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We provide a solution to the problem of optimal transport by Brown-
ian martingales in general dimensions whenever the transport cost satisfies
certain subharmonic properties in the target variable as well as a stochas-
tic version of the standard “twist condition” frequently used in deterministic
Monge transport theory. This setting includes, in particular, the case of the
distance cost c(x, y) = |x − y|. We prove existence and uniqueness of the
solution and characterize it as the first time Brownian motion hits a barrier
that is determined by solutions to a corresponding dual problem.

1. Introduction. Given a cost function c : Rd × R
d → R, the Monge optimal transport

problem seeks a map T : Rd → R
d that pushes forward a given probability measure μ to ν

(written as T#μ = ν) while minimizing the total transport cost,

Tc(μ, ν) = inf
T#μ=ν

∫
Rd

c
(
x,T (x)

)
μ(dx).(1)

Kantorovich [35] proposed the following linear relaxation of the Monge problem, which
was eventually shown in [42] to have the same infimum provided c is continuous and μ is
nonatomic:

Tc(μ, ν) = inf
π∈�(μ,ν)

∫
Rd×Rd

c(x, y)π(dx, dy),(2)

where �(μ, ν) is the set of probability measures on R
d ×R

d , whose marginals are μ and ν.
In turn, the last expression can also be written in terms of an optimal statistical correlation
problem between probability measures given by

Tc(μ, ν) = inf
{
E

[
c(X,Y )

];X ∼ μ,Y ∼ ν
}
,(3)

where X ∼ μ means that the random variable X has μ as its distribution.
Monge [40] originally formulated problem (1) with the distance cost c(x, y) = |x − y|,

and a solution was provided more than 200 years later [1, 13, 19, 48]. Brenier [11], on the
other hand, dealt with the important case of the squared distance c(x, y) = |x − y|2, which
was extended by Caffarelli [12], Gangbo and McCann [23], Gangbo [22], Levin [37] and
Ma-Trudinger-Wang [39] to more general cost functions c that satisfy the so-called twist
condition, namely,

the map y �→ ∇xc(x, y) is one-to-one for all x.(4)

This condition was shown to be sufficient to ensure that the minimizer of the relaxed problem
(2) is indeed supported on the graph of a single-valued map T , hence solving the original
problem (1). In the statistical terms of (3), the result means that the optimal random variables
are perfectly dependent, that is, Y = T ◦ X a.e.
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We also note that optimal transport problems associated to cost functions of the form
g(|x − y|), where g is convex can be represented by ones given by the generating function of
an associated Lagrangian L, that is,

(5) c(x, y) = inf
{∫ 1

0
L

(
t, γ (t), γ̇ (t)

)
dt;γ (0) = x, γ (1) = y

}
.

In this case, optimizing maps are closely related to the corresponding Hamiltonian dynamics
(e.g., Benamou–Brenier [9], Bernard–Buffoni [10]).

The martingale transport problem was motivated by questions of option pricing in math-
ematical finance; see, for example, [16, 30, 32]. It consists of a constrained version of (3),
when the pair of random variables (X,Y ) forms a one-step martingale, that is,

Mc(μ, ν) = inf
{
E

[
c(X,Y )

];X ∼ μ,Y ∼ ν and E[Y |X] = X
}
.(6)

The martingale property on (X,Y ) entails that (w(X),w(Y )) is a real-valued submartingale
for any convex function w on R

d . This implies a necessary condition on the probability
measures μ and ν for such a martingale pairing to exist, namely, that they are in convex
order, that

μ ≺C ν which means
∫

w(x)μ(dx) ≤
∫

w(y)ν(dy) for all convex functions w.

A remarkable theorem of Strassen [46] states that the convex order between μ and ν is also
sufficient for the existence of a one-step martingale starting at μ and ending at ν, hence pro-
viding a martingale transport for problem (6). The martingale transport problem is by now
well understood in dimension one, including the formulation of corresponding dual princi-
ples, cases where the latter are attained, as well as questions of uniqueness and structure of
the optimal martingales in the primal problem (see, e.g., [5, 6, 8, 16, 30, 32]). The higher
dimensional case, however, is less understood, as could be seen in [25] where a solution for
dimension d = 2 is given.

In this paper we shall address the Brownian martingale transport problem, which involves
a more particular class of martingales and can be formulated as

Pc(μ, ν) = inf
τ

{
E

[
c(B0,Bτ )

];B0 ∼ μ & Bτ ∼ ν
}
,(7)

where (Bt )t is Brownian motion starting with distribution μ and ending at a stopping time τ

such that Bτ realizes the distribution ν. Note that here again, this imposes (in dimension d ≥
2) an even more stringent condition on the pair (μ, ν), namely, that they are in subharmonic
order, that is,

μ ≺SH ν which means
∫

w(x)μ(dx) ≤
∫

w(y)ν(dy) for all subharmonic functions w.

This problem was originally proposed by Skorokhod in one dimension [45] with μ = δ0,
where he proved the existence of a randomized stopping time τ such that Bτ ∼ ν, where (Bt )t
is a Brownian motion starting at zero. The existence of a nonrandomized stopping time in
one dimension was established in [17] and [43]. An alternative construction of a randomized
stopping was given by [44] for more general processes. The existence of a nonrandomized
stopping time in higher dimensions was established by Baxter and Chacon [2] and extended
in [20]. A thorough review of solutions to the Skorokhod problem and its connections with
optimal transport has been given in [41].

Another formulation of this problem, similar to Kantorovich’s relaxation but which re-
stricts the transport plans to follow Brownian paths, is the following:

Pc(μ, ν) = inf
π∈BM(μ,ν)

∫
Rd×Rd

c(x, y)π(dx, dy),(8)
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where each π ∈ BM(μ, ν) is a probability measure on R
d ×R

d with marginals μ and ν, sat-
isfying δx ≺SH πx for μ-a.e. x, where πx is the disintegration of π(dx, dy) = πx(dy)μ(dx).
Again, such transport plans π can be seen as joint distributions of (B0,Bτ ) ∼ π , where
B0 ∼ μ, Bτ ∼ ν and τ is a possibly randomized stopping time for the Brownian filtration;
see, for example, [24]. Under the assumption that μ and ν have compact support, the set
BM(μ, ν) is a weak∗-compact set of measures in the Banach space dual to the bounded
continuous functions, and problem (8) has an optimal solution π∗ ∈ BM(μ, ν). However,
similar to the issue triggered by Kantorovich’s relaxation of (1), such a solution may very
well correspond to a randomized stopping time. A main objective of this paper is to figure
out when there exists a true and unique optimal stopping time that solves the problem.

This problem is equivalent to the martingale problem in the one dimensional case, a context
addressed by Henry–Labordere–Touzi [31] and others. The duality theory and applications to
mathematical finance were developed in [34] and [5] which also establish the existence and
uniqueness of an optimal nonrandomized optimal stopping time under certain conditions.
Motivated by the methods of standard mass transports, in [3] Beiglböck, Cox, and Hues-
mann further developed the duality theory and a monotonicity principle for problems with
stochastic cost processes of the form

inf
τ

{
E[Gτ ];B0 ∼ μ,Bτ ∼ ν

}
.

In particular, they used this theory to solve the problem in the case Gτ = g(τ) where g is
strictly convex (resp., concave), by showing that the unique optimal stopping time is given
by the classical Root (resp. Rost) embedding which is the hitting time of a space-time barrier.
The problem of the attainment of the dual problem remained a challenge. In [8] the authors
prove that a relaxed dual problem is attained when d = 1 or costs of the form (7), and then
the attainment of the original dual problem was established for d = 1 in [6]. By using PDE
methods, dual attainment was extended for d > 1 in [27] to the case where the cost is an
integral along the path, that is, for problems of the form

inf
τ

{
E

[∫ τ

0
L(t,Bt ) dt

]
;B0 ∼ μ,Bτ ∼ ν

}
.(9)

For these costs it is shown in [27] that the unique optimal stopping time is the hitting time of
a space-time barrier when L is strictly increasing (resp., decreasing).

Our goal in this paper is to solve problem (7) in general dimensions for costs that only
depend on the initial and final states and not on the path traveled between them, and we make
special note of the case where the cost is given by the Euclidean distance c(x, y) = |x − y|.
It is important to note that, unlike standard mass transports, problem (7) cannot be reduced
to (9) nor to

inf
τ,A

{
E

[∫ τ

0
L(t,Xt ,At) dt

]
;X0 ∼ μ,Xτ ∼ ν

}
,(10)

where Xt ∈ R
n solves the SDE: dXt = f (Xt ,At) dt + σdWt . We mention that because,

at least in (9), the time monotonicity of the Lagrangian cost enables one to construct an
appropriate barrier set in space-time, as was done in [3] and [27], hence establishing both
the uniqueness and the hitting-time characterization of the optimal stopping. A similar result
was established in [24] in the case where the measures μ, ν and the cost c(x, y) are radially
symmetric.

We also note that another advantage of the Lagrangian formulation of the cost is the asso-
ciated Eulerian (mass flow) formulation to the optimal transport problem [9, 10] which was
also extended to the free-end case in both the deterministic [26] and stochastic cases [27] as
long as the cost is of Lagrangian type. However, this seminal approach cannot be used for the
costs we are considering in this paper, where we prove—among other things—the following
result.
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THEOREM (See Theorem 7.2). Let μ and ν be two probability measures that are sup-
ported on an open bounded convex set O ⊂ R

d . Assuming μ ≺SH ν and that they have con-
tinuous densities with respect to Lebesgue measure, then there is a unique optimal stopping
time τ ∗ that minimizes

inf
τ

{
E|B0 − Bτ |;B0 ∼ μ & Bτ ∼ ν

}
.(11)

Moreover, τ ∗ is only randomized at 0, while otherwise it is given by the hitting time

(12) η = inf
{
t > 0; (B0,Bt ) ∈ R

}
for some measurable R ⊂ O × O .

We shall first establish the following weak duality formula for the primal problem (7)
under the mere assumption that c ∈ C(Rd ×R

d):

(13) Pc(μ, ν) = Dc(μ, ν) := sup
ψ∈LSC(O)

{∫
O

ψ(y)ν(dy) −
∫
O

Jψ(x, x)μ(dx)

}
,

where LSC(O) is the cone of all bounded lower semicontinuous functions on O . Throughout
the paper we will denote Bx

t as the Brownian motion beginning with Bx
0 = x, and we will

use the restriction of stopping times to this set of paths without changing notation so that, for
continuous functions h ∈ C(Rd ×R

d) and stopping times τ ,

E
[
h(B0,Bτ )

] =
∫
Rd

E
[
h
(
x,Bx

τ

)]
μ(dx).

The so-called value function Jψ is defined as

Jψ(x, y) = sup
τ≤τO

E
[
ψ

(
By

τ

) − c
(
x,By

τ

)]
,(14)

where τO is the first exit time of the set O . We point out two other useful characterizations
of the value function Jψ . Under some regularity assumptions on ψ and c and for each fixed
x ∈ O , the function y �→ Jψ(x, y) is the unique viscosity solution to the obstacle problem for
u ∈ C(O): ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(y) ≥ ψ(y) − c(x, y) for y ∈ O,

u(y) = ψ(y) − c(x, y) for y ∈ ∂O,

�u(y) ≤ 0 for y ∈ O,

�u(y) = 0 whenever u(y) > ψ(y) − c(x, y)

as well as the unique minimizer of the variational problem

min
u∈H 1(O)

{∫
O

∣∣∇u(y)
∣∣2 dy;u ≥ ψ − c(x, ·), u − ψ + c(x, ·) ∈ H 1

0 (O)

}
.

We then assume the following condition on the cost:

y �→ c(x, y) is subharmonic and D-superharmonic, that is,0 ≤ �yc(x, y) ≤ D,(15)

which will yield that the dual problem Dc(μ, ν) can actually be restricted to a weakly
compact set of functions BD ⊂ H 1

0 (O) that consists of bounded and nonpositive D-
superharmonic functions that vanish on ∂O . These functions are lower semicontinuous and
satisfy a remarkable property of continuity along Brownian paths (see Lemma 3.5). These
properties of the maximizing set BD then guarantee that the dual problem (13) is attained by
a sufficiently regular function ψ∗ (see Theorem 4.1).
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Condition (15) on the cost can be weakened in several cases. Indeed, while the distance
cost, c(x, y) = |x − y| does not satisfy D-superharmonicity at the singular points x = y, we
can avoid this issue under the assumption that the supports of μ and ν are strictly disjoint.
We then use a localization argument to handle the general case (without the disjointness
assumption) for this important cost. Moreover, the subharmonicity of y → c(x, y) can also
be replaced by the condition that M = infx,y∈O �yc(x, y) > −∞, since in this case one can
replace c with the subharmonic cost c̃(x, y) = c(x, y) − h(y) where h is any function in
C∞(O) such that �h(y) ≤ M . On the other hand, a one-dimensional counterexample to the
dual attainment problem in the case where (15) is not satisfied is given in [4]; see [5] and [25]
for related results.

For the issue of uniqueness, we isolate a second condition on the cost which can be seen
as a stochastic counterpart of the twist condition (4). It can be stated as follows: For each pair
of states (x, y) and any stopping time τ for Brownian motion starting at y,

E
[∇xc

(
x,By

τ

)] = ∇xc(x, y) =⇒ τ = 0.(16)

We therefore call it the stochastic twist condition. We note that a related condition on cost
functions was introduced in the one-dimensional case in [33] as increasing (resp., decreas-
ing) variation swap kernel and in [31] as the martingale counterpart of the Spence–Mirrlees
condition, and it reads as

(17) cyyx(x, y) > (<)0.

The stochastic twist condition enables us to prove that the optimal stopping time τ ∗ is unique
and is characterized as the first hitting time of a barrier set determined by the dual optimizer
ψ∗; see Theorem 6.1. The delicate proof also uses the differentiability of the value function,
which we obtain from a Lipschitz assumption on x �→ c(x, y), as well as the dynamic pro-
gramming principle defining Jψ . In particular, the distance cost |x −y| satisfies the stochastic
twist condition when x �= y; a property that was used in [25] for the general martingale op-
timal transport problem and was realized to apply to the case of Brownian martingales by
Tongseok Lim. We extend our results to this particular and important cost function in Theo-
rems 7.1 and 7.2.

REMARK 1.1. The results in this paper, including Theorems 7.1 and 7.2 and the related
results on the dual attainment (Theorem 4.1), hold in more general settings such as for Brow-
nian motion valued in a geodesically convex bounded domain O of a complete nonpositively
curved Riemannian manifold, when the cost c is given by the Riemannian distance d(x, y).
Here, the Laplace operator is replaced with the Laplace–Beltrami operator [28]. Note that the
stochastic twist condition then holds for any differentiable Riemannian distance, while non-
positive curvature implies subharmonicity (in fact, convexity) of y �→ d(x, y). The proofs are
adaptable from the Euclidean case with additional technical complications, which we do not
address further.

The paper is organized as follows: In Section 2 we prove the weak duality principle (13)
and reduce the problem to optimizing over the end potential by using a dynamic programming
principle. This gives a novel point of view for problem (7). In Section 3 we introduce a re-
markable set of D-superharmonic functions BD and represent it as a weakly compact convex
subset of H 1

0 (O). In Section 4 we prove our first main result, namely, the attainment in the
dual problem (Theorem 4.1), by showing that one can restrict the maximization of (13) to the
set BD . Some of the key lemmas there use condition (15) in a crucial way. This then yields a
barrier set for the verification theorem (Theorem 4.7). Section 5 discusses the key Stochastic
Twist condition (16) and includes a few important examples. Section 6 contains the proof for
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uniqueness and the characterization of the optimal solution to (7) as a first hitting time (The-
orem 6.1). The case of the distance cost is finally addressed in Section 7 (Theorems 7.1, 7.2).
The Appendix contains a couple of technical results used in Sections 2 and 3. Additionally,
we shall use our result on dual attainment to provide there a quick proof of a version of the
monotonicity principle of Beiglböck, Cox, and Huesmann [3] that is adapted to our setting.

2. A dual variational principle. Duality is a key aspect of many optimization prob-
lems. In our case we shall see that the dual problem to Pc(μ, ν) arises directly as the linear
maximization problem

D′
c(μ, ν) = sup

(ψ,J )∈Ac

[∫
Rd

ψ(y)ν(dy) −
∫
Rd

J (x, x)μ(dx)

]
(18)

with linear constraints

Ac = {
(ψ,J ) ∈ C

(
R

d) × C
(
R

d ×R
d);

J (x, y) ≥ ψ(y) − c(x, y) and �yJ(x, y) ≤ 0
}
,

(19)

where we understand the inequality �yJ(x, y) ≤ 0 in the sense of viscosity. The equivalence
a probabilistic notions of superharmonic functions will be recalled in Lemma 2.3 and later
with a weak and variational notions in Proposition 3.2 and Lemma 3.3.

Define the operator V
ψ
c,x as

V ψ
c,x[J ](y) := min

{
J (x, y) − ψ(y) + c(x, y),−�yJ(x, y)

};
we can then understand Ac as the set of pairs (ψ,J ) such that for each x ∈ R

d , y �→ J (x, y)

is a supersolution of V
ψ
c,x[J (x, ·)](y) ≥ 0 in the sense of viscosity.

We assume that the measures μ and ν have support on a bounded open convex domain O .
In this case we can determine J in terms of ψ as the minimal viscosity supersolution. We call
this the value function, and it is given by

Jψ(x, y) := sup
τ≤τO

E
[
ψ

(
By

τ

) − c
(
x,By

τ

)]
,(20)

where B
y
t is the Brownian motion with B

y
0 = y, τO is the exit time from O and the supremum

is over all stopping times prior to τO . In the following we denote by LSC(O) the set of
bounded, lower semicontinuous functions on O . Recall the definition of Brownian martingale
plans between μ and ν as the finite measures π on O × O with marginals μ and ν that
disintegrate as π(dx, dy) = πx(dy)μ(dx) in such a way that δx ≺SH πx for μ-a.e. x ∈ O .
We set BM(μ, ν) to be the set of such transport plans, that is,

BM(μ, ν) = {
π ≥ 0, π(·,O) = μ,π(O, ·) = ν, δx ≺SH πx for μ-a.e. x ∈ O

}
.(21)

THEOREM 2.1. Suppose that c ∈ C(Rd × R
d) and μ and ν are probability measures

with support in an open, bounded and convex subset O of Rd . Then,

Pc(μ, ν) = D′
c(μ, ν)

= Dc(μ, ν) := sup
ψ∈LSC(O)

{∫
O

ψ(y)ν(dy) −
∫
O

Jψ(x, x)μ(dx)

}
,

(22)

and there is π∗ ∈ BM(μ, ν) such that

Pc(μ, ν) =
∫
O

∫
O

c(x, y)π∗(dx, dy).
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Before giving the proof of Theorem 2.1, we start by noting the relationships between
the various formulations of our problem. Recall first the following correspondence between
(possibly randomized) stopping times and subharmonic martingale measures. While random-
ized stopping times have many equivalent representations, it suffices to consider their law as
probability measures on C(R+,Rd) × R

+ that disintegrate with respect to Wiener measure
as a measure η on R

+ such that At = ∫ t
0 η(ds) is adapted to the filtration of the Brownian

motion. The only topology we consider is the weak* convergence of the probability law on
C(R+,Rd) ×R

+.

LEMMA 2.2 (See, e.g., Theorem 2.1 in [24]). Let σ and ρ be probability measures on
O, and let (Bt )t denote Brownian motion starting according to B0 ∼ σ . Then:

1. For each (possibly randomized) stopping time τ ≤ τO satisfying Bτ ∼ ρ, there is
π ∈ BM(σ, ρ) such that (B0,Bτ ) ∼ π .

2. Conversely, for each π ∈ BM(σ, ρ), there exists a (randomized) stopping time τ ≤
τO , such that (B0,Bτ ) ∼ π .

We shall need the following characterization for superharmonic lower semicontinuous
functions. We include a proof for completeness.

LEMMA 2.3. For φ ∈ LSC(O) the following are equivalent:

1. �φ(x) ≤ 0 in the sense of viscosity for all x ∈ O;
2. For any stopping time τ ≤ τO and all y ∈ O , we have

φ(y) ≥ E
[
φ

(
By

τ

)]
.(23)

PROOF. First, we suppose that φ ∈ LSC(O) satisfies �φ(x) ≤ 0 in the sense of viscosity
for all x ∈ O . There is then a sequence of smooth functions φi ∈ C∞(O) with φi ≤ φ in O ,
constants δi such that limi→∞ φi(x) = φ(x) for all x ∈ O , limi→∞ δi = 0 and �φi(x) ≤ 0
for x ∈ Oδi

, where Oδi
is the set of points in O with distance from ∂O greater than δi (see

Lemma A.1 or similar results in [14, 21, 47].)
For y ∈ ∂O , B

y
τ = B

y
τO = y and (23) holds. For y ∈ O and any stopping time τ ≤ τO , we

fix δ > 0 such that y ∈ Oδ and set τ δ = τ ∧ τOδ . Then, by Itô’s Lemma

φ(y) = lim
i→∞φi(y)

= lim
i→∞E

[
φi(By

τδ

) −
∫ τ δ

0
�φi(By

t

)
dt

]

≥ lim
i→∞E

[
φi(By

τδ

)] = E
[
φ

(
B

y

τδ

)]
.

Then, taking δ → 0, we have

lim inf
δ→0

E
[
φ

(
B

y

τδ

)] ≥ E

[
lim inf
δ→0

φ
(
B

y

τδ

)] ≥ E
[
φ

(
By

τ

)]
,

by lower semicontinuity of φ, Fatou’s lemma and the continuity of Brownian paths.
For the other direction (2) ⇒ (1), we consider w ∈ C2(O) that touches φ from below at

y ∈ O , that is, w(y) = φ(y) and w(x) ≤ φ(x) for all x ∈ O . Then, for all stopping times
τ ≤ τO ,

E
[
w

(
By

τ

)] − w(y) ≤ E
[
φ

(
By

τ

)] − φ(y) ≤ 0

which implies that �w(y) ≤ 0 for w ∈ C2. This completes the proof. �
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PROOF OF THEOREM 2.1. We sketch the proof of Pc(μ, ν) = D′
c(μ, ν) as very similar

results have appeared in [3] and [27]. We assume ψ and J are continuous unless stated
otherwise.

The constraint that π ∈ BM(μ, ν), defined in (21), is equivalent to:

• The measure π on O × O is a finite and nonnegative;
• The second marginal of π is ν, or

0 = sup
ψ

{∫
Rd

ψ(y)ν(dy) −
∫
Rd

∫
Rd

ψ(y)π(dx, dy)

}
,

• For each x, πx is in subharmonic order with δx , and the first marginal is μ, that is,

0 = sup
J ;�yJ≤0

{∫
Rd

∫
Rd

J (x, y)π(dx, dy) −
∫
Rd

J (x, x)μ(dx)

}
.

Thus, we have

inf
π∈BM(μ,ν)

∫
Rd

∫
Rd

c(x, y)π(dx, dy)

= inf
π≥0

sup
ψ

sup
J ;�yJ≤0

{∫
Rd

∫
Rd

c(x, y)π(dx, dy) +
∫
Rd

ψ(y)ν(dy)

−
∫
Rd

∫
Rd

ψ(y)π(dx, dy) +
∫
Rd

∫
Rd

J (x, y)π(dx, dy) −
∫
Rd

J (x, x)μ(dx)

}
,

and the Fenchel–Rockafellar duality theorem allows us to interchange the infimum and supre-
mum. This expression becomes

Pc(μ, ν) = sup
ψ

sup
J ;�yJ≤0

inf
π≥0

{∫
Rd

∫
Rd

(
c(x, y) − ψ(y) + J (x, y)

)
π(dx, dy)

+
∫
Rd

ψ(y)ν(dy) −
∫
Rd

J (x, x)μ(dx)

}

= D′
c(μ, ν).

The attainment of a minimizer π∗ for Pc(μ, ν) is immediate from the compactness of prob-
ability measures in the weak* topology and the definition of BM(μ, ν) which makes it a
weak* closed convex set in the space of Radon measures on O × O .

To prove that

D′
c(μ, ν) = Dc(μ, ν) := sup

ψ∈LSC(O)

{∫
O

ψ(y)ν(dy) −
∫
O

Jψ(x, x)μ(dx)

}
,

we first show the inequality D′
c(μ, ν) ≥ Dc(μ, ν). For that, let π∗ ∈ BM(μ, ν) be where the

infimum of Pc(μ, ν) is attained and its representation by a (randomized) stopping time τ ∗;
cf. Lemma 2.2. Then, for any ψ ∈ LSC(O),∫

O
ψ(y)ν(dy) −

∫
O

Jψ(x, x)μ(dx)

= E
[
ψ(Bτ∗) − Jψ(B0,B0)

]
≤ E

[
ψ(Bτ∗) − Jψ(B0,Bτ∗)

]
≤ E

[
c(B0,Bτ∗)

] = Pc(μ, ν) = D′
c(μ, ν),

where we have used the definition (20) of Jψ . Hence, Dc(μ, ν) ≤ D′
c(μ, ν).
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For the other direction we consider (ψ,J ) ∈ Ac, then Jψ(x, y) ≤ J (x, y) for (x, y) ∈
O × O since by Lemma 2.3 and the definitions (19) and (20), we have

Jψ(x, y) = sup
τ≤τO

E
[
ψ

(
By

τ

) − c
(
x,By

τ

)] ≤ sup
τ≤τO

E
[
J

(
x,By

τ

)] ≤ J (x, y).

It follows that∫
O

ψ(y)ν(dy) −
∫
O

Jψ(x, x)μ(dx) ≥
∫
O

ψ(y)ν(dy) −
∫
O

J(x, x)μ(dx),

and D′
c(μ, ν) ≤ Dc(μ, ν). This completes the proof. �

3. A weakly compact set of D-superharmonic functions in Sobolev class. In this sec-
tion we introduce the following convex set of functions BD which plays a key role in the
sequel. These are the lower semicontinuous D-superharmonic functions that are nonpositive
and zero on the boundary of O . A key property will be that these functions can be equiva-
lently defined as members of the Sobolev class H 1

0 (O) that are nonpositive and have their
Laplacian bounded above by D, weakly.

DEFINITION 3.1. Let O be a bounded convex open subset of Rd . We say that a function
ψ ∈ LSC(O) is in the set BD , if the following properties hold:

1. ψ(y) = 0 for all y ∈ ∂O;
2. ψ(y) ≤ 0 for all y ∈ O;
3. ψ is D-superharmonic, in the sense that for all stopping times τ ≤ τO ,

ψ(y) ≥ E
[
ψ

(
By

τ

) − Dτ
]
.

(Equivalently, �ψ(y) ≤ D for all y ∈ O in the sense of viscosity by Lemma 2.3.)

The functions in this class BD have a uniform lower bound following from the maximum
principle. Indeed, let uO be the solution to{

�uO(x) = 1 x ∈ O,

uO(x) = 0 x ∈ ∂O.
(24)

Equivalently, uO(y) = −E[τO], where τO is the exit time for the Brownian motion beginning
at B

y
0 = y. Since �ψ(y) ≤ D, we see that

ψ(y) ≥ E
[
ψ

(
By

τO

) − DτO

] = DuO(y) ≥ −D sup
z∈O

∣∣uO(z)
∣∣(25)

which provides a lower bound depending only on O and D.
We now prove a key property of BD , namely, that it can be identified with a closed convex

bounded (hence weakly compact) subset of the Sobolev class H 1
0 (O), equipped with the

norm ‖f ‖2
H 1

0 (O)
= ∫

O |∇f (x)|2 dx.

PROPOSITION 3.2. A function ψ is in BD if and only if—up to a set of Lebesgue measure
zero—it satisfies:

1. ψ ∈ H 1
0 (O);

2. ψ(y) ≤ 0 for a.e. y ∈ O;
3. �ψ(y) ≤ D weakly, in the sense that

∫
O[∇ψ(y) · ∇φ(x) + Dφ(x)]dx ≤ 0 for all

φ ∈ H 1
0 (O) such that φ ≤ 0 a.e. on O .
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Furthermore, there is a constant M dependent only on D and O such that

(26) ‖ψ‖H 1
0 (O) ≤ M for all ψ ∈ BD.

In other words, BD can be identified with a closed bounded convex subset of H 1
0 (O).

PROOF. First, use Lemma A.2 to fix a bounded convex domain Õ containing O such that
we can approximate ψ ∈ BD by smooth functions on Õ that satisfy: limi→∞ ψi(x) = ψ(x),
ψi(x) ≤ 0 and �ψi(x) ≤ D for x ∈ Õ and ψi(y) = 0 for y ∈ ∂Õ . Notice that ψi(x) ≥
Du

Õ
(x) for x ∈ Õ for u

Õ
defined similarly as (24).

From the weak Laplacian bound with φ = ψi , we get∫
Õ

∣∣∇ψi(x)
∣∣2 dx ≤ −

∫
Õ

Dψi(x) dx ≤ D2‖u
Õ

‖L1(O).

Hence, there is a subsequence of ψi that converges weakly in H 1(O) to an equivalence class
of ψ in H 1

0 (O) with ‖ψ‖2
H 1

0 (O)
≤ D2‖u

Õ
‖
L1(Õ)

.

The properties in (2) and (3) follow as they are stable under weak convergence in H 1(O).
Conversely, if ψ ∈ H 1

0 (O) satisfies �ψ ≤ D weakly and ψ ≤ 0, we can easily check that
the extension of the function ψ − DuO to R

d by zero is superharmonic in the sense that the
average integral

r �−→ 1

|Br(y)|
∫
Br(y)

(
ψ(z) − DuO(z)

)
dz

is monotonically decreasing in r . It follows that ψ has a representative ψ̃ that is lower semi-
continuous and D-superharmonic in the sense of viscosity; see, for instance, the notes [47].
This representative ψ̃ is everywhere nonpositive and ψ̃(y) ≥ DuO(y) for all y ∈ O; thus, ψ̃

is zero on the boundary. We have shown the lower semicontinuous representative ψ̃ of ψ lies
in BD , completing the proof. �

We now define the superharmonic envelope of a function h ∈ LSC(O) to be

hSH(y) = sup
τ≤τO

E
[
h
(
By

τ

)]
.(27)

We note that the definition of Jψ in (20) means that y �→ Jψ(x, y) is the superharmonic
envelope of y �→ ψ(y)−c(x, y). We will require in the sequel a few results on superharmonic
envelopes.

LEMMA 3.3. Given φ ∈ H 1
0 (O) ∩ C2(O), then its superharmonic envelope φSH, as de-

fined in (27), is the unique minimizer of the variational problem, that is,

φSH = argmin
{∫

O

∣∣∇u(y)
∣∣2 dy;u ∈ H 1

0 (O),u ≥ φ

}
.

PROOF. Take φ ∈ H 1
0 (O) ∩ C2(O), and let φ̃ ∈ H 1

0 (O) be the unique minimizer of
the variational problem; uniqueness follows from the strict convexity of u �→ ∫ |∇u|2. The
optimality of φ̃ implies that φ̃ satisfies �φ̃ ≤ 0 weakly (see [36]). As in the proof of
Proposition 3.2, we have that φ̃ has a lower semicontinuous representative that satisfies
�φ̃(x) ≤ 0 for x ∈ O in the sense of viscosity and φ̃(x) ≥ φ(x) for x ∈ O . This implies
that φSH(y) ≤ φ̃(y) for all y ∈ O since from Lemma 2.3,

φSH(y) = sup
τ≤τO

E
[
φ

(
By

τ

)] ≤ sup
τ≤τO

E
[
φ̃

(
By

τ

)] ≤ φ̃(y).
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For any smooth superharmonic function φ̂ ∈ H 1
0 (O) ∩ C2(O) greater than φ, we have by the

same argument as above, φ̂ ≥ φSH. It follows that φSH − φ̂ ∈ BD′ for D′ = supx∈O −�φ̂(x).
Now use Proposition 3.2 to show that φSH ∈ H 1

0 (O) and satisfies �φSH ≤ 0 weakly. It fol-
lows that ∥∥φSH∥∥2

H 1
0 (O)

=
∫
O

φSH(y)
(−�φSH(y)

)
dy

≤
∫
O

φ̃(y)
(−�φSH(y)

)
dy ≤ ‖φ̃‖H 1

0 (O)

∥∥φSH∥∥
H 1

0 (O).

Thus, φSH is a minimizer of the variational problem; hence, from uniqueness we have
φSH = φ̃. �

We shall need the following property of the norm of H−1(O) which is dual to H 1
0 (O).

LEMMA 3.4. Let τ and σ be two stopping times such that τ ≤ σ ≤ τO , and suppose that
Bτ ∼ ρ ∈ H−1(O). Then, the distribution γ of Bσ belongs to H−1(O) and satisfies

‖γ ‖H−1(O) ≤ ‖ρ‖H−1(O).

PROOF. For each φ ∈ H 1
0 (O) ∩ C2(O), the superharmonic envelope φSH satisfies

‖φSH‖H 1
0 (O) ≤ ‖φ‖H 1

0 (O) by Lemma 3.3. Therefore,∫
O

φ(y)γ (dy) ≤
∫
O

φSH(y)γ (dy) ≤
∫
O

φSH(y)ρ(dy) ≤ ‖ρ‖H−1(O)‖φ‖H 1
0 (O).

Here, the second inequality is due to the subharmonic order ρ ≺SH γ and subharmonicity of
−φSH. This proves the lemma as smooth functions are dense in H 1

0 (O). �

The next lemma shows continuity of functions in class BD with respect to stopping times.

LEMMA 3.5. We consider a sequence of randomized stopping times ξi ≤ τO , that con-
verge weakly (in law) to a randomized stopping time ξ∞. Then, if h ∈ BD , we have

(28) lim
i→∞E

[
h(Bξi

)
] = E

[
h(Bξ∞)

]
.

PROOF. We first note that

(29) lim inf
i→∞ E

[
h(Bξi

)
] ≥ E

[
h(Bξ∞)

]
follows as a consequence of the Portmanteau theorem using the lower semicontinuity of h

composed with the continuous paths of Brownian motion.
To prove the opposite inequality,

(30) lim sup
i→∞

E
[
h(Bξi

)
] ≤ E

[
h(Bξ∞)

]
,

we use that h ∈ H 1
0 (O) to control larger times and that h is D-superharmonic to control small

times. We fix ε > 0 and select δ > 0 such that δ ≤ ε
4D

and

E
[
h(B0)

] ≤ E
[
h(Bξ∞∧δ)

] + ε

4
.

Note that the latter is possible by (29) since limδ→0 ξ∞ ∧ δ = 0.
We decompose the expectation into two pieces,

(31) E
[
h(Bξi

)
] = E

[
h(Bξi

) − h(Bξi∧δ)
] +E

[
h(Bξi∧δ)

]
.
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The second term on the right-hand side of (31) satisfies (because of D-superharmonicity of
h) that

E
[
h(Bξi∧δ)

] ≤ E
[
h(B0)

] + Dδ ≤ E
[
h(Bξ∞∧δ)

] + ε

2
.

We define τδ = τO ∧ δ. For the first term on the right-hand side of (31), because ξi and
ξi ∧ δ coincide on the set where ξi ≤ τδ , we have

E
[
h(Bξi

) − h(Bξi∧δ)
] = E

[
h(Bξi∨τδ ) − h(Bτδ )

]
.

For ρδ ∼ Bτδ , the distribution is in H−1(O), by comparison with the heat kernel gδ on R
d

since (by restricting to nonnegative test functions w and extending by zero outside of O)

‖ρδ‖H−1(O) = sup
w≥0,‖w‖

H1
0 (O)

≤1
E

[
w(Bτδ )

]

≤ sup
w≥0,‖w‖

H1
0 (O)

≤1
E

[
w(Bδ)

] = ‖gδ‖H−1(O) = C(δ).

We have that ξi ∨ τδ ≥ τδ , and thus, by Lemma 3.4, for ρi ∼ Bξi∨τδ and ρ∞ ∼ Bξ∞∨τδ ,

‖ρi‖H−1(O) ≤ C(δ), ‖ρ∞‖H−1(O) ≤ C(δ).

Then, weak convergence of ξi implies ρi ⇀ ρ∞ in H−1(O), and there is I such that, for
i ≥ I ,

E
[
h(Bξi∨τδ )

] ≤ E
[
h(Bξ∞∨τδ )

] + ε

2
.

Putting everything together, we have that

E
[
h(Bξi

) − h(Bξi∧δ)
] = E

[
h(Bξi∨τδ ) − h(Bτδ )

]
≤ E

[
h(Bξ∞∨τδ ) − h(Bτδ )

] + ε

2

= E
[
h(Bξ∞) − h(Bξ∞∧δ)

] + ε

2
.

Thus, we have shown that, for i ≥ I , E[h(Bξi
)] ≤ E[h(Bξ∞)] + ε which implies (30) and

completes the proof of (28). �

The above property of BD enables us to prove the following lemma regarding verification
of hitting times. We also include the case for C(O).

LEMMA 3.6. Assume that either h ∈ C(O) or that h ∈ BD , and let hSH be its superhar-
monic envelope defined in (27). For fixed y ∈ O , we let

η = inf
{
t;hSH(

B
y
t

) = h
(
B

y
t

)}
.

The stopping time η attains the supremum in the definition of hSH. It also satisfies:

1. h(B
y
η ) = hSH(B

y
η ),

2. For any stopping time σ ≤ τO , we have hSH(y) = E[hSH(B
y
σ∧η)].

PROOF. Case h ∈ C(O): Let us first show that there exist stopping times ηi ≤ τO such
that h(B

y
ηi ) = hSH(B

y

ηi ) and ηi → η weakly. Define for each ε > 0 the set

Hε = {
(t,ω);hSH(

Bt(ω)
) − h

(
Bt(ω)

) = 0, t < η + ε
}
,
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where each ω is a point in the probability space �. Note that hSH = h = 0 along ∂O . There-
fore, for almost every ω, there exists t with (t,ω) ∈ Hε by the definition of η; thus, the
projection of Hε on � has full measure. By the “section theorem” in [15], there exists a
stopping time ηε such that (ηε(ω),ω) ∈ Hε whenever ηε(ω) < ∞, and P[ηε < ∞] ≥ 1 − ε.
Given a sequence εi converging to zero, we define ηi := ηεi ∧ τO which has a subsequence
converging weakly as desired.

Using the continuity of h and hSH and the continuity of Brownian paths, we have

E
[
hSH(

By
η

)] = lim
i→∞E

[
hSH(

B
y

ηi

)] = lim
i→∞E

[
h
(
B

y

ηi

)] = E
[
h
(
By

η

)]
.

The supremum of definition (27) is attained at a randomized stopping time τ by compactness
[18]. Optimality of τ implies that

hSH(y) = E
[
h
(
By

τ

)] = sup
τ≤σ≤τO

E
[
h
(
By

σ

)] = E
[
hSH(

By
τ

)]
.

Since hSH(B
y
τ ) ≥ h(B

y
τ ), we have h(B

y
τ ) = hSH(B

y
τ ) almost surely so τ ≥ η. Furthermore,

hSH is superharmonic, so we have

E
[
hSH(

By
τ

)] ≤ E
[
hSH(

By
η

)]
which implies hSH(y) = E[h(B

y
η )]. Thus, η also attains the supremum of (27), which again

implies that

h
(
By

η

) = sup
η≤σ≤τO

E
[
h
(
By

σ

)|By
η

] = hSH(
By

η

)
,

proving (1).
Finally, for any stopping time σ ≤ τO , we have from the superharmonic property hSH(y) ≥

E[hSH(B
y
σ∧η)] ≥ E[hSH(B

y
η )] = hSH(y) which implies (2) and completes the proof in the

case where h is continuous.
Case h ∈ BD: If now h is in BD , the above proof is still valid thanks to Lemma 3.5. This

can be used to obtain an optimal stopping time τ that maximizes

sup
τ

E
[
h
(
By

τ

)]
,

since the expectation of h is then a weakly continuous function of the stopping times. The
same lemma can also be used to carry on the limit of (ηi)i to η in the above proof. �

4. Dual attainment in Sobolev class. In this section we prove one of the main results
of the paper, namely, the attainment of the supremum in the dual problem. This has been an
elusive problem which has previously only been fully resolved for d = 1 in [7]. Recall that
we assume suppμ and suppν are contained in a bounded convex open set O ⊂ R

d , and, by
Theorem 2.1, we have the dual problem in the form

Dc(μ, ν) = sup
ψ∈LSC(O)

{∫
ψ(y)ν(dy) −

∫
Jψ(x, x)μ(dx)

}
.

We now state our main result on dual attainment.

THEOREM 4.1. Assume that c ∈ C(O × O) and y �→ c(x, y) is subharmonic and D-
superharmonic, that is, 0 ≤ �yc(x, y) ≤ D in the sense of viscosity, and that μ ≺SH ν as
well as μ ∈ H−1(O). There exists then ψ∗ ∈ BD that attains the maximum value of the dual
problem, that is,

Dc(μ, ν) =
∫
O

ψ∗(y)ν(dy) −
∫
O

Jψ∗(x, x)μ(dx).(32)
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REMARK 4.2. As long as �yc(x, y) ≥ −M , we can form a problem with subharmonic
cost c̃(x, y) = c(x, y) + h(y), with h solving �h = M . The solutions to these two problems
are equivalent in the sense that if ψ̃ is an optimizer for the cost c̃, then ψ̃ − h is an optimizer
for the cost c.

Furthermore, for costs of the form c(x, y) = |x − y|α where α > 0 and d ≥ 2, a version of
Theorem 4.1 applies with the additional assumption that the support of μ and ν are disjoint.
The argument is given in Theorem 7.1 for the case of the distance function, that is, α = 1.

The subharmonicity condition �yc(x, y) ≥ 0 is, however, more essential than the D-
superharmonic property. For example, we have a counterexample to dual attainment in [4]
(see also [25]) for the cost c(x, y) = −|x − y|.

Before we prove the Theorem 4.1, we prove a few lemmata that will allow us to utilize the
weak compactness of the set BD in H 1

0 (Proposition 3.2) for the proof of dual attainment.

LEMMA 4.3. If μ is a probability measure on O and μ ∈ H−1(O), then the map ψ ∈
H 1

0 (O) �→ ∫
O Jψ(x, x)μ(dx) is convex and lower semicontinuous on BD .

PROOF. We first prove the technical result that we may interchange the supremum and
the expectation to obtain∫

O
Jψ(x, x)μ(dx) = sup

τ≤τO

E
[
ψ(Bτ ) − c(B0,Bτ )

]
for the Brownian motion where B0 ∼ μ. To see this equality, fix ε > 0, and consider a mea-
surable selection τx of stopping times for Bx

0 = x such that

Jψ(x, x) ≤ E
[
ψ

(
Bx

τx

) − c
(
x,Bx

τx

)] + ε.

Integrate with respect to μ to get a stopping time τ for B0 ∼ μ such that∫
O

Jψ(x, x)μ(dx) ≤ E
[
ψ(Bτ ) − c(B0,Bτ )

] + ε.

For the other direction, note that any stopping time τ disintegrates as τx , for Bx
0 = x, and

E
[
ψ(Bτ ) − c(B0,Bτ )

] =
∫
O
E

[
ψ

(
Bx

τx

) − c
(
x,Bx

τx

)]
μ(dx) ≤

∫
O

Jψ(x, x)μ(dx).

Now consider B0 ∼ μ ∈ H−1(O). From Lemma 3.4, if τ ≤ τO and Bτ ∼ ρ, then ρ ∈
H−1(O). Therefore, for each τ ≤ τO , ψ ∈ H 1

0 (O) �→ E[ψ(Bτ ) − c(B0,Bτ )] is linear and
continuous. This shows the desired convexity and lower semicontinuity, as the map is given
by the supremum of continuous linear functionals. �

The next step is to show that the maximization of the dual problem Dc(μ, ν) can be re-
stricted to the smaller set BD .

PROPOSITION 4.4. We assume that y �→ c(x, y) is subharmonic and D-superharmonic,
that is, 0 ≤ �yc(x, y) ≤ D as well as μ ≺SH ν. Then, it holds that

Dc(μ, ν) = sup
ψ∈BD

{∫
O

ψ(y)ν(dy) −
∫
O

Jψ(x, x)μ(dx)

}
.

The proof of this proposition is done as two improvements to ψ . To maximize the dual
value, we wish to choose ψ as large as possible while maintaining ψ(x) ≤ Jψ(x, y)+c(x, y)

for every x ∈ O which motivates the following lemma.
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LEMMA 4.5. Suppose y �→ h(x, y) is D-superharmonic for each x ∈ O:

1. The function ψ̄(y) := infz∈O h(z, y) is D-superharmonic.
2. For h(x, y) = Jψ(x, y) + c(x, y) and if y �→ c(x, y) is D-superharmonic, then

• ψ̄ is D-superharmonic,
• ψ̄(y) ≥ ψ(y) for all y ∈ O , and
• Jψ̄ (x, y) = Jψ(x, y) for all (x, y) ∈ O × O .

PROOF. For any y ∈ O and ε > 0, there is z ∈ O such that ψ̄(y) + ε ≥ h(z, y); hence,
for any stopping time τ ≤ τO ,

ψ̄(y) + ε ≥ h(z, y) ≥ E
[
h
(
z,By

τ

) − Dτ
] ≥ E

[
ψ̄

(
By

τ

) − Dτ
]
,

where we have used that y �→ h(x, y) is D-superharmonic and ψ̄(y′) ≤ h(z, y′) for all
y′ ∈ O . The first item (1) follows by letting ε → 0.

For the second part of the lemma, we have that y �→ c(x, y)+Jψ(x, y) is D-superharmonic
since c is D-superharmonic and Jψ is superharmonic. That ψ̄(y) ≥ ψ(y) is obvious from the
fact that ψ(y) ≤ Jψ(x, y) + c(x, y). For the last item in (2), observe that Jψ ≤ Jψ̄ as

Jψ(x, y) = sup
τ≤τO

E
[
ψ

(
By

τ

) − c
(
x,By

τ

)] ≤ sup
τ≤τO

E
[
ψ̄

(
By

τ

) − c
(
x,By

τ

)] = Jψ̄(x, y).

By definition of ψ̄ , we have that ψ̄(y) ≤ Jψ(x, y)+c(x, y), thus we have that, for all τ ≤ τO ,

E
[
ψ̄

(
By

τ

) − c
(
x,By

τ

)] ≤ E
[
Jψ

(
x,By

τ

)] ≤ Jψ(x, y),

and it follows that Jψ ≥ Jψ̄ . �

The second improvement of ψ is slightly more subtle. We make use of the assumption
that μ ≺SH ν so that subtracting a superharmonic function of y from both ψ and Jψ will
not decrease the dual value. In general, subtracting a superharmonic function would violate
the constraint that y �→ Jψ(x, y) is superharmonic, but subtracting the superharmonic enve-
lope of ψ from Jψ miraculously does not violate this constraint given that y �→ c(x, y) is
subharmonic.

PROPOSITION 4.6. Assume that c ∈ C(O × O) and for all x ∈ O , y �→ c(x, y) is sub-
harmonic, that is, �yc(x, y) ≥ 0. Then, for each ψ ∈ C(O), we have

Jψ−ψSH(x, y) = Jψ(x, y) − ψSH(y), for all (x, y) ∈ O × O.

PROOF. We fix (x, y) in O × O . The proof that Jψ−ψSH(x, y) ≥ Jψ(x, y) − ψSH(y) is
easy and does not need the assumption �yc(x, y) ≥ 0. Indeed, we let τ̄ be a (randomized)
stopping time that attains the supremum for Jψ , so that

Jψ(x, y) = E
[
ψ

(
B

y
τ̄

) − c
(
x,B

y
τ̄

)]
.

Using E[ψSH(B
y
τ̄ )] ≤ ψSH(y), we have

Jψ(x, y) − ψSH(y) ≤ E
[
ψ

(
B

y
τ̄

) − c
(
x,B

y
τ̄

) − ψSH(
B

y
τ̄

)] ≤ Jψ−ψSH(x, y).

The last inequality is due to the definition of Jψ−ψSH .
The reverse inequality is important for the proof of Proposition 4.4 and requires the as-

sumption �yc(x, y) ≥ 0. We let τ be a (randomized) stopping time attaining the supremum
for Jψ−ψSH , so that

Jψ−ψSH(x, y) = E
[
ψ

(
By

τ

) − ψSH(
By

τ

) − c
(
x,By

τ

)]
.
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We consider the first hitting time: η = inf{t;ψ(B
y
t ) = ψSH(B

y
t )}. We can write

E
[
ψ

(
By

τ

) − ψSH(
By

τ

) − c
(
x,By

τ

)]
= E

[
ψ

(
B

y
τ∧η

) − ψSH(
B

y
τ∧η

) − c
(
x,B

y
τ∧η

)]
+E

[
ψ

(
By

τ

) − ψ
(
B

y
τ∧η

) − ψSH(
By

τ

) + ψSH(
B

y
τ∧η

)]
−E

[
c
(
x,By

τ

) − c
(
x,B

y
τ∧η

)]
= I + II + III.

For I , use item (2) of Lemma 3.6 and the definition of Jψ to see

I ≤ Jψ(x, y) − ψSH(y).

For III, by the assumption �yc(x, y) ≥ 0, we see that III ≤ 0. For the term II, notice that

if τ = τ ∧ η then ψ(By
τ ) = ψ(B

y
τ∧η) and ψSH(By

τ ) = ψSH(B
y
τ∧η).

Moreover, by item (1) of Lemma 3.6

if η = τ ∧ η, then ψ(B
y
τ∧η) = ψSH(B

y
τ∧η).

Recall that ψ ≤ ψSH always. Therefore, we can conclude that II ≤ 0. All of these together
imply that Jψ−ψSH(x, y) ≤ Jψ(x, y) − ψSH(y), as desired, completing the proof. �

We now have the necessary ingredients to prove Proposition 4.4, which is the last compo-
nent of the proof of Theorem 4.1.

PROOF OF PROPOSITION 4.4. The inequality

Dc(μ, ν) ≥ sup
ψ∈BD

{∫
O

ψ(y)ν(dy) −
∫
O

Jψ(x, x)μ(dx)

}

follows directly from the definitions of Dc and BD as BD ⊂ LSC(O).
For the reverse inequality, first notice that, for each φ ∈ LSC(O), there exists a sequence

of continuous functions φi such that limi→∞ φi(x) = φ(x), ∀x ∈ O; for example, one can
consider the inf-convolution as in the proof of Lemma A.1. Therefore, it suffices to prove
that, for any ψ ∈ C(O), we can modify it to ψ̄ ∈ BD such that∫

O
ψ(y)ν(dy) −

∫
O

Jψ(x, x)μ(dx) ≤
∫
O

ψ̄(y)ν(dy) −
∫
O

Jψ̄(x, x)μ(dx).

(We can then apply the modification to a maximizing sequence of Dc to get another maxi-
mizing sequence but now from the class BD .)

Improvement 1 (ψ = 0 on ∂O and ψ ≤ 0 in O). We first modify ψ to ψ − ψSH, using
the superharmonic envelope ψSH given in (27). We see that∫

O
ψ(y)ν(dy) −

∫
O

Jψ(x, x)μ(dx)

≤
∫ (

ψ(y) − ψSH(y)
)
ν(dy) −

∫ (
Jψ(x, x) − ψSH(x)

)
μ(dx)

because ψSH is superharmonic and μ ≺SH ν. It is important to notice that, from Proposi-
tion 4.6, Jψ−ψSH = Jψ −ψSH. Also, notice that, because O is compact, the continuous func-
tion ψ is uniformly continuous and so are ψ − ψSH and Jψ−ψSH .
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Improvement 2 (�ψ ≤ D in O). Now modify the function ψ − ψSH further to

ψ̄(y) = inf
z∈O

{
Jψ−ψSH(z, y) + c(z, y)

}
,

as in Lemma 4.5 with h = Jψ−ψSH + c. Here, ψ̄ is continuous on O following from uniform
continuity of Jψ−ψSH and c. From the lemma we have that ψ̄ is D-superharmonic, ψ −ψSH ≤
ψ̄ and Jψ̄ = Jψ−ψSH . Then, the last line in the above inequality is less than or equal to∫

O
ψ̄(y)ν(dy) −

∫
O

Jψ̄(x, x)μ(dx),

getting the desired inequality.
We also have that ψ̄(y) ≤ 0 for all y, since

Jψ−ψSH(x, y) + c(x, y) = sup
τ

E
[
ψ

(
By

τ

) − ψSH(
By

τ

) − c
(
x,By

τ

) + c(x, y)
] ≤ 0,

and for y ∈ ∂O , ψ̄(y) = 0 since Jψ−ψSH(x, y) = −c(x, y). Thus, by definition this implies
that ψ̄ ∈ BD . This completes the proof. �

PROOF OF THEOREM 4.1. We use Proposition 4.4 to find a sequence ψi ∈ BD such that

Dc(μ, ν) = lim
i→∞

{∫
O

ψi(y)ν(dy) −
∫
O

Jψi
(x, x)μ(dx)

}
.

Uniform boundedness of ‖ψi‖H 1
0 (O), given by (26) of Proposition 3.2, implies there is a weak

limit ψ∗ ∈ H 1
0 (O) of ψi . Note also that such a weak limit preserves the property ψ∗ ≤ 0

as well as �ψ∗ ≤ D in the weak sense, so by the equivalence of Proposition 3.2 we have
ψ∗ ∈ BD . Since μ ∈ H−1(O) and μ ≺SH ν, we have ν ∈ H−1(O) from Lemma 3.4, and

lim
i→∞

∫
O

ψi(y)ν(dy) =
∫
O

ψ∗(y)ν(dy).

On the other hand, from the lower semicontinuity shown in Lemma 4.3, we have

lim
i→∞

∫
O

Jψi
(x, x)μ(dx) ≥

∫
O

Jψ∗(x, x)μ(dy)

which then implies ∫
O

ψ∗(y)ν(dy) −
∫
O

Jψ∗(x, x)μ(dx) ≥ Dc(μ, ν).

Since ψ∗ ∈ LSC(O), the above two inequalities are, in fact, equalities, showing the identity
(32). This completes the proof. �

We now demonstrate the verification properties for how the dual optimizers pair with the
primal minima. We will use these general results to prove uniqueness of the optimal stopping
times in Section 6 after introducing the crucial assumption on the cost, the stochastic twist
condition in Section 5.

Let π∗ be an optimizer of Pc(μ, ν), and let τ ∗ be the corresponding optimal (random-
ized) stopping time. Notice that, for the disintegration π∗(dx, dy) = π∗

x (dy)μ(dx), the mea-
sure π∗

x describes the distribution of the stopped Brownian paths Bx
τ∗ . The dual optimizers

(ψ∗, Jψ∗) in Theorem 4.1 are useful tools for us to characterize this measure. For example,
we have the following important property.
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THEOREM 4.7. Under the same assumptions as in Theorem 4.1, the optimal Brownian
path stops at the contact set, namely, for π∗-a.e. (x, y) ∈ O × O ,

Jψ∗(x, y) = ψ∗(y) − c(x, y),

and, in particular, τ ∗ ≥ η := inf{t;Jψ∗(B0,Bt ) = ψ∗(Bt ) − c(B0,Bt )}.
Furthermore, if σ(dx, dy) = σx(dy)μ(dx) satisfies 0 ≺SH σx ≺SH π∗

x for each μ-a.e. x,
then ∫

O×O
Jψ∗(x, y)π∗(dx, dy) =

∫
O×O

Jψ∗(x, y)σ (dx, dy) =
∫
O

Jψ∗(x, x)μ(dx).(33)

If ξ is a (nonrandomized) stopping time corresponding to σ , then ξ ≤ τ ∗ and for μ a.e. x and
ξ restricted to the paths with B0 = x,

E
[
Jψ∗

(
x,Bx

ξ

)] = Jψ∗(x, x).(34)

Also, for σ a.e. (x, y) and the stopping time τ ∗ − ξ restricted to paths satisfying Bξ = y,

E
[
Jψ∗

(
x,B

y
τ∗−ξ

)] = Jψ∗(x, y).(35)

In particular, these hold for ξ = η.

PROOF. For σ , satisfying σ(dx, dy) = σx(dy)μ(dx) with δx ≺SH σx ≺SH πx for each
μ-a.e. x, from the superharmonic property of Jψ∗ we have the inequalities∫

O×O
Jψ∗(x, y)π∗(dx, dy) ≤

∫
O×O

Jψ∗(x, y)σ (dx, dy) ≤
∫
O

Jψ∗(x, x)μ(dx).

Therefore, from the obvious inequality Jψ∗(x, y) ≥ ψ∗(y) − c(x, y), we see that∫
O×O

c(x, y)π∗(dx, dy) ≥
∫
O×O

[
ψ∗(y) − Jψ∗(x, y)

]
π∗(dx, dy)

≥
∫
O

ψ∗(y)ν(dy) −
∫
O×O

Jψ∗(x, y)σ (dx, dy)

≥
∫
O

ψ∗(y)ν(dy) −
∫
O

Jψ∗(x, x)μ(dx).

Strong duality (Theorem 4.1) implies that the first and the last end of these inequalities are
the same, making all the inequalities equalities. In particular, this implies that Jψ∗(x, y) =
ψ∗(y) − c(x, y). for π∗-a.e. (x, y). The equalities (33) also follow. Then, the equalities (34)
and (35) follow from (33) and the disintegration of π∗, σ , with respect to σ , μ, respectively.
In other words, ∫

O
E

[
Jψ∗

(
x,Bx

ξ

)]
μ(dx) =

∫
O

Jψ∗(x, x)μ(dx),

(34) follows since Jψ∗(x,Bx
ξ ) ≤ Jψ∗(x, x) and∫

O×O
Jψ∗(x, y)π∗(dx, dy) =

∫
O×O

E
[
Jψ∗

(
x,B

y
τ∗−ξ

)]
σ(dx, dy)

=
∫
O×O

E
[
Jψ∗(x, y)

]
σ(dx, dy);

(35) follows similarly. �
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5. A stochastic twist condition. We now start the discussion of our results on unique-
ness and characterization of the optimal Brownian stopping time. In this section we give a
stochastic version of the twist condition (4) on the cost in the deterministic optimal transport
theory. This condition will allow us to prove later that the optimal stopping time is uniquely
given by the first hitting time to the contact set.

DEFINITION 5.1. We say that c satisfies the stochastic twist (ST) condition at (x, y) if
for each stopping time ξ ≤ τO ,

E
[∇xc

(
x,B

y
ξ

)] = ∇xc(x, y) =⇒ ξ = 0.(36)

Notice that this stochastic twist condition ST is not a direct generalization of the usual
twist condition in optimal transport theory. In particular, the quadratic cost c(x, y) = |x −y|2
does not satisfy ST, because ∇x |x − y|2 = 2(x − y); therefore, the equality in (36) holds for
any τ ≥ 0 due to the martingale property.

We now collect some examples of costs that satisfy ST:

• Our most important example of a cost satisfying ST is the distance function c(x, y) =
|x − y| for dimensions d ≥ 2 and points x �= y. The gradient is ∇xc(x, y) = x−y

|x−y| ∈
Sd−1, valued in the unit sphere. In particular, we have ∇xc(x, y) · ∇xc(x, y) = 1 and
E[∇xc(x, y) · ∇xc(x,B

y
σ )] < 1 for any stopping time σ > 0 which implies ST. Note that

the same argument shows that any (differentiable) Riemannian distance function d(x, y)

satisfies ST, since ∇xd(x, y) is always a unit tangent vector at x.
• A more general class of costs with ST can be described by the local condition: for each x,

there exist convex functions fx such that

y �→ fx

(∇xc(x, y)
)

is strictly superharmonic.(37)

In this case we have for σ �= 0

fx

(
E

[∇xc
(
x,By

σ

)]) ≤ E
[
fx

(∇xc
(
x,By

σ

))]
< fx

(∇xc(x, y)
)
.

• A simple subclass of the previous example are the separable costs

c(x, y) = g(x)h(y)

that satisfy ∇g(x) �= 0 and y �→ h(y) is either strictly superharmonic or strictly subhar-
monic. In either case, ∇xc(x, y) = ∇g(x)h(y), and we select fx(z) = ±∇g(x) · z where
the sign is positive if h is superharmonic and negative if h is subharmonic.

• For cost functions that only satisfy

�y∇xc(x, y) �= 0 for all (x, y) ∈ O × O,

a localized version of ST holds, that is, there is δ > 0 such that if 0 ≤ τ ≤ δ and (36), then
τ = 0. Note, however, that in dimension one this condition is sufficient to imply ST (i.e.,
that �y∇xc(x, y) = cyyx(x, y) > 0 which appears in [33] and [31]).

REMARK 5.2. One can also consider a version of the stochastic twist condition for mar-
tingale transport.

DEFINITION 5.3. We say that c satisfies the martingale twist (MT) condition at (x, y) if
for each probability measure σ such that δy ≺C σ (for the convex order), we have∫

O
∇xc(x, z)σ (dz) = ∇xc(x, y) =⇒ σ = δy.(38)
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The above examples for (ST) hold for (MT) if we replace the superharmonicity, subhar-
monicity with concavity, convexity, respectively. In particular, the distance cost c(x, y) =
|x − y| is (MT), and this property was crucially used in [25] to prove uniqueness and struc-
ture of optimal martingale transport under various conditions.

6. Uniqueness of the Monge solution: Optimal stopping as a hitting time. The
stochastic twist condition (ST) allows us to prove uniqueness of the optimal Brownian mar-
tingale and characterize it as the first hitting time to a barrier set. We will assume the technical
assumption μ(∂ suppμ) = 0 and the simplifying structural assumptions that μ∧ν = 0 which,
in most cases, can be omitted by applying Lemma 7.3.

THEOREM 6.1. Suppose, in addition to the assumptions of Theorem 4.1, that x �→
c(x, y) is C1 and c satisfies the stochastic twist condition (ST) for all (x, y) ∈ O ×O . Assume
further that μ � Leb, μ(∂ suppμ) = 0, and μ ∧ ν = 0. Then, there exists a unique optimal
stopping time that is given by

η := inf
{
t;Jψ∗(B0,Bt ) = ψ∗(Bt ) − c(B0,Bt )

}
,(39)

where ψ∗ is the dual optimizer of Theorem 4.1, and Jψ∗ is the value function satisfying (14).

We will need several technical lemmata that address differentiability issues for Jψ∗(x, y)

in our proof of Theorem 6.1. The dynamic programming principle for Jψ allows us easily
verify the following remarkable Lipschitz continuity.

LEMMA 6.2. Assume that, for each y ∈ O , we have that ‖x �→ c(x, y)‖Lip ≤ K for some
constant K > 0 (independent on y). Then, for each y ∈ O , ‖x �→ Jψ(x, y)‖Lip ≤ K .

PROOF. This is an easy conclusion from the definition of Jψ by stopping times, (14),
because ∥∥x �→ E

[
ψ

(
By

τ

) − c
(
x,By

τ

)]∥∥
Lip ≤ K

for each τ . The supremum over those Lipschitz functions is again Lipschitz with the same
Lipschitz constant K . �

The following two lemmas deal with the differentiability of two relevant integrals (ex-
pected values). We first verify harmonicity of y �→ Jψ∗(x, y) in a small neighborhood.

LEMMA 6.3. Use the same assumptions and notation as in Theorem 6.1. Then, for each
x ∈ int(suppμ), y �→ Jψ∗(x, y) is harmonic in an open neighborhood around x.

PROOF. For μ-a.e. x ∈ int(suppμ), choose an open ball Vε(x) ⊂ int(suppμ) centered at
x, with radius ε > 0 such that ν(Vε(x)) = 0. For each r ≤ ε, let ξ r be the first hitting time to
∂Vr(x). Define u : Vε(x) →R as

u(y) = E
[
Jψ∗

(
x,B

y
ξε

)]
.

Because of Markov property of the Brownian motion, u satisfies the mean value property, so,
is harmonic. Recall that y �→ Jψ∗(x, y) is superharmonic. Therefore, J (x, y) ≥ u(y) for all
y ∈ Vε(x). Moreover, because of our assumption μ ∧ ν = 0, we have ξ r ≤ τ ∗, 0 ≤ r ≤ ε, for
the optimal stopping τ ∗ of Pc(μ, ν). Therefore, from the verification theorem (Theorem 4.7),
we see that for μ-a.e. x,

Jψ∗(x, x) = E
[
Jψ∗

(
x,Bx

ξr

)] = E
[
Jψ∗

(
x,Bx

τ∗
)]

.(40)
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In the case r = ε, we have Jψ∗(x, x) = u(x). Then, for other r , (40) and the inequality Jψ∗ ≥
u imply that Jψ∗(x, y) = u(y) for a.e. y ∈ Vε(x). Now lower semicontinuity of Jψ∗ and the
inequality Jψ∗ ≥ u imply Jψ∗(x, y) = u(y) for all y ∈ Vε(x). To have the harmonicity for all
x ∈ int(suppμ), not just μ-a.e., use the (Lipschitz) continuity of x �→ Jψ∗(x, y), to extend
this harmonicity to all x ∈ int(suppμ). This completes the proof. �

LEMMA 6.4. Use the same assumptions and notation as in Theorem 6.1. Let τ ∗ be an
optimal stopping time of our problem Pc(μ, ν). Let ζ be any stopping time with ζ ≤ τ ∗
satisfying

E
[
Jψ∗

(
x,Bx

ζ

)] = E
[
ψ∗(

Bx
ζ

) − c
(
x,Bx

ζ

)]
for μ-a.e. x.(41)

(In particular, ζ = η, the hitting time defined in (39), satisfies these from Lemma 3.6(1).)
Then, for μ-a.e. x the functions

h �→ Jψ∗(x + h,x), h �→ E
[
Jψ∗

(
x + h,Bx

ζ

)]
, and h �→ E

[
Jψ∗

(
x + h,Bx

τ∗
)]

are differentiable at h = 0 and

d

dh

∣∣∣∣
h=0

Jψ∗(x + h,x)

= d

dh

∣∣∣∣
h=0

E
[
Jψ∗

(
x + h,Bx

ζ

)] = E
[−∇xc

(
x,Bx

ζ

)]
(42)

= d

dh

∣∣∣∣
h=0

E
[
Jψ∗

(
x + h,Bx

τ∗
)] = E

[−∇xc
(
x,Bx

τ∗
)]

.

PROOF. From Lemma 6.3 and the gradient estimates of harmonic functions, the function
y �→ Jψ∗(x, y) is locally Lipschitz in an open neighborhood of each x ∈ int(suppμ). Here,
the local Lipschitz constant is uniform in x in a neighborhood, since c is continuous and
the function Jψ∗ is bounded in O × O (which follows from the boundedness of ψ∗ ∈ BD).
Combining this with the fact ‖x �→ Jψ∗(x, y)‖Lip ≤ C (from Lemma 6.2) for each y, we get
the function (x, y) �→ Jψ∗ is locally Lipschitz on an open neighborhood N of the diagonal set
{(x, x)|x ∈ int(suppμ)}, contained in int(suppμ) × int(suppμ). By Rademacher’s theorem
Jψ∗ is differentiable a.e. in the same set. By Fubini’s theorem and μ � Leb, this implies
that, for μ-a.e. x, the function h �→ Jψ∗(x + h,y) is differentiable at h = 0 for a.e. y in an
open neighborhood of x. Because of the assumptions μ(∂ suppμ) = 0 and μ � Leb, we can,
without loss of generality, assume that x ∈ int(suppμ), and the ε-ball Vε(x) ⊂ int(suppμ)

and for all sufficiently small h, the function y ∈ Vε(x) �→ J (x + h,y) is harmonic.
Choose a stopping time ξ such that ξ ≤ σ ε for the first hitting time σε to the sphere ∂Vε(x)

and Bx
ξ ∼ ρ � Leb. Then, from the bound ‖x �→ Jψ∗(x, y)‖Lip ≤ C and the dominated con-

vergence theorem, we see that

d

dh

∣∣∣∣
h=0

E
[
Jψ∗

(
x + h,Bx

ξ

)] = E

[
d

dh

∣∣∣∣
h=0

Jψ∗
(
x + h,Bx

ξ

)]
.

In particular, the derivative exists. We now use the harmonicity of y ∈ Vε(x) �→ Jψ∗(x +h,y)

for sufficiently small h to see

Jψ∗(x + h,x) = E
[
Jψ∗

(
x + h,Bx

ξ

)]
.

So, h �→ Jψ∗(x + h,x) is differentiable at h = 0.
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As μ∧ν = 0 and Vε(x) ∈ int(suppμ), we see that σ ε ≤ τ ∗, thus ξ ≤ τ ∗. This order implies

Jψ∗(x + h,x) = E
[
Jψ∗

(
x + h,Bx

ξ

)]
≥ E

[
Jψ∗

(
x + h,Bx

τ∗
)]

≥ E
[
ψ∗(

Bx
τ∗

) − c
(
x + h,Bx

τ∗
)]

.

Note that from Theorem 4.7 (in particular, (34)) we have

Jψ∗(x, x) = E
[
Jψ∗

(
x,Bx

ξ

)] = E
[
ψ∗(

Bx
τ∗

) − c
(
x,Bx

τ∗
)]

.

Therefore, at h = 0 the above inequalities become equalities. Since Jψ∗(x + h,x) =
E[Jψ∗(x + h,Bx

ξ )] and E[ψ∗(Bx
τ∗) − c(x + h,Bx

τ∗)] are both differentiable at h = 0, we
see that the function

h �→ E
[
Jψ∗(x + h,Bx

τ∗)
]

is differentiable at h = 0,

and all of these have the same derivatives,

d

dh

∣∣∣∣
h=0

Jψ∗(x + h,x)

= d

dh

∣∣∣∣
h=0

E
[
Jψ∗

(
x + h,Bx

τ∗
)] = d

dh

∣∣∣∣
h=0

E
[
ψ∗(

Bx
τ∗

) − c
(
x + h,Bx

τ∗
)]

= d

dh

∣∣∣∣
h=0

E
[−c

(
x + h,Bx

τ∗
)] = E

[−∇xc
(
x,Bx

τ∗
)]

.

For ζ it is not clear whether ξ ≤ ζ . Therefore, to examine the derivative of the function
E[Jψ∗(x + h,Bx

ζ )], we notice that

Jψ∗(x + h,x) ≥ E
[
Jψ∗

(
x + h,Bx

ζ

)] ≥ E
[
Jψ∗

(
x + h,Bx

τ∗
)]

with equality at h = 0 (because of (34)). This shows that h �→ E[Jψ∗(x + h,Bx
ζ )] is differen-

tiable at h = 0 and

d

dh

∣∣∣∣
h=0

E
[
Jψ∗

(
x + h,Bx

ζ

)] = d

dh

∣∣∣∣
h=0

E
[
Jψ∗

(
x + h,Bx

τ∗
)]

.

Moreover,

E
[
Jψ∗

(
x + h,Bx

ζ

)] ≥ E
[
ψ∗(

Bx
ζ

) − c
(
x + h,Bx

ζ

)]
,

and from the assumption on ζ we have equality at h = 0. This verifies

d

dh

∣∣∣∣
h=0

E
[
Jψ∗

(
x + h,Bx

ζ

)] = d

dh

∣∣∣∣
h=0

E
[
ψ∗(

Bx
ζ

) − c
(
x + h,Bx

ζ

)]

= d

dh

∣∣∣∣
h=0

E
[−c

(
x + h,Bx

ζ

)] = E
[−∇xc

(
x,Bx

ζ

)]
.

All together these complete the proof. �

We now use the above lemmata to give the proof of Theorem 6.1.

PROOF OF THEOREM 6.1. Let π denote the probability measure on O × O corre-
sponding to Bη, that is, Bx

η ∼ πx for μ-a.e. x, where πx is the disintegration π(dx, dy) =
πx(dy)μ(dx). Fix a pair (x, y) chosen π -a.e., in particular, for x to satisfy the results of
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Lemma 6.4 with ζ = η. Then, consider a small ball Vε(y) of radius ε > 0 around y. Define a
stopping time ζε as

ζε =
{
η if Bx

η ∈ Vε(y),

τ ∗ otherwise.

Notice that ζε satisfies η ≤ ζε ≤ τ ∗ and (41) (e.g., from Lemma 3.6(1)) so that we can apply
Lemma 6.4. Then, (42) gives

E
[∇xc

(
x,Bx

ζε

)] = E
[∇xc

(
x,Bx

τ∗
)]

.

From this we see

0 = 1

P[Bx
η ∈ Vε(y)]

[
E

[∇xc
(
x,Bx

τ∗
)] −E

[∇xc
(
x,Bx

ζε

)]]
= E

[∇xc
(
x,Bx

τ∗
)|Bx

η ∈ Vε(y)
] −E

[∇xc
(
x,Bx

η

)|Bx
η ∈ Vε(y)

]
.

Letting ε → 0, we see that, for ξ = τ ∗ − η restricted to the paths where y = Bx
η ,

E
[∇xc

(
x,B

y
ξ

)] − ∇xc(x, y) = 0 for π -a.e. (x, y).

We apply the stochastic twist condition (ST) in Definition 5.1, and we get ξ = 0. Since this
holds for π -a.e. (x, y), this implies τ ∗ = η, completing the proof. �

7. The case of the distance function. We now consider the distance cost c(x, y) =
|x − y|. We focus on the multidimensional case d ≥ 2, because for the one-dimensional case
(d = 1) our problem is equivalent to the martingale optimal transport and the uniqueness
and structure of the optimal stopping is well known [5, 32–34]. We first get the following
theorem as a corollary of Theorem 6.1, where we assume the strict separation assumption
suppμ ∩ suppν = ∅ to ignore the singularity at x = y. Then, a localization argument allows
us to remove this disjointness of supports in Theorem 7.2, where we show that there is a
unique optimal randomized stopping time τ ∗ given by the hitting time of a barrier whenever
τ ∗ > 0, assuming that μ and ν have densities f ∈ C(O) and g ∈ C(O), respectively.

THEOREM 7.1. Use the same assumptions as in Theorem 6.1 except that c(x, y) =
|x − y|. Assume further that d ≥ 2 and suppμ ∩ suppν =∅. Then, the following hold:

1. There exists a constant D and ψ∗ ∈ BD such that (ψ∗, Jψ∗) maximize the dual prob-
lem.

2. There is a unique optimal stopping time that is given by

η = inf
{
t;Jψ∗(B0,Bt ) = ψ∗(Bt ) − |B0 − Bt |}.(43)

PROOF. Let τ ∗ be an optimal stopping time for the cost c(x, y) = |x − y|. We let ε > 0
be such that |x − y| ≥ ε for all x ∈ supp(μ) and y ∈ supp(ν). Then, we consider a smooth
subharmonic function cε(x, y) ≤ |x − y| such that cε(x, y) = |x − y| whenever |x − y| ≥ ε.
This can be easily constructed since for d ≥ 2, �|x − y| > 0 whenever |x − y| �= 0. Let D be
the constant with 0 ≤ �yc

ε(x, y) ≤ D.
First, observe that, by construction of cε (and the separation of suppμ and suppν by ε),

τ ∗ is also an optimal stopping time for the cost cε , and

E
[
cε(B0,Bτ )

] = E
[|B0 − Bτ |].
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We now consider the dual optimizers for the cost cε , namely, (ψ∗, J ε
ψ∗) with ψ∗ ∈ BD

obtained from Theorem 4.1. Here, J ε
ψ∗ is the value function with respect to cε , that is,

J ε
ψ∗(x, y) := sup

σ
E

[
ψ∗(

By
σ

) − cε(x,By
σ

)]
.

Then, from Theorem 6.1, τ ∗ = ηε , for ηε given in (39) with respect to cε and J ε
ψ∗ ; this also

proves uniqueness of τ ∗.
On the other hand, notice that, because cε(x, y) ≤ |x − y|,

Jψ∗(x, y) := sup
σ

E
[
ψ∗(

By
σ

) − ∣∣x − By
σ

∣∣] ≤ J ε
ψ∗(x, y).(44)

Therefore,∫
O

ψ∗(y)ν(dy) −
∫
O

Jψ∗(x, x)μ(dx) ≥
∫
O

ψ∗(y)ν(dy) −
∫
O

J ε
ψ∗(x, x)μ(dx)

= E
[
cε(B0,Bτ∗)

] = E
[|B0 − Bτ∗ |].

This proves that the pair (ψ∗, Jψ∗) is a dual optimizer for the cost |x − y|, and the above
inequality is, in fact, an equality; thus, applying (44), we get

Jψ∗(x, y) = J ε
ψ∗(x, y) for π∗-a.e. (x, y),(45)

where π∗ is the optimal subharmonic martingale measure corresponding to τ ∗. For μ-a.e. x,
y �→ J ε

ψ∗(x, y) is harmonic for y satisfying |y − x| ≤ ε by Lemma 6.3, so (45) and superhar-
monicity of Jψ∗ , imply that Jψ∗(x, y) ≥ J ε

ψ∗(x, y) for all y satisfying |y − x| ≤ ε. Then, we
see that τ ∗ = ηε = η satisfies (43). This completes the proof. �

THEOREM 7.2. For c(x, y) = |y − x| and d ≥ 2, if μ ≺SH ν and μ and ν have densities
f ∈ C(O) and g ∈ C(O), then there is a unique optimal stopping time τ ∗ that is randomized
only at time 0. The optimal stopping time is given by τ ∗ = 0 with density g ∧f and otherwise
τ ∗ is the hitting time η,

η = inf
{
t > 0; (B0,Bt ) ∈ R

}
for some R ⊂ O × O measurable.

We will first show that the overlapping mass, if any, of the probability measures μ and
ν stays put under any optimal solution τ ∗. This was already shown in [24] by using the
monotonicity principle of [3]. We shall give here a direct proof without using that principle.

LEMMA 7.3 (See [24]). We use the assumptions and notation of Theorem 7.2, except we
suppose that the cost function c satisfies following conditions:

• c is continuous and c(x, x) = 0,∀x;
• c satisfies the triangle inequality: c(x, y) ≤ c(x, z)+ c(z, y), ∀x, y, z, while equality holds

only when y is on the unique geodesic (line segment in R
d ) connecting x and z.

Then, any optimal randomized stopping time τ ∗ stops at time 0 with density f ∧ g, that is,

E
[
1
{
τ ∗ = 0

}] =
∫
O

f (x) ∧ g(x) dx.

PROOF. Given an optimal randomized stopping time τ ∗, we let h be the density it stops
at time 0, that is,

E
[
1
{
τ ∗ = 0

}] =
∫
O

h(x) dx.
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Notice that h ≤ f ∧ g. We will prove the equality. In the following we use the convention in
definitions that the value of a quotient is 1 if the denominator vanishes.

First, define a randomized stopping time σ from the initial distribution μ so that σ follows
the stopping rule of τ ∗ with probability density f − f ∧ g (of course, it is possible to stop at
time 0 for τ ∗ with a certain density) and stops at time 0 otherwise. Namely:

• the initial distribution of σ is B0 ∼ μ;
• σ is randomized at the initial point B0 as

σ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ ∗ with probability 1 − f (B0) ∧ g(B0)

f (B0)
,

0 with probability
f (B0) ∧ g(B0)

f (B0)
.

In particular, for any continuous function φ, we have

E
[
φ(Bσ )

] =
∫

E
[
φ

(
Bx

τ∗
)](

f (x) − f (x) ∧ g(x)
)
dx +

∫
φ(x)f (x) ∧ g(x) dx.(46)

Let μ̂ be the final distribution of σ , that is, Bσ ∼ μ̂. As Bτ∗ ∼ ν has density, by the
construction of σ the distribution μ̂ also has density, say f̂ . Observe that f̂ ≥ f ∧g. We now
define another randomized stopping time ξ from the initial distribution μ̂ so that it follows
the stopping rule of τ ∗ with probability density f ∧g and, otherwise, it stops at time 0. More
precisely:

• the initial distribution of ξ is B0 ∼ μ̂;
• ξ is randomized at the initial point B0 as

ξ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ ∗ with probability
f (B0) ∧ g(B0)

f̂ (B0)
,

0 with probability 1 − f (B0) ∧ g(B0)

f̂ (B0)
.

We verify that Bξ has the same final distribution ν as Bτ∗ . To see this, note that

E
[
φ(Bξ )

] =
∫

E
[
φ

(
Bx

τ∗
)]

f (x) ∧ g(x) dx +
∫

φ(x)
(
f̂ (x) − f (x) ∧ g(x)

)
dx.(47)

Here, realizing
∫

φ(x)f̂ (x) dx = E[φ(Bσ )] and using (46), we see that this equation implies

E
[
φ(Bξ )

] =
∫

E
[
φ

(
Bx

τ∗
)]

f (x) dx = E
[
φ(Bτ∗)

]
,

verifying the claim Bξ ∼ Bτ∗ ∼ ν.
We now let τ be the randomized stopping time from the initial distribution μ that follows

first σ then ξ . That is, τ is the randomized stopping time on the random paths obtained
by concatenating the random paths following the stopping rule of σ with the random paths
following that of ξ . We have σ ≤ τ and that the final distribution of τ is the same as the final
distribution of ξ . Therefore, Bτ ∼ ν.

Observe, using the fact c(x, x) = 0 and (46), that

E
[
c(B0,Bσ )

] =
∫

E
[
c
(
x,Bx

τ∗
)](

f (x) − f (x) ∧ g(x)
)
dx.

Similarly, from the construction of τ and (47),

E
[
c(Bσ ,Bτ )

] = E
[
c(B0,Bξ )

] =
∫

E
[
c
(
x,Bx

τ∗
)]

f (x) ∧ g(x) dx.
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This shows that

E
[
c(B0,Bσ )

] +E
[
c(Bσ ,Bτ )

] = E
[
c(B0,Bτ∗)

]
.(48)

On the other hand, from the optimality of τ ∗ (and the fact that τ ∗ and τ have the same initial
and final distributions) and the triangle inequality of c, we have

E
[
c(B0,Bτ∗)

] ≤ E
[
c(B0,Bτ )

] ≤ E
[
c(B0,Bσ )

] +E
[
c(Bσ ,Bτ )

]
.

Here, all these inequalities become equalities due to (48). In particular, we have the equality
case of the triangle inequality where Bσ is on the geodesic connecting B0 and Bτ which holds
only if

σ = 0 or σ = τ almost surely.(49)

Otherwise, we would find that where σ > 0, Bτ = Bσ + λ(Bσ − B0) for λ > 0, and hence

E
[
(Bτ − Bσ ) · (Bσ − B0)|Fσ

]
> 0

which cannot hold do to the martingale property of Brownian motion.
We will analyze (49) to draw our conclusion. For the random paths with σ > 0, (49) and

the definition of σ implies σ = τ = τ ∗ so the point Bσ lands at where ξ = 0. Note that ξ = 0
with probability

f (Bτ∗) ∧ g(Bτ∗)

f̂ (Bτ∗)

h(Bτ∗)

f (Bτ∗)
+

(
1 − f (Bτ∗) ∧ g(Bτ∗)

f̂ (Bτ∗)

)
= 1.

This implies that if τ ∗ > 0, then h(Bτ∗) = f (Bτ∗). Therefore, whenever f (x) > h(x), it
must be the case that h(x) = g(x) because Bτ∗ = x only when τ ∗ = 0. This then implies that
h(x) = f (x) ∧ g(x), completing the proof. �

PROOF OF THEOREM 7.2. We first reduce the problem to the case where the measures
μ and ν have disjoint supports, then apply Theorem 7.1. Indeed, from Lemma 7.3 we have
that the optimal stopping time τ ∗ stops at time 0 with density g ∧ f . Thus, we only need to
characterize τ ∗ when τ ∗ > 0.

We now show that if τ ∗ > 0, then τ ∗ is given by η which is the hitting time of a barrier.
First, on the subset of the probability space where τ ∗ > 0, τ ∗ is optimal for transporting
the mass μ+ with density (f − g)+ to ν+ with density (g − f )+. These measures satisfy
μ+ ∧ ν+ = 0 and μ+(∂ suppμ+) = 0.

We require one more step to reduce our setting to the case where the measures have strictly
disjoint support so that we can apply Theorem 7.1. We introduce μ+

ε as the restriction of μ+
to points where the distance to ∂ suppμ+ is greater than ε. Then, we let ν+

ε be the stopping
distribution of the restriction of τ ∗ to the initial distribution μ+

ε . Notice that τ ∗ is still optimal
to this restriction. Applying Theorem 7.1, we have that this restricted problem has a unique
optimal hitting time (equal to τ ∗) given by (43). This defines the set R whenever |y − x| ≥ ε.
Taking ε to zero, we get that τ ∗ = η whenever τ ∗ > 0.

To prove that τ ∗ is unique, we suppose that τ1 and τ2 are both optimal randomized stopping
times. By the argument above we have that both stop at t = 0 with density g ∧ f and for
t > 0 are given by the hitting times η1 and η2. We form the randomized stopping time τ ′ that
stops at τ1 with probability 1

2 and at τ2 with probability 1
2 , that is, with Brownian martingale

measure π ′ = 1
2π1 + 1

2π2. The same argument applies to show that if τ ′ > 0, then τ ′ = η′
which is the hitting time to a barrier. It follows that τ1 = τ2 because, otherwise, there is a
finite probability of finding (B0,Bt ) ∈ R1 but (B0,Bt ) /∈ R2 (or vice versa) which contradicts
that τ ′ is the hitting time of a barrier. �

REMARK 7.4. Notice that in Theorem 7.2, the condition f,g ∈ C(O) can be relaxed.
For example, it suffices that g belongs to H−1(O) outside the support of μ.
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APPENDIX A: APPROXIMATIONS

We give a couple of approximation (via inf-convolution) results discussed in [14, 21,
38] which are used in Lemma 2.3 and Proposition 3.2. For h ∈ LSC(O), we define the inf-
convolution as

hε(y) = inf
z∈O

{
h(z) + 1

2ε
|y − z|2

}
.

LEMMA A.1. Given h ∈ LSC(O), we have that hε is Lipschitz and semiconcave. If �h ≤
D on O in the sense of viscosity and dist(x, ∂O)2 > 4ε‖h‖∞, then �hε(x) ≤ D in the sense
of viscosity. Furthermore, hε has a distributional Hessian ∇2hε , that is, a matrix-valued
measure and satisfies �hε ≤ D in the weak sense for the open set {y ∈ O|dist(y, ∂O)2 >

4ε‖h‖∞}.
In particular, there is a sequence of functions hi ∈ C∞(O) such that hi(x) ≤ h(x) for

x ∈ O and for each x ∈ O and δ > 0, there exists I such that for i ≥ I we have �hi(x) ≤ D

and h(x) − hi(x) ≤ δ.

PROOF. For each z, y �→ h(z) + 1
2ε

|y − z|2 is Lipschitz with constant ε−1diamO and if
we subtract 1

2ε
|y|2, it becomes concave. These properties are inherited by the infimum.

Suppose now that �h(y) ≤ D in the sense of viscosity for all y ∈ O , and dist(x, ∂O)2 >

4ε‖h‖∞. Then, there is z ∈ O such that hε(x) = h(z) + 1
2ε

|x − z|2. Now suppose that w

touches hε(x) from below at x. Then, we define

φ(y) := w(x + y − z) − 1

2ε
|x − z|2.

Then, we have that

φ(z) = w(x) − 1

2ε
|x − z|2 = h(z)

and

φ(y) ≤ hε(x + y − z) − 1

2ε
|x − z|2 ≤ h(y).

Thus, using the viscosity property �h ≤ D of h, we have �φ(z) ≤ D, and since �φ(z) =
�w(x), this shows that �hε(x) ≤ D in the sense of viscosity.

It follows from semiconcavity that the distributional Hessian of hε is a matrix-valued mea-
sure. Furthermore, it decomposes as ∇2hε = M + T , where M ≤ 0, T ∈ L∞ and M ⊥ T . If
there was a point with density at x where tr(T ) > D, we could construct a C2 function near
x, satisfying D < �w(x) < tr(T )(x) such that w(x) = hε(x) and w(y) ≤ hε(y). Thus, for x

satisfying dist(x, ∂O)2 > 4ε‖h‖∞, we have �h ≤ D in the weak sense.
Finally, for the smooth approximation we can define ĥε(x) by extending hε outside of the

domain O and convolving with a smooth mollifier whose support shrinks as δ → 0. Note that
�ĥε ≤ D. We can then subtract a small constant so that ĥε ≤ hε but is converging uniformly
as δ → 0 (from Lipschitz property of hε). The result on smooth approximation follows by
choosing both ε and δ sufficiently small, where we use the fact that hε ≤ h and from the
lower semicontinuity of h, lim infε→0 hε ≥ h for each x. This completes the proof. �

For functions in BD , the boundary condition gives a cleaner smooth approximation as
follows:
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LEMMA A.2. There is an open-bounded convex set Õ (depending only on O and D)
such that O ⊂ Õ and for any 0 < ε ≤ 1 and h ∈ BD , hε satisfies hε(x) ≤ 0 and �hε(x) ≤ D

for x ∈ Õ and hε(y) = 0 for y ∈ ∂Õ . It follows that each h ∈ BD can be approximated
pointwise by smooth functions satisfying the properties above in some open-bounded convex
set containing O .

PROOF. For each h ∈ BD , we extend it to R
d by giving zero value on R

d \O . Notice that
this extended function h (using the same notation) still satisfies �h ≤ D in R

d in the sense of
viscosity. Define hε(y) = infz∈Rd h(z) + 1

2ε
|y − z|2. As h is bounded, we can apply the same

reasoning as in the proof of Lemma A.1 to see that �hε(x) ≤ D for all x ∈ R
d in the sense

of viscosity. Also, it clearly holds hε ≤ h ≤ 0.
Consider a uniform bound M for functions on BD , that is, supx∈O |uO(x)|, as in (25). From

this, observe that, for y satisfying dist(y,O)2 ≥ 4εM , we have hε(y) = 0. A further convolu-
tion by a smooth bump function allows us to approximate hε uniformly with smooth functions
hi

ε that also satisfy �hi
ε(x) ≤ D and hi

ε ≤ 0, with support in a fixed convex-bounded open
domain Õ (independent of individual h) which contains O and |y − z|2 ≥ 5M for all y ∈ ∂Õ

and z ∈ O . By also letting ε → 0, pointwise convergence of hi
ε to h follows. This completes

the proof. �

APPENDIX B: A PROOF OF THE MONOTONICITY PRINCIPLE

As a simple application of our dual attainment (Theorems 4.1 and 4.7), we now provide
an alternative proof of the following version of the monotonicity principle of Beiglböck, Cox
and Huesmann [3] adapted to our setting.

THEOREM B.1 (See [3]). With the same notation as in Theorems 4.1 and 4.7, in partic-
ular, we consider the disintegrated probability measure σ(dx, dy) = σx(dy)μ(dx) such that
0 ≺SH σx ≺SH π∗

x for each μ-a.e. x, and its corresponding randomized stopping time ξ (note
that ξ ≤ τ ∗).

For π∗-a.e. (x, y) and σ -a.e. (x ′, y′), it holds that if y = y′, then the stopping time τ ∗ − ξ

restricted to paths with Bξ = y satisfies

c(x, y) +E
[
c
(
x′,By

τ∗−ξ

)] ≤ c
(
x′, y

) +E
[
c
(
x,B

y
τ∗−ξ

)]
.

PROOF. Notice that from Theorem 4.7 we have for π∗-a.e. (x, y) and σ -a.e. (x′, y′),

Jψ∗(x, y) = ψ∗(y) − c(x, y),(50)

Jψ∗
(
x′,By′

τ∗−ξ

) = Jψ∗
(
x′,Bx′

τ∗
)

= ψ∗(
Bx′

τ∗
) − c

(
x′,Bx′

τ∗
) = ψ∗(

B
y′
τ∗−ξ

) − c
(
x′,By′

τ∗−ξ

)
.

(51)

From the dynamic programming formulation of Jψ∗ , we have

Jψ∗
(
x, y′) ≥ E

[
ψ∗(

B
y′
τ∗−ξ

) − c
(
x,B

y′
τ∗−ξ

)]
.(52)

It also follows from (35) that

E
[
J

(
x′,By′

τ∗−ξ

)] = Jψ∗
(
x′, y′) ≥ ψ∗(

y′) − c
(
x′, y′),(53)

where the first equality follows from (34) and the inequality from the dynamic programming
principle. Taking the expectation in (51), we see that, under the condition y = y′, the left-
hand sides of (50), (51) are equal to the left-hand sides of the inequalities (52) and (53). Now
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subtract the sum of the two equations from the sum of the two inequalities and cancel the
terms ψ∗(y) and E[ψ∗(By

τ∗−ξ )], to obtain

0 ≥ −c
(
x′, y

) −E
[
c
(
x,B

y′
τ∗−ξ

)] + c(x, y) +E
[
c
(
x′,By′

τ∗−ξ

)]
,

hence completing the proof. �

REMARK B.2. The condition y = y′ together with σ ≤ τ ∗ gives a version of the stop-go
pair of [3]. Our proof is similar in spirit to that of [29] where weak duality is used, while we
use the strong duality (dual attainment) under the additional assumption 0 ≤ �yc(x, y) ≤ D

among others. Because of this last condition, our monotonicity result does not completely
replace that of [3] for the distance cost |x − y|.
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