·)) on the space of continuous functions.
Moreover, the variables (Xi

0(·),Wi(·),Wi(·))1≤i≤n are independent and identically dis-
tributed. All of them are constructed on a single probability space, still denoted by (�,F,P).
Assuming the rough set-up in Theorem 3.3 to be strong, see Definition 3.4, we let

W
i,j (ω)= I

(
Wi(ω),Wj (ω)

)
, i �= j,1 ≤ i, j ≤ n.

Obviously, equation (1.3) must be understood as a rough differential equation driven by an
(n×m)-dimensional signal (W 1(ω), . . . ,Wn(ω)), and with (X1(ω), . . . ,Xn(ω)) as (n× d)-
dimensional output. Our first task is to prove that (1.3) may be also understood as a mean
field rough differential equation on a suitable rough set-up and that the two interpretations
coincide. If we require P

⊗2({(ω,ω′) : ‖W⊥⊥(ω,ω′)‖[0,T ],p/2−v <∞})= 1 in Definition 3.4,
then it is pretty clear that, for almost every ω ∈�,

W (n)(ω)= ((
Wi(ω)

)
1≤i≤n,

(
W

i,j (ω)
)
1≤i,j≤n

) =: (
W(n)(ω),W(n)(ω)

)
,

is a rough path of finite p-variation, with the convention that W
i,i(ω) = W

i (ω), for
i ∈ {1, . . . , n}. As explained in [5], Proposition 2.3, we may change the definition of



958 I. BAILLEUL, R. CATELLIER AND F. DELARUE

((Wi(ω))1≤i≤n, (Wi,j (ω))1≤i,j≤n) on a P-null set so that W (n)(ω) is in fact a rough path
for any ω ∈�.

As mentioned in the Introduction, the striking fact of the analysis was first introduced by
Tanaka in [49] and used by Cass and Lyons in their seminal work [18]. The quantity W

(n)(ω)

may be seen as a rough set-up defined on a finite probability space for any fixed ω ∈�; we
call it the empirical rough set-up. To make it clear, observe that, throughout Section 2, the
rough structure is supported by the probability space (�,F,P) itself. Here, ω is fixed, and
we see the probability space as

(4.1)

(
{1, . . . , n},P({1, . . . , n}), 1

n

n∑
i=1

δi

)
,

where P({1, . . . , n}) denotes the collection of subsets of {1, . . . , n}. The reader may object
that such a probability space is not atomless whilst we explicitly assumed (�,F,P) to be
atomless in the Introduction (see also [5], Section 2); actually, the reader must realize that,
in [5], the atomless property is just used to guarantee that, for any probability measure μ on
a given Polish space S, the probability space (�,F,P) carries an S-valued random variable
with μ as distribution. In other words, we could instead say that, in [5], the probability space
(�,F,P) has to be rich enough, which is indeed guaranteed under the assumptions used
therein. So, it is here not a hindrance that {1, . . . , n} is finite: We must restrict ourselves to
random variables taking at most n-values, but this is exactly what we need for our purposes
since all the relevant probability distributions showing up from the particle system are n-
empirical distributions.

Hence, in order to draw a parallel with (2.2), the role played by ω ∈ � is here played by
i ∈ {1, . . . , n} and the matrix (2.2) must read

(4.2)

(
W

i,i
s,t (ω) W

i,•
s,t (ω)

W
•,i
s,t (ω) W

•,•
s,t (ω)

)
0≤s≤t≤T

,

where W
i,•
s,t (ω) is seen as {1, . . . , n} � j �→ W

i,j
s,t (ω), W

•,i
s,t (ω) as {1, . . . , n} � j �→ W

j,i
s,t (ω)

and W
•,•
s,t (ω) as {1, . . . , n} � (i, j) �→W

i,j
s,t (ω).

In the same spirit, the variation function v in (2.6) is (we put a subscript p in the variation
function below to emphasize the dependence upon p)

vi,np (s, t,ω) := ∥∥Wi(ω)
∥∥p[s,t],p−v + (n)(W •(ω)

)p
q;[s,t],p−v

+ ∥∥Wi (ω)
∥∥p/2
[s,t],p/2−v + (n)(

W
i,•(ω)

)p/2
q;[s,t],p/2−v(4.3)

+ (n)(
W

•,i(ω)
)p/2
q;[s,t],p/2−v + (n)((

W
•,•(ω)

))p/2
q;[s,t],p/2−v,

where we used the notations

(n)(X•)
q =

(
1

n

n∑
j=1

∣∣Xj
∣∣q)1/q

, (n)((X•,•))
q =

(
1

n2

n∑
j,k=1

∣∣Xj,k
∣∣q)1/q

,

the corresponding p-variation being defined as in (2.4) and (2.5). Obviously, vi,np (0, T ,ω) is

almost surely finite. Hence, in order to check that W (n)(ω) defines a rough set-up, it remains
to check that it satisfies (2.7). To do so, we strengthen the assumptions on the signal and
assume that, for the same parameter q as in Section 2, it holds

E
[∥∥W(·)∥∥pq[0,T ],(1/p)−H + ∥∥W(·)∥∥pq/2

[0,T ],(2/p)−H

]
+E

⊗2[∥∥W⊥⊥(·, ·)∥∥pq/2
[0,T ],(2/p)−H

]
<∞,

(4.4)
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where ∥∥W(ω)
∥∥[s,t],(1/p)−H = sup

∅ �=(s′,t ′)⊂[s,t]
|Wt ′(ω)−Ws′(ω)|

|t ′ − s′|1/p ,

∥∥W(ω)
∥∥[s,t],(2/p)−H = sup

∅ �=(s′,t ′)⊂[s,t]
|Ws′,t ′(ω)|
|t ′ − s′|2/p ,

and similarly for ‖W⊥⊥(ω,ω′)‖[s,t],(2/p)−H, stand for the standard Hölder seminorms of the
rough path. Then, back to (4.3), we can find a universal positive constant c such that

vi,np (s, t,ω)≤ c
{∥∥Wi(ω)

∥∥p[s,t],(1/p)−H + ∥∥Wi (ω)
∥∥p/2
[s,t],(2/p)−H

+ (n)(∥∥W •(ω)
∥∥p[s,t],(1/p)−H

)
q + (n)(∥∥Wi,•(ω)

∥∥p/2
[s,t],(2/p)−H

)
q

+ (n)(∥∥W•,i (ω)
∥∥p/2
[s,t],(2/p)−H

)
q

+ (n)((∥∥W•,•(ω)
∥∥p/2
[s,t],(2/p)−H

))
q

}
(t − s).

(4.5)

Taking the mean over i ∈ {1, . . . , n} and invoking the law of large numbers (see Lemma A.5
in Appendix A.3 for a version of the law of large numbers with second order interactions),
we deduce that, for almost every ω ∈�,

lim sup
n≥1

sup
0≤s<t≤T

(n)(v•,n
p (s, t,ω))q

t − s

≤ c
(〈∥∥W(·)∥∥pq[0,T ],(1/p)−H + ∥∥W(·)∥∥pq/2

[0,T ],(2/p)−H

〉1/q(4.6)

+ 〈〈∥∥W⊥⊥(·, ·)∥∥pq/2
[0,T ],(2/p)−H

〉〉1/q)
,

for a new value of the constant c. Observe that, in order to derive (4.6), the law of large
numbers can be directly applied to each of the first three terms in the right-hand side of
(4.5), since each of them lead to empirical means over terms of the form J (Wi(ω)), for a
suitable functional J (which has nothing to do with the mapping I used in Definition 3.4).
Differently, the last three terms in (4.5) require a modicum of care as they lead to empirical
means of the form

1

n2

n∑
j,k=1,j �=k

∥∥I(
Wj(ω),Wk(ω)

)∥∥pq/2
[0,T ],(2/p)−H + 1

n2

n∑
j=1

∥∥Wj (ω)
∥∥pq/2
[0,T ],(2/p)−H,

with I as in (3.6). Still, if the summands in the two sums are integrable, the limit is
〈‖I(W 1(·),W 2(·))‖pq/2

[0,T ],(2/p)−H〉, see once again Lemma A.5 in Appendix A.3. Hence, (4.6).
Now, the fact that the right-hand side of (4.6) is finite guarantees that the 1-variation in the
mean in (2.7) is uniformly controlled in n ≥ 1, the mean in (2.7) being understood as the
mean on the probability space ({1, . . . , n},P({1, . . . , n}), 1

n

∑n
i=1 δi). Here are two examples

under which (4.5) holds true.

EXAMPLE 4.1. Assume that the regularity index q used in (2.6) satisfies the inequality
q > 1/(1 − p/3), and that, for some constant KT ≥ 0, 〈v(s, t, ·)〉q ≤ KT (t − s) for (s, t) ∈
ST2 . Then, we get the bounds〈∣∣(Wt −Ws)(·)

∣∣pq 〉 ≤K
q
T |t − s|q,〈∣∣Ws,t (·)

∣∣pq/2〉 ≤K
q
T |t − s|q, 〈〈∣∣W⊥⊥

s,t (·, ·)
∣∣pq/2〉〉 ≤K

q
T |t − s|q.
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By Kolmogorov’s criterion for rough paths, see Theorem 3.1 in [28], we deduce that W has
paths that are 1/p′ := (1 − 1/q)/p > 1/3-Hölder continuous. Similarly, W and W

⊥⊥ have
paths that are 2p′ = 2(1 − 1/q)/p > 2/3-Hölder continuous and (4.4) holds true with p′
instead of p. So, the empirical rough set-up satisfies the required conditions provided we
replace p by p′.

EXAMPLE 4.2. Assume that W := (W 1, . . . ,Wm) is a tuple of independent and centred
continuous Gaussian processes, defined on [0, T ], for which there exist an exponent � ∈
[1,3/2) and a constant K such that, for any subinterval [s, t] ⊂ [0, T ] and any k = 1, . . . ,m,
it holds

sup
∑
i,j

∣∣E[(
Wk
ti+1

−Wk
ti

)(
Wk
sj+1

−Wk
sj

)]∣∣ρ ≤K|t − s|,(4.7)

the sup being over divisions (ti)i and (sj )j of [s, t]. Then, ‖W(·)‖[0,T ],(1/p)−H has Gaussian
tail and ‖W(·)‖[0,T ],(2/p)−H and ‖W⊥⊥(·, ·)‖[0,T ],(2/p)−H have exponential tails, for any p ∈
(2�,3); see Theorem 11.9 in [28].

Now that we have defined the empirical rough set-up, we must make clear the meaning
given to the rough differential equation (1.2) in Definition 3.1 when the rough set-up therein
is precisely the empirical rough set-up. We call the corresponding rough differential equation
the empirical rough differential equation.

For a given ω ∈ �, the probability space that carries the empirical rough-set up is given
by (4.1). Despite the fact it is not atomless, whilst (�,F,P) is, Theorem 3.3 applies and
guarantees existence and uniqueness of a solution to the empirical rough differential equation.
In this regard, observe that the square integrability requirement on the initial condition here
writes 1

n

∑n
i=1 |Xi

0(ω)|2 < ∞, which is indeed satisfied for ω in a full event. The solution
reads in the form of a n-tuple X(n)(ω) = (Xi(ω))1≤i≤n in C([0, T ];Rd)n. The coefficient
driving the equation for Xi(ω) reads

F
(
Xi
t (ω),X

θn(·)
t (ω)

)
, t ∈ [0, T ],

where θn(·) : {1, . . . , n} � j �→ j is the canonical random variable on {1, . . . , n}. Here the
dot in the notation X

θn(·)
t (ω) refers to the current element in {1, . . . , n}. With this notation,

the law of Xθn(·)
t (ω) (on {1, . . . , n}) must be understood as the empirical distribution μnt (ω).

Moreover, each Xi(ω) is controlled, in standard Gubinelli’s sense, by the enhanced rough
path (Wi(ω),Wi(ω)) (the remainder in the expansion being controlled by vi,n). In particular,
Xi(ω) may be seen as an i-controlled path on the empirical rough set-up: If we use δ(n)x and
δ
(n)
μ as symbols for the Gubinelli derivatives in Definition 2.1 but on the empirical rough set-

up, then δ(n)x Xi(ω) identifies with the standard Gubinelli derivative in the expansion of Xi(ω)

along the variations of (Wi(ω),Wi(ω)) and δ(n)μ X·(ω)≡ 0.
The key fact in our analysis lies in the interpretation of the two derivatives

δ(n)x

[
F
(
Xi(ω),Xθn(·)(ω)

)]
and δ(n)μ

[
F
(
Xi(ω),Xθn(·)(ω)

)]
in Proposition 2.4. First, it is elementary to check that

δ(n)x

(
F
(
Xi(ω),Xθn(·)(ω)

))
t = ∂xF

(
Xi
t (ω),X

θn(·)
t (ω)

)
δ(n)x Xi

t (ω)

= ∂xF
(
Xi
t (ω),μ

n
t (ω)

)
δ(n)x Xi

t (ω).
(4.8)

More interestingly, we have

δ(n)μ

(
F
(
Xi(ω),Xθn(·)(ω)

))
t =DμF

(
Xi
t (ω),μ

n
t (ω)

)(
X
θn(·)
t (ω)

)
δ(n)x X

θn(·)
t (ω),(4.9)
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both the left- and the right-hand sides being seen as random variables on {1, . . . , n}. The
realizations of the random variable in the right-hand side may be computed by replacing the
symbol · by j ∈ {1, . . . , n}.

So, applying (2.13) with F(Xi(ω),μn(ω)) as integrand, the third term on the first line of
(2.13) here reads

1

n

n∑
j=1

DμF
(
Xi
t (ω),μ

n
t

)(
X
j
t (ω)

)
δ(n)x X

j
t (ω)W

j,i
t (ω).

This shows that the integral
∫ t

0 F(Xi
s(ω),X

θn(·)
s (ω))dW (n)

s (ω), as defined by Theorem 2.3, is
the limit of the compensated Riemann sums

K−1∑
k=0

(
F
(
Xi
tk
(ω),X

θn(·)
tk

(ω)
)
Wi
tk,tk+1

(ω)

+ ∂xF
(
Xi
tk
(ω),X

θn(·)
tk

(ω)
)
F
(
Xi
tk
(ω),X

θn(·)
tk

(ω)
)
W

i
tk,tk+1

(ω)

+ 1

n

n∑
j=1

DμF
(
Xi
tk
(ω),μnt (ω)

)(
X
j
tk
(ω)

)
F
(
X
j
tk
(ω),X

θn(·)
tk

(ω)
)
W

j,i
tk,tk+1

(ω)

)
,

(4.10)

as the mesh of the dissection 0 = t0 < · · · < tK = t tends to 0.4 This allows to compare the
latter quantity with (1.3) if we interpret the integral with respect to Wi(ω) therein as a rough
integral with respect to the enhanced setting above (W 1(ω), . . . ,Wn(ω)), and consider the
leading coefficient F(Xi

t (ω),μ
n
t (ω)) as a standard Euclidean function of the tuple X(n)

t (ω)=
(X1

t (ω), . . . ,X
n
t (ω)). Indeed, under the standing Regularity assumptions 1 and 2, the function

f i : (
R
d)n � (

x1, . . . , xn
) �→ F

(
xi,

1

n

n∑
k=1

δxk

)

is C2 with Lipschitz derivatives and

∂xj f
i(x1, . . . , xn

) = δi,j ∂xF

(
xi,

1

n

n∑
k=1

δxk

)
+ 1

n
DμF

(
xi,

1

n

n∑
k=1

δxk

)(
xj

)
,

with δi,j = 1 if i = j and 0 otherwise, see Chapter 5 in [14]. Therefore, (1.3) is uniquely
solvable in the classical sense and the above formulas for the derivatives show that the rough
integral therein may be approximated by the same Riemann sum as in (4.10). Namely, (1.3)
may be rewritten as

K−1∑
k=0

(
f i(X1

tk
(ω), . . . ,Xn

tk
(ω)

)
Wi
tk,tk+1

(ω)

+
n∑

j=1

∂xj f
i(X1

tk
(ω), . . . ,Xn

tk
(ω)

)
W

j,i
tk,tk+1

(ω)

)
.

This proves that the solution to (1.3), when the latter is seen as a rough differential equation
driven by the enhanced setting above (W 1(ω), . . . ,Wn(ω)), coincides with the solution of
the empirical version of (1.2), when the latter is understood as a mean field rough differential
equation driven by the empirical rough set up.

4In the second line, ∂xF(Xi
s(ω),X

θn(·)
s (ω))(F(Xi

s(ω),X
θn(·)
s (ω))Wi

s,t (ω)) is understood as

(
∑d
�=1

∑m
j,k=1 ∂x�Fι,j (Xi

s(ω),X
θn(·)
s (ω))(F�,k(Xi

s(ω),X
θn(·)
s (·)(ω))(Wi

s,t )
k,j (ω)))ι=1,...,d and similarly

for the term on the third line.
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4.2. Propagation of chaos. We now have all the ingredients to prove that the empirical
measure of the solution to the particle system (1.3) converges, in some sense, to the solution of
the rough mean field equation (1.2), when the rough set-up therein is interpreted as originally
explained in Section 2. This is what we call propagation of chaos. The statement takes the
following form.

THEOREM 4.3. We make the following assumptions.

(a) Let F satisfy Regularity assumptions 1 and 2.
(b) Let w be a control satisfying (2.8) and (2.9) for the same parameters p ∈ [2,3) and

q ≥ 8 as in Section 2. Assume that, for a given positive time horizon T , the random variables
w(0, T , ·) and (N([0, T ], ·, α))α>0, see (2.17), have sub and super exponential tails, see (3.5).

(c) Assume that the rough set-up W is strong.
(d) Assume also that there exists a positive constant ε1 such that

E
[
exp

(∥∥W(·)∥∥ε1[0,T ],(1/p)−H

)] +E
[
exp

(∥∥W(·)∥∥ε1/2
[0,T ],(2/p)−H

)]
+E

⊗2[
exp

(∥∥W⊥⊥(·, ·)∥∥ε1/2
[0,T ],(2/p)−H

)]
<∞.

(4.11)

Then, for almost every ω ∈�,

(4.12)
1

n

n∑
i=1

δXi,(n)(ω) → L
(
X(·)),

where X(n)(ω)= (Xi,(n)(ω))i=1,...,n is the solution to (1.3) and X(·) is the solution to (1.2),
the convergence being the convergence in law on C([0, T ];Rd). Moreover, for any fixed k ≥ 1,
the law of (X1,(n)(·), . . . ,Xk,(n)(·)) converges to L(X(·))⊗k .

REMARK 4.4. Before we prove the above statement, we feel useful to make the follow-
ing comments:

• In item (b) of the assumption, we can always assume that w is in fact given by the natural
control (2.10).

• The argument used below in Step 3 of the proof would show that item (d) implies the
part related to w in item (b) at least when w is chosen as in (2.10). Despite this form of
redundancy, we feel better to keep the current formulation (of the assumptions) as it is
consistent with the rest of the text.

• Following [5], Theorem 2.4, the above assumptions hold true for Gaussian rough paths
subject to the classical conditions of Friz-Victoir [27], see Example 4.2, and the related
Example 2.2 in [5].

PROOF. The key tool for passing to the limit is the continuity Theorem 3.5, but with p

therein replaced by some p′ ∈ (p,3). The main difficulty is in controlling the accumulated
local variation of the empirical rough set-up. To make the notations clear, we write Xi,(n)

0 for
Xi , Wi,(n) for Wi , Wi,(n) for Wi and W

i,j,(n) for Wi,j .
Step 1. As a starting point, we want to prove that, for almost every ω ∈�, for any α > 0,

there exists a constant ε2 > 0 such that, for all n≥ 1,

(4.13) sup
n≥1

1

n

n∑
i=1

exp
(
Ni,n(0, T ,ω,α)1+ε2

)
<∞,

where Ni,n(0, T ,ω,α) is defined as the local accumulation

(4.14) Ni,n([0, T ],ω,α) :=N�

([0, T ], α)
,
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when �(s, t)= v
i,n
p′ (s, t,ω)1/p

′
, see (2.17) and (4.3). Following (A.1) in the Appendix (see

also the longer discussion in the introduction of the appendix in [5]), it suffices to prove (4.13)
when � in the definition of Ni,n is equal to each of the terms in the right-hand side of (4.3).

When �(s, t) = ‖Wi(ω)‖[s,t],p′−v or �(s, t) = ‖Wi (ω)‖1/2
[s,t],p′/2−v, the resulting vari-

ables (Ni,n([0, T ],ω,α))i=1,...,n in (4.14) are independent and identically distributed, their
common law being independent of n. Then, (4.13) follows from assumption (b) in the state-
ment and from the law of large numbers (using the well-known fact that the p′-variation is
less than or equal to the p-variation if p′ >p).

If �(s, t) = (n)(W •(ω))q;[s,t],p′−v or �(s, t) = (n)((W•,•(ω)))1/2
q;[s,t],p′/2−v, the resulting

variables (Ni,n([0, T ],ω,α))i=1,...,n in (4.14) only depend on n. We may denote them by
Nn([0, T ],ω,α). Then, it suffices to prove that, for any α > 0, lim supn→∞Nn([0, T ],ω,α)
is almost surely finite. By (4.5), we may easily control Nn([0, T ],ω,α) from above by notic-
ing that

αpNn([0, T ],ω,α)
≤ c

((n)(∥∥W •(ω)
∥∥p[0,T ],(1/p)−H

)
q + (n)((∥∥W•,•(ω)

∥∥p/2
[0,T ],(2/p)−H

))
q

)
,

for a constant c that is independent of n and ω. Proceeding as in (4.6), the result follows again
from the law of large of numbers and from assumption (b).

In fact, the most difficult cases are �(s, t) = (n)(Wi,•(ω))1/2
q;[s,t],p′/2−v or �(s, t) =

(n)(W•,i(ω))1/2
q;[s,t],p′/2−v. By symmetry, it suffices to treat the first one. And, by changing in

an obvious manner the parameter α, we may just focus on�(s, t)= (n)(Wi,•(ω))qq;[s,t],p′/2−v.
Then,

(n)(
W

i,•
s,t (ω)

)q
q = 1

n

n∑
j=1

(∣∣Wi,j
s,t (ω)

∣∣q − 〈
W

i,⊥⊥
s,t (ω, ·)

〉q
q

) + 〈
W

i,⊥⊥
s,t (ω, ·)

〉q
q.(4.15)

Now, Rosenthal’s inequality (see [46]) together with (4.11) say that, for any a ≥ 2 and any
i ∈ {1, . . . , n},∫

�

∣∣∣∣∣1

n

n∑
j=1

(∣∣Wi,j
s,t (ω)

∣∣q − 〈
W

i,⊥⊥
s,t (ω, ·)

〉q
q

)∣∣∣∣∣
a

dP(ω)≤ Can
−a/2|t − s|2aq/p,

for a constant Ca depending on a and on the upper bound for the left-hand side in (4.11), but
independent of i, n and (s, t). Letting (t(n)k = kT /n)k=0,...,n and allowing the constant Ca to
vary from line to line, we deduce that∑

1≤k<�≤n

n∑
i=1

∫
�

∣∣∣∣∣1

n

n∑
j=1

(∣∣Wi,j

t
(n)
k ,t

(n)
�

(ω)
∣∣q − 〈

W
i,⊥⊥
t
(n)
k ,t

(n)
�

(ω, ·)〉qq)
∣∣∣∣∣
a

dP(ω)≤ Can
3−a/2.

We deduce from Markov inequality that, for any a ≥ 2 and any n≥ 1,

P

(
max

1≤i≤n max
1≤k<�≤n

∣∣∣∣∣1

n

n∑
j=1

(∣∣Wi,j

t
(n)
k ,t

(n)
�

(ω)
∣∣q − 〈

W
i,⊥⊥
t
(n)
k ,t

(n)
�

(ω, ·)〉qq)
∣∣∣∣∣ ≥ n−1/4

)

≤ Can
3−a/4.

(4.16)

By item (d) in the statement, we also have, for any n≥ 1, a ≥ 2 and δ > 0,

P

(
max

1≤i,j≤n
(∥∥Wi

∥∥2
[0,T ],(1/p)−H + ∥∥Wi,j

∥∥[0,T ],(2/p)−H

) ≥ nδ/2
)

≤ Can
2−aδ/2,

(4.17)
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which implies, at least for n large enough (below, we absorb the constant T that appears in
the length of the increments by changing nδ/2 into nδ , which is indeed possible since n is
large, it being understood that the lower threshold for n only depends on δ and T )

P

(
max

1≤i,j≤n sup
|s−t |≤T/n

∣∣Wi,j
s,t (ω)

∣∣ ≥ nδ−2/p
)

≤ Can
2−aδ/2,

P

(
max

1≤i,j≤n sup
min(|s−t |,|s′−t ′|)≤T/n

(∣∣Wi
s,t (ω)

∣∣∣∣Wj

s′,t ′(ω)
∣∣) ≥ nδ−1/p

)
≤ Can

2−aδ/2.

(4.18)

Similarly, we have (for the same ranges of values for a, δ and n)

P

(
max

1≤i≤n
∥∥〈
W

i,⊥⊥(ω, ·)〉q∥∥[0,T ],(2/p)−H ≥ nδ/2
)

≤ Can
1−aδ/2,(4.19)

which implies

P

(
max

1≤i≤n sup
|s−t |≤T/n

〈
W

i,⊥⊥
s,t (ω, ·)

〉
q ≥ nδ−2/p

)
≤Can

1−aδ/2,

P

(
max

1≤i≤n sup
min(|s−t |,|s′−t ′|)≤T/n

(∣∣Wi
s,t (ω)

∣∣〈Ws′,t ′(·)〉q) ≥ nδ−1/p
)

≤ Can
1−aδ/2.

(4.20)

Using Chen’s relations (2.3) to write Wi,j
s,t := −W

i,j
{s},s +W

i,j
{s},{t} +W

i,j
{t},t +Wi

s,{t} ⊗W
j
{t},t −

Wi{s},s ⊗W
j
s,{t} (with {s} := �ns/T �T/n), we can find a constant cq only depending on q (but

the value of which is allowed to change from line to line) such that, for any (s, t) ∈ ST2 ,∣∣∣∣Wi,j
s,t (ω)

∣∣q − ∣∣Wi,j
{s},{t}(ω)

∣∣q ∣∣ ≤ cq�
i,j sup

(s′,t ′)∈ST2

∣∣Wi,j

s′,t ′(ω)
∣∣q−1

with

�i,j := sup
|s′−t ′|≤T/n

∣∣Wi,j

s′,t ′(ω)
∣∣ + sup

min(|s′−t ′|,|s′′−t ′′|)≤T/n
(∣∣Wi

s′,t ′(ω)
∣∣∣∣Wj

s′′,t ′′(ω)
∣∣),

from which, together with (4.17) and (4.18), we deduce that

P

(
max

1≤i,j≤n sup
(s,t)∈ST2

∣∣∣∣Wi,j
s,t (ω)

∣∣q − ∣∣Wi,j
{s},{t}(ω)

∣∣q ∣∣ ≥ cqn
δq−1/p

)
≤ Can

2−aδ/2.

Proceeding similarly with 〈Wi,⊥⊥
s,t (ω, ·)〉qq and inserting (4.16), we finally obtain, for a ≥ 2,

δ > 0 and n large enough (in terms of T and δ only) and for a possibly new value of cq ,

P

(
max

1≤i≤n sup
(s,t)∈ST2

∣∣∣∣∣1

n

n∑
j=1

(∣∣Wi,j
s,t (ω)

∣∣q − 〈
W

i,⊥⊥
s,t (ω, ·)

〉q
q

)∣∣∣∣∣ ≥ cq
(
n−1/4 + nδq−1/p))

≤ Ca
(
n3−a/4 + n2−aδ/2)

.

(4.21)

Meanwhile, we also have, for P-almost every ω ∈�,∣∣∣∣∣1

n

n∑
j=1

(∣∣Wi,j
s,t (ω)

∣∣q − 〈
W

i,⊥⊥
s,t (ω, ·)

〉q
q

)∣∣∣∣∣
≤ max

1≤i,j≤n
(∥∥Wi,j (ω)

∥∥q[0,T ],(2/p)−H + ∥∥〈
W

i,⊥⊥(ω, ·)〉q∥∥q[0,T ],(2/p)−H

)
(t − s)2q/p.
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By (4.17) and (4.19), we deduce that (again for the same ranges of values for a, δ and n)

P

(
max

1≤i≤n sup
(s,t)∈ST2

∣∣∣∣∣1

n

n∑
j=1

(∣∣Wi,j
s,t (ω)

∣∣q − 〈
W

i,⊥⊥
s,t (ω, ·)

〉q
q

)∣∣∣∣∣ ≥ nδq(t − s)2q/p

)

≤ Can
2−aδ/2.

(4.22)

Taking the power 1 − p/p′ in the expression underpinning the event in (4.21) and, similarly,
the power p/p′ in the expression underpinning the event in (4.22), cross-multiplying both
expressions, we get, for n large enough and for δ ∈ (0,1/4),

P

(
max

1≤i≤n sup
(s,t)∈ST2

∣∣∣∣∣1

n

n∑
j=1

(∣∣Wi,j
s,t (ω)

∣∣q − 〈
W

i,⊥⊥
s,t (ω, ·)

〉q
q

)∣∣∣∣∣
≥ cp,p′,q

(
n−(p′−p)/(4p′)+δqp/p′ + nδq−(p′−p)/(pp′))(t − s)2q/p

′
)

≤ Ca
(
n3−a/4 + n2−aδ/2)

,

where cp,p′,q only depends on p, p′ and q . Choosing δ small enough in terms of p, p′ and
q , we deduce that for n large enough,

P

(
max

1≤i≤n sup
(s,t)∈ST2

∣∣∣∣∣1

n

n∑
j=1

(∣∣Wi,j
s,t (ω)

∣∣q − 〈
W

i,⊥⊥
s,t (ω, ·)

〉q
q

)∣∣∣∣∣ ≥ cp,p′,q(t − s)2q/p
′
)

≤ Ca
(
n3−a/4 + n2−aδ/2)

.

Back to (4.15), we deduce that, for δ as in the previous inequality (assuming also without any
loss of generality that δ ∈ (0,1/2)), a large enough (in terms of δ, but δ depending on p, p′
and q) and then n large enough (in terms of δ and T ) and also for a new value of cp,p′,q ,

P
(∀i ∈ {1, . . . , n},∀(s, t) ∈ ST2 , (n)

(
W

i,•(ω)
)
q;[s,t],p′/2−v

≤ cp,p′,q(t − s)2/p
′ + 〈

W
i,⊥⊥(ω, ·)〉q;[s,t],p′/2−v

) ≥ 1 −Can
−aδ/4.

(4.23)

By Borel-Cantelli lemma, we deduce that, for P-almost every ω ∈�, for n large enough, for
any i ∈ {1, . . . , n} and any (s, t) ∈ ST2 ,

(n)(
W

i,•(ω)
)
q;[s,t],p′/2−v ≤ cp,p′,q(t − s)2/p

′ + 〈
W

i,⊥⊥(ω, ·)〉q;[s,t],p′/2−v.

Since the variables (Wi,⊥⊥)i≥1 are independent, the local accumulation associated with the
second term in the right-hand side may be handled like the local accumulation associated to
�(s, t) = ‖Wi(ω)‖[s,t],p′−v. The local accumulation associated with the first term is easily
handled.

Step 2. Now, from the law of large numbers (see Lemma A.5 for the law of large numbers
with second order interaction terms) and from [9], Theorem 2.3 and Problem 3.1, we deduce
that there exists a full subset E ⊂� (the definition of which may vary from line to line in the
rest of the proof as long as P(E) remains equal to 1) such that, for any ω ∈E,

πn(ω)=
(

1

n2

n∑
i,j=1

δ
(X

i,(n)
0 (ω),Wi,(n)(ω),Wi,(n)(ω),Wi,j,(n)(ω))

)
n≥1

converges in the weak sense to (X0(·),W(·),W(·),W⊥⊥(·, ·)) on the space R
d × C([0, T ];

R
m)× {C(ST2 ;Rm ⊗R

m)}2.
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Step 3. Back to the statement of Theorem 3.5, the first item in the statement is a con-
sequence of the law of large numbers. As for the fourth item, it follows directly from the
previous step. In order to check the check the second and third items, we now have a look at
v
i,n
p′ (s, t,ω) in (4.3). Following (4.6), we already know that

lim sup
n≥1

sup
0≤s<t≤T

(n)(v
•,n
p′ (s, t,ω))2q

t − s
<∞,

which proves the third item in the statement of Theorem 3.5. We end up with the proof of the
second item. Following (4.5), there exists a constant c′ such that, for any ε > 0, the quantity

(4.24) sup
n≥1

(n)(exp
([
v

•,n
p′ (0, T ,ω)

]ε))
1

is finite if (notice that we could work below with 1/p′ instead of 1/p–Hölder norms, but 1/p
obviously suffices and is in fact more adapted to the assumption (4.11))

sup
n≥1

1

n

n∑
i=1

exp
(
c′

∥∥Wi(ω)
∥∥p′ε
[0,T ],(1/p)−H + c′

∥∥Wi (ω)
∥∥p′ε/2
[0,T ],(2/p)−H

)
<∞,

sup
n≥1

1

n

n∑
i=1

exp
(
c′(n)

(∥∥W•,i (ω)
∥∥p′/2
[0,T ],(2/p)−H

)ε
q

)
<∞,

(4.25)

and similarly on the second line of (4.25) with W
•,i (ω) replaced by W

i,•(ω) or W
•,•(ω)

(the last two terms appearing on the last line of (4.5)). By the law of large numbers, the first
line holds true on a full event if p′ε < ε1. As for the second one, we use the following trick.
Notice that the function

(4.26) (0,+∞) � x �→ exp
(
xε/q

)
,

is convex on [Aε,∞), for some Aε > 0. Therefore, Jensen’s inequality says that, in order to
check the second line in (4.25), it suffices to prove that

sup
n≥1

1

n2

n∑
i,j=1

exp
[(
Aε/q
ε ∨ ∥∥Wi,j (ω)

∥∥p′ε/2
[0,T ],(2/p)−H

)]
<∞,(4.27)

and similarly for the two terms appearing on the last line of (4.5). Obviously, under the
standing assumption, the latter holds true with probability 1 provided p′ε < ε1. This proves
(4.24). In the statement of Theorem 3.5, this proves the condition related to the tails of wn by
a standard application of Markov inequality.

The bound on the local accumulation in the second item of Theorem 3.5 follows from the
first step of the proof.

Step 4. By Theorem 3.5, we get (4.12) on a set of full measure. By Proposition 2.2 in [47],
we deduce that, for any fixed k ≥ 1, the law of (X1,(n), . . . ,Xk,(n)) converges to L(X(·))⊗k .

�

REMARK 4.5. Recently, the authors in [19] obtained a quantified propagation of chaos
result for mean field stochastic equations with additive noise

(4.28) dxt = b
(
xt ,L(xt )

)
dt + dwt , x0 = ζ,

for a random path w ∈ C([0, T ],Rd) subject to mild integrability condition, and random
initial condition ζ . There is no need of rough paths theory to make sense of this equation
and solve it by elementary means, under proper regularity assumptions on the drift b. Its
distribution is even a Lipschitz function of the distribution of (ζ,w), in p-Wasserstein metric.
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Using Tanaka’s trick, this continuity result entails a propagation of chaos result. The global
Lipscthiz continuity of the solution map L(w, ζ ) �→ L(x) ensures in particular a quantitative
convergence rate for the particle system no greater than the corresponding convergence rate
for the sample empirical mean of the driving noises, which is optimal. We get back such a
sharp estimate in the present, much more complicated, setting in the next section. Note that
the global Lipschitz bound satisfied by the natural map � giving the solution to equation
(4.28) as a fixed point of � actually allows to deal with reflected dynamics, as the bounded
variation part needed for the reflection happens to be a Lipschitz function of the nonreflected
path, in Skorokhod formulation of the problem. We do not have such a strong continuity
result for our solution map; see Theorem 3.5. See also the previous work [25] of the authors.

5. Rate of convergence. The goal of this section is to elucidate the rate of convergence
in the convergence result stated in Theorem 4.3.

The analysis is based upon a variation of Sznitman’s original coupling argument, see
[47]. To make its principle clear, we recall that, on the space (�,F,P), the triples
(X1

0(·),W 1(·),W1(·)), . . . , (Xn
0(·),Wn(·),Wn(·)) are n independent copies of the original

triple (X0(·),W(·),W(·)). For each i ∈ {1, . . . , n}, the pair (Wi(·),Wi(·)) is completed into
a rough set-up

W
i
(·) := (

Wi(·),Wi(·),Wi,⊥⊥(·, ·)),
W

i,⊥⊥(
ω,ω′) = I

(
Wi(ω),Wi(ω′)), (

ω,ω′) ∈�2.
(5.1)

Here we put a bar on the symbol W
i

in order to distinguish it from the finite-dimensional
rough set-up W (n)(ω) that lies above (W 1(ω), . . . ,Wn(ω)). In comparison, the second-order
level of W (n) is made of (Wi )1≤i≤n and of (Wi,j = I(Wi,Wj ))1≤i �=j≤n, see (4.2). To make
the notations more homogeneous, we sometimes write W

i,i(ω) for Wi(ω).

With each (Xi
0(·),W i

(·)), we associate the corresponding solution X
i
(·) to the mean field

equation (1.2). The 5-tuples

� � ω �→ (
Xi

0(ω),W
i(ω),Wi(ω),Wi,⊥⊥(·,ω),Xi

(ω)
)
1≤i≤n

are independent and identically distributed, � � ω �→ (W
i,⊥⊥
t (·,ω))0≤t≤T being regarded as a

process with values in L
q(�,F,P;Rd). Recalling thatX(n)(ω)= (X1,(n)(ω), . . . ,Xn,(n)(ω))

is the solution to (1.3), we then let

(5.2) μnt (ω)= 1

n

n∑
i=1

δ
X
i,(n)
t (ω)

, μnt (ω)= 1

n

n∑
i=1

δ
X
i
t (ω)

, t ∈ [0, T ],ω ∈�.

Here is now the main result. Note the use of the d1-distance (see (2.14)) in the assumption
required from F in the statement below, d1-continuity being stronger than d2-continuity.

THEOREM 5.1. We make the following assumptions.

(a) Assumptions (a)–(d) in the statement of Theorem 4.3 are satisfied for the same pa-
rameters p ∈ [2,3) and q ≥ 8 as in Section 2, for some control w satisfying (2.8) and (2.9)
and some time horizon T > 0.

(b) The first and second derivatives of F, (x,μ) �→ ∂xF(x,μ), (x,μ, z) �→ (DμF(x,
μ)(z), ∂xDμF(x,μ)(z)), and (x,μ, z, z′) �→ D2

μF(x,μ)(z, z′), are bounded on the whole
space and are Lipschitz continuous with respect to all the variables, the Lipschitz property in
the direction μ being understood with respect to d1.
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(c) Last, for any α > 0, there exists a constant ε2 > 0 such that, for some p′ ∈ [p,3), and
any random variables τ, τ′ :�→ [0, T ], with P(τ< τ′)= 1, we have

(5.3) sup
n≥1

sup
1≤i≤n

E

[
exp

[(
N̂ i,n([τ, τ′],ω,α)√

τ′ − τ

)1+ε2
]]

<∞,

where N̂ i,n([τ, τ′],ω,α) is defined as the accumulationN�([τ, τ′], α)when� = (ŵ
i,n
p′ (ω))

1
p′

with

ŵ
i,n
p′ (s, t,ω) := (

w
i,n
p′ + v̂

i,n
p′

)
(s, t,ω)+ (n)(v̂

•,n
p′ (ω))q;[s,t],1−v + (t − s),

w
i,n
p′ (s, t,ω) := v

i,n
p′ (s, t,ω)+ (n)(v

•,n
p′ (ω))q;[s,t],1−v,

v̂
i,n
p′ (s, t,ω) := 〈

W
i,⊥⊥(ω, ·)〉p′/2

q;[s,t],p′/2−v + 〈
W

i,⊥⊥(·,ω)〉p′/2
q;[s,t],p′/2−v.

(5.4)

Then, for any r ≥ 1, there exists an exponent q(r)≥ 8 such that, if X0(·) is in L
q(r), then,

for any n≥ 1,

(5.5) sup
1≤i≤n

E

[
sup

0≤t≤T
∣∣Xi

t −X
i,(n)
t

∣∣r]1/r +E

[
sup

0≤t≤T
d1

(
μnt ,μ

n
t

)r]1/r ≤ Cςn,

for a constant C independent of n, and ςn = n−1/2 if d = 1, ςn = n−1/2 ln(1 + n) if d = 2
and ςn = n−1/d if d ≥ 3.

REMARK 5.2. Let us make a few remarks on this statement before embarking on its
proof.

• We refer to [14], Chapter 5, for examples of a function F satisfying item (b) in the assump-
tions of the statement. Importantly, we recall that a function G :P2(R

d) � μ �→G(μ) ∈ R,
whose derivative DμG : P2(R

d)×R
d � (μ, z) �→DμG(μ)(z) ∈ R

d is uniformly bounded
on the whole P2(R

d)×R
d , is Lipschitz continuous with respect to the d1-Wasserstein dis-

tance. In particular, under the assumptions of the statement, F itself is Lipschitz continuous
on R

d × P2(R
d), the Lipschitz property in the direction μ being understood with respect

to d1.
• Obviously, condition (5.3) depends on p′. We let the reader check that if (5.3) holds for

some p′ ∈ [p,3), then it holds for any other p′′ ∈ [p′,3).
• By inspecting the proof of Theorem 5.1, we could make explicit the value of q(r) (in the

condition X0(·) ∈ L
q(r)), but we feel that it would not be so useful.

• The convergence rate ςn in (5.5) corresponds to the usual rate for the convergence in the
1-Wasserstein distance of an empirical sample of independent, identically distributed, ran-
dom variables toward the limiting common distribution; see [26] together with Lemma A.4.

• Theorem 5.1 applies when W is a continuous centred Gaussian process defined over [0, T ]
as in Example 4.2.

PROOF. Observe that, for each i ∈ {1, . . . , n} and any ω ∈�, we can define the integral

process (
∫ t

0 F(X
i

s(ω),μ
n
s (ω)) dW i,(n)

s (ω))0≤t≤T using usual rough paths theory, where the
label i in the notation W i,(n)(ω) is here to indicate that the integral only involves (Wi(ω),

(Wj,i(ω))1≤j≤n). Equivalently, W i,(n)(ω) must be seen as (Wi(ω), (Wj,i(ω))1≤j≤n). The
fact that the integral may be defined with respect to (Wi(ω), (Wj,i(ω))1≤j≤n) follows from

the fact that X
j
(ω), for each j ∈ {1, . . . , n} and each ω ∈ �, is controlled by the variations

of the sole Wj(ω). So, whenever we expand locally F(X
i

s(ω),μ
n
s (ω)), we let appear in-

crements of X
i

s(ω), which are controlled by increments of Wi(ω), and also increments of
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X
j

s (ω), for j �= i, which are controlled by increments of Wj(ω): At the end of the day,

it suffices to have the iterated integrals (Wj,i(ω))1≤j≤n to define the integral (
∫ t

0 F(X
i

s(ω),

μns (ω)) dW i,(n)
s (ω))0≤t≤T .

Step 1. The first step is to compare∫ t

0
F
(
X
i

s(ω),L(Xs)
)
dW

i

s(ω) and
∫ t

0
F
(
X
i

s(ω),μ
n
s (ω)

)
dW i,(n)

s (ω),(5.6)

for t ∈ [0, T ]. What makes the proof nontrivial is the fact that the rough set-ups used in the
first and the second integrals are not the same. So, in order to compare the two of them, we
need to come back to the original constructions of the two integrals. To simplify notations,
and for 0 ≤ t ≤ T , set

F
i

t (ω) := F
(
X
i

t (ω),L(Xt)
)
, F

i,n
t (ω) := F

(
X
i

t (ω),μ
n
t (ω)

)
.(5.7)

For sure, (F
i

t (ω))0≤t≤T is ω-controlled by W
i
(ω), see Definition 2.1 and Proposition 2.4,

and the collection indexed by ω ∈ � is a random path controlled by W
i
, see Defini-

tion 2.2 for a reminder. The corresponding Gubinelli derivatives are denoted by (δxF
i

t (ω),

δμF
i

t (ω, ·))0≤t≤T , see again Proposition 2.4. Similarly, (F i,n
t (ω))0≤t≤T is controlled by

W i,(n)(ω) and W •,(n)(ω) and Gubinelli derivatives are encoded in the form of a collection
(δxF

i,n
t (ω), (δμF

i,j,n
t (ω))1≤j≤n)0≤t≤T , see ((4.8)–(4.9)). To make it clear, set

δxF
i

t (ω) := ∂xF
(
X
i

t (ω),L(Xt)
)
F
(
X
i

t (ω),L(Xt)
)
,

δμF
i

t (ω, ·) :=DμF
(
X
i

t (ω),L(Xt)
)(
X
i

t (·)
)
F
(
X
i

t (·),L(Xt)
)
,

(5.8)

where X(·) is the solution to (1.2) with W (·)= (W(·),W(·),W⊥⊥(·, ·)). We also let

δxF
i,n
t (ω) := ∂xF

(
X
i

t (ω),μ
n
t (ω)

)
F
(
X
i

t (ω),μ
n
t (ω)

)
,

δμF
i,j,n
t (ω) :=DμF

(
X
i

t (ω),μ
n
t (ω)

)(
X
j

t (ω)
)
F
(
X
j

t (ω),μ
n
t (ω)

)
.

(5.9)

For a subdivision �= {s = t0 < t1 < · · ·< tK = t}, set

I i,�s,t (ω) :=
K−1∑
k=0

{
F
i

tk
(ω)Wi

tk,tk+1
(ω)+ δxF

i

tk
(ω)Wi

tk,tk+1
(ω)

+E
[
δμF

i

tk
(ω, ·)Wi,⊥⊥

tk,tk+1
(·,ω)]},

I i,n,�s,t (ω) :=
K−1∑
k=0

{
F
i,n
tk
(ω)Wi

tk,tk+1
(ω)+ δxF

i,n
tk
(ω)Wi

tk,tk+1
(ω)

+ 1

n

n∑
j=1

δμF
i,j,n
tk

(ω)W
j,i
tk,tk+1

(ω)

}
.

(5.10)

The two integrals in (5.6) should be understood as the respective limits of the two Riemann
sums right above as K tends to ∞. In the sequel, we denote the summand in the first sum by

I i,∂{tk,tk+1}(ω) and the summand in the second sum by I i,n,∂{tk,tk+1}(ω). By Lemma A.3 proved in
Appendix A.2, we can find, for any � ≥ 8, an exponent �′ ≥ q , independent of n, K and �,
such that, whenever X0(·) ∈ L

�′
, it holds, for a constant C, also independent of n, K and �

but depending on 〈X0(·)〉�′ , and then for any k ∈ {1, . . . ,K − 1} (provided K ≥ 2),〈{
I i,n,�s,t (·)− I i,n,�

′
s,t (·)} − {

I i,�s,t (·)− I i,�
′

s,t (·)
}〉
� ≤ Cςn

〈〈
w+(tk−1, tk+1, ·, ·)〉〉3/p�′ ,
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where �′ := � \ {tk} and w+(s, t,ω,ω′) := w(s, t,ω)+ ‖W⊥⊥(ω,ω′)‖p/2
[s,t],p/2−v, (w being

here given by (2.10)). In the rest of the proof, it is implicitly understood that the condition
X0(·) ∈ L

�′
is satisfied for �′ large enough and that the constant C is allowed to depend on

〈X0(·)〉�′ .
Formulating (4.5) and (4.6) but for the limit (instead of empirical) rough set-up, we know

that the right-hand side in the above inequality is less than

Cςn
[〈∥∥W(·)∥∥[0,T ],(1/p)−H

〉
p�′ + 〈∥∥W(·)∥∥[0,T ],(2/p)−H

〉1/2
p�′

+ 〈〈∥∥W⊥⊥(·, ·)∥∥[0,T ],(2/p)−H

〉〉1/2
p�′

]3
(tk+1 − tk−1)

3/p,

but by assumption all the expectations are finite. Now we can choose k such that |tk+1 −
tk−1| ≤ 4|t − s|/K (if not, it means that 4(t − s)(K − 1)/K <

∑K−1
k=1 |tk+1 − tk−1| =∑K−1

k=1 (tk+1 − tk + tk − tk−1)= 2(t − s)− (tK − tK−1 + t1 − t0)≤ 2(t − s), which is a con-
tradiction since K ≥ 2). We get

〈{
I i,n,�s,t (·)− I i,n,�

′
s,t (·)} − {

I i,�s,t (·)− I i,�
′

s,t (·)
}〉
� ≤ Cςn

(
t − s

K

)3/p
,

the constant C being allowed to increase from line to line as long as it remains independent
of n, K , � and �′. Letting t (1) = tk and applying iteratively the above bound to a sequence
of meshes of the form �\ {t (1)},�\ {t (1), t (2)}, . . . , and then letting K tend to ∞, we deduce
that 〈∫ t

s
F i,n
r (·) dW i,(n)

r (·)−
∫ t

s
F
i

r (·) dW
i

r (·)− {
I i,n,∂{s,t} − I i,∂{s,t}

}〉
�

≤ Cςn(t − s)3/p.

(5.11)

By Lemma A.3, we also have 〈I i,n,∂{s,t} − I i,∂{s,t}〉� ≤Cςn(t − s)1/p , from which we deduce that〈∫ t

s
F i,n
r (·) dW i,(n)

r (·)−
∫ t

s
F
i

r (·) dW
i

r (·)
〉
�

≤ Cςn(t − s)1/p.

Similarly, Lemma A.3 says that 〈[F i,n(·)− F
i
(·)]s,t 〉� ≤ Cςn(t − s)1/p , and, noting that

R

∫
F i,n dW i,(n)

s,t (ω)=
∫ t

s
F i,n
r (ω)dW i,(n)

r (ω)− I i,n,∂s,t (ω)

+ δxF
i,n
s (ω)Wi

s,t (ω)+ 1

n

n∑
j=1

δμF
i,j,n
s (ω)W

j,i
s,t (ω),

R

∫
F
i
dW

i

s,t (ω)=
∫ t

s
F
i

r (ω)dW
i

r (ω)− I i,∂s,t (ω)

+ δxF
i

s(ω)W
i
s,t (ω)+E

[
δμF

i

s(ω, ·)Wi,⊥⊥
s,t (·,ω)

]
,

we deduce in a similar manner, using (5.11) and Lemma A.3 once again, that

〈
R

∫
F i,n dW i,(n)

s,t (·)−R

∫
F
i
dW

i

s,t (·)〉� ≤ Cςn(t − s)2/p.

So, fixing i ∈ {1, . . . , n}, choosing � large enough and applying a suitable version of Kol-
mogorov’s theorem (see, for instance, Theorem 3.1 in [28]), we can find p′ ∈ (p,3), which
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may be assumed to satisfy item (c) in the assumption (see, for instance, the second bullet
point in Remark 5.2) and the value of which is fixed until the end of the proof, such that∣∣∣∣∫ t

s
F i,n
r (ω)dW i,(n)

r −
∫ t

s
F
i

r (ω)dW
i

r (ω)

∣∣∣∣ ≤ θi,n(ω)(t − s)1/p
′
,

∣∣[F i,n(ω)− F
i
(ω)

]
s,t

∣∣ ≤ θi,n(ω)(t − s)1/p
′
,

∣∣R∫
F i,n dW i,(n)

s,t (ω)−R

∫
F
i
dW

i

s,t (ω)
∣∣ ≤ θi,n(ω)(t − s)2/p

′
,

(5.12)

with 〈θi,n(·)〉� ≤ Cςn, for a new value of the constant C.
Observe now that the empirical control associated with our empirical rough set-up and

with the exponent p′ reads (compare with (2.10))

w
i,n
p′ (s, t,ω) := v

i,n
p′ (s, t,ω)+ (n)(v

•,n
p′ (ω))q;[s,t],1−v,

where we used the same notation as in (4.3). In fact, there is no loss of generality in changing
the definition of wi,n

p′ into

(5.13) w
i,n
p′ (s, t,ω) := v

i,n
p′ (s, t,ω)+ (n)(v

•,n
p′ (ω))q;[s,t],1−v + (t − s),

which permits to replace (t − s)1/p
′

by wi,n
p′ (s, t,ω)1/p

′
in the inequalities (5.12). Hence,∣∣∣∣∣∣∣∣∣∣∣∣∫ ·

0
F i,n
r (ω)dW i,(n)

r −
∫ ·

0
F
i

r(ω)dW
i

r (ω)

∣∣∣∣∣∣∣∣∣∣∣∣[0,T ],wi,n

p′ ,p′
≤ θi,n(ω).

Step 2. We now make use of Proposition 3.2 to compare∫ t

0
F
(
Xi,(n)
s (ω),μns (ω)

)
dW i,(n)

s (ω) and
∫ t

0
F
(
X
i

s(ω),μ
n
s (ω)

)
dW i,(n)

s (ω),

see (5.2). To simplify the notations, we just write Xi for Xi,(n) and W i for W i,(n). We then
apply Proposition 3.2 with

(5.14)
(
X(ω),Y (·)) = (

Xi(ω),X•(ω)
)
,

(
X′(ω),Y ′(·)) = (

X
i
(ω),X

•
(ω)

)
,

the underlying set-up being understood as the empirical rough set-up for a given realization
ω (in particular, the various assumptions on the moments in Proposition 3.2 must be checked
under the empirical distribution). The difficulty here is that the variations of these two solu-
tions are controlled by two different functionals w, see (2.11); in short, there is the control
associated with the empirical set-up and the control associated with the theoretical one. This
is the rationale for introducing ŵi,n

p′ in (5.4). Obviously, ŵi,n
p′ (·, ·,ω) is not the natural control

functional associated with W i (ω), but it is greater than wi,n
p′ (s, t,ω) and it satisfies

(5.15) (n)(ŵ
•,n
p′ (s, t,ω))q ≤ 2ŵi,n

p′ (s, t,ω),

which suffices to apply Proposition 3.2, see also [5], Proposition 4.3, with w
i,n
p′ (s, t,ω) re-

placed by ŵ
i,n
p′ (s, t,ω). The resulting seminorm that must be used to control the difference

(X(ω)−X′(ω),Y (·)− Y ′(·))= (Xi(ω)−X
i
(ω),X•(ω)−X

•
(ω)) on a given interval [s, t]

is ||| · |||[s,t],ŵi,n,p′ (we feel easier not to put the index p′ in ŵi,n but it is implicitly understood).
We use the corresponding local accumulation, which we denote by N̂ i,n([0, T ],ω,α).

We first check that the pair (X(ω),Y (·))= (Xi(ω),X•(ω)) in (5.14) satisfies the assump-
tions of Proposition 3.2, assuming that T is upper bounded by 1 (which may seem rather
restrictive but which is in fact consistent with what we do in the sequel since we require, at
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least for a while, T to be small enough). By construction of the processes (Xj (ω))j=1,...,n
as the solution of the empirical rough equation, we know from Theorem 3.3 and from [5],
Proposition 4.2, (which guarantees a form of stability in the iterative construction of the
solution) that we can find three deterministic constants L0, η0 and γ0, all strictly greater
than 1 and only depending on 
 (we may forget the dependence upon T since T ≤ 1; in
particular the three constants are independent of n and, for sure, of the index i as well),
such that X(ω) = Xi(ω) satisfies (3.3) with w = ŵ

i,n
p′ (it being understood that the points

(t0� = τ�(0, T ,ω,1/(4L0)))�=0,...,N0+1 in the statement of Proposition 3.2 are constructed

with respect to ŵ
i,n
p′ ) and Y(·) = X•(ω) satisfies condition (3.2) with respect to (n)(·)8, pro-

vided that T satisfies
(n)(N̂•,n([0, T ],ω,1/(4L0)

))
8 ≤ 1,(5.16)

(n)([γ0
(
1 + ŵ

•,n
p′ (0, T , ·)1/p′)]N̂•,n([0,T ],·,1/(4L0))

)
32 ≤ η0.(5.17)

We now check that the pair (X′(ω),Y ′(·)) = (X
i
(ω),X

•
(ω)) in (5.14) also satisfies the

assumptions of Proposition 3.2. In fact, using the Hölder regularity of the paths, see (4.5) for
a similar use, and using the additional t − s in the definition (5.4), ŵi,n

p′ dominates (up to a

multiplicative constant) the control wi associated to W
i

(and p′) through (2.10) (see (5.1)

for the definition of W
i
; in short, the variations of Wi(ω) and W

i (ω) are already included in
v
i,n
p′ (ω), the variations of Wi,⊥⊥(ω, ·) and W

i,⊥⊥(·,ω) are precisely included in the definition

of v̂i,np′ (ω) and, using the Hölder regularity of the paths, the variations of Wi(·) and W
i,⊥⊥(·, ·)

(in L
q ) are dominated by the additional t − s). Moreover, we have (observe that, since we

work here with a copy of the theoretical rough set-up, we use theoretical instead of empirical
moments to check the various properties of a rough set-up)〈

ŵ
i,n
p′ (s, t, ·)〉q ≤C(t − s)≤ Cŵ

i,n
p′ (s, t,ω),

for a constant C independent of i, n, s and t . Although C ≥ 2 (compare with (2.8)), this

permits to use ŵi,n
p′ (s, t, ·) as control functional when working with the rough set-up W

i
and,

in particular, when invoking the solvability Theorem 3.3—the proof would be the same. This

is an important point: the path X
i
(ω), defined right after (5.1), is the solution of a mean-field

rough equation driven by a signal that is controlled by ŵ
i,n
p′ (·). Hence, X′(ω) = X

i
(ω) in

(5.14) satisfies the second bound in (3.3) with w = ŵ
i,n
p′ , provided (5.16) and (5.17) hold true

but under the theoretical (instead of empirical) moments of order 8 and 32, respectively and T
therein is deterministic. Of course, by exchangeability, the latter is in fact true automatically
as soon as (5.16) and (5.17) themselves are satisfied (it suffices to take power 8 in (5.16) and

power 32 in (5.17) and then to take the theoretical expectation). By the same argument, X
i
(·)

satisfies the second condition in (3.2) with respect to 〈·〉8; in turn, this, together with (5.16),
make it possible to apply the first line in [5], Proposition 4.2, (4.4), for each i ∈ {1, . . . , n} and
to deduce that Y ′(·) = X

•
(ω) satisfies the second condition (3.2) but with respect to (n)(·)8.

Due to the assumption in [5], Proposition 4.2, this may require to work with a larger value
of the threshold L0 in the statement of Proposition 3.2, but, as made clear in the statement of
[5], Proposition 4.2, itself, this is always possible. Then, by Proposition 3.2, we obtain, for a
given L≥ L0,∣∣∣∣∣∣∣∣∣∣∣∣∫ ·

tk

F
(
Xi
r(ω),μ

n(ω)
)
dW i

r (ω)−
∫ ·
tk

F
(
X
i

r(ω),μ
n(ω)

)
dW i

r (ω)

∣∣∣∣∣∣∣∣∣∣∣∣[tk,tk+1],ŵi,n,p′

≤ γ ŵ
i,n
p′ (0, tk,ω)

1/p′(∣∣∣∣∣∣(Xi −X
i)
(ω)

∣∣∣∣∣∣[0,tk],ŵi,n,p′
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+ (n)(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[0,T ],ŵ•,n,p′
)
8

)
+ γ

4L

(∣∣∣∣∣∣(Xi −X
i)
(ω)

∣∣∣∣∣∣[tk,tk+1],ŵi,n,p′

+ (n)(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[tk,tk+1],ŵ•,n,p′
)
8

)
,

where ŵ
i,n
p′ (tk, tk+1,ω)

1/p′ ≤ 1/(4L) and for k ≤ 2N̂ i,n([0, T ],ω,1/(4L)) (since the se-

quence (ti)i must refine the sequence (t0j )j , we may assume that the collection (ti)i counts

2N̂ i,n([0, T ],ω,1/(4L))+ 2 points, including t0 = 0) and where γ depends on L0 and 
.
The point now is to insert the conclusion of the first step (replacing for free w

i,n
p′ by ŵ

i,n
p′

therein). We get∣∣∣∣∣∣(Xi −X
i)
(ω)

∣∣∣∣∣∣[tk,tk+1],ŵi,n,p′ ≤ γ ŵ
i,n
p′ (0, tk,ω)

1/p′(∣∣∣∣∣∣(Xi −X
i)
(ω)

∣∣∣∣∣∣[0,tk],ŵi,n,p′

+ (n)(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[0,T ],ŵ•,n,p′
)
8

) + θi,n(ω)

+ γ

4L

(∣∣∣∣∣∣(Xi −X
i)
(ω)

∣∣∣∣∣∣[tk,tk+1],ŵi,n,p′

+ (n)(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[tk,tk+1],ŵ•,n,p′
)
8

)
.

If γ /(4L)≤ 1/2, we get∣∣∣∣∣∣(Xi −X
i)
(ω)

∣∣∣∣∣∣[tk,tk+1],ŵi,n,p′

≤ 2γ
(

1

L
+ ŵ

i,n
p′ (0, tk,ω)

1/p′
)(∣∣∣∣∣∣(Xi −X

i)
(ω)

∣∣∣∣∣∣[0,tk],ŵi,n,p′

+ (n)(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[0,T ],ŵ•,n,p′
)
8

) + 2θi,n(ω).

(5.18)

We deduce that there exists a constant c ≥ 1, possibly depending on L0 but independent of n
and L and T and whose value may increase from line to line, such that (see, for instance, [5],
footnote 5, for the concatenation of two intervals)∣∣∣∣∣∣(Xi −X

i)
(ω)

∣∣∣∣∣∣[0,tk+1],ŵi,n,p′

≤ c
(∣∣∣∣∣∣(Xi −X

i)
(ω)

∣∣∣∣∣∣[0,tk],ŵi,n,p′ + ∣∣∣∣∣∣(Xi −X
i)
(ω)

∣∣∣∣∣∣[tk,tk+1],ŵi,n,p′
)

≤ c
(
1 + ζ

i,n
T (ω)

)∣∣∣∣∣∣(Xi −X
i)
(ω)

∣∣∣∣∣∣[0,tk],ŵi,n,p′

+ cζ
i,n
T (ω)(n)

(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[0,T ],ŵ•,n,p′
)
8 + cθi,n(ω),

with ζ i,nT (ω) := 1
L

+ ŵ
i,n
p′ (0, T ,ω)1/p

′
. So, by induction,∣∣∣∣∣∣(Xi −X

i)
(ω)

∣∣∣∣∣∣[0,tk+1],ŵi,n,p′

≤ c

(
k∑

�=0

[
c
(
1 + ζ

i,n
T (ω)

)]�) × (
ζ
i,n
T (ω)(n)

(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[0,T ],ŵ•,n,p′
)
8 + θi,n(ω)

)
.

In the end, ∣∣∣∣∣∣(Xi −X
i)
(ω)

∣∣∣∣∣∣[0,T ],ŵi,n,p′

≤ c
[
c
(
1 + ζ

i,n
T (ω)

)]2N̂ i,n([0,T ],ω,1/(4L))+1

× (
ζ
i,n
T (ω)(n)

(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[0,T ],ŵ•,n,p′
)
8 + θi,n(ω)

)
.

(5.19)
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Hence, using the shorten notation N̂
i,n
T (ω) for N̂ i,n([0, T ],ω,1/(4L)) and recalling that

c ≥ 1, we obtain

(n)(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[0,T ],ŵ•,n,p′
)
8

≤ (n)([c2(
1 + ζ

•,n
T (ω)

)]2N̂•,n
T (ω)+1

ζ
•,n
T (ω)

)
8

× (n)(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[0,T ],ŵ•,n,p′
)
8

+ (n)([c2(
1 + ζ

•,n
T (ω)

)]2N̂•,n
T (ω)+1

θ•,n(ω)
)
8.

(5.20)

Step 3. The key quantity of interest in (5.20) is the multiplicative factor in the second line,
which we denote by

�n
T (ω) := (n)([c2(

1 + ζ
•,n
T (ω)

)]2N̂•,n
T (ω)+1

ζ
•,n
T (ω)

)
8.

In particular, letting

�n
T (ω) := (n)([c2(

1 + ζ
•,n
T (ω)

)]2N̂•,n
T (ω)+1

θ•,n(ω)
)
8,

we rewrite (5.20) in the form

(n)(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[0,T ],ŵ•,n,p′
)
8

≤�n
T (ω)

(n)(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[0,T ],ŵ•,n,p′
)
8 +�n

T (ω).
(5.21)

Here comes the key point. The variable ω being frozen, assume that we are given a deter-
ministic time horizon T small enough and a deterministic L ≥ L0 large enough, such that
γ /(4L)≤ 1/2, �n

T (ω)≤ 1/2, and (5.16) and (5.17) hold true. Then,

(n)(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[0,T ],ŵ•,n,p′
)
8 ≤ 2�n

T (ω).

The above inequality sounds really close to the desired result, but it is on a small interval
[0, T ] only. The purpose is thus to iterate it in order to cover any given time interval. The
explicit construction of T and L being postponed to Step 5.

Step 4. In order to iterate in a proper way, we change our notation. While we keep the
notation T for the deterministic global time horizon given in the statement (without any
further requirement that T ≤ 1), we use the letter τ instead of T in the previous analysis.
Put differently, τ will stand for a deterministic time horizon less than 1 such that �τ is small
enough. And then, we let τ0 = τ and consider a deterministic dissection 0 = τ0 < τ1 < · · ·<
τM = T of the interval [0, T ] into M subintervals. The goal of this step is to explain how the
error on the interval [τ�, τ�+1], �= 1, . . . ,M − 1 can be controlled in terms of the error on
the preceding interval [0, τ�], the construction of the dissection being achieved in Step 5.

To do so, we need to revisit the statement of Proposition 3.2. Assume indeed that we have
a bound for

E i,nτ� (ω) := (
1 + ŵ

i,n
p′ (0, T ,ω)1/p

′)∣∣∣∣∣∣(Xi −X
i)
(ω)

∣∣∣∣∣∣[0,τ�],ŵi,n,p′,

for some �≤M . Then, in order to duplicate the previous two steps, we must consider a new
dissection τ� = t0 < t1 < · · · < tK = τ�+1 of the interval [τ�, τ�+1] with the property that
K = 2N̂ i,n([τ�, τ�+1],ω,1/(4L))+ 1 and that ŵi,n

p′ (tk, tk+1,ω)≤1/(4L) if k < K . The key

point is to apply the first inequality in (3.4) on [tk, tk+1] with (X(ω),Y (·))= (Xi(ω),Xi(·))



PROPAGATION OF CHAOS FOR MEAN FIELD ROUGH EQUATIONS 975

and (X′(ω),Y ′(·))= (X
i
(ω),X

i
(·)), but with τ� instead of 0 as initial time. Upper bounding

the second line in (3.4) by E i,nτ� (ω)+ (n)(E•,n
τ� (ω))8, we obtain∣∣∣∣∣∣∣∣∣∣∣∣∫ ·

tk

F
(
Xi
r(ω),μ

n
r (ω)

)
dW i

r (ω)−
∫ ·
tk

F
(
X
i

r(ω),μ
n
r (ω)

)
dW i

r (ω)

∣∣∣∣∣∣∣∣∣∣∣∣[tk,tk+1],ŵi,n,p′

≤ γ ŵ
i,n
p′ (τ�, τ�+1,ω)

1/p′{∣∣∣∣∣∣(Xi −X
i)
(ω)

∣∣∣∣∣∣[τ�,tk],ŵi,n,p′

+ (n)(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[τ�,τ�+1],ŵ•,n,p′
)
8

}
+ γ

4L

{∣∣∣∣∣∣(Xi −X
i)
(ω)

∣∣∣∣∣∣[tk,tk+1],ŵi,n,p′

+ (n)(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[tk,tk+1],ŵ•,n,p′
)
8

}
+ γ

[
E i,nτ� (ω)+ (n)(E•,n

τ� (ω))8
]
,

provided the analogues of (3.2) and (3.3) hold true. We may argue as in the second step
to check the latter two: They are consequences of Theorem 3.3, if τ�+1 − τ� ≤ 1 and the
analogues of (5.16) and (5.17) hold true, namely

(n)(N̂•,n([τ�, τ�+1],ω,1/(4L0)
))

8 ≤ 1,(5.22)

(n)([γ0
(
1 + ŵ

•,n
p′ (τ�, τ�+1, ·)1/p′)]N̂•,n([τ�,τ�+1],·,1/(4L0))

)
32≤ η0.(5.23)

Then, proceeding as in the second step,∣∣∣∣∣∣(Xi −X
i)
(ω)

∣∣∣∣∣∣[tk,tk+1],ŵi,n,p′

≤ c

(
1

L
+ ŵ

i,n
p′ (τ�, τ�+1,ω)

1/p′
){∣∣∣∣∣∣(Xi −X

i)
(ω)

∣∣∣∣∣∣[τ�,tk],ŵi,n,p′

+ (n)(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[τ�,τ�+1],ŵ•,n,p′
)
8

}
+ c

{
E i,nτ� (ω)+ (n)(E•,n

τ� (ω))8 + θi,n(ω)
}
.

In the end, we are in the same situation as in Step 2, but with new ζ
i,n
T and N̂ i,n

T . Here, we let
(pay attention that, to be consistent with the notations ζ i,nT and N̂ i,n

T , we should use [τ�, τ�+1]
instead of � as subscript below, but, for simplicity, we prefer to use � only)

ζ
i,n
� (ω) := 1

L
+ ŵ

i,n
p′ (τ�, τ�+1,ω)

1/p′
, N̂

i,n
� (ω) := N̂ i,n

(
[τ�, τ�+1],ω, 1

4L

)
.

Following (5.19), we obtain∣∣∣∣∣∣(Xi −X
i)
(ω)

∣∣∣∣∣∣[τ�,τ�+1],ŵi,n,p′

≤ c
[
c
(
1 + ζ

i,n
� (ω)

)]2N̂ i,n
� (ω)+1

× {
ζ
i,n
� (ω)(n)

(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[τ�,τ�+1],ŵ•,n,p′
)
8

+ θi,n(ω)+ E i,nτ� + (n)(E•,n
τ� (ω)

)
8

}
.

(5.24)

Hence,

(n)(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[τ�,τ�+1],ŵ•,n,p′
)
8

≤�n
� (ω)× (n)(∣∣∣∣∣∣(X• −X

•)
(ω)

∣∣∣∣∣∣[τ�,τ�+1],ŵ•,n,p′
)
8 +�n

�(ω),
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with

�n
� (ω) := (n)([c2(

1 + ζ
•,n
� (ω)

)]2N̂•,n
� (ω)+1

ζ
•,n
� (ω)

)
8,

�n
�(ω) := (n)([c2(

1 + ζ
•,n
� (ω)

)]2N̂•,n
� (ω)+1(

θ•,n(ω)+ E•,n
τ� (ω)+ (n)(E•,n

τ� (ω))8
))

8.

Following (5.21), if we can choose L large enough and then τ�+1 − τ� small enough such that
�n
� (ω)≤ 1/2, then we get

(n)(∣∣∣∣∣∣(X• −X
•)
(ω)

∣∣∣∣∣∣[τ�,τ�+1],ŵ•,n,p′
)
8 ≤ 2�n

�(ω).

Eventually, returning to (5.24) and modifying the value of the constant c, we deduce∣∣∣∣∣∣(Xi −X
i)
(ω)

∣∣∣∣∣∣[τ�,τ�+1],ŵi,n,p′

≤ c
[
c
(
1 + ζ

i,n
� (ω)

)]2N̂ i,n
� (ω)+1

× (
ζ
i,n
� (ω)�n

�(ω)+ θi,n(ω)+ E i,nτ� + (n)(E•,n
τ� (ω)

)
8

)
,

and then

E i,nτ�+1
(ω)≤ κ

i,n
� (ω)

(
ζ
i,n
� (ω)�n

�(ω)+ θi,n(ω)+ E i,nτ� (ω)+ (n)(E•,n
τ� (ω)

)
8

)
,

with

(5.25) κ
i,n
� (ω) := c2(

1 + ŵ
i,n
p′ (0, T ,ω)1/p

′)[
c2(

1 + ζ
i,n
� (ω)

)]2N̂ i,n
� (ω)+1

,

using the fact that c ≥ 1. By induction, we get the following global bound:

E i,nτ�+1
(ω)≤

�∑
k=0

Ki,n
k,�(ω)

[
ζ
i,n
k (ω)�n

k(ω)+ θi,n(ω)+ (n)(E•,n
τk (ω)

)
8

]
,(5.26)

with

(5.27) Ki,n
k,�(ω) :=

�∏
j=k

κ
i,n
j (ω).

We deduce that for any r > 8, we can find a constant q(r) (which has nothing to do with q in
the assumption) such that

(n)(E•,n
τ�+1

(ω)
)
r ≤

�∑
k=0

{(n)(K•,n
k,�

)
q(r) ×

(
1 + (n)(ŵ•,n(0, T ,ω)1/p′)

q(r)

)
× (

1 + (n)([c2(
1 + ζ

•,n
k (ω)

)]2N̂•,n
k (ω)+1)

q(r)

)
× ((n)(θ•,n(ω)

)
q(r) + (n)(E•,n

τk (ω)
)
r

)}
.

Using the fact that

(n)(K•,n
k,�

)
q(r) ≥ max

(
1, (n)

(
ŵ•,n(0, T ,ω)1/p′)

q(r),
(n)([c2(

1 + ζ
•,n
k (ω)

)]2N̂•,n
k (ω)+1)

q(r)

)
,

we obtain a bound of the form a�+1 ≤ ∑�
k=0 gk,�(b+ ak), with

a� := (n)(E•,n
τ� (ω)

)
r , gk,� := 4 × ((n)(K•,n

k,�

)
q(r)

)3
, b := (n)(θ•,n(ω)

)
q(r).

Hence,

(5.28) a� ≤ b

�∑
j=1

∑
0≤k1≤···≤kj≤kj+1=�

j∏
h=1

gkh,kh+1 .
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Back to (5.27), we will use below the bound

Ki,n
k,�(ω)

≤ c2(�+1−k)
�∏

j=k

{(
1 + ŵi,n(0, T ,ω)1/p

′)[
c2(

1 + ζ
i,n
j (ω)

)]2N̂ i,n
j (ω)+1}

≤ c
4(�+1−k)+4N̂ i,n

k,�+1(ω)
(
1 + ŵi,n(0, T ,ω)1/p

′)�+1−k+2N̂ i,n
k,�+1(ω),

(5.29)

with the shortened notation N̂
i,n
k,�(ω) := N̂ i,n([τk, τ�],ω,1/(4L)), where we have used the

fact that
∑�

j=k N̂
i,n
j (ω)≤ N̂

i,n
k,�+1(ω).

Step 5. We now recall that the parameter L and the sequence of deterministic times 0 =
τ0 < τ1 < · · · < τM must satisfy γ /(4L) ≤ 1/2, (5.22), (5.23) and �n

� (ω) ≤ 1/2, together
with τ�+1 − τ� ≤ 1, for � ∈ {0, . . . ,M − 1}.

In order to proceed, we let

M1 = 〈∥∥W(·)∥∥p′
[0,T ],(1/p′)−H

〉
q + 〈∥∥W(·)∥∥p′/2

[0,T ],(2/p′)−H

〉
q

+ 〈∥∥W⊥⊥(·, ·)∥∥p′/2
[0,T ],(2/p′)−H

〉
q,

and we consider the events

An
1 = {

ω ∈� : (n)(∥∥W •(ω)
∥∥p′
[0,T ],(1/p′)−H

)
q + (n)(∥∥W•(ω)

∥∥p′/2
[0,T ],(2/p′)−H

)
q

+ (n)((∥∥W•,•(ω)
∥∥p′/2
[0,T ],(2/p′)−H

))
q ≤M1 + 1

}
,

An
2 = {

ω ∈� : ∀i ∈ {1, . . . , n},∀(s, t) ∈ ST2 ,
(n)(

W
i,•(ω)

)
q;[s,t],p′/2−v + (n)(

W
•,i(ω)

)
q;[s,t],p′/2−v

≤ 2cp,p′,q(t − s)2/p
′ + 〈

W
i,⊥⊥(ω, ·)〉q;[s,t],p′/2−v + 〈

W
i,⊥⊥(·,ω)〉q;[s,t],p′/2−v

}
,

with cp,p′,q , as in (4.23). On the event An
1 ∩An

2, we have (compare with (4.3) and (4.5)) for
s, t ∈ [0, T ]2, s < t ,

v
i,n
p′ (s, t,ω)≤ ∥∥Wi(ω)

∥∥p′
[s,t],p′−v + ∥∥Wi (ω)

∥∥p′/2
[s,t],p′/2−v

+ 3p
′/2−1(〈

W
i,⊥⊥(ω, ·)〉p′/2

q;[s,t],p′/2−v + 〈
W

i,⊥⊥(·,ω)〉p′/2
q;[s,t],p′/2−v

)
+ (

c′p,p′,q +M1
)
(t − s),

for a new constant c′p,p′,q only depending on p, p′ and q . Therefore, introducing the new
event

An
3 = {(n)(〈∥∥W•,⊥⊥(ω, ·)∥∥p′/2

[0,T ],(2/p′)−H

〉
q

)
q

+ (n)(〈∥∥W•,⊥⊥(·,ω)∥∥p′/2
[0,T ],(2/p′)−H

〉
q

)
q ≤ 2(1 +M1)

}
,

we get, on An
1 ∩An

2 ∩An
3,

(n)(v•,n
p′ (ω)

)
q;[s,t],1−v ≤ c′

p,p′,q,M1
(t − s),

for a new constant c′
p,p′,q,M1

only depending on p, p′, q and M1.
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Recall now the definition of v̂i,np′ in (5.4). We have

v̂
i,n
p′ (s, t,ω)= 〈

W
i,⊥⊥(ω, ·)〉p′/2

q;[s,t],p′/2−v + 〈
W

i,⊥⊥(·,ω)〉p′/2
q;[s,t],p′/2−v

≤ [〈∥∥Wi,⊥⊥(ω, ·)∥∥p′/2
[0,T ],(2/p′)−H

〉
q + 〈∥∥Wi,⊥⊥(·,ω)∥∥p′/2

[0,T ],(2/p′)−H

〉
q

]
(t − s).

And then,
(n)(v̂•,n

p′ (ω)
)
q;[s,t],1−v ≤ ((n)(〈∥∥W•,⊥⊥(ω, ·)∥∥p′/2

[0,T ],(2/p′)−H

〉
q

)
q

+ (n)(〈∥∥W•,⊥⊥(·,ω)∥∥p′/2
[0,T ],(2/p′)−H

〉
q

)
q

)
(t − s).

Therefore, on the event An
1 ∩An

2 ∩An
3, we have

(n)(v̂•,n
p′ (ω)

)
q;[s,t],1−v ≤ 2(1 +M1)(t − s).

Using the same notations as in (5.4), we end-up with

ŵ
i,n
p′ (s, t,ω)≤ w̃

i,n
p′ (s, t,ω),(5.30)

for ω ∈An
1 ∩An

2 ∩An
3, where we let (using the fact that 3p

′/2−1 ≤ √
3 ≤ 2)

w̃
i,n
p′ (s, t,ω) := ∥∥Wi(ω)

∥∥p′
[s,t],p′−v + ∥∥Wi(ω)

∥∥p′/2
[s,t],p′/2−v +Cp,p′,q,M1(t − s)

+ 3
〈
W

i,⊥⊥(ω, ·)〉p′/2
q;[s,t],p′/2−v + 3

〈
W

i,⊥⊥(·,ω)〉p′/2
q;[s,t],p′/2−v,

with Cp,p′,q,M1 := c′p,p′,q,M1
+ c′

p,p′,q + 3M1 + 3. Using the notation (2.17), we also let

Ñ i,n([τ, τ′],ω,α) :=N�([τ, τ′], α), with � := (w̃
i,n
p′ (ω))1/p

′
. By (5.30),

(5.31) N̂ i,n([τ, τ′],ω,α) ≤ Ñ i,n([τ, τ′],ω,α)
,

for ω ∈An
1 ∩An

2 ∩An
3. The good point here is that the variables (w̃i,n

p′ )1≤i≤n are independent

whilst the variables (ŵi,n
p′ )1≤i≤n are not. Similarly, whenever τ and τ′ are deterministic, the

variables (Ñ i,n([τ, τ′], ·, α))1≤i≤n are independent. Moreover, it is not difficult to see that

(5.32) w̃
i,n
p′ (s, t,ω)≤ 3ŵi,n

p′ (s, t,ω)+Cp,p′,q,M1(t − s),

from which we deduce, see for instance (A.1), that, for any α > 0,

(5.33) Ñ i,n([τ, τ′],ω,α) ≤ N̂ i,n

([
τ, τ′],ω, α

2 · 31/p′

)
+Cα

(
τ′ − τ

)
,

for a constant Cα only depending on α and on p, p′, q and M1 (we feel easier not to indicate
the dependence on p, p′, q and M1). In particular, we can easily replace N̂ i,n by Ñ i,n in the
third item of the assumption of the statement. Moreover, by (4.11), we deduce that each w̃i,n

p′
satisfies the first bound in (3.5), uniformly in i and n.

We now claim that we can choose L and the sequence 0 = τ0 < · · · < τM = T , indepen-
dently of n, such that〈

Ñ1,n([τ�, τ�+1], ·,1/(4L0)
)〉

8 ≤ 1

2
,(5.34)

〈[
γ0

(
1 + w̃

1,n
p′ (0, T , ·)1/p′)]Ñ1,n([τ�,τ�+1],·,1/(4L0))

〉
32 ≤ 1 + η0

2
,(5.35) 〈[

c2(
1 + w̃

1,n
p′ (0, T , ·)1/p′)]2Ñ1,n([τ�,τ�+1],·,1/(4L0))+1

×
(

1

L
+ w̃

1,n
p′ (τ�, τ�+1, ·)1/p′

)〉
8
≤ 1

4
,

(5.36)
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for γ0, η0 and c as in Steps 2 and 4 (in particular, c is independent of n and L). We
then make use of the third item in the assumption of the statement, see (5.3); basically,
it says that, in all the three constraints, we should normalize Ñ1,n([τ�, τ�+1], ·,1/(4L0))

by the root of τ�+1 − τ�. This indeed makes sense since inequality (5.32) insures that
Ñ1,n([τ�, τ�+1], ·,1/(4L0)) satisfies a similar estimate as N̂1,n([τ�, τ�+1], ·,1/(4L0)) in
(5.3). As for (5.34), (5.3) says that the left-hand side can be bounded by C

√
τ�+1 − τ�, for a

constant C independent of n, which makes it possible to choose τ�+1 − τ� small enough (in-
dependently of n) such that the constraint (5.34) is indeed satisfied. Recalling that τ�+1 − τ�
is less than 1 and invoking Cauchy-Schwarz inequality, the left-hand side in (5.35) can be
bounded by C

√
τ�+1−τ� ; the way the constant C here shows up is made clear in (5.41) below,

with δ′
� therein being here understood as τ�+1 − τ� and the function f being lower bounded

by the identity. Importantly, the application of (5.41) is made possible by the upper bounds
we have for w̃1,n

p′ and Ñ1,n in terms of ŵ1,n
p′ and N̂1,n, see (5.32) and (5.33). As for (5.36),

it may be bounded, using the same argument together with an additional Cauchy-Schwarz
argument, by a product of the form C

√
τ�+1−τ� × ( 1

L
+〈w̃1,n

p′ (τ�, τ�+1, ·)1/p′ 〉16). The first fac-

tor C
√

τ�+1−τ� can be made smaller than 2 by choosing τ�+1 − τ� small enough. Then, we
can take L≥ 16 so that C

√
τ�+1−τ�/L is less than 1/8. It then remains to decrease τ�+1 − τ�

if necessary to render 〈w̃1,n
p′ (τ�, τ�+1, ·)1/p′ 〉16 less than 1/16; this is possible by using the

analogue of (4.5) but for ŵi,n
p′ , as it says that w̃1,n

p′ (τ�, τ�+1, ·)1/p′
scales like (τ�+1 − τ�)1/p

′
,

the (random) scaling factor having moments of any order that are bounded independently of
n. Importantly, this discussion says that the number M of intervals in the dissection can be
chosen independently of n. For sure, the index 1 in the left-hand side in the three constraints
(5.34), (5.35) and (5.36) can be replaced by any i ∈ {1, . . . , n}. We then consider the family
of events

A
�,n
4 =A

�,n
4,1 ∩A

�,n
4,2 ∩A

�,n
4,3, �= 0, . . . ,M − 1,

A
�,n
4,1 = {(n)(Ñ•,n([τ�, τ�+1], ·,1/(4L0)

))
8 ≤ 1

}
,

A
�,n
4,2 = {(n)([γ0

(
1 + w̃

•,n
p′ (0, T , ·)1/p′)]Ñ•,n([τ�,τ�+1],·,1/(4L0))

)
32 ≤ 1 + η0

}
,

A
�,n
4,3 =

{
(n)

([
c2(

1 + w̃
•,n
p′ (0, T , ·)1/p′)]2Ñ•,n([τ�,τ�+1],·,1/(4L0))+1

×
(

1

L
+ w̃

•,n
p′ (τ�, τ�+1, ·)1/p′

))
32

≤ 1

2

}
.

By (5.30) and (5.31), on An
1 ∩An

2 ∩An
3 ∩ (

⋂M−1
�=0 A

�,n
4 ), the upper bounds (5.22), (5.23) and

�n
� ≤ 1/2 are satisfied and then the conclusion of the fourth step holds true.
Following (5.25), this prompts us to set:

κ̃
i,n
� (ω) := c2(

1 + w̃
i,n
p′ (0, T ,ω)1/p

′)
×

[
c2

(
1 + 1

L
+ w̃

i,n
p′ (τ�, τ�+1,ω)

1/p′
)]2Ñ i,n

� (ω)+1
,

and then K̃i,n
k,�(ω) := ∏�

j=k κ̃
i,n
j (ω). Returning to the conclusion of the fourth step, we get, for

ω ∈An :=An
1 ∩An

2 ∩An
3 ∩ (

⋂M−1
�=0 A

�,n
4 ),

(n)(E•,n
τ� (ω)

)
r ≤ (n)(θ•,n(ω)

)
q(r)

�∑
j=1

∑
0≤k1≤···≤kj≤kj+1=�

j∏
h=1

4 × ((n)(K̃•,n
kh,kh+1

(ω)
)
q(r)

)3

≤ �22�+1 × 4� × (n)(θ•,n(ω)
)
q(r) ×

((n)(K̃•,n
0,� (ω)

)
q(r)

)3�
.
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The key fact here is that K̃i,n
0,M(ω), for any i ∈ {1, . . . , n}, has finite moments of any order,

independently of i and n. The proof follows from (5.29), from (4.11) and from the third
item in the assumption of the statement of Theorem 5.1, the last two properties implying

that (1 + w̃
i,n
p′ (τ�, τ�+1,ω)

1/p′
)Ñ

i,n
� (ω) has finite moments of any order, independently of i

and n, see for instance (5.43) below. Hence, for a constant C, independent of n but possibly
depending on M , we get (using an obvious exchangeability argument)〈

1An(·)(n)(E•,n
T (·))r 〉r ≤ C

〈(n)(θ•,n(·))q(r)〉2r ≤ C
〈
θ1,n(·)〉q(r),

where we took, without any loss of generality, q(r)≥ 2r . Taking � = q(r) in (5.12), we get
that, for a constant C independent of n, but depending on r ,

(5.37) sup
1≤i≤n

〈
1An(·)∣∣(Xi −X

i)
(·)∣∣〉r ≤ Cςn.

Step 6. From the law of large of numbers and from (4.11), we claim that P((An
1)

�) decays
faster than any n−s , for s > 0. The first step of the proof is to notice that

P
((
An

1
)�) ≤ P

(
ω : (n)(∥∥W •(ω)

∥∥p′
[0,T ],(1/p′)−H

)
q − 〈∥∥W(·)∥∥p′

[0,T ],(1/p′)−H

〉
q ≥ 1

3

)
+ P

(
ω : (n)(∥∥W•(ω)

∥∥p′/2
[0,T ],(2/p′)−H

)
q − 〈∥∥W(·)∥∥p′/2

[0,T ],(2/p′)−H

〉
q ≥ 1

3

)
+ P

(
ω : (n)((∥∥W•,•(ω)

∥∥p′/2
[0,T ],(2/p′)−H

))
q − 〈∥∥W⊥⊥(·, ·)∥∥p′/2

[0,T ],(2/p′)−H

〉
q ≥ 1

3

)
=: πn1,1 + πn1,2 + πn1,3.

Since the most difficult term is the last one, we just explain how to handle it. The other two
terms may be treated in the same way. Since q ≥ 1, we first observe that

πn1,3 ≤ P

(
ω : (n)((∥∥W•,•(ω)

∥∥p′/2
[0,T ],(2/p′)−H))

q
q ≥ 〈∥∥W⊥⊥(·, ·)∥∥p′/2

[0,T ],(2/p′)−H

〉q
q + 1

3q

)
≤ P

(
ω : 1

n2

∑
i �=j

(∥∥Wi,j (ω)
∥∥qp′/2
[0,T ],(2/p′)−H − 〈∥∥W⊥⊥(·, ·)∥∥qp′/2

[0,T ],(2/p′)−H

〉
1

) ≥ 1

3q+1

)

+ P

(
ω : 1

n2

n∑
i=1

∥∥Wi (ω)
∥∥qp′/2
[0,T ],(2/p′)−H ≥ 1

3q+1

)
.

By (4.11), the last term in the right-hand side is easily handled. As for the first one, Markov’s
inequality yields, for any s > 1,

P

(
ω : 1

n2

∑
j �=i

(∥∥Wi,j (ω)
∥∥qp′/2
[0,T ],(2/p′)−H − 〈∥∥W⊥⊥(·, ·)∥∥qp′/2

[0,T ],(2/p′)−H

〉
1

) ≥ 1

3q+1

)

≤ 3s(q+1)

ns+1

n∑
i=1

E

[∣∣∣∣ ∑
j :j �=i

(∥∥Wi,j (·)∥∥qp′/2
[0,T ],(2/p′)−H − 〈∥∥W⊥⊥(·, ·)∥∥qp′/2

[0,T ],(2/p′)−H

〉
1

)∣∣∣∣s].
By (4.11) again and by Rosenthal’s inequality, see [46], we deduce that the right-hand side is
less than Cn−s/2, for a constant C independent of n. This completes the proof of our claim.

The same result holds for P((An
3)

�). Also, since (Ñ i,n([τ�, τ�+1], ·, α))1≤i≤n, are indepen-
dent for any � = 0, . . . ,M − 1 and have finite moments of any order that can be bounded
independently of n, we also have that P((A

�,n
4,1)

�) decays faster than any n−s , for any
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�= 0, . . . ,M − 1. Invoking once again (5.42), the same holds for P((A�,n
4,2)

�) and P((A
�,n
4,3)

�)

and hence for P((A�,n
4 )�). Since M is finite, P((An

4)
�) also decays faster than any n−s .

We finally check that the same is true for An
2. In fact, this is a consequence of (4.23),

choosing therein δ first in terms of p, p′ and q , and then a in terms of δ such that aδ/4 = s.
In the end, Ca in (4.23) depends on p, p′, q and s.

All in all, back to the definition of An at the end of the fifth step, see (5.37), we deduce
that, for any s > 0, P((An)�) ≤ Cn−s . Therefore, in order to conclude, it suffices to prove
that, for any r ≥ 1, we can choose q(r)≥ 8 such that, if X0(·) is in L

q(r), then

(5.38) sup
1≤i≤n

E

[
sup

0≤t≤T
∣∣Xi

t

∣∣r] ≤ C(r),

for a constant C(r) depending on r and on 〈X0(·)〉q(r) but independent of n. Obviously,

(5.38) implies the same inequality but for X
i

by (say for i = 1) letting n tend to ∞ and then
invoking Theorem 4.3.

The proof of (5.38) relies on the final estimate in the statement of Theorem 3.3. To make
it clear, we consider a new random dissection 0 = τ0 < τ1 < · · · < τM = T of [0, T ] (for
simplicity, we use the same notation as in the previous step, but the new dissection has in fact
nothing to do with the first one; in particular, it is random) such that

�
(n)
1

(
ω, [τ�, τ�+1]) := (n)(N̂•,n([τ�, τ�+1],ω,1/(4L0)

))
8 ≤ 1,

�
(n)
2

(
ω, [τ�, τ�+1])

:= (n)([γ 2
0
(
1 + ŵ•,n(0, T ,ω)1/p′)]N̂•,n([τ�,τ�+1],ω,1/(4L)))

32 ≤ η0,

(5.39)

for the same constants as in the statement of Theorem 3.3. We deduce from Theorem 3.3
that there exists a constant C (independent of n) such that, for any i ∈ {1, . . . , n} and � ∈
{0, . . . ,M − 1},∣∣∣∣∣∣Xi(ω)

∣∣∣∣∣∣[τ�,τ�+1],ŵi,n,p′ ≤ [
C

(
1 + ŵ

i,n
p′ (0, T ,ω)1/p

′)]2N̂ i,n([0,T ],ω,1/(4L))
.(5.40)

Observe now that, for any i ∈ {1, . . . , n},

sup
0≤t≤T

∣∣Xi
t −Xi

0

∣∣ ≤
M−1∑
�=0

(∣∣∣∣∣∣Xi(ω)
∣∣∣∣∣∣[τ�,τ�+1],ŵi,n,p′ŵ

i,n
p′ (τ�, τ�+1,ω)

1/p′)
≤M

[
C

(
1 + ŵ

i,n
p′ (0, T ,ω)1/p

′)]2N̂ i,n([0,T ],ω,1/(4L))+1
.

The second factor in the right-hand side has finite moments of any order, see (5.43) below,
replacing therein N̂ i,n

� /
√
δ� by N([0, T ],ω,1/(4L))/

√
T . Moreover, we prove below that M

has sub-exponential tails, that is, P(M > a)≤ c exp(−aε), for c, ε > 0. This suffices to prove
(5.38).

We now prove that (τ�)�=0,...,M in (5.39) may be constructed in such a way that M has
indeed sub-exponential tails. Obviously, see for instance (A.1), it suffices to construct, for
each constraint in (5.39), a subdivision (τ�)�=0,...,M of [0, T ], for which the corresponding
constraint in (5.39) (and only this one) holds true and the number of points M has sub-
exponential tails.

We start with the second constraint in (5.39). By induction, we define the sequence
(τ′
�)�=0,...,M ′ , letting τ′

0 := 0 and τ′
�+1 := inf{t ≥ τ′

� : �(n)2 (ω, [τ′
�, t]) ≥ η0} ∧ T 5 (we recall

5The reader may compare with (2.16), paying attention to the fact that, here, t �→ �
(n)
2 (ω, [τ′

�, t]) is not con-

tinuous but just right upper semicontinuous, namely limε↘0,ε>0 �
(n)
2 (ω, [τ′

�, t + ε]) ≤ �
(n)
2 (ω, [τ′

�, t]) for any
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that η0 > 1), with M ′ := inf�∈N{� ∈ N : τ′
� = T }. We claim that we can choose M = 2M ′.

Indeed, since the counter N̂ i,n appearing in (5.39) is the local accumulation of a continu-
ous function on ST2 , there exists δL > 0 such that, for any t ∈ [0, T ] and any i ∈ {1, . . . , n},
N̂ i,n([t, (t + δL)∧ T ],ω,1/(4L))= 0. (Of course, δL depends on n and ω, but this is not a
problem in the rest of the proof.) Then, for any point t ∈ [τ′

�, τ′
�+1), we have, by definition

of τ′
�+1, �(n)2 (ω, [τ′

�, t]) < η. Moreover, if |τ′
�+1 − t | ≤ δL, then �

(n)
2 (ω, [t, τ′

�+1]) = 1 ≤ η.
Therefore, we may choose τ2� = τ′

� for � ∈ {0, . . . ,M} and then |τ2�+1 − τ′
�+1| ≤ δL. The

sequence (τ�)�=0,...,2M satisfies the second constraint in (5.39).
We now prove thatM ′ has sub-exponential tails (which implies thatM = 2M ′ also has sub-

exponential tails). Letting δ′
� := τ′

�+1 − τ′
�, for any � ∈ N, we have, for any A> 1 (recalling

γ0, η0 > 1),

π ′ := P

(
δ′
� <

1

A
,� <M ′ − 1

)
≤ P

((n)([γ 2(
1 + ŵ

•,n
p′ (0, T ,ω)1/p

′)]N̂•,n
� (ω)/

√
δ′�)1/

√
A

32 ≥ η0
)

= P
((n)([γ 2(

1 + ŵ
•,n
p′ (0, T ,ω)1/p

′)]N̂•,n
� (ω)/

√
δ′�)

32 ≥ η
√
A

0

)
,

with the shorten notation N̂•,n
� (ω)= N̂•,n([τ′

�, τ′
�+1],ω,1/(4L)); in the second line, we used

the fact that (n)([γ 2(1 + ŵ
•,n
p′ (0, T ,ω)1/p

′
)]N̂•,n

� (ω))32 ≥ η0, see footnote (5). We now intro-

duce the function f (x)= exp(ln(x)1+ε), x > 1; it is nondecreasing on [1,∞) and convex on
[e,∞). By Markov inequality,

π ′ ≤ e−(ln[η32
√
A

0 ])1+ε
E

[
f

(
1

n

n∑
i=1

e
[
γ 2(

1 + ŵ
i,n
p′ (0, T , ·)1/p′)]32N̂ i,n

� /
√
δ′�

)]

≤ e−(ln[η32
√
A

0 ])1+ε 1

n

n∑
i=1

E
[
f

(
e
[
γ 2(

1 + ŵ
i,n
p′ (0, T , ·)1/p′)]32N̂ i,n

� /
√
δ′�)],

with e= exp(1). We prove in (5.42) below that, for ε small enough (independently of n),

(5.41) sup
i=1,...,n

E
[
f

(
e
[
γ 2(

1 + ŵ
i,n
p′ (0, T , ·)1/p′)]32N̂ i,n

� /
√
δ′�)] ≤ C,

for C independent of n. As a result, π ′ ≤ C exp(−(32 ln(η0))
1+εA(1+ε)/2), and then,

P
(
M ′ > �+ 1

) = P
(
δ′

1 + · · · + δ′
� < T , �+ 1<M ′)

≤
�∑

i=1

P

(
δ′
i <

T

�
, i + 1 <M ′

)

≤ C�e−(32 ln(η0))
1+ε(�/T )(1+ε)/2

,

which shows that M ′ has sub-exponential tails.
We now check what happens when handling the first constraint in (5.39). We may define

M ′ as before, that is M ′ := inf�∈N{� ∈ N : τ′
� = T } with τ′

0 := 0 and τ′
�+1 := inf{t ≥ τ′

� :

t ∈ [τ′
�, T ]. In order to check the latter, it suffices to prove that t �→ N̂ i,n([τ′

�, t],ω,1/(4L)) is also right upper
semicontinuous, for any i ∈ {1, . . . , n}. Assume indeed that, for an index i ∈ {1, . . . , n}, for a time t ≥ τ′

� and for

an integer �≥ 0, it holds that N̂ i,n([τ′
�, t+ε],ω,1/(4L))≥ � for any ε > 0. Then, for any ε > 0, we can find �+1

reals τ′
� =: t (ε)0 < t

(ε)
1 < · · · < t

(ε)
� ≤ t + ε such that ŵi,n

p′ (t
(ε)
j , t

(ε)
j+1,ω)

1/p′ ≥ 1/(4L). By an obvious compact-

ness argument and by continuity of ŵi,n
p′ , we deduce that there exists �+1 points τ′

� =: t (0)0 < t
(0)
1 < · · ·< t

(0)
� ≤ t

such that ŵi,n
p′ (t

(0)
j , t

(0)
j+1,ω)

1/p′ ≥ 1/(4L), which in turn implies that N̂ i,n([τ′
�, t],ω,1/(4L))≥ �.
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�
(n)
1 (ω, [τ′

�, t]) ≥ 1} ∧ T . Then, we can repeat the same proof as above by using the fact
that {

δ′
� <

1

A
,� <M ′ − 1

}
⊂

{
(n)

(
N̂•,n([τ′

�, τ′
�+1],ω,1/(4L0))√

δ′
�

)
8
≥ √

A

}

and by recalling that

(n)

(
N̂•,n([τ′

�, τ′
�+1],ω,1/(4L0))√

δ′
�

)
8

has Weibull tails with shape parameter strictly greater than 1,6 uniformly in the choice of
the dissection 0 = τ0 < · · ·< τM ′ = T , which follows from the third item in the assumption
of Theorem 5.1 together with the convexity of the function [0,+∞) � x �→ exp(x1+ε), for
ε ≥ 0. This permits to provide an upper bound for P(δ′

� < 1/A, � < M ′ − 1) and then to
deduce as before that M ′ has sub-exponential tails.

It now remains to prove (5.41). By (4.26) and (4.27), we can find a real ε1 > 0, indepen-
dent of n, such that supi=1,...,nE[exp(ŵi,n

p′ (0, T , ·)ε1)] ≤ C, for C independent of n. Hence,
combining with the third item in the assumption of the statement, we get, for any n ≥ 1,
i ∈ {1, . . . , n}, a > 1 and K > 0,

P
((

1 + ŵ
i,n
p′ (0, T , ·)1/p′)N̂ i,n

� /
√
δ′� ≥ a

)
≤ P

(
N̂
i,n
�√
δ′
�

≥K

)
+ P

(
1 + ŵ

i,n
p′ (0, T , ·)1/p′ ≥ a1/K)

≤ ce−K1+ε2 + ce−aε1p
′/K
,

(5.42)

for a new constant c independent of n and i. Choosing K = (lna)1/(1+ε2/2), we deduce that
there exist a constant c > 1 and an exponent ε > 0 such that, for any a > 0,

(5.43) P
((

1 + ŵ
i,n
p′ (0, T , ·)1/p′)N̂ i,n

� /
√
δ′� ≥ a

) ≤ ce−c−1 ln(a)1+2ε
,

from which we obtain (5.41). �

APPENDIX: INTEGRABILITY AND AUXILIARY ESTIMATES

We prove in this appendix auxiliary results that we left aside in the body of the text to
keep focused on the main problems at hand. In Appendix A.1, we show that assumption (c)
in Theorem 5.1 holds true for interacting particle system driven by Gaussian rough paths
satisfying Example 4.2, see Remark 5.2. Appendix A.2 is dedicated to proving a crucial
moment estimate for some quantity of interest in Step 1 of the proof of Theorem 5.1. This is
where the convergence rate ςn appears, see for instance (5.11). In the last Appendix A.3, we
elaborate on the versions of law of large numbers used in the text.

A.1. Gaussian case. Remark 5.2 asserts that the assumptions of Theorem 4.3 are sat-
isfied in the Gaussian framework specified in Example 4.2. Since the derivation of (4.11)
is already justified in the latter example, we only prove here that we can control the em-
pirical local accumulation as in the requirement (c) of Theorem 5.1 with p′ = p therein.

6Recall that a positive random variable A has a Weibull tail with shape parameter 2/� if A1/ρ has a Gaussian
tail.
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Following the proof of [5], Theorem 2.4, we may focus on the local accumulation of each
of the various terms in (5.4). To make it clear, we have the following property: For a given
threshold α > 0 and for any two continuous functions v1 : ST2 → R+ and v2 : ST2 → R+,
set Ni(α) :=Nvi ([0, T ], α), for 1 ≤ i ≤ 2, and N(α) :=Nv1+v2([0, T ], α), see (2.17) for the
original definition, then

(A.1) max
(
N1

(
α

2

)
,N2

(
α

2

))
≥N(α).

Throughout the proof, we choose � as the space W = C([0, T ];Rd), equipped with the
law P of the Gaussian process addressed in Example 4.2. We call H the corresponding
Cameron-Martin space and we regard (W,H,P) as an abstract Wiener space. We then re-
gard (W 1, . . . ,Wn) as the canonical process on �n equipped with the product measure P

⊗n.
We recall from [28], Theorem 10.4, that the processes (Wi )1≤i≤n and (Wi,j )1≤i,j≤n may be
regarded as random variables on �n. We first perform the proof when [τ, τ′] in the require-
ment (c) of Theorem 5.1 is the interval [0, T ] itself; we explain in the last step of the proof
why this may be generalized to any (possibly random) subinterval [τ, τ′] of [0, T ].

Step 1. The first step is to consider, for a given α > 0, the accumulation Ñ i([0, T ],ω,α)
associated with ‖Wi(ω)‖p[s,t],p−v + ‖Wi (ω)‖p/2

[s,t],p/2−v, see (4.3), namely

Ñ i([0, T ],ω,α) :=N�

([0, T ], α)
,

when

�(s, t)p = ∥∥Wi(ω)
∥∥p[s,t],p−v + ∥∥Wi (ω)

∥∥p/2
[s,t],p/2−v,

but this follows from [5], Theorem 2.4, and from an obvious exchangeability argument. The
term v̂

i,n
p′ (s, t,ω) in (5.4) is handled in the same way.

Step 2. We now focus on the local accumulation of the fourth and fifth terms in (4.3). For
simplicity, we just explain what happens for the fourth term. The fifth term may be handled
in the same way.

We use the same notation as in Section 4.1 and proceed as in the proof of [5], Theorem
2.4. The Gaussian process (W 1, . . . ,Wn) has (Wn,H⊕n,P⊗n) as abstract Wiener space. For
ω= (ωi)

n
i=1 ∈�n and for h = ⊕n

i=1 hi ∈ H⊕n, we let

ThW (n)(ω)= T⊕n
i=1 hi

W (n)(ω)

for the translated rough path along h (see [28], (11.5)). By [28], Lemma 11.4, and by Young’s
inequality, with probability 1 under P⊗n, for all h ∈ H⊕n,∥∥Wi,j (ω)

∥∥p/2
[s,t],(p/2)−v ≤ c

(∥∥(ThW)i,j (ω)
∥∥p/2
[s,t],(p/2)−v + ∥∥(ThW)i(ω)

∥∥p[s,t],p−v

+ ∥∥(ThW)j (ω)
∥∥p[s,t],p−v + ‖hi‖p[s,t],�−v + ‖hj‖p[s,t],�−v

)
.

Importantly, the constant c is independent of n. Below, it is allowed to increase from line to
line as long as it remains independent of n. So,

(n)(∥∥Wi,•(ω)
∥∥p/2
[s,t],(p/2)−v

)
q

≤ c
{(n)(∥∥(ThW)i,•(ω)

∥∥p/2
[s,t],(p/2)−v

)
q + (n)(∥∥(ThW)•(ω)

∥∥p[s,t],p−v
)
q

+ ∥∥(ThW)i(ω)
∥∥p[s,t],p−v + ‖hi‖p[s,t],�−v + (n)(‖h•‖p[s,t],�−v

)
q

}
≤ c

{(n)(�(ThW )i,•(ω)�
p
[0,T ],(1/p)−H

)
q(t − s)+ ‖hi‖p[s,t],�−v

+ (n)(‖h•‖p[s,t],�−v
)
q

}
,

(A.2)
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where for any i, j ∈ {1, . . . , n}, we let

�W i,j (ω)�[s,t],(1/p)−H := ∥∥(
Wi,Wj )(ω)∥∥[s,t],(1/p)−H +

√∥∥Wi,j (ω)
∥∥[s,t],(2/p)−H,

and similarly for �(ThW )i,j (ω)�[0,T ],(1/p)−H.
The tricky term in (A.2) is the last one on the last line. The key point is to notice that, for

a given ε ∈ (0,2 − ρ),

(n)(‖h•‖p[s,t],�−v
)
q =

[
1

n

n∑
j=1

‖hj‖pq[s,t],�−v

]1/q

= n−1/q

{[
n∑

j=1

‖hj‖pq[s,t],�−v

](2−ε)/(pq)}p/(2−ε)

≤ n−1/q

[
n∑

j=1

‖hj‖2−ε
[s,t],�−v

]p/(2−ε)
,

where we used the fact that 2 − ε < pq . Observe in particular that, whenever∑n
j=1 ‖hj‖2−ε

[s,t],�−v ≤ n(2−ε)/(pq), it holds

(n)(‖h•‖p[s,t],�−v
)
q ≤ n−1/q

[
n∑

j=1

‖hj‖2−ε
[s,t],�−v

]p/(2−ε)

≤ n−1/q(n(2−ε)/(pq))p/(2−ε)−1
n∑

j=1

‖hj‖2−ε
[s,t],�−v

= n−(2−ε)/(pq)
n∑

j=1

‖hj‖2−ε
[s,t],�−v,

where, in the second line, we used the fact that p/(2 − ε) > 1. Returning to (A.2), we deduce
that, whenever ‖hi‖[s,t],�−v ≤ 1 and

∑n
j=1 ‖hj‖2−ε

[s,t],�−v ≤ n(2−ε)/(pq),

(n)(∥∥Wi,•(ω)
∥∥p/2
[s,t],(p/2)−v

)
q ≤ c

{
(n)(�(ThW )i,•(ω)�

p
[0,T ],(1/p)−H

)
q(t − s)

(A.3)

+ ‖hi‖2−ε
[s,t],�−v + n−(2−ε)/(pq)

n∑
j=1

‖hj‖2−ε
[s,t],�−v

}
.

When the left-hand side is less than or equal to αp , we can modify the constant c in such a way
that the inequality remains true when ‖hi‖[s,t],�−v ≥ 1 or

∑n
j=1 ‖hj‖2−ε

[s,t],�−v ≥ n(2−ε)/(pq).
Noticing that 2 − ε > ρ, (A.3) remains true with (n)(Wi,•(ω))p/2

q;[s,t],(p/2)−v in the left-hand
side.

Define now Ni,n,⊥⊥([0, T ],ω,α) :=N�([0, T ], α), when

�(s, t)p = (n)(
W

i,•(ω)
)p/2
q;[s,t],(p/2)−v.

Then, (A.3) (together with 2 − ε > ρ) yields

Ni,n,⊥⊥([0, T ],ω,α)
αp ≤ c

{
(n)(�(ThW )i,•(ω)�

p
[0,T ],(1/p)−H

)
qT

+ ‖hi‖2−ε
[0,T ],�−v + n−(2−ε)/(pq)

n∑
j=1

‖hj‖2−ε
[0,T ],�−v

}
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≤ c

{
(n)(�(ThW )i,•(ω)�

p
[0,T ],(1/p)−H

)
qT + ‖hi‖2−ε

[0,T ],�−v

+ n−(2−ε)/(pq)+ε/2

[
n∑

j=1

‖hj‖2[0,T ],�−v

](2−ε)/2}
,

where we applied Hölder’s inequality to handle the last term. By choosing ε small enough
such that (2 − ε)/(pq) − ε/2 > 0 and by applying Proposition 11.2 in [28], we get, for a
possibly new value of the constant c,

Ni,n,⊥⊥([0, T ],ω,α)
αp

≤ c
{(n)(�(ThW )i,•(ω)�

p
[0,T ],(1/p)−H

)
qT + ‖h‖2−ε

H⊕nT
(2−ε)/(2ρ)},(A.4)

with ‖h‖2
H⊕n = ∑n

i=1 ‖hi‖2
H. We then notice that (2 − ε)/(2�) > 1/2 since 2 − ε > �. We

deduce that T (2−ε)/(2�) ≤ cT 1/2 for a possibly new value of the constant c. We then apply
Theorems 11.5 and 11.7 in [28] but on the space (W⊗n,H⊕n,P⊗n). Importantly, we observe
that

E
[(n)(�W i,•(ω)�

p
[0,T ],(1/p)−H

)
q

]
is bounded by a constant c, independent of i and n, which proves thatNi,n,⊥⊥([0, T ], ·, α)/√T

has a Weibull distribution with shape parameter 2/(2 − ε), independently of n.
Step 3. We now turn to the local accumulation of the sixth term in (4.3). Taking the norm

(n)(·)q in (A.2), we get, with probability 1 under P⊗n, for all h ∈H⊕n,

(n)((∥∥W•,•(ω)
∥∥p/2
[s,t],(p/2)−v

))
q

≤ c
{(n)((�(ThW )•,•(ω)�

p
[0,T ],(1/p)−H

))
q(t − s)+ (n)(‖h•‖p[s,t],�−v

)
q

}
.

Following the proof of (A.3), we deduce that

(n)((
W

•,•(ω)
))p/2
q;[s,t],p/2−v ≤ c

{
(n)((�(ThW )•,•(ω)�

p
[0,T ],(1/p)−H

))
q(t − s)

+ n−(2−ε)/(pq)
n∑

j=1

‖hj‖2−ε
[s,t],�−v

}
,

at least when the left-hand side is less than or equal to αp . Importantly, there is no need to
distinguish the coordinate i of h from the other coordinates j �= i since the coefficient in
front of any ‖hj‖[s,t],�−v, j = 1, . . . , n, has the same power decay as n tends to ∞. So, the
context is simpler than in the previous step and we may conclude in the same way.

Local accumulations associated to the second term in (4.3) and to (s, t) �→
(n)(v

•,n
p′ (ω))q;[s,t],1−v and (s, t) �→ (n)(v̂

•,n
p′ (ω))q;[s,t],1−v in (5.4) are handled in the same

way. (As for the latter one, the reader may refer to the proof of [5], Theorem 2.4.)
Step 4. The proof has been here achieved on the interval [0, T ]. Importantly, the fact that

T is deterministic does not play any role in the proof. It is in particular quite easy to see
that the interval [0, T ] can be replaced by any (random) sub-interval [τ, τ′] ⊂ [0, T ] as in the
requirement (c) of Theorem 5.1.

A.2. An auxiliary estimate. We prove in this appendix some auxiliary estimates that
were used in Step 1 of the proof of Theorem 5.1. This is where the convergence rate ςn in
Theorem 5.1 appears. Recall we set ςn = n−1/2 if d = 1, and ςn = n−1/2 ln(1 + n), if d = 2,
and ςn = n−1/d , if d ≥ 3. Recall also definitions (5.7), (5.8), (5.9) and (5.10).



PROPAGATION OF CHAOS FOR MEAN FIELD ROUGH EQUATIONS 987

LEMMA A.3. Fix � ≥ 8. There exists an exponent �′ such that, whenever X0(·) ∈ L
�′

, we
can find another constant C, depending on 〈X0(·)〉�′ and satisfying, for any integers 1 ≤ i ≤ n

and any 0 ≤ r ≤ s ≤ t ≤ T ,〈[
F i,n(·)− F

i
(·)]s,t 〉� ≤ Cςn

〈〈
w+(s, t, ·, ·)〉〉1/p�′ ,〈

I i,n,∂{s,t} (·)− I i,∂{s,t}(·)
〉
� ≤ Cςn

(〈〈
w+(s, t, ·, ·)〉〉1/p�′ + 〈〈

w+(s, t, ·, ·)〉〉2/p�′
)
,(∫

�

∣∣∣∣∣1

n

n∑
j=1

δμF
i,j,n
s (ω)W

j,i
s,t (ω)−E

[
δμF

i

s(ω, ·)Wi,⊥⊥
s,t (·,ω)

]∣∣∣∣∣
ρ

dP(ω)

)1/ρ

+ 〈(
δxF

i,n
s (·)− δxF

i

s(·)
)
W

i
s,t (·)

〉
ρ ≤ Cςn

〈〈
w+(s, t, ·, ·)〉〉2/p�′ ,〈{

I i,n,∂{r,s} (·)+ I i,n,∂{s,t} (·)− I i,n,∂{r,t} (·)
} − {

I i,∂{r,s}(·)+ I i,∂{s,t}(·)− I i,∂{r,t}(·)
}〉
�

≤ Cςn
〈〈
w+(r, t, ·, ·)〉〉3/p�′ ,

where w+(r, t,ω,ω′) := w(r, t,ω) + ‖W⊥⊥(ω,ω′)‖p/2
[r,t],p/2−v, with w as in (2.10) for the

same parameters p and q as therein.

The reason the appearance of the quantity w+ instead of w, in the above upper bounds,
will appear at the beginning of Step 2 in the proof.

PROOF. We directly prove the last inequality in the statement; the first three inequalities
follow from similar computations. Throughout the proof, we use the following notations. For

each i ∈ {1, . . . , n}, we call wi the control associated with W
i
(·) through identity (2.10). For

j ∈ {1, . . . , n}, we also let

wi,j (s, t,ω) := ∥∥Wi,j (ω)
∥∥p[s,t],p−v.

We make in the course of the proof an intense use of Lemma A.4 below, giving the conver-
gence rate of the empirical measure of a sample of independent and identically distributed
random variables towards their common law. In this regard, a key fact is that the theoretical
distribution driving the empirical one must be sufficiently integrable. By a variant of (5.38),
we already know that, for any ρ ≥ 1, there exists ρ′ ≥ 8 such that sup0≤t≤T |Xt(·)| is in L

ρ

as soon as X0(·) is in L
ρ′

. The proof of this variant is in fact simpler than the proof of (5.38)
itself, since we can directly invoke Theorem 3.3 instead of (5.40), noticing that the analogue
of M in (5.40) then becomes deterministic, see for instance footnote (3). Importantly, the
same holds true with |||X(·)|||[0,T ],w,p: it belongs to L

ρ if X0(·) is in L
ρ′

, for a well-chosen
ρ′. The proof also follows from Theorem 3.3, by concatenating a deterministic finite number
of intervals of the form [S1, S2], see [5], footnote (5), for some details about concatenation.
We then compute{

I i,n,∂{r,s} (ω)+ I i,n,∂{s,t} (ω)− I i,n,∂{r,t} (ω)
} − {

I i,∂{r,s}(ω)+ I i,∂{s,t}(ω)− I i,∂{r,t}(ω)
}

= (
RFi,n

r,s (ω)−RF
i

r,s (ω)
)
Wi
s,t (ω)+ (

δxF
i,n
r,s (ω)− δxF

i

r,s(ω)
)
W

i
s,t (ω)

+
(

1

n

n∑
j=1

δμF
i,j,n
r,s (ω)W

j,i
s,t (ω)−E

[
δμF

i

r,s(ω, ·)Wi,⊥⊥
s,t (·,ω)

])
,



988 I. BAILLEUL, R. CATELLIER AND F. DELARUE

where

RFi,n

r,s (ω) := F i,n
s (ω)− F i,n

r (ω)− δxF
i,n
r (ω)Wi

r,s(ω)

− 1

n

n∑
j=1

δμF
i,j,n
r (ω)Wj

r,s(ω),

RF
i

r,s (ω) := F
i

s(ω)− F
i

r(ω)− δxF
i

r (ω)W
i
r,s(ω)

−E
[
δμF

i

r(ω, ·)Wi
r,s(·)

]
.

(A.5)

Following (5.8) and (5.9), we define differentiable functions Gx and Gμ of their arguments
setting

δxF
i,n
t (ω)=:Gx

(
X
i

t (ω),μ
n
t (ω)

)
, δxF

i

t (ω)=:Gx

(
X
i

t (ω),L(Xt)
)
,

δμF
i,j,n
t (ω)=:Gμ

(
X
i

t (ω),μ
n
t (ω)

)(
X
j

t (ω)
)
,

δμF
i

t (ω, ·)=:Gμ

(
X
i

t (ω),L(Xt)
)(
X
i

t (·)
)
.

Finally, we can write the whole difference in the form{
I∂{r,s}(ω)+ I∂{s,t}(ω)− I∂{r,t}(ω)

} − {
I∂{r,s}(ω)+ I∂{s,t}(ω)− I∂{r,t}(ω)

}
= (

RFi,n

r,s (ω)−RF
i

r,s (ω)
)
Wi
s,t (ω)

+ [
Gx

(
X
i
(ω),μn(ω)

) −Gx

(
X
i
(ω),L(X)

)]
r,sW

i
s,t (ω)

+ 1

n

n∑
j=1

[
Gμ

(
X
i
(ω),μn(ω)

)(
X
j
(ω)

) −Gμ

(
X
i
(ω),L(X)

)(
X
j
(ω)

)]
r,sW

j,i
s,t (ω)

+ 1

n

n∑
j=1

[
Gμ

(
X
i
(ω),L(X)

)(
X
j
(ω)

)]
r,sW

j,i
s,t (ω)−E

[
δμF

i

r,s(ω, ·)Wi,⊥⊥
s,t (·,ω)

]
.

(A.6)

A key fact is that Gx and Gμ are Lipschitz continuous in all the entries, the Lipschitz prop-
erty in μ being understood with respect to d1. Moreover, similar to F itself, they are jointly
continuously differentiable in all the arguments and the derivatives are Lipschitz continuous,
the Lipschitz property in μ being again understood with respect to d1.

Step 1. Observe that[
Gx

(
X
i
(ω),μn(ω)

)]
r,s

=
∫ 1

0
∂xGx

(
X
i,(λ)

r;(r,s)(ω),μ
n,λ
r;(r,s)(ω)

)
X
i

r,s(ω)dλ

+ 1

n

n∑
j=1

∫ 1

0
DμGx

(
X
i,(λ)

r;(r,s)(ω),μ
n,λ
r;(r,s)(ω)

)(
X
j,(λ)

r;(r,s)(ω)
)
X
j

r,s(ω)dλ

=
∫ 1

0
∂xGx

(
X
i,(λ)

r;(r,s)(ω),μ
n,λ
r;(r,s)(ω)

)
X
i

r,s(ω)dλ

+
∫
R2d

[∫ 1

0
DμGx

(
X
i,(λ)

r;(r,s)(ω),μ
n,λ
r;(r,s)(ω)

)
(y)zdλ

]
dν

n,λ
r;(r,s)(ω;y, z)

(A.7)

where

μ
n,(λ)
r;(r,s)(ω) := 1

n

n∑
j=1

δ
X
j,(λ)
r;(r,s)(ω)

, ν
n,(λ)
s;(s,t)(ω) := 1

n

n∑
j=1

δ
(X

j,(λ)
r;(r,s)(ω),X

j
r,s (ω))

,



PROPAGATION OF CHAOS FOR MEAN FIELD ROUGH EQUATIONS 989

with

X
j,(λ)

r;(r,s)(ω) :=X
j

r (ω)+ λX
j

r,s(ω).

Proceeding similarly with [Gx(X
i
(ω),L(X))]r,s , we get[

Gx

(
X
i
(ω),μn(ω)

) −Gx

(
X
i
(ω),L(X)

)]
r,s

=
∫ 1

0

[
∂xGx

(
X
i,(λ)

r;(r,s)(ω),μ
n,(λ)
r;(r,s)(ω)

)
− ∂xGx

(
X
i,(λ)

r;(r,s)(ω),L
(
X
(λ)
r;(r,s)

))]
X
i

r,s(ω)dλ

+
∫
R2d

[∫ 1

0
DμGx

(
X
i,(λ)

r;(r,s)(ω),μ
n,(λ)
r;(r,s)(ω)

)
(y)z dλ

]
dν

n,(λ)
r;(r,s)(ω;y, z)

−
∫
R2d

[∫ 1

0
DμGx

(
X
i,(λ)

r;(r,s)(ω),L
(
X
(λ)
r;(r,s)

))
(y)z dλ

]
dL

(
X
(λ)
r;(r,s),Xr,s

)
(y, z),

where, as before, X(λ)
r;(r,s)(ω) = Xr(ω)+ λXr,s(ω). Splitting the last two terms in the above

expansion into∫
R2d

[∫ 1

0
DμGx

(
X
i,(λ)

r;(r,s)(ω),μ
n,(λ)
r;(r,s)(ω)

)
(y)z dλ

]
dν

n,(λ)
r;(r,s)(ω;y, z)

−
∫
R2d

[∫ 1

0
DμGx

(
X
i,(λ)

r;(r,s)(ω),L
(
X
(λ)
r;(r,s)

))
(y)z dλ

]
dν

n,(λ)
r;(r,s)(ω;y, z)

+
∫
R2d

[∫ 1

0
DμGx

(
X
i,(λ)

r;(r,s)(ω),L
(
X
(λ)
r;(r,s)

))
(y)z dλ

]
dν

n,(λ)
r;(r,s)(ω;y, z)

−
∫
R2d

[∫ 1

0
DμGx

(
X
i,(λ)

r;(r,s)(ω),L
(
X
(λ)
r;(r,s)

))
(y)z dλ

]
dL

(
X
(λ)
r;(r,s),Xr,s

)
(y, z),

we get∣∣[Gx

(
X
i
(ω),μn(ω)

) −Gx

(
X
i
(ω),L(X)

)]
r,s

∣∣
≤ c

∫ 1

0
d1

(
μ
n,(λ)
r;(r,s)(ω),L

(
X
(λ)
r;(r,s)

))
dλ

×
(∣∣∣∣∣∣Xi

(ω)
∣∣∣∣∣∣[0,T ],wi,pw

i(r, s,ω)1/p + 1

n

n∑
k=1

∣∣∣∣∣∣Xk
(ω)

∣∣∣∣∣∣[0,T ],wk,pw
k(r, s,ω)1/p

)

+ c
∣∣S i,nr,s (

ω,
∣∣X•

r,s(ω)
∣∣)∣∣,

where S i,nr,s (ω, |X•
r,s(ω)|) is the n-empirical mean of n variables that are dominated by

(|Xj

r,s(ω)| + 〈Xr,s(·)〉1)j=1,...,n and n− 1 of which are conditionally centred and condition-

ally independent given the realization of the path (X
i
,Wi,Wi). Allowing the value of the

constant c to increase from line to line, we obtain∣∣[Gx

(
X
i
(ω),μn(ω)

) −Gx

(
X
i
(ω),L(X)

)]
r,sW

i
s,t (ω)

∣∣
≤ c

∫ 1

0
d1

(
μ
n,(λ)
r;(r,s)(ω),L

(
X
(λ)
r;(r,s)

))
dλ

×
[∣∣∣∣∣∣Xi

(ω)
∣∣∣∣∣∣[0,T ],wi,p +

(
1

n

n∑
k=1

∣∣∣∣∣∣Xk
(ω)

∣∣∣∣∣∣2[0,T ],wk,p

)1/2]
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×
[
wi(r, t,ω)3/p + 1

n

n∑
k=1

wk(r, t,ω)3/p

]

+ c
∣∣S i,nr,s (

ω,
∣∣X•

r,s(ω)
∣∣)∣∣wi(r, t,ω)2/p.

In order to conclude for the second term in the right-hand side of (A.6), it suffices to recall
from Rosenthal’s inequality (applied under the conditional probability given the realization

of the path (X
i
,Wi,Wi)) that〈
S i,nr,s

(·, ∣∣X•
r,s(·)

∣∣)〉
3�/2 ≤ cn−1/2〈∣∣∣∣∣∣X(·)∣∣∣∣∣∣[0,T ],w,pw(r, s, ·)1/p

〉
3�/2

≤ cn−1/2〈∣∣∣∣∣∣X(·)∣∣∣∣∣∣[0,T ],w,p
〉
χ�

〈
w(r, t, ·)〉1/pχ� ,

where χ ≥ 1 is a universal constant whose value may change from line to line (as long as it
remains universal). If ρ is large enough, we deduce from Lemma A.4 that〈[

Gx

(
X
i
(·),μn(·)) −Gx

(
X
i
(·),L(X))]r,sWi

s,t (·)
〉
�

≤ c

(∫ 1

0

〈
d1

(
μ
n,(λ)
r;(r,s)(·),L

(
X
(λ)
r;(r,s)

))〉
χ� dλ

)〈∣∣∣∣∣∣X(·)∣∣∣∣∣∣[0,T ],w,p
〉
χ�

× 〈
w(r, t, ·)〉3/pχ�

+ cn−1/2〈∣∣∣∣∣∣X(·)∣∣∣∣∣∣[0,T ],w,p
〉
χ�

〈
w(r, t, ·)〉3/pχ�

≤ cςn

(
1 +

〈
sup

0≤u≤T
∣∣Xu(·)

∣∣〉
χ�

)〈∣∣∣∣∣∣X(·)∣∣∣∣∣∣[0,T ],w,p
〉
χ�

〈〈
w+(r, t, ·, ·)〉〉3/pχ� .

Step 2. By the same argument, we have∣∣[Gμ

(
X
i
(ω),μn(ω)

)(
X
j
(ω)

) −Gμ

(
X
i
(ω),L(X)

)(
X
j
(ω)

)]
r,sW

j,i
s,t (ω)

∣∣
≤ c

(∫ 1

0
d1

(
μ
n,(λ)
r;(r,s)(ω),L

(
X
(λ)
r;(r,s)

))
dλ

)
wj,i(s, t,ω)2/p

×
[∣∣∣∣∣∣Xi

(ω)
∣∣∣∣∣∣[0,T ],wi,p + ∣∣∣∣∣∣Xj

(ω)
∣∣∣∣∣∣[0,T ],wj ,p +

(
1

n

n∑
k=1

∣∣∣∣∣∣Xk
(ω)

∣∣∣∣∣∣2[0,T ],wk,p

)1/2]

×
[
wi(r, s,ω)1/p +wj(r, s,ω)1/p +

(
1

n

n∑
k=1

wk(r, s,ω)2/p

)1/2]

+ c
∣∣S i,j,nr,s

(
ω,

∣∣X•
r,s(ω)

∣∣)∣∣wj,i(s, t,ω)2/p,

where 〈
S i,j,nr,s

(·, ∣∣X•
r,s(·)

∣∣)〉
3�/2 ≤ cn−1/2〈|||X|||[0,T ],w,pw(r, s, ·)1/p〉

3�/2

≤ cn−1/2〈|||X|||[0,T ],w,p
〉
χ�

〈
w(r, t, ·)〉1/pχ� .

Observing that 〈wj,i(s, t, ·)2/p〉χ� ≤ 〈〈w+(r, t, ·, ·)〉〉2/p
χ� —this is the rationale for introducing

w+, and taking expectation, we get〈[
Gμ

(
X
i
(·),μn(·))(Xj

(·)) −Gμ

(
X
i
(·),L(X))(Xj

(·))]r,sWj,i
s,t (ω)

〉
�

≤ c

(∫ 1

0

〈
d1

(
μ
n,(λ)
r;(r,s)(·),L

(
X
(λ)
r;(r,s)

))〉
χ� dλ

)〈∣∣∣∣∣∣X(·)∣∣∣∣∣∣[0,T ],w,p
〉
χ�
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× 〈〈
w+(r, t, ·, ·)〉〉3/pχ�

+ cn−1/2〈∣∣∣∣∣∣X(·)∣∣∣∣∣∣[0,T ],w,p
〉
χ�

〈〈
w+(r, t, ·, ·)〉〉3/pχ� .

Taking the mean over j , we obtain as upper bound for the third term in the right-hand side of
(A.6) the quantity〈

1

n

n∑
j=1

[
Gμ

(
X
i
(·),μn(·))(Xj

(·)) −Gμ

(
X
i
(·),L(X))(Xj

(·))]r,sWj,i
s,t (ω)

〉
�

≤ c

(∫ 1

0

〈
d1

(
μ
n,(λ)
r;(r,s)(·),L

(
X
(λ)
r;(r,s)

))〉
χ� dλ

)〈∣∣∣∣∣∣X(·)∣∣∣∣∣∣[0,T ],w,p
〉
χ�

× 〈〈
w+(r, t, ·, ·)〉〉3/pχ�

+ cn−1/2〈∣∣∣∣∣∣X(·)∣∣∣∣∣∣[0,T ],w,p
〉
χ�

〈〈
w+(r, t, ·, ·)〉〉3/pχ� .

By Lemma A.4, we get the same bound as in the first step.
Step 3. We now turn to the last term in the right-hand side of (A.6). It reads as the empirical

mean of n random variables, n − 1 of which are conditionally centred and conditionally

independent given the realization of the paths (X
i
,Wi,Wi), namely

1

n

n∑
j=1

[
Gμ

(
X
i
(ω),L(X)

)(
X
j
(ω)

)]
r,sW

j,i
s,t (ω)−E

[
δμF

i

r,s(ω, ·)Wi,⊥⊥
s,t (·,ω)

]
.

We can handle the above term by invoking Rosenthal’s inequality once again (in a conditional

form). To do so, it suffices to compute the L
� norm of [Gμ(X

i
(ω),L(X))(Xj

(ω))]r,s ×
W

j,i
s,t (ω). Doing as before (see (A.7)), it is less than c〈|||X(·)|||[0,T ],w,p〉χ�〈〈w+(r, t, ·, ·)〉〉3/p

χ� .
So, 〈

1

n

n∑
j=1

[
Gμ

(
X
i
(ω),L(X)

)(
X
j
(ω)

)]
r,sW

j,i
s,t (ω)−E

[
δμF

i

r,s(ω, ·)Wi,⊥⊥
s,t (·,ω)

]〉
�

≤ cn−1/2〈∣∣∣∣∣∣X(·)∣∣∣∣∣∣[0,T ],w,p
〉
χ�

〈〈
w+(r, t, ·, ·)〉〉3/pχ� ,

which suffices to conclude.
Step 4. We now handle the remainders in (A.6). By expanding (A.5) and by using similar

notations for the remainders in the expansion of each (X
j
)j=1,...,n, we have (see for instance

the proof of [5], Proposition 3.5, and in particular [5], (3.9))

RFi,n

r,s (ω)= ∂xF
(
X
i

r(ω),μ
n
r (ω)

)
RX

i

r,s (ω)

+ 1

n

n∑
j=1

DμF
(
X
i

r(ω),μ
n
r (ω)

)(
X
j

r (ω)
)
RX

j

r,s (ω)

+
∫ 1

0

[
∂xF

(
X
i,(λ)

r;(r,s)(ω),μ
n,(λ)
r;(r,s)(ω)

) − ∂xF
(
X
i

r(ω),μ
n
r (ω)

)]
X
i

r,s(ω)dλ

+ 1

n

n∑
j=1

∫ 1

0

[
DμF

(
X
i,(λ)

r;(r,s)(ω),μ
n,(λ)
r;(r,s)

)(
X
j,(λ)

r;(r,s)(ω)
)

−DμF
(
X
i

r(ω),μ
n
r

)(
X
j

r (ω)
)]
X
j

r,s(ω)dλ.

(A.8)
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Expanding RF
i

r,s (ω) in a similar way, we have to investigate four difference terms in order to

estimate the difference RFi,n

r,s (ω)−RF
i

r,s (ω). The first difference term corresponds to the first
term in the right-hand side of (A.8)

∣∣[∂xF
(
X
i

r(ω),μ
n
r (ω)

) − ∂xF
(
X
i

r(ω),L(Xr)
)]
RX

i

r,s (ω)
∣∣

≤ cd1
(
μnr (ω),L(Xr)

)∣∣∣∣∣∣Xi
(·)∣∣∣∣∣∣[0,T ],wi,pw

i(r, s,ω)2/p.

Then, we must recall that, in the first line of the right-hand side in (A.6), the difference

RFi,n

r,s (ω)−RF
i

r,s (ω) is multiplied by Wi
s,t (ω), which is less than wi(s, t,ω)1/p . In other words,

we must multiply both sides in the above inequality by wi(r, t,ω)1/p . By Cauchy Schwarz
inequality, the L

� norm of the resulting bound is less than

c
〈
d1(μ

n
r (·),L(Xr)

〉
χ�

〈|||X(·)|||[0,T ],w,p
〉
χ�

〈
w(r, t, ·)〉3/pχ� .

The second difference term that we have to handle corresponds to the second term in the
right-hand side of (A.8). With an obvious definition for RX(·), it reads∣∣∣∣∣1

n

n∑
j=1

DμF
(
X
i

r(ω),μ
n
r (ω)

)(
X
j

r (ω)
)
RX

j

r,s (ω)

− 〈
DμF

(
X
i

r(ω),L(Xr)
)(
Xr(·))RX

r,s(·)
〉∣∣∣∣∣.

Proceeding exactly as in the first step, the latter is bounded by

cd1
(
μnr (ω),L(Xr)

)(1

n

n∑
j=1

∣∣RX
j

r,s (ω)
∣∣) + c

∣∣S i,nr,s (
ω,

∣∣RX
•

r,s (ω)
∣∣)∣∣,

where S i,nr,s (ω, |RX
•

r,s (ω)|) is the n-empirical mean of n variables that are dominated by

(|RX
j

r,s (ω)| + 〈RX
r,s(·)〉1)j=1,...,n and n− 1 of which are conditionally centred and condition-

ally independent given the realization of the path (X
i
,Wi,Wi). Hence, the L

� norm of the
right-hand side, after multiplication as before by wi(s, t,ω)1/p , is less than

c
(〈

d1
(
μnr (·),L(Xr)

)〉
χ� + n−1/2)〈∣∣∣∣∣∣X(·)∣∣∣∣∣∣[0,T ],w,p

〉
χ�

〈
w(r, t, ·)〉3/pχ� .

As for the third term in the right-hand side of (A.8), it fits, up to the additional factor

X
i

r,s(ω) and for each value of λ, the term studied in the first step. So we get as an upper
bound for its L� norm, after multiplication by wi(s, t,ω)1/p , the quantity

c

(∫ 1

0

∫ 1

0

〈
d1

(
μ
n,(λλ′)
r;(r,s) (·),L

(
X
(λλ′)
r;(r,s)

))〉
χ� dλdλ

′
)

× 〈∣∣∣∣∣∣X(·)∣∣∣∣∣∣[0,T ],w,p
〉2
χ�

〈
w(r, t, ·)〉3/pχ�

+ cn−1/2〈∣∣∣∣∣∣X(·)∣∣∣∣∣∣[0,T ],w,p
〉2
χ�

〈
w(r, t, ·)〉3/pχ� .

Following Step 2, we get exactly a similar bound for the fourth term in the right-hand side of
(A.8). �
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A.3. About law of large numbers.

LEMMA A.4. There exists a real ρd ≥ 1 such that, for any ρ ≥ ρd and any probability
measure μ on R

d satisfying Mρ(μ) := (
∫
Rd |x|ρμ(dx))1/ρ <∞, it holds

E
[
d1

(
μn(·),μ)ρ/3]3/ρ ≤ cρ,dMρ(μ)ςn,

for a constant cρ,d , only depending on ρ and d , where μn(·) is the empirical distribution of
n independent identically distributed random variables and with ςn as in the introduction of
Section A.2.

PROOF. Without any loss of generality, we can assume that Mρ(μ)= 1, see the argument
in [14], Chapter 5, Theorem 5.8. Then Theorem 2 in [26] gives us the following results. For
d ≥ 3, we have (for ρ ≥ 2)

P
(
d1

(
μn(·),μ) ≥Aςn

) ≤ C exp
(−cnςdnAd) +Cn(nAςn)

−ρ/2,

in which case the result easily follows. When d = 1, we have

P
(
d1

(
μn(·),μ) ≥Aςn

) ≤ C exp
(−cnς2

nA
2) +Cn(nAςn)

−ρ/2,

and the result follows as well by our choice of ςn. Finally, when d = 2,

P
(
d1

(
μn(·),μ) ≥Aςn

) ≤ C exp
(
− cnς2

nA
2

(ln(2 +A−1ς−1
n ))2

)
+Cn(nAςn)

−ρ/2.

Assuming without any loss of generality that A≥ 1, we have

ln
(
2 +A−1ς−1

n

) ≤ ln
(
2 + ς−1

n

) = ln(1 + 2ςn)− ln(ςn),

which is less than −2 ln(ςn) for n large enough. Given our choice of ςn, we have − ln(ςn)=
ln(n)/2− ln(ln(1+n)), which is less than ln(n)/2. Hence, modifying the value of the constant
c, we get, for A≥ 1 and for n large enough, independently of the value of A, we get the bound

P
(
d1

(
μn(·),μ) ≥Aςn

) ≤ C exp
(
−cA2 ln(1 + n)2

ln(n)2

)
+Cn(nAςn)

−ρ/2,

which suffices to complete the proof. �

LEMMA A.5. Let (Xn)n≥1 be a collection of independent and identically distributed
random variables with values in a Polish space S and let f be a real-valued Borel function
on S2 such that E[|f (X1,X2)|] and E[|f (X1,X1)|] are both finite. Then, with probability 1,

lim
n→∞

1

n2

n∑
i,j=1

f (Xi,Xj )= E
[
f (X1,X2)

]
.

PROOF. By the standard version of the law of large numbers, it suffices to prove that,
with probability 1,

lim
n→∞

1

n2

n∑
i,j=1,i �=j

f (Xi,Xj )= E
[
f (X1,X2)

]
.

Letting Sn = ∑n
i,j=1,i �=j f (Xi,Xj ), for n ≥ 1, we then define the σ -field Gn = σ(Sk, k ≥

n). By independence of the variables (Xk)k≥1, we have, for any (i, j) ∈ {1, . . . , n}2 with
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i �= j , E[f (Xi,Xj )|Gn] = E[f (Xi,Xj )|Sn]. By exchangeability, this is also equal to
E[f (X1,X2)|Sn]. We get

E
[
f (X1,X2)|Gn] = 1

n2 − n

n∑
i,j=1,i �=j

E
[
f (Xi,Xj )|Sn] = Sn

n2 − n
.

By Lévy’s downward theorem and by Kolmogorov’s zero-one law, the left-hand side con-
verges almost surely to E[f (X1,X2)]. �
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