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TIGHTNESS AND TAILS OF THE MAXIMUM IN 3D ISING INTERFACES
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Consider the 3D Ising model on a box of side length n with minus bound-
ary conditions above the xy-plane and plus boundary conditions below it. At
low temperatures, Dobrushin (1972) showed that the interface separating the
predominantly plus and predominantly minus regions is localized: its height
above a fixed point has exponential tails. Recently, the authors proved a law
of large numbers for the maximum height Mn of this interface: for every β

large, Mn/ logn→ cβ in probability as n→∞.
Here, we show that the laws of the centered maxima (Mn − E[Mn])n≥1

are uniformly tight. Moreover, even though this sequence does not converge,
we prove that it has uniform upper and lower Gumbel tails (exponential right
tails and doubly exponential left tails). Key to the proof is a sharp (up to
O(1) precision) understanding of the surface large deviations. This includes,
in particular, the shape of a pillar that reaches near-maximum height, even at
its base, where the interactions with neighboring pillars are dominant.
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1. Introduction. We study the low-temperature interface of the Ising model in dimen-
sions three and higher. An Ising configuration on a subgraph � of Zd is an assignment of
{+1,−1} spins to the (d-dimensional) cells of �, denoted C(�). The cells are identified with
their midpoints, which are the vertices of the dual graph (Z+ 1

2)d (when d = 2, the cells are
the faces of � and, when d = 3, they are cubes of side length 1), and two cells u, v are con-
sidered adjacent (v ∼ w) if their mid-points are at a Euclidean distance 1. The Ising model
on a finite � ⊂ Z

d at inverse-temperature β is the probability measure over configurations
σ ∈ {±1}C(�) with weights

μ�,β ∝ exp
[−βH(σ )

]
where H(σ )=∑

v∼w

1{σv 	= σw}.

For a set R ⊃� and a configuration η on R, the Ising model on � with boundary conditions
η, denoted μ

η
�,β , is the measure μR,β , conditioned on σ coinciding with η on R \�. These

definitions extend to infinite subsets �⊂ Z
d by taking weak limits of measures on (say) finite

boxes under suitable boundary conditions.
The Ising model exhibits a rich and extensively studied phase transition on Z

d (d ≥ 2):
there exists a βc(d) such that, when β < βc(d), there is a unique infinite-volume Gibbs mea-
sure on Z

d , whereas when β > βc(d), there are multiple distinct infinite-volume measures,
for example, those obtained by taking a limit of finite volume measures with plus bound-
ary conditions μ+

Zd ,β
vs. minus boundary conditions μ−

Zd ,β
. This can be seen by a classical

argument of Peierls, which demonstrates that in a box of side length n with + boundary con-
ditions, there exists a β0 such that for β > β0 the minus clusters become “subcritical,” that is,
the probability that the origin is part of a connected component (cluster) of at least r minus
sites is at most exp[−cβr].

The analysis of this low-temperature phase has then focused on the structure of the in-
terface between predominantly plus and predominantly minus regions. Namely, consider the
model on the infinite cylinder

�n := {−n, . . . , n}d−1 × {−∞, . . . ,∞}
under Dobrushin boundary conditions, which are plus on all cells of Zd with negative dth
coordinates and minus on all cells of Zd with positive dth coordinates: denote the resulting
(infinite volume) measure μ∓n (the uniqueness of which, for every β > 0, follows by a clas-
sical coupling argument via the monotonicity of the Ising model in boundary conditions). At
low temperatures β > β0, these boundary conditions impose an interface I , below which the
configuration has the features of the plus phase μ+

Zd and above which the measure has the fea-

tures of the minus phase μ−
Zd . For a configuration σ ∈ {±1}C(�n), this interface I is defined

by taking the set of all (d − 1)-cells (e.g., edges for d = 2 and faces for d = 3), separating
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disagreeing spins and letting I be the (maximal) connected component of such (d − 1)-cells
that separates the minus cluster of the boundary from the plus cluster of the boundary (see
Section 2 for a precise definition).

In two dimensions this interface forms a random decorated curve whose properties as
n→∞ are, by now, very well understood. For every β > βc(2), this interface is rough, with
typical fluctuations that are O(

√
n). In fact, after a diffusive rescaling the interface is known

to converge to a Brownian bridge, and as such its maximum height in �n can be seen to also
have fluctuations of order

√
n [11, 12, 18–20, 23, 24].

In dimensions d ≥ 3, the interface forms a random (d − 1)-dimensional surface whose
features are quite different from the two-dimensional case described above. For the ease of
exposition, we focus on the important case d = 3, where the interface forms a random 2D
surface; unless otherwise noted, the new results stated for d = 3 extend to d > 3 with simple
modifications (see Remark 1.2). A landmark result in the study of the 3D Ising interface in
μ∓n was the proof by Dobrushin [14] in 1972 that for large β the interface is rigid: its typical
height fluctuations are O(1) and, in fact, have an exponential tail, for example,

μ∓n
(
max

{
h : (0,0, h) ∈ I}≥ r

)≤ exp[−βr/3].
A consequence of this is the existence of an infinite-volume measure μ∓

Z3 which is not a
mixture of μ+

Z3 and μ−
Z3 (cf., dimension two where all infinite-volume measures are mixtures

of μ+
Z2 and μ−

Z2 [1, 17]).
The present paper studies the maximum height of the 3D Ising interface. Unlike several

related models of 2D surfaces whose maximum has been extensively analyzed in recent years,
for example, the (2 + 1)D solid-on-solid (SOS) model [5, 7, 8], the discrete Gaussian and
|∇φ|p models [22] and the discrete Gaussian free field (DGFF) [2, 3, 25], to name a few
(we refer the reader to [16], Section 1.4, for a more detailed review of this literature), the 3D
Ising interface I is not a height function; it can have overhangs intersecting a given column
(x1, x2) × R at multiple heights. Further, subcritical bubbles in the plus and minus phases
under μ∓n , albeit unseen in I , do affect its distribution (bubbles and overhangs are precluded
from SOS, for instance).

Since the Ising interface is not a height function, we define its maximum height as

Mn :=max
{
x3 : (x1, x2, x3) ∈ I for some (x1, x2) ∈ [−n,n]2}.

The above bound by Dobrushin on the bulk fluctuations of I implies, via a union bound,
that Mn ≤ (C/β) logn with probability 1− o(1). Recently, the authors showed a law of large
numbers for this maximum height [16]: there exists β0 such that every β > β0,

lim
n→∞

Mn

logn
= 2

α
in μ∓n -probability,

where, if v
+←→
A

w denotes that there is a path of adjacent or diagonally adjacent plus spins

between v and w in A (henceforth, we refer to this notion of adjacency as ∗-connectivity; see
Section 2.1 for more details), then

(1.1) α := lim
h→∞

αh

h
for αh =− logμ∓

Z3

((
1

2
,

1

2
,

1

2

) +←−−−−→
R2×[0,∞)

(
Z+ 1

2

)2
×
{
h− 1

2

})
.

The present work continues the analysis of the extrema of the random surface I given by
the interface of low-temperature Ising models in three dimensions and looks at the law of
Mn beyond first order asymptotics. We begin by characterizing the mean of Mn in terms
of the infinite-volume large deviation quantity αh and proving the tightness of the centered
maximum.
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THEOREM 1. There exist β0 > 0 and a sequence εβ > 0 going to 0 as β→∞, so that,
for every β > β0, the maximum Mn of the interface of the Ising model on �n with Dobrushin
boundary conditions satisfies

(1.2) m

n − 1− εβ ≤ E[Mn] ≤m


n + εβ where m

n = inf

{
h≥ 1 : αh > 2 log(2n)− 2β

}
and

μ∓n
(
Mn −E[Mn] ∈ ·) is a tight sequence.

REMARK 1.1. We also show (cf. Corollary 6.6) that every median mn of μ∓n (Mn ∈ ·)
has m


n − 1≤mn ≤m

n.

REMARK 1.2. The results extend to the d-dimensional Ising model for any d ≥ 3,
where m


n in (1.2) becomes inf{h ≥ 1 : αh > (d − 1) log(2n)− (d − 1)β} and αh addresses

(1
2 , . . . , 1

2)
+←−−−−−−→

Rd−1×[0,∞)
(Z+ 1

2)d−1 × {h− 1
2}.

Having established the tightness of the maximum height of the 3D Ising interface around
its mean, one can then ask about the behavior of the limit/subsequential limits of the centered
maximum. Using a multiscale argument, we prove the following regarding the limit points of
Mn −E[Mn].

THEOREM 2. There exists β0 such that, for every β > β0, there are C, ᾱ > 0 so that the
maximum Mn of the interface of the Ising model on �n with Dobrushin boundary conditions
has, for all r > 0 and large enough n,

e−(ᾱr+C) ≤ μ∓n
(
Mn ≥ E[Mn] + r

)≤ e−(αr−C),

e−eᾱr+C ≤ μ∓n
(
Mn ≤ E[Mn] − r

)≤ e−eαr−C

,

in which, for every r > 0, the ratio ᾱr/αr goes to 1 as β→∞.

PROPOSITION 3. For no nonrandom sequence (mn) does (Mn −mn) converge weakly
to a nondegenerate law.

The above described behavior of uniform Gumbel tails and nonconvergence of its centered
maximum matches the behavior exhibited by, for example, the maximum of i.i.d. independent
geometric random variables. However, if the Ising interface were instead tilted at an angle
(say via boundary conditions that are minus above some plane with outward normal n̂ /∈
{±e1,±e2,±e3} and plus below it), a famous open problem is to establish that I would then
be rough even at very low temperatures and resemble the DGFF (see [9] for such a result
at zero temperature). It would be interesting to compare the maximum displacement of said
tilted interface to that of the DGFF, where the asymptotic behavior of the centered maximum
was shown [4] to be tight and, subsequently, found [3, 10] to converge to a randomly-shifted
Gumbel distribution.

Unlike the DGFF (and other log-correlated random fields, e.g., BBM)—where the
marginal at a site is Gaussian and the difficulty in the analysis of the maximum is due to
the logarithmic correlations between sites—in the case of 3D Ising interfaces, obtaining a
good understanding of the probability that the interface reaches a height h above a fixed site
in Z

2 × {0} is already a major obstacle.
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FIG. 1. Top left: The plus sites of an Ising configuration under μ∓n . Bottom left: From that configuration, one
obtains the interface I by repeatedly flipping the spins in all finite connected components of plus or minus sites
and letting I be the set of faces separating the remaining disagreeing spins. Right: Two neighboring tall pillars
of the resulting interface decompose into a base and a sequence of increments delimited by their cut-points (in
bold).

1.1. Proof strategy and outline. As in the prequel [16], our analysis of the maximum
height of a 3D Ising interface centers on understanding the shape of the interface locally
near where it attains atypically large heights. This was formalized via what we refer to as
pillars: for a face with midpoint x = (x1, x2,0), the pillar of x, denoted Px , is obtained from
a configuration σ as follows (see Figure 1):

1. Take all finite (+) or (−) clusters (i.e., sites not ∗-connected to the boundary), simulta-
neously flip their spins, then repeat this step until no finite clusters remain; the faces separat-
ing differing spins in the result comprise the interface I .

2. Remove from that configuration all sites in the lower half-space R
2 × (−∞,0].

3. The pillar Px is then the (possibly empty) ∗-connected plus component containing the
site with midpoint x + (0,0, 1

2), also identified with the set of faces of I that bound it.

We study the shape of Px conditionally on the height of the pillar, ht(Px), exceeding some h.
To do so, we define cut-points of Px as sites v in Px such that no other site in Px is at the
same height as v. Ordering the cut-points of Px in increasing height as v1, v2, . . . , vT +1, we
decompose Px into a sequence of increments (Xi )i≤T , where Xi is the set of sites in Px

delimited by vi from below and vi+1 from above. We further decompose Px into its base
consisting of the sites in Px below v1 and its spine consisting of the sites in Px at or above
v1 (due to the difficulty in controlling interactions with nearby pillars, the base was defined
differently in [16], namely, it also included a prefix of the spine to mitigate the effect of these
interactions).

With these new definitions the results in [16] show that, conditionally on ht(Px)≥ h, the
pillar Px has a base of diameter O(logh) with an exponential tail beyond that, and all incre-
ments above vC logh have exponential tails on their surface area. It was also shown in [16] that
the increment sequence of Px , conditioned on having T ≥ T increments, behaves asymptot-
ically as a stationary, weakly mixing sequence; in particular, observables of the increment
sequence (e.g., its volume, surface area, and displacement) were shown to obey central limit
theorems as T →∞. At the level of these central limit theorems and the law of large num-
bers of Mn, errors of O(logh) or O(logT ) on the bounds on the size of the base could be
sustained.

The following result removes these O(logh) errors, which we cannot afford in proving
Theorems 1–2.
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FIG. 2. A map �x,t locally modifies the structure of the interface near the base of a pillar Px that reaches
a large height h� 1. The local modifications introduce delicate interactions with nearby fluctuations of the
interface (nearby pillars).

THEOREM 4. There exist β0,C > 0 such that, for every β > β0 and sequences (hn),
(�n), (xn) with hn��n and xn ∈ �−n+�n,n−�n�2×{0}, the pillar Px of the interface of
the Ising model on �n with Dobrushin boundary conditions, conditional on reaching height
hn, has the following structure:

1. The diameter of the base Bx := {w ∈ Px : ht(w) < ht(v1)} is at most r , except with
probability C exp[−(β −C)r] for every 1≤ r ≤�n.

2. For every t , the surface area of the increment Xt := {w ∈ Px : ht(vt ) ≤ ht(w) ≤
ht(vt+1)} is at most 8+ r , except with probability C exp[−(β −C)r] for every 1≤ r ≤�n.

1.1.1. Proof of Theorem 4. As in classical Peierls arguments as well as [14, 16], we
design a map � on a subset J of interfaces whose pillars have ht(Px)≥ h; the map will show
that the subset J is rare if:

1. μ∓n (I)/μ∓n (�(I)) is exponentially small in β(|I| − |�(I)|), while
2. the map has bounded multiplicity, that is, it maps at most CM elements of J with |I| −

|�(I)| =M to each element of �(J) (noting |I|−|�(I)| is the excess energy of the interface
I compared to �(I)).

In the context of interfaces of the Ising model, we emphasize that bounding μ∓n (I)/

μ∓n (�(I)) is complicated by the fact that the Ising measure is not a measure on inter-
faces but rather on configurations: using cluster expansion, Dobrushin [14] viewed the law
μ∓n (I ∈ ·) as a perturbation of a measure on interfaces whose weights are proportional to
e−β|I|, where the perturbation e−

∑
f∈I g(f,I) captures the subcritical bubbles in the plus and

minus phases. Thus, the difficulty in item (1) above reduces to showing that the cumulative
effect of

∑
g(f,I)−∑

g(f ′,�(I)) is comparable to the energy gain |I| − |�(I)|.
In Dobrushin’s proof of rigidity, this interaction term was controlled via the decomposition

of the interface into groups of walls describing the vertical fluctuations of the interface: this
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effectively reduced considerations of the interaction terms to horizontal interactions between
distinct walls.

In [16], as in this paper, we required estimates conditionally on ht(Px)≥ h and, therefore,
had to examine the structure of pillars in a more refined manner than by reducing to their
two-dimensional projection. By decomposing pillars into a base and a sequence of incre-
ments and accepting O(logh) errors in the base, we were able to handle the interaction terms
by separating out the vertical interactions between shifts of increments from the horizontal
interactions induced by deletions of groups of walls.

In both approaches there is an inherent competition between: (1) a desire to delete more
walls/straighten additional increments (which simplifies the comparison between the inter-
action terms and |I| − |�(I)|) and (2) the inability to delete “too much,” at risk of losing
control of the multiplicity of the map.

Toward Theorem 4 we need both an exponential tail on the size of the base beyond O(1)

and control on increment sizes even at heights that are O(1) (cf., the O(logh) errors in [16]).
As we will see in Section 1.1.2, this is fundamental to establishing Theorems 1–2. To prove
Theorem 4, we devise a delicate algorithmic map (Algorithm 1) that iteratively handles the
interactions between the horizontal shifts of the increments in the pillar Px and the vertical
shifts of nearby walls of distinct pillars. See Figure 2 for a visualization of this map and
Section 4.2 for a more detailed discussion of the various steps in its construction.

1.1.2. Proof of tightness and Gumbel tails for Mn − E[Mn]. In [16] we used structural
results on the shape of pillars Px attaining a large height to prove approximate submultiplica-
tivity for the sequence μ∓(ht(Px) ≥ h), with a multiplicative error that is O(eβ diam(Bx)2

)

where Bx is the base of the pillar Px . As the bounds in that paper showed that typically
diam(Bx)=O(logh), it follows from Fekete’s Lemma that 1

h
logμ∓(ht(Px)≥ h) has a limit

α as h→∞. Further, deducing in that paper that Mn/ logn→ 2/α, via a second moment ar-
gument, relied on the bound on diam(Bx), as if y+ (0,0, 1

2) is interior to Bx , then Px = Py .
Our proof of tightness of Mn − E[Mn], therefore, necessitates establishing that

diam(Bx) = O(1) as well as an O(1) error in the relevant submultiplicativity estimates.
Such refined estimates as well as others needed in the second moment argument that is
used to establish tightness (such as controlling the increments and tail bounds on the event
{ht(Px) ≥ h} at heights that are O(1)), are derived from the new Theorem 4. The Gumbel
tails in Theorem 2 are then obtained via a coupling of the maximum Mn to the maximum of
(1+ o(1))(n/Ln)

2 i.i.d. copies of the maximum at a suitably chosen smaller scale MLn (see
Proposition 7.1), thereby boosting the exponential left tail into a doubly exponential one.

1.2. Organization. Section 2 contains the prerequisite definitions of walls/ceilings in
Ising interfaces as per Dobroshin’s framework. Section 3 defines pillars and their decom-
position into a base and sequence of increments (refining those of the prequel). Section 4,
which is the heart of the proof, defines the map � and proves Theorem 4.1 and Proposi-
tion 4.2 which are more detailed versions of Theorem 4 from above. Section 5 proves the
refined submultiplicativity estimates (Proposition 5.1 and Corollary 5.2). These are used in
Section 6, via a second moment argument, to prove exponential tails—and thus tightness—
for the maximum (Proposition 6.1). Section 7 builds the multiscale coupling of the maximum
(Proposition 7.1), used to boost the exponential tails into Gumbel tails and prove Theorem 2
as well as Proposition 3.

2. Preliminaries. In this section we formalize the setup of the low-temperature Ising
model, define its interface under Dobrushin boundary conditions more precisely and recall
the decomposition of this interface into walls and ceilings introduced in [14] to prove rigidity
of the interface.
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2.1. Graph notation. We begin by describing the graph notation we use throughout the
paper; though the results in this paper generalize directly to dimensions greater than three, for
ease of exposition we present everything in the setup of the three-dimensional integer lattice.

Let Z3 be the three-dimensional integer lattice graph with vertex set {(v1, v2, v3) ∈ Z3} and
edge set identified with the set of nearest-neighbor pairs of vertices {{v,w} : d(v,w) = 1},
where d(x, y)= |x − y| will always denote the Euclidean distance between two points x, y.

A face of Z3 is the open set of points in R
3 bounded by four edges (and four vertices)

forming a square of side length one (normal to one of the coordinate axes). A face is hori-
zontal if its outward normal vector is ±e3 and it is vertical if its outward normal vector is
±e1 or ±e2. A cell of Z3 is the open set of points bounded by six faces (and eight vertices)
forming a cube of side length one. We will frequently identify edges, faces and cells with
their midpoints, so that points with two integer and one half-integer coordinate are midpoints
of edges, points with one integer and two half-integer coordinates are midpoints of faces and
points with three half-integer coordinates are midpoints of cells.

For a set of vertices �⊂ Z
3, we denote by E(�), F(�), C(�) the edges, faces and cells,

respectively, whose bounding vertices are all contained in �.
Two distinct edges are adjacent if they share a vertex; two distinct faces are adjacent if

they share a bounding edge; two distinct cells are adjacent if they share a bounding face.
We use the notation “∼” to denote adjacency. A set of faces (resp., edges, cells) F is called
connected if, for every f,f ′ ∈ F , there is a sequence f1, . . . , fm ∈ F such that f = f0 ∼ f1 ∼
· · · ∼ fm = f ′. We say that two faces (resp., edges, cells) are connected in � if F ∩F(�) is
connected (resp., F ∩ E(�) and F ∩ C(�) are connected).

Two distinct edges/faces/cells are ∗-adjacent if they share a bounding vertex. We define
∗-connectivity, analogously to the above definitions for connectivity, w.r.t. the weaker notion
of ∗-adjacency.

Subsets of Z3. The subsets of Z3 that we will primarily consider are boxes or cylinders
centered at the origin. Let us denote the centered (2n+ 1)× (2m+ 1)× (2h+ 1) box by

�n,m,h = �−n,n�× �−m,m�× �−h,h�,

where, if a < b are integers, �a, b� := {a, a + 1, . . . , b − 1, b}. We use �n to denote the
infinite cylinder �n,n,∞.

For any cell-set C ⊂ C(Z3), its (outer) boundary ∂C is the set of all cells in C(Z3) \ C

which are adjacent to some cell in C. We use the shorthand ∂�n,m,h = ∂(C(�n,m,h)).
Other important subsets we consider are slabs of Z3. For an integer h ∈ Z, let Lh be the

subgraph of Z3 with vertex set Z2×{h} and the resulting face-set. For half-integer h ∈ Z+ 1
2 ,

let Lh consist of the faces and cells of Z3 whose midpoints have height h. Let L>0 =⋃
h>0 Lh

be the cell and face-set of the upper half-space, and let L<0 be the cell- and face-set of the
lower half-space.

Abusing notation slightly, it will be helpful to use the notation

L0,n =F(L0 ∩�n).

2.2. The Ising model. Since our primary object of study is the interface of the 3D Ising
model, it will be convenient to consider the Ising model as an assignment of {±1} spins to the
vertices of the dual graph (Z3)∗, identified with the cells of Z3. With this choice the interface
will be a connected subset of F(Z3).

An Ising configuration on a subset C(�)⊂ C(Z3) is an element σ ∈ {±1}C(�). A boundary
condition on C(�) is a configuration η ∈ {±1}C(Z3). The Ising model at inverse-temperature
β > 0 on C(�) with boundary conditions η is the probability measure on σ ∈ {±1}C(�) given
by

μ
η
�,β(σ )= 1

Z�,β

exp
[−βH(σ )

]
,



740 R. GHEISSARI AND E. LUBETZKY

where

H(σ )=− ∑
v∼w

v,w∈C(�)

1{σv 	= σw} −
∑
v∼w

v∈C(�),w∈∂�

1{σv 	= ηw}

and where the normalizing constant Z�,β , called the partition function, is such that μ
η
�,β is

a probability measure.
We suppress the dependence on β as the choice of β is typically fixed in the context. When

� = �n,m,h, we use the shorthand μ
η
n,m,h = μ

η
�n,m,h

, and when � = �n = �n,n,∞, we use

the shorthand μ
η
n = μ

η
�n,n,∞ .

In this paper we are interested in Dobrushin boundary conditions, which are the assign-
ment

ηv =
{−1, v ∈ C(Z2 × �0,∞�

)
,

+1, v ∈ C(Z2 × �−∞,0�
)
,

and we use the shorthand ∓ for this choice of η.

Domain Markov property. Observe that the only dependence of the measure μ
η
�,β on the

boundary conditions η is through the restriction of η to ∂�. This leads to what is known as the
domain Markov property: for any two finite subsets A⊂ B ⊂ C(Z2) and every configuration
η on B \A,

μB(σA ∈ · | σB\A = η)= μ
ηB\A
A (σA ∈ ·),

where σA denotes the restriction of σ to the set A.

FKG inequality. The Ising model satisfies an important positive correlation inequality
known as the FKG inequality. Consider the natural partial order on configurations σ ∈ {±1}A,
and suppose f and g are nondecreasing functions in that partial order. Then,

Eμ�

[
f (σ)g(σ )

]≥ Eμ�

[
f (σ)

]
Eμ�

[
g(σ )

]
,

where Eν is the expectation with respect to the law ν. A special case of this is when f and g

are indicator functions of nondecreasing events.
A recurring example of such an increasing event is ∗-connectivity via plus cells. For a set

A⊂ C(�), we say v,w ∈A are in the same ∗-connected plus component of A if v and w are

∗-connected in {u ∈A : σu =+1}. We use the shorthand v
+←→
A

w to denote this event. When

A= C(�), we omit it from the notation.

Infinite-volume Gibbs measures and DLR condition. If the underlying geometry � is an
infinite (rather than finite) subset of Z3, the normalizing constant Z�,β is not finite and the
measure μ

η
�,β is a priori undefined. Such infinite-volume Gibbs measures are instead defined

via a consistency relation known as the DLR conditions. For an infinite set C(�), a measure
ν�, defined by its finite-dimensional distributions, satisfies the DLR conditions if, for every
finite A⊂ C(�),

Eν�(σC(�)\A∈·)
[
ν�(σA ∈ · | σC(�)\A)

]= ν�(σA ∈ ·).
Infinite-volume Gibbs measures need not be unique. For the Ising model on Z

d , the phase
transition of the model is described in terms of the uniqueness/nonuniqueness of the infinite-
volume Gibbs measure. In the low-temperature regimes we are interested in, distinct infinite-
volume measures are attained by taking weak limits of Ising models on finite boxes with
different boundary conditions (e.g., all-plus, all-minus).
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We denote the infinite-volume Gibbs measures, obtained by taking limits of μ+n,n,n and
μ−n,n,n, as n→∞ by μ+

Z3 and μ−
Z3 , respectively. When β > βc, μ+

Z3 	= μ−
Z3 . Dobrushin [13,

14] proved that there exists a β0 such that, when β > β0, there exist DLR measures on Z
3

that are not mixtures of μ+
Z3 and μ−

Z3 , namely, those obtained by taking the limit of μ∓n,n,n as
n→∞.

2.3. The Ising interface with Dobrushin boundary conditions. The infinite volume mea-
sure μ∓

Z3 is characterized by an interface separating the minus and plus phases, which look
like μ−

Z3 and μ+
Z3 , respectively. Dobrushin showed that this interface is localized—on finite

boxes (its height fluctuations above the origin are O(1))—and we are interested in char-
acterizing the law of its maximum height. To that end, we formally define the interface I
separating the plus and minus phases.

DEFINITION 2.1 (Interface). Consider the Ising model with Dobrushin boundary con-
ditions on �n,m,h, that is, μ∓n,m,h. For a configuration σ on C(�n,m,h), define its interface
I = I(σ ) as follows:

1. Extend the configuration σ to a configuration on all of C(Z3) by taking σv = −1 if
v ∈ L>0 \ C(�n,m,h) and σv =+1 if v ∈ L<0 \ C(�n,m,h).

2. Let F(σ) be the set of faces separating cells of different spins under σ .
3. Call the (maximal) ∗-connected component of L0 \F(�) in F(σ), the extended inter-

face. (This is also the unique infinite ∗-connected component in F(σ).)
4. Let I = I(σ ) be the restriction of the extended interface to F(�).

REMARK 2.2. One could use alternative definitions for singling out the interface I out
of the connected sets of faces that separate the minus and plus phases of the boundary, for
example, the minimal one or one obtained by a splitting rule. Locally, the difference set
between two such definitions would have an exponential tail via a Peierls argument. However,
these other choices are not as well tuned to the arguments that follow.

Just as a configuration σ identifies an interface I , every interface I identifies a configu-
ration σ(I) for which F(σ(I))= I; that is, this configuration is minus everywhere “above”
I and plus “below.” One can obtain this configuration by starting from the boundary sites
∂C(�n,m,h) and, iteratively, from the boundary inward, assigning spins to the cells of �n,m,h

such that adjacent cells have differing spins if and only if there is a face in I separating them.
If we call C−(I) the set of all minus spins of σ(I) and C+(I) the set of all plus spins of

σ(I), we find that each of C− and C+ is a single infinite ∗-connected set of cells (though
we emphasize that each may break up into distinct nearest-neighbor connected components
C−1 , . . . ,C−r and C+1 , . . . ,C+s ). Recall the following consequence of the definition of the inter-
face above and the domain Markov property of the Ising model.

OBSERVATION 2.3. Conditionally on having an interface I , the Ising model on
C(�n,m,h) with ±-boundary conditions is the Ising measure on C(�n,m,h) \ ∂I (where ∂I is
the set of all cells that share a bounding vertex with a face of I) with its induced boundary
conditions being ± on ∂�n,m,h and being the restriction σ(I)�∂I on ∂I . This Ising measure
is, evidently, a product of Ising measures on the nearest-neighbor connected components
(C−i )i with minus boundary conditions and (C+i )i with plus boundary conditions.

It follows straightforwardly by Borel–Cantelli that, for every β > 0, we can take a limit of
the measure μ∓n,m,h as h→∞ and obtain an infinite-volume measure on the cylinder �n,m,∞
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whose interface is almost surely finite. With this in hand we can move to the Ising interface on
�n =�n,n,∞ under μ∓n . As in the preceding works [14, 16], we move from the Ising measure
to a measure over interfaces, where the energetic cost of an interface is seen to be given by
its cardinality and the lowest energy interface is that coinciding with L0. We therefore define
the notion of excess energy of one interface with respect to another by

m(I;J )= |I| − |J | =H
(
σ(J )

)−H
(
σ(I)

)
.

Informally, by Observation 2.3, given an interface I , the measure μ∓n looks like a com-
bination of the measure μ−n above I and μ+n below it. However, the choice of a particular
interface modifies these measures above and below the interface as it precludes, say, plus
sites that appear under μ−n but would be ∗-adjacent to I . At low temperatures these plus
droplets have exponential tails on their size, and we can sum over their cumulative effect in
order to characterize the Ising measure as a Gibbs measure over interfaces with an additional
perturbative term.

THEOREM 2.4 ([14], Lemma 1). Consider the Ising measure μn = μ∓n on the cylinder
�n =�n,n,∞. There exist β0 > 0 and a function g such that, for every β > β0 and any two
interfaces I and I ′,

μ∓n (I)

μ∓n (I ′)
= exp

[
−βm

(
I,I ′

)+ (∑
f∈I

g(f,I)− ∑
f ′∈I ′

g
(
f ′,I ′

))]
,

and the function g satisfies the following for some c̄, K̄ independent of β: for all I , I ′ and
f ∈ I and f ′ ∈ I ′: ∣∣g(f,I)

∣∣≤ K̄,(2.1) ∣∣g(f,I)− g
(
f ′,I ′

)∣∣≤ K̄e−c̄r(f,I;f ′,I ′),(2.2)

where r(f,I;f ′,I ′) is the largest radius around the origin on which I − f (I shifted by the
midpoint of the face f ) is congruent to I ′ − f ′: that is, to say

r
(
f,I;f ′,I ′)= sup

{
r : (I − f )∩Br(0)≡ (

I ′ − f ′
)∩Br(0)

}
,

where Br(0) is the ball of radius r around (0,0,0) and the congruence relation ≡ is equality
as subsets of R3, up to, possibly, reflections and ±π

2 rotations in the horizontal plane.

We will use the phrase r(f,I;f ′,I ′) is attained by g ∈ I (resp., g′ ∈ I ′) if g (resp., g′)
is a face of minimal distance to f (resp., to f ′) whose presence prevents r(f,I;f ′,I ′) from
being any larger.

2.4. Walls, ceilings and groups of walls. Dobrushin’s proof of rigidity of the 3D Ising
interface used a combinatorial decomposition of the interface to effectively reduce it to a
two-dimensional polymer model on L0 given by projections of walls of I . We recap the
definitions introduced therein in this section and describe the bijection between admissible
collections of standard walls and Dobrushin interfaces.

DEFINITION 2.5. For a set of faces or cells A, define its projection ρ(A) := {(x1, x2,0) :
x = (x1, x2, x3) ∈A} so that ρ(A)⊂ L0.

Notice that the projection of a horizontal face is in F(L0) while the projection of a vertical
face is in E(L0). For an interface I and an edge or face u ∈ E(L0)∪F(L0), denote by

Nρ(u) := #
{
f ∈ I : ρ(f )= u

}
.
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FIG. 3. Three distinct standard walls, with their interior ceiling faces (purple) and wall faces (vertical in teal,
horizontal in light blue) as per Definition 2.6. Left example features two distinct (+) components in R

2 × R+
which correspond to two distinct pillars but form a single wall. Middle and right examples feature wall faces that
would be disconnected via nearest-neighbor connectivity but form a wall using ∗-connectivity.

DEFINITION 2.6 (Walls and ceilings). A face f ∈ I is a ceiling face if f is a horizontal
face and Nρ(ρ(f ))= 1. A face f ∈ I is a wall face if it is not a ceiling face. A ceiling is a
∗-connected set of ceiling faces. By construction, all faces in a ceiling C have the same e3
coordinate, and we can call that the height of the ceiling ht(C). A wall is a ∗-connected set
of wall faces. Clearly, the projections of distinct walls are disjoint.

See Figure 3 for a depiction of these definitions in subtle scenarios.

DEFINITION 2.7 (Floors and ceilings of a wall). For a wall W , define the complement
of its projection

ρ(W)c := (
F(L0)∪ E(L0)

) \ ρ(W),

and notice that it splits into an infinite connected component and some finite ones (here, con-
nectivity is seen in R

2). Any ceiling adjacent to a wall W projects into one of the connected
components of ρ(W)c. Call that ceiling that projects into the infinite component of ρ(W)c

the floor of W , denoted by �W� and collect all other ceilings adjacent to W into �W�. For
distinct walls W , W ′, the sets �W� and �W ′� are disjoint.

Importantly, given all the walls of an interface I , one can reconstruct the full interface by
iteratively reading off the heights of the ceilings from the wall collection.

DEFINITION 2.8 (Standard walls). A wall W is a standard wall if there exists an interface
IW such that its only wall is W . As such, a standard wall must have that �W� ⊂ L0.

For a wall W , we define its standardization (called drift in [14]) as its vertical shift by
−ht(�W�) and denote it by θSTW . For any wall W , its standardization is a standard wall.

REMARK 2.9 (Indexing of walls). We can index the walls of I as follows: assign an
arbitrary ordering to the faces of L0. Index a wall W by the minimal face of L0 that is
interior to W and incident to ρ(W). Clearly, for any admissible collection of standard walls,
the indices of distinct walls are distinct.

Since the projections of walls are distinct, the projection of a wall W ′ is a subset of ρ(W)c:
if it is a subset of one of the finite components of ρ(W)c, we say that W ′ is nested in W and
write W ′ � W . In this way, to every W ′ � W , we can identify a ceiling in �W� which is the
one projecting into that same finite component of ρ(W)c.

DEFINITION 2.10 (Nesting of walls). We say u ∈ E(L0)∪F(L0) is interior to a wall W

if it is not in the infinite component of ρ(W)c. We say that f ∈ I is interior to W if ρ(f ) is
interior to W .



744 R. GHEISSARI AND E. LUBETZKY

Then, for any u ∈ E(L0)∪F(L0), we define its nested sequence of walls Wu as the collec-
tion of all walls to which u is interior. By the definition above, this forms a nested collection
Wu

1 �Wu
2 � · · · .

We say a collection of standard walls is admissible if their projections are distinct. The
following lemma shows a bijection between admissible collections of standard walls and
interfaces (also, see [16], Lemma 2.12, for more details).

LEMMA 2.11 (The standard wall representation of I). There is a 1-1 correspondence
between admissible collections of standard walls and interfaces. Namely, to obtain the stan-
dard wall representation of an interface I , take the union of the standardizations of all its
walls. From an admissible collection of standard walls, recover an interface as follows:

1. Iteratively, for every standardization of a wall θSTW :

• If W ′ � θSTW and is identified with ceiling C ∈ �θSTW�, then shift W ′ by ht(C).

2. From this wall collection, fill in the ceiling faces to obtain the interface I .

Using the standard wall representation defined above, we note the following important
observation.

OBSERVATION 2.12. Consider interfaces I and J , such that the standard wall represen-
tation of I contains that of J (and, additionally, has the standardizations W=W1, . . . ,Wr ).
By the construction in Lemma 2.11, there is a 1-1 map between the faces of I \W and the
faces of J \H where H is the set of faces in J projecting into ρ(W). Moreover, this bijec-
tion can be encoded into a map f �→ θ�f that only consists of vertical shifts and such that all
faces projecting into the same component of ρ(W)c undergo the same vertical shift.

DEFINITION 2.13. For a wall W , define its excess area as

m(W) :=m(IθSTW ;L0,n)= |W | −
∣∣F(

ρ(W)
)∣∣,

and notice that this always satisfies

(2.3) m(W)≥ 1

2
|W | and m(W)≥ ∣∣E(ρ(W)

)∣∣+ ∣∣F(
ρ(W)

)∣∣.
Notice that for an interface I with standard wall collection (Wz)z∈L0,n

, we have m(I;L0,n)=∑
m(Wz).

DEFINITION 2.14 (Closeness and groups of walls). We say that two walls W and W ′ are
close if there exist u ∈ ρ(W), u′ ∈ ρ(W ′) such that∣∣u− u′

∣∣≤√
Nρ(u)+

√
Nρ

(
u′
)
.

A collection of walls F =⋃
i Wi is a group of walls if every wall in F is close to another

wall in F and no wall not in F is close to a wall in F . For a nested sequence of walls
Wu =Wu

1 ∪Wu
2 ∪ · · · , this allows us to collect the union of all its groups of walls into

Fu :=
⋃
i

F u
i where Fu

i is the group of walls containing Wu
i .

For collections of walls, for example, groups of walls, nested sequences, define their excess
area as the sum of the excess areas of the constituent walls.

Groups of walls are indexed by the minimal index of their constituent walls. However,
notice that we do not employ a unique labeling procedure for nested sequences of walls
or their groups of walls of nested sequences of walls; if u, u′ are both interior to W , then
Wu ∩Wu′ 	=∅.
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3. Decomposition of tall pillars.

3.1. Pillars and increments. In [16], the authors introduced pillars and their decomposi-
tion into an increment sequence in order to understand the large deviations of the interface I
(e.g., its structure at points where it attains atypically large heights). In this section we recall
these definitions, though we note crucially that the division of pillars into spines and bases
has been modified from the prequel; in [16] we absorbed imprecisions of O(log logn), which
we cannot afford when proving tightness of the maximum.

DEFINITION 3.1 (Pillar). For an interface I and a face x ∈ F(L0), we define the pillar
Px as follows: consider the Ising configuration σ(I), and let σ(Px) be the (possibly empty)
∗-connected plus component of the cell with midpoint x + (0,0, 1

2) in the upper half-space
L>0. The face-set Px is then the set of bounding faces of σ(Px) in L>0.

The following relation between pillars and nested sequences of walls is important.

OBSERVATION 3.2. The walls of the pillar Px are contained in the nested sequence of
walls Wx =⋃

i W
x
i together with all walls nested in some Wx

i . Namely, if I and J agree on
Wx and on all walls nested in walls of Wx , then PI

x =PJ
x . Therefore, if f ∈Px , there exists

W such that both f and x are interior to W .

DEFINITION 3.3 (Cut-points). A half-integer h ∈ {12 , 3
2 , . . .} is a cut-height of Px if the

intersection σ(Px) ∩ R
2 × [h − 1

2 , h + 1
2 ] consists of a single cell. In that case, that cell

(identified with its midpoint v ∈ (Z+ 1
2)3) is a cut-point of Px . We enumerate the cut-points

of Px in order of increasing height as v1, v2, . . . .

DEFINITION 3.4 (Spine and base). The spine of Px , denoted Sx , is the set of cells in
σ(Px) (resp., faces in Px) intersecting R

2 ∩ [ht(v1),∞). The base Bx of Px is the set of
cells in σ(Px) \ Sx (resp., faces in Px \F(Sx)).

REMARK 3.5. We draw attention to the fact that our decomposition of the pillar into a
spine and base differs from that used in [16]. There, the beginning of the spine was marked
not by v1 but by a random vτSP : the first cut-point to, informally, have height greater than all
other pillars in a radius of R ∝ ht(Px). This was tailored to the fact that we could sustain
errors that were logarithmic in the height of the pillar.

DEFINITION 3.6 (Increments). We decompose a spine Sx with cut-points v1, v2, . . . into
its constituent increments. If there are at least T + 1≥ 2 cut-points, for every i ≤T , define
the ith increment as

Xi = Sx ∩
(
R

2 ×
[
ht(vi)− 1

2
,ht(vi+1)+ 1

2

])
,

so that the ith increment is the subset of Sx delimited from below by vi and from above by
vi+1 and there are exactly T increments. (If there are fewer than two cut-points, we say that
T = 0.)

Besides the increments, the spine additionally may have a remainder X>T , which we
define as the set of faces intersecting R

2 × [ht(vT +1),∞). For readability, for a spine Sx

with increment sequence X1, . . . ,XT ,X>T , we use the notation XT +1 :=X>T so that
we can consistently index over increments and the remainder.
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Abusing notation, we may view increments not as subsets of an interface, but as finite
∗-connected set of cells with at least two cells and whose only cut-points are its bottom-
most and top-most cells (modulo lattice translations, achieved by, say, rooting them at the
origin). Call the set of all such increments X. The face-set of such an increment consists of
all its bounding faces, except its bottom-most and top-most horizontal ones. A remainder
increment is defined similarly, but its only cut-point is its bottom-most cell.

LEMMA 3.7. There is a 1-1 correspondence between triplets of v1, a sequence of incre-
ments (X1, . . . ,XT ) ∈ XT and a remainder X>T , and possible spines of T increments with
first cut-point at v1.

Indeed, this follows by identifying the bottom cut-point of X1 with v1 and sequentially
translating the increments in the increment sequence to identify their bottom cut-point with
the top cut-point of the previous increment. For more details, see [16], Section 3.

The simplest increment is what we call the trivial increment X∅, consisting of two verti-
cally consecutive cells, one on top of the other (resp., its eight bounding vertical faces). In
proofs where we show that increments have exponential tails, the maps we apply trivialize
an increment Xj by replacing it in the increment sequence of Sx by ht(vj+1)− ht(vj ) con-
secutive trivial increments. Excess areas of increments will be defined w.r.t. this trivialization
scheme. Namely, for an increment Xi (1≤ i ≤T ), define m(X) as

(3.1) m(Xi )=
∣∣F(Xi )

∣∣− 4
(
ht(vi+1)− ht(vi)+ 1

)
(recall that F(X) does not include the top most and bottom most faces bounding X). For
the remainder increment XT +1 =X>T , where vT +2 does not exist, this can be defined
consistently by arbitrarily setting ht(vT +2) := ht(Px)− 1

2 . With these definitions we notice
that if Xi 	=X∅, then

m(Xi )≥ 2
(
ht(vi+1)− ht(vi)− 1

)∨ 2 and
∣∣F(Xi )

∣∣≤ 3m(Xi )+ 4,

since the intersection of Xi with any height which is not a cut-height has at least six faces vs.
four faces in a trivial increment (a nontrivial increment X that has height 1 satisfies m(X)= 2
and |F(X)| = 10).

For a spine Sx and a fixed T , we define its excess area with respect to the reference incre-
ment sequence of T trivial increments by

m(Sx)=
(∑

i≤T

m(Xi )

)
+m(X>T ).

We can define an excess area of the base of a pillar as being with respect to the pillar of the
same height and no base: for a pillar Px with base Bx and first cut-point v1, define

m(Bx) :=
∣∣F(Bx)

∣∣− ∣∣F(
ρ(Bx)

)∣∣− 4
(

ht(v1)− 1

2

)
.

For an x ∈ L0,n, collect the interfaces with Px having at least T increments and at least
height H in

Ix,T ,H = {
I :T ≥ T and ht(Px)≥H

}
.

3.2. Preliminary estimates on tall pillars. In this section we recap some results, which
can be deduced from Dobrushin’s proof of rigidity [14] and simple modifications around that
argument, together with the definitions of pillars and increments; see [16] for short proofs of
these.
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PROPOSITION 3.8. There exists C and β0 such that for every β > β0, for every x ∈ L0,n

and every r ≥ 1,

μ∓n
(
m(Wx)≥ r

)≤ e−(β−C)r and μ∓n
(
m(Fx)≥ r

)≤ e−(β−C)r .

As a consequence of Observation 3.2, the proposition implies the following.

COROLLARY 3.9. There exists C and β0 such that for every β > β0, for every x ∈ L0,n

and every r ≥ 1,

μ∓n
(
max

{
h : (x1, x2, h) ∈ I}≥ r

)≤ e−4(β−C)r and μ∓n
(
ht(Px)≥ r

)≤ e−4(β−C)r .

In fact, by a simple application of the FKG inequality and forcing argument, we obtain a
corresponding lower bound, yielding the following.

PROPOSITION 3.10 (see [16], Proposition 2.29). There exists C > 0 and a sequence εβ

vanishing as β→∞ such that, for every β > β0, x ∈ L0,n and h≥ 1,

(1− εβ)e−(4β+e−4β)h ≤ μ∓n
(
ht(Px)≥ h

)≤ e−4(β−C)h.

3.3. Tame pillars. In this section we consider the set of all pillars that have at least T

increments and reach a height H . We show that a subset of them, which we call tame, have
large probability, and from there on in Section 4 we restrict attention to tame pillars on which
our future maps will be well defined.

Notice that, if H ≤ T , the event {ht(Px)≥H } is vacuous, so we take T < H .

DEFINITION 3.11. For a given x ∈ L0,n and T < H , we say that an interface I ∈ Ix,T ,H

is tame if I is in

Īx,T ,H :=
{
I ∈ Ix,T ,H : diam(Bx)+ 1

4
m(Sx) < d(x, ∂�n)

}
.

We observe geometrically that, for a pillar Px ,

(3.2) max
f∈Px

d
(
x,ρ(f )

)≤ diam(Bx)+ 1

4
m(Sx).

Notice that this is less restrictive than the corresponding definition of tameness from [16],
as it is the minimal requirement for our (more robust) map in Section 4 to be well defined.

PROPOSITION 3.12. There exists C > 0 such that, for every β > β0 and every x ∈ L0,n

and T , H satisfying 0≤ T < H � r , we have

μ∓n
(

diam(Bx)+ 1

4
m(Sx)≥ r

∣∣∣ Ix,T ,H

)
≤Ce−2(β−C)r ,

and, in particular, taking r = d(x, ∂�n),

μ∓n
(
Īc
x,T ,H | Ix,T ,H

)≤ Ce−2(β−C)d(x,∂�n).

PROOF. This can be read off from a combination of various preliminary bounds in [14,
16]. For the sake of completeness and as an indication of the structure of the proofs in Sec-
tion 4, we present a full proof using a map �x,T ,H which deletes the pillar Px and replaces it
by a column of H − 1 trivial increments.
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Namely, let �x,T ,H : Ix,T ,H → Ix,T ,H be the following map. First, denote by

F[x] = Fx ∪
⋃

f∈∂0x

Ff

(where ∂0x are the four faces of L0 adjacent to x). Then, from an interface I we obtain
�x,T ,H (I) as the interface with the following standard wall representation:

1. Remove the standardizations of F[x] ∪Fρ(v1) from the standard wall representation of I .
2. Add the standard wall consisting of the bounding faces of a stack of H − 1 trivial

increments above x (i.e., the cells with midpoints {x + (0,0, n+ 1
2) : n= 1, . . . ,H }).

(In the exceptional case T = 0 and v1 doesn’t exist, interpret v1 as any site of σ(Px) whose
height is ht(Px) − 1

2 .) It is straightforward that �x,T ,H (I) is a valid interface in Ix,T ,H ,
as we deleted all walls containing x or its adjacent faces in their interior in step (1), so
that adding the wall in step (2) preserves the admissibility of the standard wall collection.

The pillar P�x,T ,H (I)
x of the resulting interface clearly consists only of the wall added in

step (2), and, therefore, it has H − 1 ≥ T trivial increments and reaches height H ; hence,
�x,T ,H (I) ∈ Ix,T ,H .

Notice that, for every I ∈ Ix,T ,H ,

m
(
I;�x,T ,H (I)

)=m(F[x] ∪ Fρ(v1))− 4H ≥ 2 diam(Bx)+ 1

2
m(Sx).

As such, it suffices for us to show the bound

(3.3) μ∓n
(
m
(
I;�x,T ,H (I)

)≥ 2r | Ix,T ,H

)≤ e−2(β−C)r .

We first consider how �x,T ,H transforms weights of interfaces. Namely, we claim that the
map sends interfaces of low probability to ones of higher probability: there exists C > 0 such
that, for every I ∈ Ix,T ,H having m(I;�x,T ,H (I))≥H ,

(3.4)
∣∣∣∣log

μ∓n (I)

μ∓n (�x,T ,H (I))
+ βm

(
I;�x,T ,H (I)

)∣∣∣∣≤ Cm
(
I;�x,T ,H (I)

)
.

For ease of notation, let J = �x,T ,H (I). We split the set of faces in I and J into the
following:

• W: The faces in F[x] ∪ Fρ(v1) in I .
• B: All other faces in I (consisting of all ceiling faces of I along with all wall faces besides

W).
• H: The set of faces in J whose projection is in F(ρ(W)).
• WJ

x : The set of faces in J from the wall added in step (2) of �x,T ,H .
• θ�B: All other faces in J .

By Lemma 2.11, there is a 1-1 correspondence between θ�B and faces in B given by the ver-
tical shifts induced by ceilings of deleted/added walls from the standard wall representation:
encode this 1-1 correspondence into f �→ θ�f . With this splitting in hand, by Theorem 2.4
we need to bound∣∣∣∣∑

f∈I
g(f,I)− ∑

f ′∈J
g
(
f ′,J

)∣∣∣∣≤ ∑
f∈W

∣∣g(f,I)
∣∣+ ∑

f ′∈H

∣∣g(f ′,J )∣∣+ ∑
f ′∈WJ

x

∣∣g(f ′,J )∣∣
+∑

f∈B

∣∣g(f,I)− g(θ�f,J )
∣∣.
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The first term is, at most, K̄|W| ≤ 2K̄m(W) by (2.1) and (2.3). The second term is, similarly,
at most, K̄[|E(ρ(W))| + |F(ρ(W))|] ≤ K̄m(W) and the third term is, at most, 4K̄H . The
last term satisfies ∑

f∈B

∣∣g(f,I)− g(θ�f,J )
∣∣≤∑

f∈B

K̄e−c̄r(f,I;θ�J ).

Since the distance between two faces is at least the distance between their projections and the
radius r(f,I; θ�f,J ) must be attained by a wall face, we see that the right-hand side is in
turn, at most,∑

f∈B

∑
u∈ρ(W∪WJ

x )

e−c̄d(ρ(f ),u) = ∑
u′∈ρ(W∪WJ

x )c

∑
u∈ρ(W∪WJ

x )

Nρ

(
u′
)
e−c̄d(u,u′).

By definition of groups of walls, for every u′ ∈ ρ(W∪WJ
x )c, we have Nρ(u′)≤ |u−u′|2+1

(if u′ is the projection of a ceiling face, Nρ(u′)= 1) and, therefore, the right-hand side above
is, at most, K̄[2m(W)+ 4H ].

Altogether, this implies that, for some C, we have the bound∣∣∣∣∑
f∈I

g(f,I)− ∑
f ′∈J

g
(
f ′,J

)∣∣∣∣≤ C
[
m(W)+ 4H

]
which implies the bound of (3.4) for a different C as long as m(I;J )≥H , say.

On the other hand, let us bound the multiplicity of the map �x,T ,H . Namely, we bound
the number of elements in the pre-image {I ∈ �−1

x,T ,H (J ) : m(I;J ) = M} by some CM
�

uniformly over J ∈ �x,T ,H (Ix,T ,H ). To do so, we associate to each possible such I , a
∗-connected face subset of Z

3 rooted at x, together with a coloring of those faces by
{BLUE, RED}, and bound the number of possible such so-called witnesses, from which to-
gether with J we can reconstruct I . Our witness will consist of the following:

1. Take the standardizations of all walls in F[x] ∪ Fρ(v1). Color all these faces BLUE.
2. For every u ∈ ρ(W), add all faces in L0 a distance at most

√
Nρ(u) from u and color

them RED.
3. Connect (via a shortest path of faces in L0) x to Wx

1 and Wx
i to Wx

i+1 for all i. Do the
same for ρ(v1). Also, add the face at x, and connect x to ρ(v1). Color those faces added RED.

That this forms a ∗-connected face subset follows from the definition of closeness of walls.
One can easily recover I from J and the witness by taking the standard wall representation
of J , removing from it WJ

x and adding in all BLUE faces of our witness to obtain the standard
wall representation of I .

The number of BLUE faces in a witness corresponding to an interface I with m(I;J )=M

is, at most, |F[x] ∪Fρ(v1)| ≤ 2m(W). The number of RED faces added in step (2) of the witness
construction is, by definition of closeness and groups of walls, at most,∑

u∈ρ(W)

Nρ(u)≤ |W| ≤ 2m(W).

Finally, by Observation 3.2, there is some wall that is deleted to which both x and ρ(v1) are
interior. The number of RED faces added in step (3) of the witness construction is, therefore,
at most,

3m(W)+∑
i

m
(
Wx

i

)+∑
i

m
(
W

ρ(v1)
i

)≤ 5m(W).

The number of possible witnesses corresponding to interfaces I with m(I;J )=M is then,
at most, the number of possible rooted face subsets of Z3 with at most 10M faces, multi-
plied by the number of possible {BLUE, RED} colorings of those faces. Recall the following
combinatorial fact (see, e.g., [14]).
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FACT 3.13. There exists a universal constant s > 0 such that the number of ∗-connected
face-subsets rooted at (incident to) a fixed vertex, edge or face of Z3, consisting of, at most,
M ≥ 1 faces, is, at most, sM .

With the above fact in hand, we see that there are, at most, s10M choices for the face subset
of the witness and an additional multiplicative 210M for the number of possible colorings of
those faces.

Combining this multiplicity bound with (3.4), we can deduce (3.3) as follows: for r ≥H ,

μ∓n
(
m
(
I;�x,T (I)

)≥ r, Ix,T ,H

)
≤ ∑

M≥r

∑
J∈�x,T ,H (Ix,T ,H )

μ∓n (J )
∑

I∈�−1
x,T ,H (J ):m(I;J )=M

e−(β−C)M

≤ ∑
M≥r

∑
J∈�x,T ,H (Ix,T ,H )

e−(β−C−logC�)Mμ∓n (J ).

Since �x,T ,H (Ix,T ,H )⊂ Ix,T ,H , we have for some other C > 0

μ∓n
(
m
(
I;�x,T (I)

)≥ r, Ix,T ,H

)≤ Ce−(β−C)rμ∓n (Ix,T ,H ),

from which dividing by μ∓n (Ix,T ,H ), we obtain (3.3). �

4. Sharp estimates on the structure of tall pillars. In this section, we obtain estimates
on the structure of tall pillars (conditionally on Ix,T ,H ) up to O(1) precision. This is a pre-
requisite to obtaining tightness of the maximum Mn via a second moment method, as the
size of the base Bx contains the positive correlations between the events {ht(Px) ≥ h} and
{ht(Py)≥ h}: for example, if the base Bx contains y in its interior, the events are fully cor-
related.

THEOREM 4.1. There exist β0,C > 0 such that for every β > β0, every x ∈ L0,n and T ,
H satisfying 0≤ T < H � d(x, ∂�n), the following holds:

(a) Base estimate: For every 1≤ r ≤ d(x, ∂�n),

μ∓n
(∣∣∣∣v1 −

(
x +

(
0,0,

1

2

))∣∣∣∣≥ r
∣∣∣ Ix,T ,H

)
≤ Ce−2(β−C)r ,

and, in fact,

μ∓n
(
m(Bx)≥ r | Ix,T ,H

)≤ Ce−(β−C)r .

(b) Increment estimate: For every t ≥ 1 and every 1≤ r ≤ d(x, ∂�n),

μ∓n
(
m(Xt )≥ r | Ix,T ,H

)≤ Ce−(β−c)r .

PROPOSITION 4.2. There exist β0,C > 0 such that for every β > β0, every x ∈ L0,n and
T , H satisfying 0 ≤ T < H � d(x, ∂�n), the following holds. For every half-integer � ≥ 1

2
and 1≤ r ≤ d(x, ∂�n),

μ∓n
(∣∣F(Px ∩L�)

∣∣≥ 4+ r | Ix,T ,H

)≤ Ce−(β−C)r .

Recall from the Introduction that in [16] the authors proved a bound of O(logH) on
diam(Bx) and the exponential tails on increment sizes were restricted to those with index
above O(logH). In that work, affording an O(logH) error, the interactions between the hor-
izontal shifts of the spine under the map were decoupled from the base and nearby pillars
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because, with high probability, no other pillars in the shadow of the pillar Px reach a height
larger than O(logH).

At heights that are O(1), we need to deal directly and simultaneously with the interactions
between vertical shifts (arising from deletions of groups of walls as in [14]) and the horizontal
shifts arising from trivializing increments and shifting the spine appropriately. This induces
substantial complications. After defining a map �x,t : Īx,T ,H → Ix,T ,H , in Section 4.2 we
give a reader’s guide to the various difficulties encountered in construction of this map and
justify the necessity of its various steps.

4.1. A new base and increment map. In this section we define a new map that shrinks
the base of Px and trivializes the t th increment of the pillar. The map is significantly more
involved than the maps in [16], as it deals directly with the interactions between the horizontal
shifts of Sx with the walls near its base which the spine may get close to or hit.

For an increment j , denote the centered trivialization of Xj by

�∅Xj =
[
−1

2
,

1

2

]2
×
[
ht(vj )− 1

2
,ht(vj+1)+ 1

2

]
.

Denote by WK
y the wall indexed by y in the interface K. If (W̃z)z∈L0,n

is the standard wall
representation of K, let

�K
� W̃y = {

WK′
y ∪

⌈
WK′

y

⌉ :K′ has standard wall representation (W̃z) or (W̃z \ F̃y′)

for some y′
};

namely, �K
� W̃y is the set of all possible vertical shifts induced on W̃y via Lemma 2.11 by

deleting the group of walls of a nested sequence of walls.
Finally, for some x ∈ L0,n identified with its midpoint, an interface I and two shift vectors

ω1,ω2 ∈ Z2 × {0}, denote by (W̃z) the standard wall representation of I \ Sx , and for every
wall W̃y define

Dx(W̃y, j,ω1,ω2)= d
(
�

I\Sx
� W̃y,Xj ∪ θρ(x+ω1+ω2)Xj ∪ θρ(x+ω2)�∅Xj

)
,

where for ω ∈R3 and A⊂R
3, θωA is the shift of A by the vector ω, that is, θωA=A+ω.

DEFINITION 4.3. For x ∈ L0,n, every t ≥ 1 and every 0≤ T < H , define the map �x,t :
Īx,T ,H → Īx,T ,H , as specified in Algorithm 1.

REMARK 4.4. In the exceptional case T = 0, when we are applying �x,t to interfaces
having pillars Px with T = 0 increments (so that they have either zero or one cut-points),
we interpret the steps in �x,t in the following way for it to be well defined. If T = 0 but v1
exists, then recalling that X1 :=X>0, the remainder will be trivialized, and the rest of the
map is applied as is. If T = 0 and Px has no cut-points, then take an arbitrary face of Px

having height ht(Px) to stand-in as “v1,” and steps 4–6 will be vacuous.
Notice, more generally, that if t > T , step 5 would be vacuous, but the map is still well

defined and our results hold by interpreting m(Xt )= 0 if Xt =∅.

4.2. Strategy of the map �x,t . We now motivate the different steps in the map �x,t and
describe why each one is important to the trade-off described in Section 1.1.1 between control
of the interaction terms and the multiplicity of the map. Let us recall in more detail the maps
introduced in the prequel [16] on pillars that reach height H and used there to establish a
bound of O(logH) on the height of the base and exponential tails on the increments above
that height. Let vτSP be a special cut-point index of the spine, marking the first increment
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Algorithm 1: The map �x,t

1 Let {W̃y : y ∈ L0,n} be the standard wall representation of the interface I \ Sx . Also, let Ov1 be

the nested sequence of walls of v1, so that θSTOv1 = W̃v1 .

// Base modification
2 Mark [x] = {x} ∪ ∂0x and ρ(v1) for deletion (where ∂0x denotes the four faces in L0 adjacent to

x).

3 if the interface with standard wall representation W̃v1 has a cut-height, then
Let h† be the height of the highest such cut-height.
Let y† be the index of a wall that intersects (Px \Ov1)∩Lh† and mark y† for deletion.

// Spine modification (A): the 1st increment
4 Set s1← 0 and y∗A←∅.

for j = 1 to T + 1 do
Let s← sj and sj+1← sj .
if m(Xj )≥ j − 1 then // (A1)

Let sj+1← j .

if Dx(W̃y, j,−vs+1,0)≤m(W̃y) for some y then // (A2)
Let sj+1← j and mark for deletion every y for which (A2) holds.

if Dx(W̃y, j,−vs+1,0)≤ (j − 1)/2 for some y then // (A3)
Let sj+1← j and let y∗A be the minimal index y for which (A3) holds.

Let j∗ ← sT +2 and mark y∗A for deletion.

// Spine modification (B): the t-th increment
5 if t > j∗ then

Set st ← t − 1 and y∗B←∅.
for k = t to T + 1 do

Let s← sk and sk+1← sk .
if m(Xk)≥ k− t then // (B1)

Let sk+1← k.

if Dx(W̃y, j,−vs+1, vt − vj∗+1)≤m(W̃y) for some y then // (B2)
Let sk+1← k and mark for deletion every y for which (B2) holds.

if Dx(W̃y, j,−vs+1, vt − vj∗+1)≤ (k − t)/2 for some y then // (B3)
Let sk+1← k and let y∗B be the minimal index y for which (B3) holds.

Let k∗ ← sT +2 and mark y∗B for deletion.
else

Let k∗ ← j∗.

6 foreach index y ∈ L0,n marked for deletion do delete F̃y from the standard wall representation
(W̃y).

7 Add a standard wall WJ
x consisting of ht(v1)− 1

2 trivial increments above x.
8 Let K be the (unique) interface with the resulting standard wall representation.
9 Denoting by (Xi )i≥1 the increment sequence of Sx , set

S←

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(X∅,X∅, . . . ,X∅︸ ︷︷ ︸
ht(vj∗+1)−ht(v1)

,Xj∗+1, . . . ,Xt−1,X∅,X∅, . . . ,X∅︸ ︷︷ ︸
ht(vk∗+1)−ht(vt )

,Xk∗+1, . . .) if t > j∗,

(X∅,X∅, . . . ,X∅︸ ︷︷ ︸
ht(vj∗+1)−ht(v1)

,Xj∗+1, . . .) if t ≤ j∗ .

10 Obtain �x,t (I) by appending the spine with increment sequence S to K at x + (0,0,ht(v1)).
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FIG. 4. After trivializing increments X1, X4, the shifted spine intersects an adjacent wall (orange). This con-
stitutes an (A2) violation. Right: The walls in yellow-brown are small (and, therefore, do not violate (A2) but still
interact strongly with the increment sequence; these will violate criterion (A3).

whose height is larger than all other pillars in a ball of radius CT about x. For t > τSP, the
map that proved an exponential tail on the t th increment would simply “trivialize” Xt and Xj

(j > t) in the increment sequence of Sx if m(Xj ) ≥ ec̄(j−t)/2. In bounding the interactions
by (2.2), this competed with ec̄(j−τSP) ≤ e−c̄(j−t) (because the horizontal shift of the portion
of the spine above vt+1 keeps the distance between Xj and I \ Px at least j − τSP), and
summing these terms over j was O(1).

However, for t < τSP, we have no control on the distance between the new spine and walls
in I \Px ; in fact, horizontal shifts of increments j ∈ �t +1, τSP � could even hit a neighboring
wall of I \ Sx (Figure 4, left), and the map would not yield a valid interface. We thus have
to consider the full geometry of these interactions as walls W̃y undergo vertical shifts and
nearby increments simultaneously undergo horizontal shifts.

With these difficulties laid out, we discuss the various steps in the definition of �x,t and
the different scenarios they are designed to address. The base modification (steps 2–3) here
is very similar to that used in [16]: it marks the nested sequence W̃[x] for deletion so that
the modified spine S can later be placed above WJ

x at x to form the new pillar PJ
x ; the

additional deletion of W̃ρ(v1) and W̃y† is to exploit the fact that Px has no cut-points below
v1 and ensure that the gain in energy m(I;�(I)) is larger than ht(v1)− 1

2 .
The spine modification is substantially more involved. Note that the modifications in (A)

(Step 4) and those in (B) (Step 5) are essentially the same, with the latter applied at the t th
increment so that we can prove the exponential tail on m(Xt ) simultaneously with the expo-
nential tail on m(Bx). Thus, let us only discuss the steps in the former (the spine modification
(A) at the first increment):

(A1) aims to control interactions between the horizontal shifts of the increments within the
spine itself. Unlike [16], where the corresponding modification used a threshold of m(Xj )≥
ec̄(j−t)/2, which was in a sense the “most lenient” criterion for trivializing increments, it is
important that here we use a “strictest possible” criterion only allowing a linear growth of the
excess areas of increments.

(A2) ensures that after �x,t is applied, any walls that were hit by horizontal shifts of
the spine are deleted. This is achieved via a soft threshold comparing the distance between
various horizontal shifts of Xi to a wall Wy (the relevant quantity in bounding |g(f,I) −
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g(f ′,�x,t (I))| via (2.2)), with the excess area m(Wy). Notice that the threshold cannot be
done with respect to m(Wy) instead of m(Wy) because one large wall nesting many smaller
walls only counts once toward m(I;�x,t (I)). (See Figure 4, left.)

(A3) addresses the additional scenario in which many distinct walls of small excess area
W1,W2, . . . are nested in some W ′, and the spine draws close to W1,W2, . . . without violating
(A2). In this situation, only one highest nested sequence of walls violating this criterion
is deleted in addition to the trivialization of the increments; otherwise, we would again be
overcounting the nesting wall. (See Figure 4, right.)

Finally, it is crucial that the horizontal shifts ω1, ω2 considered in D(W̃y, j,ω1,ω2) in
(A2)–(A3) are to be determined in an algorithmic manner. Namely, we want to ensure that, if
an increment is not trivialized, its horizontal shift in �x,t (I) did not violate any of the criteria
above; the horizontal shift vector with which this needs to be checked is determined by the
last increment to have violated one of the trivialization criteria.

4.3. Properties of �x,t . In this section we begin by showing that the map �x,t is well
defined on tame interfaces. We then give a decomposition of the interfaces I and �x,t (I) and
prove some simple inequalities on the excess area m(I;J ).

PROPOSITION 4.5 (Well-definedness of map �x,t ). For every T < H and every I ∈
Īx,T ,H , the interface �x,t (I) is well defined and is an element of Ix,T ,H .

PROOF. First, we claim that the standard wall representation obtained after step 7 is
admissible. This is because, after F̃[x] = Fx ∪⋃f∈∂0x

Ff is deleted in step 6, the wall WJ
x has

disjoint projection from all remaining standard walls. We next must ensure that, when adding
the modified S in step 10 to K, it does not intersect any part of the preexisting interface or
∂�n.

For this, notice that if t > j∗, then S is exactly⋃
1≤j≤j∗

θρ(x)�∅Xj ∪
⋃

j∗<i<t

θρ(x−vj∗+1)Xi ∪
⋃

t≤k≤k∗
θρ(x+vt−vj∗+1)�∅Xk

∪ ⋃
i>k∗+1

θρ(x−vk∗+1+vt−vj∗+1)θXi ,

and if t ≤ j∗, then S is exactly⋃
1≤j≤j∗

θρ(x)�∅Xj ∪
⋃

i>j∗
θρ(x−vj∗+1)Xi .

Now, make the following observation regarding the sequence of shifts observed while running
�x,t .

OBSERVATION 4.6. The sequence (si) has si+1 	= si if and only if one of criteria (A1),
(A2), (A3) or (B1), (B2), (B3) were attained for i, in which case si+1 = i. Consequently,
si = j∗ for every j∗ < i < t , and si = k∗ for every i > k∗.

Thus, whether t > j∗ or t ≤ j∗, the shifts and trivializations comprising S are considered
in the criteria

Dx(W̃y, j,−vsj+1,0)≤ (j − 1)/2 and Dx(W̃y, j,−vsj+1, vt − vj∗+1)≤ (k − t)/2.

Also, by definition every face f of K \ (WJ
x ∪ L0) is in �

I\Sx
� W̃y for some y. As such, if

S intersects some preexisting part of K \WJ
x , there would have been some pair y, j such
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that the above distance Dx would be zero; in that case, that y would have been marked for
deletion, and the corresponding face in K would be in L0 yielding a contradiction.

In order to see that the addition of S does not hit ∂�n, we use the definition of tameness.
In particular, the horizontal displacement of the spine S from x is always bounded above by

diam(Bx)+ 1

4
m(Sx) < d(x, ∂�n),

where the inequality was by definition of I ∈ Īx,T ,H and �x,t (I) is a valid interface.
Finally, we observe that the resulting interface is in Ix,T ,H . Notice that the resulting pillar

of x in �x,t (I) consists of WJ
x ∪ S ; on the one hand, this has at least T increments since

trivializing increments only increases the total number of increments and, on the other hand,
it has the same height as Px by construction. �

4.3.1. Decomposition of the interfaces. Fix any interface I ∈ Īx,T ,H , and, for ease of
notation, let J =�x,t (I). We begin by partitioning the faces of I and J into their constituent
parts, as dictated by the map �x,t . This partitioning will govern the pairings of g(f,I) with
g(f ′,J ) when applying (2.2).

Let Y ⊂ L0 be the set of indices of walls in I \ Sx that were marked for deletion. Let
D⊂ L0 be the indices of walls that were deleted (i.e., walls in

⋃{F̃y : y ∈ Y}). Split up the
faces of I as follows:

XI
A

⋃
1≤j≤j∗ F(Xj ) Increments between v1 and vj∗+1

XI
1

⋃
j∗+1≤j≤t−1 F(Xj ) If t > j∗, increments between vj∗+1 and vt

XI
B

⋃
t≤k≤k∗ F(Xk) If t > j∗, increments between vt and vk∗+1

XI
2

⋃
k≥k∗ F(Xk) Increments above vk∗+1

W
⋃

z∈D W̃z All walls that were deleted

B I \ (XI
A ∪XI

1 ∪XI
B ∪XI

2 ∪W) The remaining set of faces in I

where B splits further into

C1
⋃

y∈Y�W̃y� Ceilings of walls marked for deletion

C2
⋃

z∈D\Y�W̃z� ∪⋃z/∈D W̃z ∪ �W̃z� Ceilings of walls that were not marked, along
with all nondeleted walls and their ceilings

F (B∩L0) \⋃z W̃z ∪ �W̃z� Faces in B that are only floors of walls

See Figure 5 for a depiction of this splitting.
We next partition the faces of J . Let us first introduce a few pieces of notation. Denote

by PJ
x the pillar of x in J =�x,t (I); observe that, by construction, in J the spine SJ

x is all

of PJ
x . For a given I , x, t , define the shift map

↔
θ as the horizontal shift on the increments

Xj∗+1, . . . ,Xt−1 and Xk∗+1, . . . from �x,t . Namely, for f ∈XI
1 ∪XI

2 , let

(4.1)
↔
θf =

{
θρ(x−vj∗+1)f if f ∈XI

1 or if f ∈XI
2 and t ≤ j∗,

θρ(x−vk∗+1+vt−vj∗+1)f if f ∈XI
2 and t > j∗.

We can also define the map θ� on faces in B that vertically shifts faces of B to obtain corre-
sponding faces of J , as dictated by the bijection Lemma 2.11 and the removal of the walls



756 R. GHEISSARI AND E. LUBETZKY

FIG. 5. The decomposition of the interfaces I (left) and J (right) into their constituent parts.

in W. With these, let:

XJ
A �∅XI

A Increments of J between ht(v1) and
ht(vj∗+1)

XJ
1

↔
θXI

1 Increments of J between ht(vj∗+1) and
ht(vt )

XJ
B θρ(vt−vj∗+1)�∅XI

B Increments of J between ht(vt ) and
ht(vk∗+1)

XJ
2

↔
θXI

2 Increments of J above ht(vk∗+1)

WJ
x F(x + [−1

2 , 1
2 ]2 × [0,ht(v1)− 1

2 ]) New faces added in step 9 of �x,t

θ�B θ�C1 ∪ θ�C2 ∪ F Vertical translations of B due to the deletion
of walls W

H
⋃{f ∈ J \PJ

x : ρ(f ) ∈F(ρ(W))} Faces added to “fill in” the rest of the
interface

Refer to Figure 5 for a depiction of this splitting.

4.3.2. The excess area of the map. With the above decomposition in hand, note that the
change in energy between I and J =�x,t (I) is given by

(4.2) m(I;J )=∑
z∈D

m(W̃z)+
j∗∑

j=1

m(Xj )+
k∗∑

k=t

m(Xk)1
{
t > j∗

}− ∣∣WJ
x

∣∣.
The following inequalities regarding m(I;J ) will be used repeatedly.

CLAIM 4.7. For every I ∈ Īx,T ,H , denoting by J =�x,t (I), we have

(4.3)
∣∣WJ

x

∣∣≤ 2

3
m(W̃v1 ∪ W̃y†)
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and, in particular,

(4.4)
∣∣WJ

x

∣∣≤ 2m(I;J ) and m(W)≤ 3m(I;J ).

We also have

(4.5) j∗ − 1≤ 6m(I;J ) and k∗ − t ≤ 6m(I;J ).

Before getting to the proof of Claim 4.7, we need some simple geometric observations. Re-
call that for a face-set W , its height is given by ht(W)=max{x3 : (x1, x2, x3) ∈W }. Observe
that ht(W)= ht(W ∪ �W�).

FACT 4.8. For every j ≥ 1 and every index y ∈ L0,n,

j − 1≤ min
W∈�I\Sx

� W̃y

[
d�
(
W ∪ �W�,Xj

)+ ht(W)
]
,

where d�(A,B)=min{|x3 − y3| : x ∈A,y ∈ B}. In particular, for every ω1 and ω2,

j − 1≤Dx(W̃y, j,ω1,ω2)+m(F̃y).

PROOF. The first claim follows from the triangle inequality and min{x3 : (x1, x2, x3) ∈
Xj } ≥ j − 1. Then, for every ω1, ω2,

min
W∈�I\Sx

� Wy

d�
(
W ∪ �W�,Xj

)
= min

W∈�I\Sx
� W̃y

d�
(
W ∪ �W�,Xj ∪ θρ(x+ω1+ω2)Xj ∪ θρ(x+ω2)�∅Xj

)
≤ min

W∈�I\Sx
� W̃y

d
(
W ∪ �W�,Xj ∪ θρ(x+ω1+ω2)Xj ∪ θρ(x+ω2)�∅Xj

)
=Dx(W̃y, j,ω1,ω2).

The proof concludes from the observation that max
W∈�I\Sx

� W̃y
ht(W)≤m(F̃y). �

CLAIM 4.9. Let {Wz}z∈L0,n
be the collection of walls corresponding to some interface I .

There exists some z0 ∈ L0,n such that every cut-point v of I must belong to Wz0 (its four
vertical bounding faces are in Wz0 ).

Consequently, for an interface I with pillar Px , the face set of Sx consists of exactly one
wall, together with at most one ceiling face projecting into ρ(v1).

PROOF. Suppose by way of contradiction that the interface I has two cut-points w1, w2
with 0 < ht(w1) < ht(w2) such that the walls containing the bounding faces of w1 and w2,
namely, Wρ(w1) and Wρ(w2) are distinct. If both Wρ(w1), Wρ(w2) are standard, then Wρ(wi)

intersect each of L 1
2
, . . . ,Lht(wi) in at least one cell (i.e., if IWρ(wi )

is the interface whose only

wall is Wρ(wi), then σ(IWρ(wi )
) intersects every height between 1

2 and ht(wi) in at least one
cell). As a consequence, no height between 1

2 and ht(w1) can be a cut-height of I . If at least
one of Wρ(wi) is not standard, then it is identified with a ceiling Ci ⊂ �W� for some other wall
W � Wρ(wi). Call the tallest of those ceilings C with height ht(C). By definition of ceiling
faces, we have the following observation.

OBSERVATION 4.10. Every cell w sharing a projection with a face f ∈ C and having
ht(w)≤ ht(C) is in σ(I).
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At the same time, since Wρ(wi) �W and Wρ(wi) 	=W , the ceiling C has at least eight faces.
Therefore, there are no cut-heights below ht(C), yielding a contradiction if ht(C)≥ ht(w1). If
ht(C) < ht(w1), Wρ(w1) ∩ Lh 	=∅ and Wρ(w2) ∩ Lh 	=∅ for every ht(C) < h≤ ht(w1), also
yielding a contradiction.

To see the conclusion for the spine of a pillar Px , take IP to be the interface which is at L0
except for the faces of Px . Applying the first part of the claim to IP , we see that all cut-points
of Sx are in the same wall W , and, by definitions of cut-points and the observation above, all
other faces of Sx must in W , except possibly one ceiling face projecting into ρ(v1). �

COROLLARY 4.11. The walls whose standardizations are W̃v1 ∪ W̃y† intersect each of
L 1

2
, . . . ,Lht(v1)−1 in at least six faces (i.e., the corresponding interface intersects every such

height in at least two cells).

PROOF. By definition, the walls Ov1 (defined s.t. θSTOv1 = W̃v1 ) intersected every height
between h†+ 1 and ht(v1)− 1 in at least two cells. Now, consider heights between 0 and h†.

Since y† and v1 are both in Px , by Observation 3.2 there must exist a wall W such that y†,
v1 are both interior to W . Since W̃ρ(v1) 	= W̃y† , there are inner-most ceilings of Cy† and Cv1 in
�W� nesting those respective walls. As such, by the observation above, every height between
below ht(Cv1) ∨ ht(Cy†) is intersected by at least eight cells. Finally, since the walls whose
standardizations are W̃v1 and W̃y† attain height h†, every height between ht(Cv1) ∨ ht(Cy†)

and ht(h†) is intersected by at least one cell by each of those walls. �

PROOF OF CLAIM 4.7. By Corollary 4.11 there are no cut-points in W̃v1 ∪ W̃y† , and,
therefore, ∣∣WJ

x

∣∣= 4
(

ht(v1)− 1

2

)
≤ 2

3
m(W̃v1 ∪ W̃y†).

Hence, |WJ
x | ≤ 2

3m(W), and (4.4) follows from the fact m(I;J )≥m(W)− |WJ
x | by (4.2).

Let us now turn to proving the comparisons with j∗ −1 and k∗ − t , namely, (4.5). Suppose
j∗ > 1, as otherwise the inequality is trivial. Since Xj∗ was deleted, it was due to one of
criteria (A1) or (A2) or (A3):

(A1) In this case, m(Xj∗)≥ j∗ − 1.
(A2) In this case, Dx(W̃y, j

∗,−vsj+1,0) ≤ m(W̃y) for some y ∈ Y. By Fact 4.8 applied
to j∗,

j∗ − 1≤Dx

(
W̃y, j

∗,−vsj+1,0
)+m(F̃y)≤ 2m(F̃y).

(A3) In this case, Dx(W̃y, j
∗,−vsj+1,0)≤ (j − 1)/2 for y = y∗A. By Fact 4.8 applied to

j∗ and y∗A,

j∗ − 1≤Dx

(
W̃y∗A, j∗,−vsj+1,0

)+m(F̃y∗A)≤ (
j∗ − 1

)
/2+m(F̃y∗A),

so

j∗ − 1≤ 2m(F̃y∗A).

In any of these above cases, we have j∗ − 1≤ 2m(W)∨m(Xj∗)≤ 6m(I;J ) by (4.4).
If j∗ ≥ t , then we are done. Otherwise, since Xk∗ was deleted, it was due to either (B1) or

(B2) or (B3):

(B1) In this case, m(Xk∗)≥ k∗ − t .
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(B2) In this case, Dx(W̃y, k
∗,−vsk+1, vt − vj∗+1)≤m(W̃y) for some y ∈Y. By Fact 4.8,

k∗ − t ≤ k∗ − 1≤Dx

(
W̃y, k

∗,−vsk+1, vt − vj∗+1
)+m(F̃y)≤ 2m(F̃y).

(B3) In this case, Dx(W̃y, k
∗,−vsk+1, vt − vj∗+1)≤ (k − t)/2 for y = y∗B . By Fact 4.8,

k∗ − t ≤Dx

(
W̃y∗B , k∗,−vsk+1, vt − vj∗+1

)+m(F̃y∗B )≤ (
k∗ − t

)
/2+m(F̃y∗B ),

so

k∗ − t ≤ 2m(F̃y∗B ).

In any of these cases, we have k∗ − t ≤ 6m(I;J ) by (4.4). �

4.4. Proof part 1: Interface weights. In this section we show that the map �x,t amplifies
the weights of interfaces by something exponential in the excess area m(I;�x,t (I)).

As in the preceding works [14, 16], the difficulty here is ensuring that the cumulative effect
of the perturbative terms g in Theorem 2.4 (capturing interactions between different parts of
the interface through subcritical droplets) is comparable to m(I;�x,t (I)). As described in
Section 4.2, this is particularly complicated here, as we cannot reduce the interactions to only
their horizontal or to only their vertical parts.

PROPOSITION 4.12. There exists C > 0 and β0 such that for every β > β0 the following
holds. For every x ∈ L0,n and 0≤ T < H , for every t and every I ∈ Īx,T ,H ,∣∣∣∣log

μ∓n (I)

μ∓n (�x,t (I))
+ βm

(
I;�x,t (I)

)∣∣∣∣≤ Cm
(
I;�x,t (I)

)
.

We first prove a series of preliminary estimates to which we will reduce Proposition 4.12
by pairing faces together according to the decomposition of I and J from Section 4.3.1.

CLAIM 4.13. There exists C̄ such that, for every I ∈ Īx,T ,H ,∑
f∈F(Z3)

∑
g∈W∪H

e−c̄d(f,g) ≤ C̄m(W).

PROOF. By summing the exponential tail, there exists C > 0 such that∑
g∈W∪H

∑
f∈F(Z3)

e−c̄d(f,g) ≤∑
z∈D

( ∑
g∈W̃z

C + ∑
g′∈J \SJ

x

ρ(g′)∈F(ρ(W̃z))

C

)

≤∑
z∈D

(
C|W̃z| +C

∣∣F(
ρ(W̃z)

)∣∣),
which by (2.3) is, at most, 3C

∑
z∈D m(W̃z)≤ 3Cm(W). �

CLAIM 4.14. There exists C̄ such that, for every I ∈ Īx,T ,H ,∑
f∈F(Z3)

∑
ι∈{A,B}

∑
g∈XI

ι ∪XJ
ι

e−c̄d(f,g) ≤ C̄m(I;J ),
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PROOF. Summing over all f ∈F(Z3), there exists C > 0 such that∑
ι∈{A,B}

∑
g∈XI

ι ∪XJ
ι

∑
f∈F(Z3)

e−c̄d(f,g) ≤ C

( ∑
1≤j≤j∗

[
m(Xj )+ 8

(
ht(vj+1)− ht(vj )+ 1

)]

+ ∑
t≤k≤k∗

[
m(Xk)+ 8

(
ht(vk+1)− ht(vk)+ 1

)])
,

where, in the first inequality, the factor of eight accounts for four faces from the Xi (equation
(3.1)) and four from �∅Xi for each height. The telescopic sums give 8(ht(vj∗+1)− ht(v1))

and ht(vj∗+1)−ht(v1)≤ j∗+ 1
2
∑j∗

j=1 m(Xj ) since for each height in in ht(v1), . . . ,ht(vj∗+1)

that wasn’t a cutpoint, we added an excess area of at least two. Accounting for an extra
additive j∗ as well as the similar telescoping for t ≤ k ≤ k∗, we see this is, at most,

16C
(
j∗ − 1

)+ 16C
(
k∗ − t

)+ 5Cm(I;J )+ 32C,

which, by (4.5) of Claim 4.7, is in turn, at most, C̄m(I;J ) for some other constant C̄ > 0.
�

CLAIM 4.15. There exists C̄ such that, for every I ∈ Īx,T ,H ,∑
f∈F(Z3)

∑
g∈WJ

x

e−c̄d(f,g) ≤ C̄m(W).

PROOF. Summing over all f ∈F(Z3), there exists C > 0 such that∑
g∈WJ

x

∑
f∈F(Z3)

e−c̄d(f,g) ≤ C
∣∣WJ

x

∣∣,
which is, at most, 2

3Cm(W) by (4.3). �

The following series of lemmas bounds the interactions (through the subcritical droplets,
via |g(f,I)− g(f ′,J )|) between different subsets of I and J . The first of these concerns
interactions between horizontal shifts of XI

1 and XJ
2 with F.

LEMMA 4.16. There exists C̄ such that, for every I ∈ Īx,T ,H ,∑
f∈XI

1 ∪XI
2

∑
g∈L0

e−c̄d(f,g) ≤ C̄,

PROOF. Noticing that for every i, d(Xi ,L0)≥ i, there exists C > 0 such that∑
g∈XI

1 ∪XI
2

∑
f∈L0

e−c̄d(f,g) ≤ C
∑

j∗<i<t

∣∣F(Xi )
∣∣e−c̄i +C

∑
i>k∗

∣∣F(Xi )
∣∣e−c̄i

≤ C
∑

i∈(j∗,t)∪(k∗,∞)

[
4+ 3m(Xi )

]
e−c̄i .

In turn, using the fact that m(Xi )≤ i− 1 for i ∈ (j∗, t) and i > k∗ (criterion (A1)), this is, at
most, ∑

i>j∗
C[1+ 3i]e−c̄i ≤ C̄e−c̄j∗ .

�

The next lemma helps control horizontal interactions induced by vertical shifts of walls
and ceilings in B:
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LEMMA 4.17. There exists C̄ such that, for every I ∈ Īx,T ,H ,∑
f∈B

∑
u∈ρ(

⋃
z∈D W̃z)

e−c̄d(ρ(f ),u) ≤ C̄m(W).

PROOF. By definition of Nρ(u), we have∑
f∈B

∑
u∈ρ(

⋃
z∈D W̃z)

e−c̄d(ρ(f ),u) = ∑
u′∈ρ(

⋃
z∈D W̃z)c

∑
u∈ρ(

⋃
z∈D W̃z)

Nρ

(
u′
)
e−c̄d(u,u′).

Since D is closed under closeness of walls, for every such u, u′ we have Nρ(u′)≤ |u−u′|2+
1. Thus, there exists a C > 0 such that the right-hand side above is in turn, at most,

C
∑
z∈D

∣∣E(ρ(W̃z)
)∣∣+ ∣∣F(

ρ(W̃z)
)∣∣≤ C

∑
z∈D

m(W̃z). �

The following lemma controls the vertical interactions between the shift in XI
2 relative to

faces in XI
1 . In this way,

↔
θXI

1 =XJ
1 and

↔
θXI

2 =XJ
2 .

LEMMA 4.18. There exists C̄ such that, for every I ∈ Īx,T ,H ,∑
f∈XI

1

∑
g∈XI

2

e−c̄d(f,g) + e−c̄d(
↔
θ f,
↔
θ g) ≤ C̄.

PROOF. Assume t > j∗, as otherwise XI
1 is empty. We can bound the left-hand side

above by ∑
f∈XI

1

∑
k>k∗

∑
g∈Xk

e−c̄d(f,g) + e−c̄d(
↔
θ f,
↔
θ g) ≤ C

∑
k>k∗

∣∣F(Xk)
∣∣e−c̄(k−t)

for some C > 0. By criterion (B1), for every k > k∗, m(Xk)≤ k− t and this is, at most,

C
∑
k>k∗

[
4+ 3(k − t)

]
e−c̄(k−t) ≤ C̄.

�

The remaining two lemmas are more involved, as they control the interactions between
faces in C1 and C2 (which may shift vertically) with the horizontal shifts of XI

1 ∪XI
2 . Such

terms were not considered in previous works, and they cannot be reduced to either two-
dimensional bound via projections or to a one-dimensional bound via height differences. As
explained in Section 4.2, these bounds are very sensitive to the particular choices for the
deletion criteria, particularly (A1), (B1) and (A3), (B3).

Recall that for all f ∈ B, θ�f was defined as the vertical shift of f induced by removal
of the walls in W per Lemma 2.11. With this in mind, note that θ�f ∈ �

I\Sx
� W for every

f ∈W ∪ �W�.

LEMMA 4.19. There exists C̄ such that, for every I ∈ Īx,T ,H ,∑
f∈C1

∑
g∈XI

1 ∪XI
2

e−c̄d(f,g) + e−c̄d(θ�f,
↔
θ g) ≤ C̄m(I;J ).
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PROOF. Begin by considering g ∈ XI
1 (assuming t > j∗, as otherwise XI

1 is empty).
There exists C > 0 such that∑

f∈C1

∑
g∈XI

1

e−c̄d(f,g) + e−c̄d(θ�f,
↔
θ g)

≤ C
∑

j∗<i<t

∑
y∈Y

∣∣F(Xi )
∣∣(e−c̄d(�W̃y�,Xi ) + e−c̄d(θ�(�W̃y�),↔θ Xi )

)
≤ 2C

∑
j∗<i<t

∑
y∈Y

∣∣F(Xi )
∣∣e−c̄Dx(W̃y,i,vj∗+1,0),

since �
I\Sx
� W̃y includes �W̃y� and θ�(�W̃y�), and

↔
θXi is exactly θρ(x−vj∗+1)Xi which was

one of the horizontal translates considered in the definition of Dx . Further, since Xi was not
deleted, by (A1) and (A3)

m(Xi ) < (i − 1) and Dx(W̃y, i,−vj∗+1,0) > (i − 1)/2,

so that for every j∗ < i < t and every y ∈Y,

m(Xi ) < 2Dx(W̃y, i,−vj∗+1,0).

Using |F(Xi )| ≤ 3m(Xi )+ 4, we have that the above sum is, at most,

8C
∑

j∗<i<t

∑
y∈Y

Dx(W̃y, i,−vj∗+1,0)e−c̄Dx(W̃y,i,−vj∗+1,0).

Observe first that for some C > 0,

(4.6)
∑
y∈Y

Dx(W̃y, i,−vj∗+1,0)e−c̄Dx(W̃y,i,−vj∗+1,0) < C for each j∗ < i < t.

Indeed this follows by writing

Dx(W̃y, i,−vj∗+1,0)e−c̄Dx(W̃y,i,−vj∗+1,0) ≤ d
(
�

I\Sx
� W̃y,Xi

)
e
−c̄d(�

I\Sx
� W̃y,Xi )

+ d
(
�

I\Sx
� W̃y,

↔
θXi

)
e
−c̄d(�

I\Sx
� W̃y,

↔
θ Xi )

+ d
(
�

I\Sx
� W̃y,�∅Xi

)
e
−c̄d(�

I\Sx
� W̃y,�∅Xi )

and noticing that if y 	= y′, then �
I\Sx
� W̃y ∩ �

I\Sx
� Wy′ = ∅, so that after summing over

y ∈ Y, each term on the right-hand side contributes a constant. (However, we cannot afford
an overall bound of order t − j∗ which may not be comparable to m(I;J ).)

Thus, we only use the above bound to deal with increments whose height is, at most, the
maximal height of a ceiling of W̃y or one of its possible vertical shifts. Namely, let

j̄ =min
{
j : ht(vj+1) > max

y∈Y
max

f∈�I\Sx
� W̃y

ht(f )
}
,

and denote by ȳ the index of the wall attaining this height. Then, using (4.6),∑
j∗<i≤j̄

∑
y∈Y

Dx(W̃y, i,−vj∗+1,0)e−c̄Dx(W̃y,i,−vj∗+1,0) ≤ Cj̄ ≤ Cm(F̃ȳ ).

For the remaining increments, for every y ∈Y, let

dρ(y, i) := d
(
ρ
(�W̃y�), ρ(Xi ∪ θρ(x−vj∗+1)Xi ∪�∅Xi )

)
,
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FIG. 6. Left: The index j̄ is determined by the height of the wall Wȳ (orange). The distances dρ(ȳ, j̄ + i)

are recorded for i = 1,2 . . . . Right: The record times of this distance then form the increment indices
�1 = j̄ + 1, �2, �3.

and let �1 = j̄ + 1 < �2 < · · ·< �r be the record times of the function dρ(y, ·), that is,

dρ(y, �j ) < dρ(y, i) for all j̄ < i < �j ,

dρ(y, �r)=min
{
dρ(y, i) : j̄ < i < t

}
.

(See Figure 6.) Let �r+1 :=∞, and observe that, for every j = 1, . . . , r and every �j ≤ i <

�j+1,

Dx(W̃y, i,−vj∗+1,0)≥
√

dρ(y, �j )2 + (
ht(vi)− ht(vj̄+1)

)2 ≥ dρ(y, �j )+ i − �j√
2

,

using the definition of j̄ and that it satisfies j̄ < �j . In particular, there exists C,C′ > 0 such
that ∑

�j≤i<�j+1

Dx(W̃y, i,−vj∗+1,0)e−c̄Dx(W̃y,i,−vj∗+1,0) ≤ ∑
�j≤i<�j+1

Ce
− c̄√

2
(dρ(y,�j )+i−�j )

≤ C′e−
c̄√
2
dρ(y,�j )

.

Summing over 1≤ j ≤ r and noticing that r ≤ dρ(y, �1),
r∑

j=1

e
− c̄√

2
dρ(y,�j ) =

r∑
j=1

e
− c̄√

2
(dρ(y,�1)−j) ≤ C̄.

Summing over y ∈Y, this is, at most,
∑

y∈Y C̄ ≤ C̄
∑

y∈Y m(W̃y).
The treatment of g ∈XI

2 is identical to the above argument, with the sole difference being
the values of the horizontal shifts in the definition of Dx . �

LEMMA 4.20. There exists C̄ such that, for every I ∈ Īx,T ,H ,∑
f∈C2

∑
g∈XI

1 ∪XI
2

e−c̄d(f,g) + e−c̄d(θ�f,
↔
θ g) ≤ C̄.
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PROOF. Begin by considering g ∈XI
1 . If y /∈Y is such that f ∈ W̃y ∪ �W̃y� and g ∈Xi

for some j∗ < i < t , then (A3) implies that

(i − 1)/2 < Dx(W̃y, i,−vj∗+1,0)≤ d(f, g)∧ d(θ�f,
↔
θg),

since θ�f ∈ �
I\Sx
� W̃y , and

↔
θg = θρ(x−vj∗+1)g. Further, since i > j∗, by criterion (A1)

m(Xi ) < i − 1, so∑
f∈C2

∑
g∈XI

2

e−c̄d(f,g) + e−c̄d(θ�f,
↔
θ g) ≤ 2C

∑
j∗<i<t

[
3m(Xi )+ 4

]
e−c̄(i−1)/2

≤ 8C
∑

j∗<i<t

ie−c̄(i−1)/2 ≤ C̄

2

for some C̄. The treatment of g ∈XI
2 is identical to the above, with the only difference being

in the horizontal shift in the definition of Dx . �

PROOF OF PROPOSITION 4.12. By Theorem 2.4 it suffices to show that there exists
C > 0 such that, for every I ∈ Īx,T ,H , if J =�x,t (I),∣∣∣∣∑

f∈I
g(f,I)− ∑

f ′∈J
g
(
f ′,J

)∣∣∣∣≤ Cm(I;J ).

Using the partition of the faces of I , J in Section 4.3.1, we can expand∣∣∣∣∑
f∈I

g(f,I)− ∑
f ′∈J

g
(
f ′,J

)∣∣∣∣
≤ ∑

f∈XI
A∪XI

B

∣∣g(f,I)
∣∣+ ∑

f∈W

∣∣g(f,I)
∣∣(4.7)

+ ∑
f ′∈XJ

A ∪XJ
B

∣∣g(f ′,J )∣∣+ ∑
f ′∈H

∣∣g(f ′,J )∣∣+ ∑
f ′∈WJ

x

∣∣g(f ′,J )∣∣(4.8)

+ ∑
f∈XI

1 ∪XI
2

∣∣g(f,I)− g(
↔
θf,J )

∣∣+∑
f∈B

∣∣g(f,I)− g(θ�f,J )
∣∣.(4.9)

We show that each term on the right-hand side is comparable to m(I;J ). By (2.1) the first
sum satisfies ∑

f∈XI
A∪XI

B

∣∣g(f,I)
∣∣≤ K̄

∣∣XI
A ∪XI

B

∣∣
which is, at most, C̄K̄m(I;J ) by Claim 4.14. The same holds for the first sum in line (4.8)
by Claim 4.14. By Claim 4.13 the second sums in (4.7) and (4.8) are bounded in the same way
by C̄K̄m(W), which is in turn, at most, 3C̄K̄m(I;J ) by (4.4). The third sum in line (4.8) is
bounded in this way by C̄K̄m(W) via Claim 4.15, and this is in turn, at most, 3C̄K̄m(I;J )

by (4.4).
It remains to consider the two sums in line (4.9), which by (2.2), satisfy∑

f∈XI
1 ∪XI

2

∣∣g(f,I)− g(
↔
θf,J )

∣∣≤ ∑
f∈XI

1 ∪XI
2

K̄e−c̄r(f,I;↔θ f,J ) and

∑
f∈B

∣∣g(f,I)− g(θ�f,J )
∣∣≤∑

f∈B

K̄e−c̄r(f,I;θ�f,J ).
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To evaluate the radius r, consider the right-hand sides according to the face g attaining
r(f,I;f ′,J ):

(i) If g ∈XI
A ∪XI

B ∪XJ
A ∪XJ

B , both these sums are, at most,∑
g∈XJ

A ∪XI
B∪XJ

A ∪XJ
B

K̄

[ ∑
f∈XI

1 ∪XI
2

(
e−c̄d(f,g) + e−c̄d(

↔
θ f,g))+∑

f∈B

(
e−c̄d(f,g) + e−c̄d(θ�f,g))].

Replacing the sums over f by sums over all f ∈F(Z3), Claim 4.14 implies this contributes,
at most, 4C̄K̄m(I;J ).

(ii) If g ∈W∪H∪WJ
x , these sums are, at most,∑

g∈W∪H∪WJ
x

K̄

[ ∑
f∈XI

1 ∪XI
2

(
e−c̄d(f,g) + e−c̄d(

↔
θ f,g))+∑

f∈B

(
e−c̄d(f,g) + e−c̄d(θ�f,g))].

Replacing the sums over f by sums over all f ∈F(Z3), by Claim 4.13 and Claim 4.15, this
contributes, at most, 12C̄K̄m(I;J ).

(iii) For g ∈ XI
1 ∪ XJ

1 ∪ XI
2 ∪ XJ

2 , let us begin with the first sum (f ∈ XI
1 ∪ XI

2 ). If
f ∈XI

1 , the radius r could not have been attained by g ∈XI
1 ∪XJ

1 since all increments in XI
1

are shifted by the same vector. Then, this reduces to

K̄
∑

f∈XI
1

∑
g∈XI

2

(
e−c̄d(f,g) + e−c̄d(

↔
θ f,
↔
θ g)),

which is, at most, C̄K̄ by Lemma 4.18. If f ∈ XI
2 , this reduces to g ∈ XI

1 and is handled
symmetrically.

Turning to the sum over f ∈ B, it splits into the following:

K̄
∑

g∈XI
1 ∪XI

2

∑
f∈C1∪C2∪F

(
e−c̄d(f,g) + e−c̄d(θ�f,

↔
θ g)).

The contribution from f ∈ C1 is, at most, C̄K̄m(I;J ) by Lemma 4.19; the contribution
from f ∈ C2 is, at most, C̄K̄ by Lemma 4.20; the contribution from f ∈ F is, at most, C̄K̄

by Lemma 4.16 as F⊂L0.
(iv) For g ∈C1 ∪ θ�C1 ∪C2 ∪ θ�C2 ∪ F, the first sum can be expressed as

K̄
∑

f∈XI
1 ∪XI

2

∑
g∈C1∪C2∪F

(
e−c̄d(f,g) + e−c̄d(

↔
θ f,θ�g)).

Up to a change of roles of f and g, this is identical to the term considered in the item above,
and its contribution is, therefore, at most, 2C̄K̄ + C̄K̄m(I;J ) by Lemmas 4.16 and 4.19–
4.20.

For the second sum, in which f ∈ B, note that if the radius r(f,I; θ�f,J ) is attained by
g ∈ C1 ∪ C2 ∪ F ∪W or by θ� of such a g, it must be attained by a face in a wall nested
in some wall of W. Since the distance between two faces is at least the distance between
their projections and projections of distinct walls are distinct, the contribution of this term
(summed over all possible such g) is, at most,

K̄
∑
f∈B

∑
u∈ρ(

⋃
z∈D W̃z)

e−c̄d(ρ(f ),u),

which is, at most, C̄K̄m(W)≤ 3C̄K̄m(I;J ) by Lemma 4.17 and (4.4).

Altogether, we deduce that all the summands on the right-hand side of (4.7)–(4.9) are
bounded by an absolute constant times m(I;J ), implying the desired. �



766 R. GHEISSARI AND E. LUBETZKY

4.5. Proof part 2: Multiplicity. We next bound the multiplicity of the map �x,t with a
fixed excess area M by an exponential in M (independently of β).

PROPOSITION 4.21. There exists some universal C� such that, for every M ≥ 1 and
every x, t and T < H ,

max
J∈�x,t (Īx,T ,H )

∣∣{I ∈�−1
x,t (J ) :m(I;J )=M

}∣∣≤ CM
� .

Toward proving Proposition 4.2, we are also interested in a map used to prove an exponen-
tial tail on the increment of a pillar that intersects a given height � (as opposed to an increment
of a given index). For that purpose, for any pillar Px and a half-integer height �, let

τ� = τ�(Px) :=min{t ≥ 1 :Xt ∩L� 	=∅} ∨ 1,

and define the map �̃x,� as

�̃x,�(I) :=�x,τ�(Px)(I).

Clearly, since the bound of Proposition 4.12 is independent of I and t , the estimate also
holds for �̃x,�(I). However, handling the multiplicity is slightly different since interfaces
with differing τ� may be mapped to the same J ∈ �̃x,�(Īx,T ,H ).

PROPOSITION 4.22. There exists a universal C̃� > 1 such that, for every M ≥ 1 and
every x, � and T < H ,

max
J∈�̃x,�(Īx,T ,H )

∣∣{I ∈ �̃−1
x,�(J ) :m(I;J )=M

}∣∣≤ C̃M
� .

We prove Propositions 4.21–4.22 by constructing a witness that (given �x,t (I)) is in 1-
1 correspondence with the pre-image I . We then bound the number of all possible such
witnesses.

Let us fix any J ∈�x,t (Īx,T ,H ) (or, resp., J ∈ �̃x,�(Īx,T ,H )). We wish to define an injec-
tive map �=�J ,x,t (resp., �̃= �̃J ,x,� on {I ∈�−1

x,�(J )}) and bound the cardinality of the

set �({I ∈�−1
x,t (J ) :m(I;J )=M}) (resp., �̃({I ∈�−1

x,�(J ) :m(I;J )=M}).

Construction of the witness. Fix x and t (resp., �). We describe how, for a given J and
an I ∈�−1

x,t (J ) (resp., I ∈ �̃−1
x,�(J )), we construct the witness �J ,x,t (I) (resp., �̃J ,x,�(I)).

In order to do this in a unified manner, we let

�̃J ,x,�(I)=�J ,x,τ�(Px)(I),

and then it suffices to describe how to construct �(I)=�J ,x,t (I) for each I .
Our witness �(I) will consist of six ∗-connected face-subsets (Fγ

ι )ι∈{A,B},γ∈{I,J ,�} ⊂
F(Z3), each of which are decorated by coloring its faces BLUE or RED, and associating to
each v ∈ Fγ

ι , its own individual face-subset ϒv ⊂ F(F(Z3)) whose faces are also colored
BLUE or RED.

Let us begin by constructing the six ∗-connected face-subsets Fγ
ι and their colorings.

Partition Y into YB , and YI
A ∪YJ

A ∪Y�
A along YI

B ∪YJ
B ∪Y�

B as follows:

• Let YB = {v1, y
†} ∪ [x] (recalling that [x] indicates x and its four adjacent faces in L0,n).

• Let YI
A (resp., YI

B ) be the indices of walls that were first marked for deletion due to one
of the criteria (A2), (A3) (resp., (B2), (B3)) wherein Dx(W̃y, i,ω1,ω2) was attained by

d(�
I\Sx
� W̃y,Xi).
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FIG. 7. Two of the six constituent parts of the witness. Left: FI
A decorated by {BLUE, RED} and the vertex-dec-

oration ϒρ(v1). Right: F�
A decorated by {BLUE, RED} and the vertex-decoration ϒw .

• Let YJ
A (resp., YJ

B ) be the indices of walls that were first marked for deletion due
to (A2) or (A3) (resp., (B2) or (B3)) wherein Dx(W̃y, i,ω1,ω2) was attained by

d(�
I\Sx
� W̃y, θρ(x+ω2)�∅Xi ).

• Let Y�
A (resp., Y�

B ) are the indices of walls that were first marked for deletion due
to (A2) or (A3) (resp., (B2) or (B3)) wherein Dx(W̃y, i,ω1,ω2) was attained by

d(�
I\Sx
� W̃y, θρ(x+ω1+ω2)Xi ).

When considering the criteria (A2), (A3), (B2), (B3), the Euclidean distance between sets
of faces in R

3 is attained by vertices of Z3, which we will endow with an (arbitrary) lexico-
graphic ordering, giving rise to unique minimizers of the distance. Further, let

X�
A =

⋃{
F(θρ(x−vsj+1)Xj ) : 1≤ j ≤ j∗

}
,

X�
B =

⋃{
F(θρ(x+vt−vj∗+1−vsk+1)Xk) : t ≤ k ≤ k∗

}
.

With these definitions in hand, the witness �(I) is constructed as follows:

(1) The BLUE faces of Fγ
ι for ι ∈ {A,B} and γ ∈ {I,J ,�} are precisely Xγ

ι (calculated via
running �x,t ).

(2) For each y ∈Yγ
ι (for ι ∈ {A,B} and γ ∈ {I,J ,�}):

• Let v ∈ Xγ
ι and w ∈�

I\Sx
� W̃y be the minimizers of the distance that was violated in

the respective deletion criterion (at the first time y was marked for deletion).
• Add to Fγ

ι a shortest (nearest-neighbor) path of RED faces connecting v to w.

(3) Add to FI
A a shortest path of RED faces connecting v1 and y† and such a path connecting

v1 and x; include the face x, and color it RED.
(4) Add to F�

ι for ι ∈ {A,B} every face of XJ
ι that is not already present, and color it RED.
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(5) Let � be the set of all vertices w for which we added a shortest RED path from v to w

in step (2) above. Process the vertices in w ∈� ∪ V(YB) via some lexicographic order
(w1,w2, . . . ,w|�∪V(YB)|): for i = 1, . . . , |� ∪ V(YB)|:
• If wi is associated with the wall W̃y (i.e., wi ∈�

I\Sx
� W̃y ), let the BLUE faces of ϒwi

be the set

Swi = F̃y \
⋃
j<i

Swj .

• For each edge or face u ∈ ρ(Swi ), add to ϒwi the RED set of faces in the ball of radius
Nρ(u) around u in L0,n. Complete ϒwi by connecting all faces added to it, together
with the vertex ρ(wi), via a RED minimum size spanning tree of faces in L0,n.

(For every other vertex w ∈ V(Fγ
ι ), we let ϒw =∅.)

See Figure 7 for examples of FI
A and F�

A together with their decorations.

Reconstructing I from the witness. To see that this indeed yields a “witness” of the pre-
image interface I , we show that, from a witness �(I) and the interface J , one can recon-
struct I .

LEMMA 4.23. For every J ∈ �x,t (Īx,T ,H ) (resp., J ∈ �̃x,�(Īx,T ,H )), the map �J ,x,t

(resp., �̃J ,x,�) is injective on �−1
x,t (J ) (resp., �̃−1

x,�(J )).

PROOF. It suffices to show that, from a given J and any element of �J ,x,t (�
−1
x,t (J )),

we can recover, uniquely, I ∈�−1
x,t (J ). From a witness in �J ,x,t (�

−1
x,t (J )), we recover I by

reconstructing its spine Sx together with the standard wall representation of I \Sx . Given Sx

and (W̃z)z∈L0,n
, we would obtain I by first recovering the interface I \ Sx via Lemma 2.11,

then appending to that Sx .

1. In order to reconstruct the spine Sx :

(a) Extract XI
A and XI

B as exactly the set of BLUE faces of FI
A and FI

B , respectively.
(b) Extract XJ

1 and XJ
2 by taking (the bounding faces of) all cells in PJ

x , between
ht(vj
+1) and ht(vt ) and above ht(vk
+1), respectively (these heights are read off from XI

A

and XI
B ).

(c) Obtain Sx by horizontally shifting XJ
1 and XJ

2 so that their bottom cell coincides
with the top cell of XI

A and XI
B , respectively.

2. In order to reconstruct the standard wall representation of I \ Sx :

(a) For every vertex w ∈ V(Fγ
ι ) for ι ∈ {A,B} and γ ∈ {I,J ,�}, add the faces of Sw

(exactly the set of BLUE faces of ϒw).
(b) Add the standardizations of all walls of J \PJ

x .

For the corresponding reconstruction from a witness in �̃J ,x,�(�̃
−1
x,�(J )), we recover I in

exactly the same way, noticing that we can read off ht(vτ�
) from XI

B . �

Enumerating over possible witnesses. It remains to enumerate over the set of all possible
witnesses of interfaces in �−1

x,t (J ) and �̃−1
x,�(J ) with excess area m(I;J )=M and to show

it is, at most, exponential in M .
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LEMMA 4.24. There exists some universal C� > 0 such that, for every M ≥ 1, x, t , and
J ∈�x,t (Īx,T ,H ), ∣∣{�J ,x,t (I) : I ∈�−1

x,t (J ),m(I;J )=M
}∣∣≤ CM

� .

Similarly, there exists C̃� such that, for every M ≥ 1, x, � and J ∈ �̃x,�(Īx,T ,H ),∣∣{�̃J ,x,�(I) : I ∈ �̃−1
x,�(J ),m(I;J )=M

}∣∣≤ C̃M
� .

Combining the above lemma with Lemma 4.23 immediately implies Propositions 4.21–
4.22.

PROOF. Let us prove the bound on the number of possible witnesses corresponding to
�x,t and �̃x,�, simultaneously, describing in the proof the parts that are different between
�x,t and �̃x,�.

Fix M , x, t , � and T < H and J ∈�x,t (Īx,T ,H ) (resp., J ∈�x,�(Īx,T ,H )), and consider
the number of possible witnesses �(I) for I satisfying m(I;J ) =M . We decompose this
into the number of possible choices of colored face-sets Fγ

ι , and, subsequently, the number
of choices of decorations to the vertices of Fγ

ι via the number of choices of colored face-sets
(ϒw)w . Clearly, their product bounds the number of possible choices of witnesses:

Number of faces in Fγ
ι . We first bound the number of faces in each Fγ

ι for i ∈ {A,B} and
γ ∈ {I,J ,�}.
(1) The number of BLUE faces in Fγ

ι is exactly |Xγ
ι |. For γ ∈ {I,J }, this quantity is, at

most, C̄m(I;J ) by Claim 4.14. For γ =� , we have that∣∣X�
ι

∣∣≤ ∣∣XI
ι

∣∣+ ∣∣XJ
ι

∣∣≤ 2C̄m(I;J ).

(Note that X�
ι consists of shifts of the increments composing XI

ι ; these shifts add an
additional cell whenever si 	= si−1, due to the additional four faces of the shared cut-
point between consecutive increments. We compensate for these via the term |XJ

ι |.)
(2) For each w ∈� associated with some wall W̃y (for some y ∈Yγ

ι ):

• If y 	= y∗ι , then the number of RED faces that were added to connect w ∈�
I\Sx
� W̃y to

|Xγ
ι | is at most 2m(W̃y) (since W̃y violated criteria (A2) or (B2)), where the factor of

2 accounts for the transition from Euclidean distance to the graph distance in Z
3.

• If y = y∗ι , then the number of RED faces that were added to connect w ∈�
I\Sx
� W̃y to

|Xγ
ι | is, at most, (j∗ − 1)∨ (k∗ − t) (since W̃y either violated criteria (A3) or (B3)).

Summing these over all y ∈Yγ
ι gives at most m(W)+ (j∗ −1)+ (k∗ − t) additional RED

faces, which is, at most, 15m(I;J ) by Claim 4.7.
(3) The number of RED faces added to connect v1 to y† as well as to x is, at most, m(F̃v1),

since all of these are part of Px , and hence share some nesting wall by Observation 3.2.
Thus, the number of such faces is, at most, 2m(W)≤ 6m(I;J ) by Claim 4.7.

(4) The number of RED faces added to F�
ι by XJ

ι is, at most, C̄m(I;J ) by Claim 4.14.

Altogether, we see that there exists a universal C > 0 such that, for every M ≥ 1,

max
I∈�−1

x,t (J ):m(I;J )=M

max
ι∈{A,B},γ∈{I,J ,�}

∣∣Fγ
ι

∣∣≤ CM.

Since the constant C above was uniform over the choice of t and the witness constructed by
�̃x,� agrees with the witness constructed by �x,t for some t = t (I), they apply equally to the
witnesses coming from �̃x,�.
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Number of possible choices of Fγ
ι . We begin by enumerating over the choices of FI

A: by
Fact 3.13, the number of ∗-connected face sets rooted at x (predetermined) with, at most, CM

faces is, at most, sCM ; multiplying this by 2CM for the choices of BLUE and RED colorings
of these faces, bounds the total number of possible choices for FI

A. Notice that the choice of
FI

A reveals v1 as its lowest cell that is bounded by (four) BLUE faces and vj∗+1 as its highest
such cell. This also determines whether t > j∗ or not.

Next, if t > j∗, we enumerate over the choices of FI
B . In the case of �x,t , its root, vt , is

determined by our above choice of FI
A as follows: starting from v, the cut-point of PJ

x at
height ht(vj∗+1), count t − (j∗ + 1) extra increments (with t predetermined) to a cut-point
v′ (marking the top of XJ

1 and the bottom of XJ
B ). The root vt is θv′−v(vj∗+1). Enumerating

over FI
B then amounts to another factor of (2s)CM .

In the case of �̃x,�, we can enumerate over choices of root vτ�
by enumerating over the

cut-point v′ of J whose height coincides with ht(vτ�
). In J the cut-point v′ must be within a

height of, at most, m(Xτ�
)≤M from �, so there are at most M such choices of cut-point v′.

From that we recover the root vτ�
as θv′−v(vj∗+1); choosing FI

B thus amounts to a factor of
M(2s)CM .

We bound the number of possible choices for FJ
A from above by sCM , the number of

∗-connected sets of CM faces, rooted at x + (0,0,ht(v1)) (recall that v1 can be read off of
FI

A), multiplied by a 2CM factor for coloring those faces by BLUE and RED. If t > j∗, the
number of choices of FJ

B is, at most, the number of ∗-connected sets of CM faces, rooted at
the cut-point v′ mentioned above (which we read off of J and FI

A), along with its coloring
by BLUE and RED which combine to, at most, (2s)CM .

To enumerate over F�
A , we first argue that it is a ∗-connected set of faces. In order to see

this, recall that the BLUE faces of F�
A are comprised of various subsets of shifted increment

sequences, which can only become disconnected when there is a change in the shift applied,
that is, at increments where sj+1 	= sj . Suppose that sj+1 	= sj for some 1 ≤ j < j∗; by
Observation 4.6 this occurs if and only if sj+1 = j and Xj+1 is being shifted in X�

A by

ρ(x − vsj+1+1)= ρ(x − vj+1).

It suffices to show that for every such j , the cell θρ(x−vj+1)vj+1 is ∗-connected to the cell x+
(0,0,ht(v1)) by faces in F�

A . This follows since the bounding faces of the cell θρ(x−vj+1)vj+1

are also in XJ
A (as a subset of θρ(x)�∅Xj+1, to which Xj+1 was mapped), XJ

A connects this
cell to x + (0,0,ht(v1)) (via trivial increments) and XJ

A ⊂ F�
A . As a connected set of, at

most, CM faces, colored by BLUE and RED and rooted at x+ (0,0,ht(v1)) (which is dictated
by our choice of FI

A), there are, at most, (2s)CM choices for F�
A .

Similarly, if t > j∗, to see that F�
B is ∗-connected, note that for t ≤ k < k∗, the shifted

increments k and k + 1 can only be disconnected if sk+1 	= sk , which occurs if and only if
sk+1 = k, in which case the increment Xk+1 will be shifted in X�

B by

ρ(x + vt − vj∗+1 − vsk+1+1)= ρ(x + vt − vj∗+1 − vk+1).

The fact that XJ
B (which, as before, connects θρ(x+vt−vj∗+1−vk+1)vk+1 to x + vt − vj∗+1 via

trivial increments) is a subset of the faces of F�
B implies that F�

B is ∗-connected, as claimed.
As a ∗-connected set of, at most, CM faces, colored by BLUE and RED and rooted at x +
vt − vj∗+1 (read off of our choice of FI

A and J ), there are, at most, (2s)CM choices for F�
B .

In the case of �̃x,� where this is x + vτ�
− vj∗+1, recall that our choice of FI

B picked out the
cut-point v′ from which we read off vτ�

, so the same bound holds.
Number of possible decorations (ϒw) to w ∈ V(Fγ

ι ). Let us first count the combined
number of faces

(4.10)
∑

ι∈{A,B},γ∈{I,J ,�}

∑
w∈V(Fγ

ι )

|ϒw|.
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By construction, the sets Sw are all disjoint. The number of BLUE faces in total over all ϒw is,
therefore, at most,

∑
z∈D |Wz| ≤∑

z∈D 2m(Wz)≤ 6m(I;J ) (as no wall is double counted).
For each w, the number of RED faces added to ϒw in L0 in the ball of radius

√
Nρ(u)

centered at an edge-or-face u ∈ ρ(Sw) is, at most, using Claim 4.7,∑
w

∑
u∈ρ(Sw)

Nρ(u)≤∑
w

|Sw| ≤ 2m(W)≤ 6m(I;J ).

By induction, every Sw consists of the groups of walls of a nested sequence of walls.
Indeed, when we allocate Sw , if W̃ already decorates some previously processed vertex z,
then, necessarily, the entire group of walls of W̃ must also have been allocated to Sz, so the
remainder is still the group of walls of a nested sequence of walls. For each w, denote this
nested sequence of walls by Ww

1 � Ww
2 � · · · .

Within every Sw , all close walls are connected, via the additional RED faces in L0 in
balls of radius

√
Nρ(u) for u ∈ ρ(Sw). Each of the ∗-connected components obtained in

this way (whose BLUE faces are precisely a group of walls) corresponds to some Ww
i (say

the innermost one it contains). Finally, by definition, ρ(w) is interior to Ww
1 . Therefore, to

obtain a spanning tree of the face-set, we can include shortest paths of faces from ρ(w) to
Ww

1 and then from Ww
i to Ww

i+1 for every i. This adds, at most,
∑

i |Ww
i | ≤ 2m(Sw) many

faces, and the minimum spanning tree adds, at most, that many RED faces. Summing over all
w, this last contribution (again by (4.4)) is also, at most, 2

∑
w m(Sw)≤ 6m(I;J ).

Altogether, we deduce that the total number of faces (4.10) is, at most, 18m(I;J )= 18M .
In order to enumerate over all such possible decorating face-sets, let us first decide how

many of the 18M faces are allocated to each ϒw . For every ι ∈ {A,B} and γ ∈ {I,J ,�}, we
have that V(Fγ

ι )≤ 4CM by our bound on the number of faces in that set; in particular, there
are, at most, 24CM vertices, between which we wish to partition at most 18M decorating
faces. The number of such partitions is, at most,(

(24C + 18)M − 1
24CM − 1

)
≤ 2(24C+18)M.

For each such partition, if kw is the number of decorating faces assigned to w (so that∑
w kw ≤ 18M), then we have skw choices for a ∗-connected decorating face subset rooted

at ρ(w) and 2kw choices of RED and BLUE colors for these faces. Thus, the total number
of choices for the decorating colored face subsets corresponding to this partition is, at most,
(2s)18M .

Multiplying all of the above enumerations yields the desired bounds for some C� and C̃� .
�

4.6. Proofs of Theorem 4.1 and Proposition 4.2.

PROOF OF THEOREM 4.1. Recall from Claim 4.7 that, for every t and every I , we have
that

m
(
I;�x,t (I)

)≥ 2
(

ht(v1)− 1

2

)
+ 2dρ(v1, x)≥ 2

∣∣∣∣v1 −
(
x +

(
0,0,

1

2

))∣∣∣∣
as well as m(I;�x,t (I)) ≥ m(Bx) and m(I;�x,t (I)) ≥ m(Xt ) so that it suffices to prove
that

μ∓n
(
m
(
I;�x,t (I)

)≥ r | Ix,T ,H

)≤ C exp
[−(β −C)

(
r ∧ d(x, ∂�n)

)]
.

To see this, recall the definition of Īx,T ,H , and express μ∓n (m(I;�x,t (I))≥ r, Ix,T ,H ) as, at
most,

μ∓n
(
Īc
x,T ,H | Ix,T ,H

)
μ∓n (Ix,T ,H )+μ∓n

(
m
(
I;�x,t (I)

)≥ r, Īx,T ,H

)
.
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The first term above is bounded by e−2(β−C)d(x,∂�n)μ∓n (Ix,T ,H ) by Proposition 3.12, so let
us turn to the second term: for every r ≥ 1,∑

M≥r

∑
I∈Īx,T ,H

m(I;�x,t (I))=M

μ∓n (I)≤ ∑
M≥r

∑
I∈Īx,T ,H

m(I;�x,t (I))=M

e−(β−C)Mμ∓n
(
�x,t (I)

)

= ∑
M≥r

∑
J∈�x,t (Īx,T ,H )

μ∓n (J )
∑

I∈�−1
x,t (J )

m(I;�x,t (I))=M

e−(β−C)M

≤ ∑
M≥r

CM
� e−(β−C)Mμ∓n

(
�x,t (Īx,T ,H )

)
.

In the first inequality above, we used Proposition 4.12 (and the fact that Īx,T ,H is in the
domain of �x,t by Proposition 4.5), and in the second inequality, we used Proposition 4.21.

Now, noting by Proposition 4.5 that

�x,t (Īx,T ,H )⊂ Īx,T ,H

we deduce that

μ∓n
(
m
(
I;�x,t (I)

)≥ r, Īx,T ,H

)≤Ce−(β−C−logC�)rμ∓n (Īx,T ,H )

≤Ce−(β−C−logC�)rμ∓n (Ix,T ,H ).

Combining these estimates and dividing through by μ∓n (Ix,T ,H ) then yields the desired con-
ditional bound. �

PROOF OF PROPOSITION 4.2. By definition of �̃x,�, for every half-integer �, we have

m
(
I; �̃x,�(I)

)≥ ∣∣F(Px ∩L�)
∣∣− 4.

Indeed, this follows from the fact that if Px ∩ L� is not a single cell, either it is part
of an increment in the spine, in which case τ� is the index of that increment and we
use m(I; �̃x,�(I)) ≥ m(Xτ�

), or it is part of the base, in which case this follows from
m(I; �̃x,�(I))=m(I;�x,1(I))≥m(Bx).

As such, it suffices for us to show that, for every r ≥ 1,

μ∓n
(
m
(
I; �̃x,�(I)

)≥ r | Ix,T ,H

)≤C exp
[−(β −C)

(
r ∧ d(x, ∂�n)

)]
.

Arguing as in the proof of Theorem 4.1, we bound the left-hand side above by Proposi-
tion 3.12 by

e−2(β−C)d(x,∂�n)μ∓n (Ix,T ,H )+μ∓n
(
m
(
I; �̃x,�(I)

)≥ r, Īx,T ,H

)
.

The second term above is then bounded as∑
M≥r

∑
I∈Īx,T ,H

m(I;�̃x,�(I))=M

μ∓n (I)≤ ∑
M≥r

∑
J∈�̃x,�(Īx,T ,H )

μ∓n (J )
∑

I∈�̃−1
x,�(J )

m(I;J )=M

e−(β−C)M

≤ ∑
M≥r

C̃M
� e−(β−C)Mμ∓n

(
�̃x,�(Īx,T ,H )

)
.

Then, noting by Proposition 4.5 that for every I ∈ Īx,T ,H , for every �, �x,�(I) ∈ Īx,T ,H

implies that

�̃x,�(Īx,T ,H )⊂ Īx,T ,H .
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We then deduce that

μ∓n
(
m
(
I; �̃x,�(I)

)≥ r, Īx,T ,H

)≤ Ce−(β−C−log C̃�)rμ∓n (Īx,T ,H )

≤ Ce−(β−C−log C̃�)rμ∓n (Ix,T ,H ),

at which point dividing through by μ∓n (Ix,T ,H ) implies the desired bound. �

5. A refined submultiplicativity bound. In order to establish tightness for the centered
maximum Mn under μ∓n , we need to replace the approximate submultiplicativity bound on
μ∓n (ht(Px)≥ h1+h2) obtained in [16]—which had an O(exp(log2(h1∨h2))) multiplicative
error term—by one in which the multiplicative error is only O(1). We will in fact show this
with an error that is 1+ εβ for some sequence εβ > 0 that vanishes as β→∞.

Let us denote by Ax
h the event, measurable with respect to the configuration on C(Z2 ×

�0, h�), given by

(5.1) Ax
h =

{
σ : x +

(
0,0,

1

2

) +←−−−−→
Z2×�0,h�

L
h− 1

2

}
for x ∈F(L0),

so that, recalling the definition (1.1) of αh, we have

αh =− logμ∓
Z3

(
Ao

h

)
where o=

(
1

2
,

1

2
,0
)
.

Further, let

(5.2) Ex
h =

{
σ : ht(Px)≥ h

}
for x ∈F(L0).

We showed in [16], equation (6.3), (this will also follow from Claim 5.3 below) that, for n

large and every x ∈ L0,n,

(5.3) (1− εβ)μ∓n
(
Ax

h

)≤ μ∓n
(
Ex

h

)≤ (1+ εβ)μ∓n
(
Ax

h

)
,

where εβ→ 0 as β→∞; the same also applies under μ∓
Z3 . Thus, for another such sequence

εβ ,

(5.4) α̃h =− logμ∓
Z3

(
Eo

h

)
satisfies |α̃h − αh| ≤ εβ,

and we recall from Proposition 3.10 that, for some C > 0 and every h≥ 1,

4β −C ≤−1

h
logμ∓n

(
Eo

h

)≤ 4β + e−4β + C

h
.

(The existence of α = limh→∞ αh/h, as established in the prequel [16], implies that 4β−C ≤
α ≤ 4β+e−4β . Our next results will rederive the limit and give it a more accurate description;
see Corollary 5.2 below.) The inequalities in (5.3) tie the approximate submultiplicativity of
{μ∓n (Eo

h)}h≥1 to that of {μ∓
Z3(A

o
h)}h≥1 (equivalently, the super-additivity of α̃h to that of αh),

which the following result establishes.

PROPOSITION 5.1. There exists β0 > 0 such that, for every β > β0, every h= h1 + h2
for h1, h2 ≥ 1, which may depend on n, and every x, x1, x2 ∈ L0,n such that d(x, ∂�n)� h

and d(xi, ∂�n)� h for i = 1,2,

(5.5) μ∓n
(
Ax

h

)≤ (1+ εβ)μ∓n
(
A

x1
h1

)
μ∓n

(
A

x2
h2

)
,

where εβ > 0 vanishes as β→∞. Consequently, for another such sequence εβ > 0,

(5.6) μ∓n
(
Ex

h

)≤ (1+ εβ)μ∓n
(
E

x1
h1

)
μ∓n

(
E

x2
h2

)
.
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In light of the preceding inequalities, the above proposition readily implies the following
corollary.

COROLLARY 5.2. There exists β0 such that, for every β > β0 and every h1, h2 ≥ 1,

(5.7) αh1 + αh2 − εβ ≤ αh1+h2 ≤ αh1 +
(
4β + e−4β)h2

for some εβ > 0 that vanishes as β →∞. In particular, the limit α = limh→∞ αh/h (=
limh→∞ α̃h/h) exists and satisfies α = suph(αh − εβ)/h.

PROOF. For the left-hand side, fix any h1, h2, take x, x1, x2 = o and send n→∞
(whence μ∓n (Ao

h)→ μ∓
Z3(A

o
h) is by the weak convergence of μ∓n to μ∓

Z3 , as established by
Dobrushin, and the analogous fact for Eo

h follows from Corollary 5.6).
Similarly, for the right-hand side it suffices for us to prove, in the setting of Proposition 5.1,

that

μ∓n
(
Ao

h

)≥ μ∓n
(
Ao

h1

)
e−(4β+e−4β)h2,

and then send n→∞. Reveal the entire configuration σ on �n ∩ L<h1 under μ∓n (· | Ao
h1

).

On the event Ao
h1

, in the configuration we revealed, o+ (0,0, 1
2) is connected by plus sites

to L
h1− 1

2
: call Y − (0,0, 1

2) an arbitrary site in the plus cluster of o + (0,0, 1
2) at height

h1 − 1
2 . Then, by a simple calculation (see, e.g., the proof in [16] of the similar left-hand of

Proposition 3.10), independently of the configuration outside of the set of cells {Y +(0,0, k
2) :

k = 1, . . . , h2}, the probability that those h2 cells are all plus—and, therefore, Ao
h holds—is,

at least, e−(4β+4e4β)h2 . �

We will need the following comparison which will imply the inequality (5.3) that was
stated above.

CLAIM 5.3. There exist β0 > 0 and a sequence εβ > 0 vanishing as β→∞ such that,
for all β > β0, every n and every x ∈ L0,n,

μ∓n
(
Ex

h |Ax
h

)≥ 1− εβ and μ∓n
(
Ax

h |Ex
h

)≥ 1− εβ.

PROOF. Let us begin with the first inequality: by definition, we have, for every x ∈ L0,n

and h≥ 1, (
Ax

h ∩
⋂
k≥1

{
x −

(
0,0,

k

2

)
∈ σ(I)

})
⊂ (

Ex
h ∩Ax

h

)
.

By Proposition 3.8, x is not interior to any wall of I , and, therefore,
⋂

k≥1{x − (0,0, k
2) ∈

σ(I)}, except with probability εβ going to zero as β→∞. Then, by the FKG inequality we
deduce that

μ∓n
(
Ex

h ∩Ax
h

)≥ μ∓n
(
Ax

h ∩
⋂
k≥1

{
x −

(
0,0,

k

2

)
∈ σ(I)

})
≥ (1− εβ)μ∓n

(
Ax

h

)
implying the desired bound after dividing through by μ∓n (Ax

h).
Let us turn to the second inequality. We can expose the inner boundary of the plus ∗-

connected component of the cell-set σ(I) under the measure μ∓n (· | Ex
h) as follows: reveal

the entire minus ∗-connected component of the boundary ∂� ∩ L>0 by exposing the minus
∗-connected component and all ∗-adjacent (bounding) plus spins—exactly the plus (inner)
boundary of the ∗-connected plus component of σ(I) together with (inner) boundaries of
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finite plus bubbles in the minus phase. Since x + (0,0, 1
2) is plus in σ(I) (on the event Ex

h ),
and, for every I , the measure of μ∓n (·) on {v : σ(I)v = +1} stochastically dominates that
induced by μ+

Z3 on {v : σ(I)v =+1}, we have

μ∓n
(
Ax

h |Ex
h

)≥ inf
I∈Ex

h

μ+{v:σ(I)v=+1}
(
x +

(
0,0,

1

2

) +←−→
L>0

Sx

)

≥ μ+
Z3

(
x +

(
0,0,

1

2

) +←−→
L>0
∞

)
;

this is seen to be at least 1− εβ by the classical Peierls argument. �

The proof of Proposition 5.1 follows the same argument that was used to establish the
weaker approximate submultiplicativity bound in [16], whereas here the error terms can be
better tracked and controlled via the improved estimates on the shape of the pillar (in partic-
ular, the exponential tail on the size of the base conditioned on the pillar reaching height h

vs. the bound in the prequel which had an extra O(logh) term). For completeness we include
the full argument instead of only listing the needed modifications. We begin with recalling
several decorrelation estimates for pillars which are needed for the proof.

PROPOSITION 5.4 ([15], [13], Lemma 5, as well as [6], Proposition 2.3). There exists
C > 0 such that, for every β > β0, every n≤m, for any subset F ⊂ L0,n,∥∥μ∓n ((Fy)y∈F ∈ ·)−μ∓m

(
(Fy)y∈F ∈ ·)∥∥TV ≤ Ce−d(F,∂�n)/C.

In particular, sending m to∞ and via the tightness of (Fy)y∈F , this holds if we replace μm

by μ∓
Z3 .

PROPOSITION 5.5 ([13], see also [6], Proposition 2.1). There exist β0 > 0 and C > 0
such that, for every β > β0, every n and every two subsets F1,F2 ⊂ L0,n,∥∥μ∓n ((Fy)y∈F1 ∈ ·, (Fz)z∈F2 ∈ ·

)−μ∓n
(
(Fy)y∈F1 ∈ ·

)
μ∓n

(
(Fz)z∈F2 ∈ ·

)∥∥
TV

≤ Ce−d(F1,F2)/C.

Propositions 5.4–5.5 readily translate to similar estimates on the collections of pillars (see
the short proofs of Corollaries 6.4 and 6.6 in [16], addressing the special cases where F ,
F1, F2 were balls of radius r about some fixed faces xn, yn ∈ L0,n and following from the
respective special cases of the above propositions).

COROLLARY 5.6 (see [16], Corollary 6.4). There exist β0 > 0 and C > 0 such that, for
every β > β0, every subset Fn ⊂ L0,n and every subset Fm ⊂ L0,m, which is a horizontal
translation of Fn,∥∥μ∓n ((Py)y∈Fn ∈ ·

)−μ∓m
(
(Py)y∈Fm ∈ ·

)∥∥
TV ≤ Ce−(d(Fn,∂�n)∨d(Fm,∂�m))/C.

COROLLARY 5.7 (see [16], Corollary 6.6). There exist β0 > 0 and some C > 0 such
that, for every β > β0, every n and every two subsets F1,F2 ⊂ L0,n,∥∥μ∓n ((Py)y∈F1 ∈ ·, (Py)y∈F2 ∈ ·

)−μ∓n
(
(Py)y∈F1 ∈ ·

)
μ∓n

(
(Py)y∈F2 ∈ ·

)∥∥
TV ≤ Ce−d(F1,F2)/C.

PROOF OF PROPOSITION 5.1. Recall that h = h1 + h2, and suppose without loss of
generality that h1 ≥ h2. Define the vertical shift of the event Ax

h, for a given vertex x, as

θh1A
x
h2
=

{
σ : x +

(
0,0, h1 + 1

2

) +←−−−−−−−−→
Z2×�h1,h1+h2 �

L
h1+h2− 1

2

}
,
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noting that μ∓n (θh1A
x
h2

)= μ
∓,−h1
n (Ax

h2
), where we denote by (∓,−m) boundary conditions

are those that are plus on ∂� ∩ L<−m and minus on ∂� ∩ L>−m. Hence, for every n, by
monotonicity in boundary conditions,

μ∓,−h1
n

(
Ax

h2

)≤ μ∓n
(
Ax

h2

)
.

A naive approach to establishing submultiplicativity would be to expose the plus ∗-
component of x + (0,0, 1

2) in the slab Z
2 × [0, h1], wherein the measurable event Ax

h1
guar-

antees that x+ (0,0, 1
2) is ∗-connected to L

h1− 1
2
, and, as the tip of the ∗-component at L

h1− 1
2

is now situated in the minus phase, the conditional probability of Ax
h should be at most that

of the unconditional Ax
h2

. However, revealing the plus ∗-component introduces some positive
information (the connection event Ax

h1
is increasing) along with negative information (e.g.,

minus spins along its boundary). We will control this using our new estimates on the shape
of the pillar.

Denote by A the ∗-connected plus component of x + (0,0, 1
2) in �−nh,nh�2 × �0, h1�

(noting that the event Ax
h1

merely says that A intersects the slab L
h1− 1

2
). An important fact,

which we will use later on, is that, on the event that Px 	=∅, this plus ∗-component A is a
subset of the plus sites in Px .

DEFINITION 5.8. Let A denote the set of possible realizations of A that satisfy the
following properties:

1. The intersection of A with L 1
2

is the single cell whose lower bounding face is x.
2. The intersection of A with L

h1− 1
2

is a single cell; denote its upper bounding face by
Y ∈ Lh1 .

3. We further have d(x,ρ(Y ))≤ d(x, ∂�n)/2.

Let � denote the (neither increasing nor decreasing) event {A ∈A }, noting that � ⊂Ax
h1

.

CLAIM 5.9. In the setting of Proposition 5.1, there exists a sequence εβ going to zero as
β→∞ such that

μ∓n
(
Ax

h,�
)≤ (1+ εβ)μ∓n

(
A

x1
h1

)
μ∓n

(
A

x2
h2

)
.

CLAIM 5.10. In the setting of Proposition 5.1, there exists a sequence εβ going to zero
as β→∞ such that

μ∓n
(
Ax

h

)≤ (1+ εβ)μ∓n
(
Ax

h,�
)
.

PROOF OF CLAIM 5.9. Set

r =min
{
d(x1, ∂�n), d(x2, ∂�n), d(x, ∂�n)

}
,

and recall that r � h by assumption; thus, Corollary 5.6 (for m = n) implies that, for each
i = 1,2, ∥∥μ∓n (Px ∈ ·)−μ∓n (Pxi

∈ ·)∥∥TV ≤ C exp(−r/C)

for some C independent of β . By relating the events Ax
hi

and Ex
hi

via (5.3), we then obtain
that

(5.8)

μ∓n
(
Ax

hi

)≤ (1+ εβ)μ∓n
(
Ex

hi

)≤ (1+ εβ)μ∓n
(
E

xi

hi

)+C exp(−r/C)

≤ (1+ εβ)2μ∓n
(
A

xi

hi

)+C exp(−r/C)

≤ (
1+ o(1)

)
(1+ εβ)2μ∓n

(
A

xi

hi

)
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using μ∓n (A
xi

hi
)≥ exp(−(4β + e−4β)hi) and r � hi by our hypothesis. Thus, the claim will

follow once we show that, for some other sequence εβ > 0 that vanishes as β→∞,

(5.9) μ∓n
(
Ax

h,�
)≤ (1+ εβ)μ∓n

(
Ax

h1

)
μ∓n

(
Ax

h2

)
.

Recall that � ⊂Ax
h1

, whence

μ∓n
(
Ax

h,�
)= μ∓n (�)μ∓n

(
Ax

h | �
)≤ μ∓n

(
Ax

h1

)
μ∓n

(
Ax

h | �
)
,

so in order to establish (5.9) it remains to show that

(5.10) μ∓n
(
Ax

h | �
)≤ (1+ εβ)μ∓n

(
Ax

h2

)
.

Denoting by E� expectation w.r.t. μ∓n (· | �), whereby A accepts values in A , we have that

μ∓n
(
Ax

h | �
)= E�

[
μ∓n

(
Ax

h |A
)]= E�

[
μ∓n

(
θh1A

Y
h2
|A)]

,

since � stipulates that Y − (0,0, 1
2) is the unique cell in the intersection of A with L

h1− 1
2
,

whence Y + (0,0, 1
2) must then be ∗-connected to L

h− 1
2

in C(Z2 × �h1, h�) in order for Ax
h

to occur.
Reveal A ∈ A , the ∗-connected plus component of x + (0,0, 1

2), only in the slab
C(�−n,n�2× �0, h1�). A key observation now is that the boundary spins of the ∗-component
revealed in this manner are plus at x + (0,0, 1

2) and Y − (0,0, 1
2) and minus on all sites in

�n \A that are ∗-adjacent to A. Indeed, the boundary conditions on ∂�n are all minus be-
tween heights [0, h1], and our definition of A forces every ∗-adjacent spin in L>0 ∩L<h1 to
be minus, except at x+ (0,0, 1

2) and Y − (0,0, 1
2) (those are plus as per A ). Denoting by ∂A

these boundary spins and by (∓, ∂A) their addition to our Dobrushin boundary conditions,
the domain Markov property implies that

E�

[
μ∓n

(
θh1A

Y
h2
|A)]= E�

[
μ∓,∂A

n

(
θh1A

Y
h2

)]≤ sup
A∈A

μ∓,∂A
n

(
θh1A

Y
h2

)
.

For a fixed A ∈ A (hence, fixed Y ), in view of the above fact that ∂A includes plus spins
only at x+(0,0, 1

2) and Y −(0,0, 1
2), the FKG inequality w.r.t. the Ising measure conditioned

on σ
x+(0,0, 1

2 )
= σ

Y−(0,0, 1
2 )
=+1 enables us to omit the conditioning on its minus spins and

obtain that

sup
A∈A

μ∓,∂A
n

(
θh1A

Y
h

)≤ sup
A∈A

μ∓n
(
θh1A

Y
h | σx+(0,0, 1

2 )
= σ

Y−(0,0, 1
2 )
=+1

)
≤ sup

A∈A
μ∓,−h1

n

(
A

ρ(Y )
h2
| σ

x+(0,0,−h1+ 1
2 )
= σ

ρ(Y )−(0,0, 1
2 )
=+1

)
by translation. Another application of FKG—now for monotonicity in boundary conditions—
allows us to move from μ

∓,−h1
n to μ∓n and to conclude that the last expression is, at most,

sup
A∈A

μ∓n
(
A

ρ(Y )
h2
| σ

x+(0,0,−h1+ 1
2 )
= σ

ρ(Y )−(0,0, 1
2 )
=+1

)≤ (1+ εβ)2 sup
A∈A

μ∓n
(
A

ρ(Y )
h2

)
,

where the last inequality is justified as follows. For a fixed face u ∈ L0,n (here, we would
take u = ρ(Y ) for a worst-case realization of A), if we denote Bx = {σx+(0,0,−h1+ 1

2 )
=

+1} and Bu = {σu−(0,0, 1
2 )
= +1}, then μ∓n (Au

h2
| Bx,Bu) ≤ μ∓n (Au

h2
)/μ∓n (Bx,Bu); now,

μ∓n (Bx,Bu) ≥ μ∓n (Bx)μ
∓
n (Bu) by FKG, thus it remains to show that each of the events Bx

and Bu has probability at least 1 − εβ under μ∓n . By the results of Dobrushin (see, e.g.,
Proposition 3.8), if z= (z1, z2, z3) is a fixed point z3 < 0, then (z1, z2,0) has no walls of the
interface I nesting it except with probability εβ . In particular, z ∈ σ(I), whence a Peierls
argument shows that with probability 1− εβ its spin is plus.
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Finally, for each A ∈A , deterministically, d(x,ρ(Y )) ≤ d(x, ∂�n)/2, so by the triangle
inequality

d
(
ρ(Y ), ∂�n

)≥ d(x, ∂�n)− d
(
x,ρ(Y )

)≥ d(x, ∂�n)/2� h

by assumption. Thus, the same argument used to compare x to xi in (5.8) shows that

μ∓n
(
A

ρ(Y )
h2

)≤ (1+ εβ)μ∓n
(
Ax

h2

)
,

establishing (5.10) and thus concluding the proof. �

PROOF OF CLAIM 5.10. Writing

μ∓n
(
�,Ax

h |Ex
h

)≤ μ∓n (�,Ax
h)

μ∓n (Ex
h)
= μ∓n (Ax

h)

μ∓n (Ex
h)

μ∓n
(
� |Ax

h

)≤ (1+ εβ)μ∓n
(
� |Ax

h

)
,

with the last inequality by (5.3), it remains to show μ∓n (�,Ax
h | Ex

h) ≥ 1 − ε′β for
some other sequence ε′β > 0 vanishing as β → ∞, which will altogether imply that
μ∓n (�,Ax

h)/μ
∓
n (Ax

h) ≥ (1 − ε′β)/(1 + εβ), as required. Using that μ∓n ((Ax
h)

c | Ex
h) ≤ εβ by

Claim 5.3, we have

μ∓n
(
�c ∪ (Ax

h

)c |Ex
h

)≤ μ∓n
((

Ax
h

)c |Ex
h

)+μ∓n
(
�c,Ax

h |Ex
h

)≤ εβ +μ∓n
(
�c,Ax

h |Ex
h

)
,

and it remains to bound the last term in the right-hand by εβ . Examining the criteria for �

in Definition 5.8, observe that Ax
h implies (through the inclusion Ax

h1
⊃Ax

h) that A intersects
both L 1

2
and L

h1− 1
2
. Hence,

�c ∩Ax
h = (B1 ∪B2 ∪B3)∩Ax

h where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B1 = {∣∣C(A∩L 1

2
)
∣∣≥ 2

}
,

B2 = {∣∣C(A∩L
h1− 1

2
)
∣∣≥ 2

}
,

B3 =
{
d
(
x,ρ(Y )

)
>

1

2
d(x, ∂�n)

}
.

Since Ex
h = Ix,0,h, the aforementioned fact that A is a subset of the plus spins in Px implies

that

μ∓n
(
B1 |Ex

h

)≤ μ∓n (Bx 	=∅ | Ix,0,h)

and

μ∓n
(
B2 |Ex

h

)≤ μ∓n
(∣∣C(Px ∩Lh1− 1

2
)
∣∣≥ 2 | Ix,0,h

)
.

Theorem 4.1 and Proposition 4.2, respectively, show (using the hypothesis h� d(x, ∂�n))
that these two probabilities are, at most, exp(−(β −C)).

Finally, the event B3 implies that d(x,ρ(y)) > 1
2d(x, ∂�n) for some face y ∈ Px . By (3.2),

this implies diam(Bx)+ 1
4m(Sx) > 1

2d(x, ∂�n), whence by Proposition 3.12,

μ∓n (B3 | Ix,0,h)≤ μ∓n
(

diam(Bx)+ 1

4
m(Sx) >

1

2
d(x, ∂�n) | Ix,0,h

)
≤ Ce−(β−C)d(x,∂�n) = o(1).

Combined, we have that μ∓n (�c ∩Ax
h)≤ 2 exp(−(β −C))+ o(1), as needed. �

Combining Claims 5.9–5.10 concludes the proof. �
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6. Tightness and exponential tails of the maximum. In this section we prove left and
right exponential tails for Mn −m


n, as stated in the next proposition:

PROPOSITION 6.1. There exist β0 > 0 and a sequence εβ > 0 vanishing as β→∞ such
that the following holds for all β > β0. Letting α̃h be as in (5.4) and m


n be as in (1.2), for
every 1≤ �≤√logn,

μ∓n
(
Mn ≥m


n + �
)≤ (1+ εβ) exp(2β − α̃�),

μ∓n
(
Mn < m


n − �
)≤ (1+ εβ) exp(2β − α̃�).

Before proving this result, we will establish some preliminary estimates. Recalling that
m


n is the first h such that αh > 2 log(2n)− 2β , the relation between αh, α̃h in (5.4) and the
bound αh+1 ≤ αh + 4β + εβ by (5.7) together imply that, for the sequence α̃h, we have

(6.1) 2 log(2n)− 2β − εβ ≤ α̃m

n
≤ 2 log(2n)+ 2β + εβ.

Next, recall that Ex
h = {ht(Px) ≥ h} (see (5.2)), so that {Mn ≥ h} = ⋃

x∈L0,n
Ex

h ; we will
separate the analysis of Ex

h for x near and away from ∂�n as follows. Define the interior of
L0,n,

(6.2) L−0,n =F
(

�−(n− log2 n
)
, n− log2 n�2 × {0}),

and observe that, by Corollary 5.6, for x ∈ L−0,n we can couple μ∓n (Px ∈ ·) to μ∓
Z3(Po ∈ ·)

and find that, for some fixed c > 0,

(6.3) μ∓n
(
Ex

h

)= μ∓
Z3

(
Eo

h

)+O
(
e−c log2 n)= (

1+ o(1)
)
e−α̃h if 1≤ h� log2 n,

absorbing the O(e−c log2 n) as α̃h ≤ αh+εβ by Corollary 5.2, so μ∓n (Eo
h)= e−α̃h = e−o(log2 n)

for h� log2 n.
Further, define, for h ∈ Z+, the event

(6.4) Gx
h =Ex

h ∩ {Bx =∅}
(noting that this event also implies the event Ax

h from (5.1)), and let

Zh =
∑

x∈L−0,n

1
{
Gx

h

}
.

CLAIM 6.2. There exist β0 > 0 and a sequence εβ > 0 vanishing as β→∞ such that,
for every β > β0, the following hold. If 1 ≤ h� log2 n then, for every x ∈ L−0,n and large
enough n,

(6.5) μ∓n
(
Gx

h

)≥ (1− εβ)μ∓n
(
Ex

h

)
.

Consequently, if 1≤ h=m

n − � for � > 0, then

E[Zh] ≥ (1− εβ)eα̃�−2β.

PROOF. For every x ∈ L−0,n, we have

μ∓n
((

Gx
h

)c |Ex
h

)= μ∓n
(
Bx 	=∅ |Ex

h

)≤ Ce−2β,

by part (a) of Theorem 4.1, where we took r = 1 and used that Ex
h = Ix,0,h and h� log2 n≤

d(x, ∂�n) since x ∈ L−0,n; this yields (6.5). For the second part of the claim, notice that
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1 ≤ h < m

n = ( 2

α
+ o(1)) logn by Corollary 5.2. By (6.3) (now h = O(logn)), we have

μ∓n (Ex
h)= (1+ o(1))e−α̃h , and the super-additivity in Corollary 5.2 shows that

α̃h = α̃m

n−� ≤ α̃m


n
− α̃� + εβ ≤ 2 log(2n)− α̃� + 2β + 2εβ,

using (6.1) for the last inequality. Combining these, while noting that |L−0,n| = (1 −
o(1))|L0,n| = (4− o(1))n2, we obtain that the expectation of Zh under μ∓n satisfies

E[Zh] ≥ (
1− o(1)

)
(1− εβ)eα̃�−2β−2εβ ≥ (

1− ε′β
)
eα̃�−2β,

for some other sequence ε′β > 0 vanishing as β→∞. �

CLAIM 6.3. There exist β0 > 0 and a sequence εβ > 0 vanishing as β→∞ such that,
for every β > β0, every 1≤ h� log2 n and every x 	= y ∈ L−0,n such that d(x, y)≤ log2 n, if
n is large enough then

μ∓n
(
G

y
h |Gx

h

)≤ (1+ εβ)e6βμ∓n
(
G

y
h

)
.

PROOF. We use a a similar revealing procedure to that used in the proof of submultiplica-
tivity above to reveal Px , without obtaining too much positive information about Py . Let Ax

be the ∗-connected plus component of x + (0,0, 1
2) in L>0, and let Ay be the ∗-connected

plus component of y + (0,0, 1
2) in L>0. If we reveal Ax on the event Gx

h, we expose the
plus ∗-component Ax along with all ∗-adjacent (bounding) minus spins in L>0. On the event
Gx

h, whereby the first cut-point of Px is x + (0,0, 1
2), the exterior boundaries of Px and Ax

coincide, and, therefore, the event Gx
h is measurable with respect to the set of sites revealed

in this manner. As such, we can express

μ∓n
(
G

y
h |Gx

h

)≤ sup
Ax∈Gx

h

μ∓n
(
E

y
h |Ax

)
.

The boundary sites revealed by Ax ∈ Gx
h are all minus, except a single plus site at x +

(0,0, 1
2), and so by the FKG inequality and the fact that E

y
h is an increasing event, this is, at

most,

μ∓n
(
E

y
h | σx+(0,0, 1

2 )
=+1

)≤ e6βμ∓n
(
E

y
h

)
.

The fact that μ∓n (G
y
h)≥ (1− εβ)μ∓n (E

y
h) by (6.5) concludes the proof. �

CLAIM 6.4. There exists β0 > 0 such that, for every β > β0, there is some C > 0 such
that, for every x, y ∈ L−0,n, we have∣∣μ∓n (Gx

h

)
μ∓n

(
G

y
h

)−μ∓n
(
Gx

h,G
y
h

)∣∣≤ Ce−d(x,y)/C.

PROOF. Notice that the pair of events Gx
h and G

y
h are measurable with respect to the pair

of walls Wx , Wy . This is because the bounding faces of the spine Sx (resp., Sy) are all part of
the same wall as shown in Claim 4.9, and the wall Wx (resp., Wy ) contains the four bounding
faces of x + (0,0, 1

2) (resp., y + (0,0, 1
2)). As such, we can bound the difference above as∣∣μ∓n (Gx

h

)
μn

(
G

y
h

)−μ∓n
(
Gx

h,G
y
h

)∣∣≤ ∥∥μ∓n (Wx ∈ ·)μ∓n (Wy ∈ ·)−μ∓n (Wx ∈ ·,Wy ∈ ·)
∥∥

TV,

which is, at most, Ce−d(x,y)/C by Proposition 5.5. �
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6.1. Exponential tails for the maximum. We are now ready to deduce that the centered
maximum has left and right exponential tails (and is, therefore, tight).

PROOF OF PROPOSITION 6.1. We begin with the right tail. Letting

h=m

n + � for 1≤ �≤ (1/β) logn

(n.b. we could have taken here �≤ (C/β) logn for any absolute constant C), we have

μ∓n
(
Mn ≥m


n + �
)≤ ∑

x∈L0,n\L−0,n

μ∓n
(
Ex

h

)+ ∑
x∈L−0,n

μ∓n
(
Ex

h

)
≤ ∣∣L0,n \L−0,n

∣∣e−(4β−C)h + ∣∣L−0,n

∣∣(1− o(1)
)
e−α̃h ,

using Proposition 3.10 for the first sum and (6.3) for the second one. By Corollary 5.2, we
have that

α̃h − (4β −C)h≤ (α + εβ − 4β +C)h≤ (C + 2εβ)h≤ ε′β logn,

where the last inequality used the assumption on � and the facts that m

n = (2/α+ o(1)) logn

and α > 4β − C. When combined with the fact that |L0,n \ L−0,n|/|L0,n| = O(
log2 n

n
), this

implies that

|L0,n \L−0,n|e−(4β−C)h

|L−0,n|e−α̃h
≤ n
−1+ε′β+o(1)

,

which, in light of the first inequality in the proof, shows that, for β large enough (so as to
have ε′β < 1),

μ∓n
(
Mn ≥m


n + �
)≤ (

1+ o(1)
)∣∣L−0,n

∣∣e−α̃h ≤ (1+ εβ)
∣∣L−0,n

∣∣ exp(−α̃m

n
− α̃�)

≤ (1+ εβ)e2β+εβ−α̃� ≤ (
1+ ε′β

)
e2β−α̃� ,

using Proposition 5.1 in the first line and (6.1) in the second line. This establishes the right
tail.

REMARK 6.5. One can extend the right tail bound to hold for all � (as opposed to � ≤
(1/β) logn)—albeit with a suboptimal rate: there exists some C > 0 such that

(6.6) μ∓n
(
Mn ≥m


n + �
)≤ Ce−(2β−C)� for all � > 0.

Indeed, consider � > (1/β) logn (having already established the desired right tail for smaller
values of �). The bound μ∓n (Ex

h) ≤ C exp(−(4β − C)h) in Proposition 3.8 holds uniformly
over all x ∈ L0,n, and so

μ∓n
(
Ex

m

n+�

)≤ μ∓n
(
Ex

�

)≤ Ce−(4β−C)� ≤ Cn−2e−(2β−C)�,

whence

μ∓n
(
Mn ≥m


n + �
)≤ |L0,n|Cn−2e−(2β−C)� ≤ 4Ce−(2β−C)�,

as claimed.

Let us now turn to the lower tail for Mn. Let

h=m

n − � for 1≤ �≤

√
logn.
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Since Zh > 0 implies Ex
h for some x ∈ L−0,n and, in particular, that Mn ≥ h, it will suffice

to establish an appropriate upper bound on μ∓n (Zh = 0), which we will infer from a second
moment calculation. Write

E
[
Z2

h

]= ∑
x,y∈L−0,n

μ∓n
(
Gx

h,G
y
h

)
≤ ∑

x∈L−0,n

μ∓n
(
Gx

h

)+ ∑
x∈L−0,n

∑
y∈L−0,n∩B(x,log2 n):y 	=x

μ∓n
(
Gx

h

)
μ∓n

(
G

y
h |Gx

h

)
+ ∑

x∈L−0,n

∑
y∈L−0,n\B(x,log2 n)

(
μ∓n

(
Gx

h

)
μ∓n

(
G

y
h

)+ ∣∣μ∓n (Gx
h

)
μ∓n

(
G

y
h

)−μ∓n
(
Gx

h,G
y
h

)∣∣).
Denoting these three summations by �1, �2, �3 (in order), we first observe that �1 is exactly
E[Zh]. For the second summation we apply Claim 6.3, yielding

�2 ≤ 4n2 log4 n(1+ εβ)e6β sup
x,y∈L−0,n

μ∓n
(
Gx

h

)
μ∓n

(
G

y
h

)≤ n2+o(1) sup
x∈L−0,n

μ∓n
(
Ex

h

)2
.

Using (6.3) (here, h≤m

n =O(logn)), we have μ∓n (Ex

h)= (1+o(1))e−α̃h , and |α̃h− α̃m

n
| =

O(�)=O(
√

logn) by Corollary 5.2, whence e−α̃h = n−2+o(1) by (6.1). Combined with the
last equation,

�2 ≤ n−2+o(1) = o(1).

Finally, for the last summation,∑
x∈L−0,n

∑
y∈L−0,n\B(x,log2 n)

μ∓n
(
Gx

h

)
μ∓n

(
G

y
h

)≤ E[Zh]2,

whereas, by Claim 6.4,∑
x∈L−0,n

∑
y∈L−0,n\B(x,log2 n)

∣∣μ∓n (Gx
h

)
μ∓n

(
G

y
h

)−μ∓n
(
Gx

h,G
y
h

)∣∣≤ C
∣∣L−0,n

∣∣2e− log2 n/C = o(1),

and we deduce that �3 ≤ E[Zh]2 + o(1). Putting all of these together, we obtain by the
Paley–Zygmund inequality that

μ∓n (Zh > 0)≥ E[Zh]2
E[Z2

h]
≥ E[Zh]2

E[Zh]2 +E[Zh] + o(1)
.

As E[Zh] ≥ (1− εβ)eα̃�−2β by Claim 6.2, we see that

μ∓n (Zh = 0)≤ 1+ o(1)

E[Zh] + 1+ o(1)
≤ (

1+ ε′β
)
e2β−α̃� ,

and, as {Zh = 0} is implied by {Mn < h}, this concludes the proof. �

6.2. The expectation and median of the maximum. The following is a straightforward
consequence of the results we have established in this section.

COROLLARY 6.6. There exist β0 > 0 and a sequence εβ > 0 vanishing as β→∞ such
that, for all β > β0, if m


n is defined as in (1.2) and mn is a median of Mn, then mn ∈
[m


n − 1,m

n] and m


n − 1− εβ ≤ E[Mn] ≤m

n + εβ .
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PROOF. For the bounds on the median mn, by Proposition 6.1 we have that

μ∓n
(
Mn ≥m


n + 1
)≤ (1+ ε)e2β−α̃1 ≤ Ce−2β ≤ ε′β,

using that exp(−α̃1) = μ∓
Z3(E

o
1) ≤ Ce−4β . This implies that, once β is large enough such

that ε′β < 1
2 , the median satisfies mn ≤ m


n. Further, by that same proposition, μ∓n (Mn ≤
m


n − 2)≤ (1+ ε)e2β−α̃1 ≤ ε′β , whence mn ≥m

n − 1.

For the bound on the expectation, note that by Proposition 6.1, as argued above for the
median, we have

√
logn∑
�=1

μ∓n
(
Mn −m


n ≥ �
)
< εβ and

√
logn∑
�=1

μ∓n
(
m


n − 1−Mn ≥ �
)
< εβ.

Therefore (denoting by a+ the positive part of a),

E
[(

Mn −m

n

)
+
]≤∑

�≥1

μ∓n
(
Mn −m


n ≥ �
)

(6.7)

≤
√

logn∑
�=1

μ∓n
(
Mn −m


n ≥ �
)+ ∑

�≥√logn

μ∓n
(
Mn −m


n ≥ �
)

≤ εβ +Ce−(2β−C)
√

logn ≤ ε′β,(6.8)

where we used the uniform bound (6.6) on the right tail to obtain the second line. At the same
time,

(6.9)
E
[(

m

n − 1−Mn

)
+
]≤m


nμ
∓
n

(
Mn ≤m


n −
√

logn
)+
√

logn∑
�=1

μ∓n
(
m


n − 1−Mn ≥ �
)

≤ εβ +O(logn)e−c
√

logn ≤ ε′β.

Letting

pn = μ∓n
(
Mn < m


n

)
,

we may express

E
[
Mn1

{
Mn ≥m


n

}]=m

n(1− pn)+E

[(
Mn −m


n

)
+
]
,

E
[
Mn1

{
Mn ≤m


n − 1
}]= (

m

n − 1

)
pn −E

[(
m


n − 1−Mn

)
+
]

and deduce from (6.8) and (6.9) that

m

n(1− pn)≤ E

[
Mn1

{
Mn ≥m


n

}]≤m

n(1− pn)+ εβ,

whereas (
m


n − 1
)
pn − εβ ≤ E

[
Mn1

{
Mn ≤m


n − 1
}]≤ (

m

n − 1

)
pn.

Combining these, |E[Mn] − ξn| ≤ εβ , where ξn =m

n − pn ∈ [m


n − 1,m

n], as required. �

7. Gumbel tail estimates for the maximum.

7.1. Coupling of different scales. The following proposition compares Mn, the maxi-
mum height of the interface I under μ∓n , to the maxima of i.i.d. copies on boxes of a smaller
scale. This will later be used to deduce Gumbel tail bounds for the centered maximum.
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PROPOSITION 7.1. There exists β0 > 0 such that the following holds for all β > β0.
Fix γ > 0, let Ln be a sequence with n(logn)−γ < Ln < n and set κn = (�n/Ln�)2 and
Rn = n mod Ln. Then,∥∥μ∓n (Mn ∈ ·)− P

(
max{Y1, . . . , Yκn} ∈ ·

)∥∥
TV ≤O

(
(Rn/n)1/3 + (logn)−10),

where Y1, . . . , Yκn are i.i.d. with law P(Yi ∈ ·)= μ∓Ln
(MLn ∈ ·). In particular,

sup
x

∣∣μ∓n (Mn ≤ x)−μ∓Ln
(MLn ≤ x)κn

∣∣≤O
(
(Rn/n)1/3 + (logn)−10).

We first need the following simple claim, ruling out the improbable scenario where the
maximum is attained above a fixed microscopic subset of faces of L0,n.

CLAIM 7.2. For every δ > 0, there exists β0 > 0 such that the following holds for all
β > β0. Let S0 ⊂ L0,n be a deterministic set of faces of size |S0| ≤ n2−δ . Let Mn be the
maximum height of I under μ∓n , and let M−n =max{ht(Px) : x ∈ L0,n \ S0}. Then, for every
large enough n, we have μ∓n (Mn 	=M−n )≤ (logn)−3β .

PROOF. Let h=m

n − log logn. We may bound the sought probability by

μ∓n
(
Mn 	=M−n

)≤ μ∓n
(
max
x∈S0

ht(Px)≥ h
)
+μ∓n (Mn < h)

≤ |S0| exp
(−(4β −C)h

)+O
(
exp(−α̃log logn)

)
,

with the last inequality relying on Proposition 3.10 to bound the first probability and Proposi-
tion 6.1 to bound the second one. The last term is, at most, O((logn)−4β−C) by the definition
(5.4) of α̃h and the inequality succeeding it. That same inequality implies that

(4β −C)h≥ α̃h − εβh≥ α̃m

n
− (

εβ − o(1)
)
h≥ (

2− ε′β
)

logn,

where the first inequality used that α̃m

n
− α̃h =O(log logn)= o(h) by Corollary 5.2. In light

of this,

|S0|e−(4β−C)h ≤ n2−δn
−2+ε′β ≤ n

−δ+ε′β+o(1)
< n−δ/2+o(1)

for β large enough so that ε′β < δ/2. Hence, combined with the above inequality on μ∓n (Mn <

h), we get that μ∓n (Mn 	=M−n ) is O((logn)−4β+C) < (logn)−3β for large enough n provided
β > C. �

PROOF OF PROPOSITION 7.1. First, consider the case Rn = 0. Partition L0,n into disjoint
boxes B1, . . . ,Bκn , each of side length 2Ln, and, further, let

B−i =
{
x ∈ Bi : d(x, ∂Bi)≥ log2 n

}
(i = 1, . . . , κn).

We will show that Mn is equal to maxi M̄
(i)
Ln

with high probability, where

M̄
(i)
Ln
=max

{
ht(Px) : x ∈ B−i

}
,

which, in turn, can be coupled (with negligible error) to κn i.i.d. copies of M̄
(1)
Ln

under μ∓B1
.

Each of those i.i.d. copies will then be coupled to MLn .
First, since κn =O((logn)2γ ), we have∣∣∣∣∣L0,n

∖(
κn⋃
i=1

B−i

)∣∣∣∣∣≤ κn · 4Ln log2 n=O
(
n(logn)2γ+2)
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and thus infer from Claim 7.2 that (with some room)

(7.1) μ∓n
(
Mn 	= max

1≤i≤κn

M̄
(i)
Ln

)
< (logn)−10.

Second, as the boxes B−i have pairwise distances at least log2 n, iterating Corollary 5.7 per
box shows that∥∥∥∥μ∓n ((Px)x∈⋃i B−i

∈ ·)−∏
i

μ∓n
(
(Px)x∈B−i ∈ ·

)∥∥∥∥
TV

=O
(
κne
−c log2 n) < n−10.

Moreover, Corollary 5.6 gives

κn∑
i=1

∥∥μ∓n ((Px)x∈B−i ∈ ·
)−μ∓B1

(
(Px)x∈B−1 ∈ ·

)∥∥
TV =O

(
κne
−c log2 n) < n−10;

thus, with probability 1−O(n−10) we may couple (M̄
(1)
Ln

, . . . , M̄
(κn)
Ln

) under μ∓n to (Y−1 , . . . ,

Y−κn
) where Y−i are i.i.d. distributed according to μ∓Bi

(M̄
(i)
Ln
∈ ·). Letting Yi be i.i.d. copies of

μ∓Bi
(maxx∈Bi

ht(Px) ∈ ·), we again apply Claim 7.2, this time to μ∓Bi
with S0 = Bi \ B−i , so

that |S0| =O(|Ln| log2 n)= L
1+o(1)
n and

κn∑
i=1

μ∓Bi

(
Yi 	= Y−i

)
< κn(logn)−3β < (logn)−10

for β large. Altogether, the total variation distance between the law of Mn and max{Y1, . . . ,

Yκn}—equal in distribution to κn i.i.d. copies of MLn under μ∓Ln
—is O((logn)−10), as re-

quired.
It remains to handle the case Rn 	= 0. Here, we will partition L0,n into boxes

B1, . . . ,Bκn, B̂κn+1, . . . , B̂κ̂n
,

where the boxes B1, . . . ,Bκn have side length 2Ln, as before, and the remaining boxes B̂j

(j > κn) have the shorter side length 2Rn (so that κ̂n = (�n/Ln�)2). We use the same defini-
tion of B−i also for B̂−j , that is,

B̂−j =
{
x ∈ B̂j : d(x, ∂B̂j )≥ log2 n

}
(j = κn + 1, . . . , κ̂n),

noting that it may be the case that B̂−j =∅ (whenever Rn ≤ log2 n). However, we would still
want to couple Mn to maxi≤κn M̄

(i)
Ln

, as we did in (7.1), ignoring the exceptional boxes B̂j . To

achieve this, apply Claim 7.2 with S0 = L0,n \ (
⋃κn

i=1 B
−
i ∪

⋃κ̂n

j=κn+1 B̂
−
j ), which, as before,

has |S0| =O(κ̂nLn log2 n)=O(n(logn)2γ+2), and hence

(7.2) μ∓n
(
Mn 	= max

x∈L0,n\S0
ht(Px)

)
< (logn)−10.

We may treat S1 = ⋃
j>κn

B̂−j as follows: recall from Corollary 5.2 that we have αm

n−� ≥

αm

n
− (4β + e−4β)� and α� ≥ (4β −C)�, and thus for � > 0 to be specified below,

μ∓n
(
Mn =max

x∈S1
ht(Px)

)
≤ |S1|max

x∈S1
μ∓n

(
ht(Px)≥m


n − �
)+μ∓n

(
Mn < m


n − �
)

≤O
(|S1|e−αm


n−� + e−α�
)≤O

( |S1|
n2 e(4β+e−4β)� + e−(4β−C)�

)
,
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where we used that μ∓n (ht(Px) ≥ h) = (1− o(1))e−αh for x ∈ S1 and h = m

n − � (as h�

log2 n≤ d(x, ∂B̂j ) for such x), the definition of αm

n
, and Proposition 6.1. Choose

�= �1 ∧ �2 where �1 = 3

β
log logn and �2 = 1

8β
log

(
n

Rn

)
.

We see that �= �1 implies Rn/n≤ (logn)−24, in which case, using |S1| =O(nRn),

e−(4β−C)� + |S1|
n2 e(4β+e−4β)� ≤ (logn)−12+εβ +O(Rn/n)(logn)12+εβ =O

(
(logn)−12+εβ

)
.

On the other hand, when �= �2 we have

e−(4β−C)� + |S1|
n2 e(4β+e−4β)� ≤ (Rn/n)

1
2−εβ +O

(
(Rn/n)1−( 1

2+εβ))=O
(
(Rn/n)

1
2−εβ

)
.

Altogether, for large enough β we find that

μ∓n
(
Mn =max

x∈S1
ht(Px)

)
≤O

(
(Rn/n)1/3 + (logn)−10).

Combining this with (7.2), while noticing that L0,n \ (S0 ∪ S1) is nothing but
⋃

i≤κn
B−i , we

obtain that

μ∓n
(
Mn 	=max

i≤κn

M̄
(i)
Ln

)
≤O

(
(Rn/n)1/3 + (logn)−10),

at which point the original analysis of the law of maxi≤κn M̄
(i)
Ln

, showing that it is coupled to
the maximum of κn i.i.d. copies of MLn under μ∓Ln

, completes the proof. �

7.2. From multiscale coupling to Gumbel tails. We will first prove the sought bounds in
the special case when the side length 2n is a power of 2. This will be extended to the general
case at the end of Section 7.2.

7.2.1. Left tail. The following lemma establishes the doubly exponential left tail of the
centered maximum.

LEMMA 7.3. There exists β0 > 0 such that, for every β > β0, the following holds. For
every fixed �≥ 1 and every large enough n that is a power of 2,

exp
(−e(4β+e−4β)�+2)≤ μ∓n

(
Mn ≤m


n − �
)≤ exp

(−eα�−12β).
PROOF. The proof of both inequalities will follow from coupling μ∓n (Mn ∈ ·) to the

maxima of smaller scales. We begin with the lower bound. Consider n1 = n2−j and n2 =
n2−(j+1). Since m


ni
is the minimal h such that αh exceeds the threshold 2 log(2ni)− 2β , the

difference of these thresholds between m

n1

and m

n2

is precisely 2 log 2, whereas αh+1−αh ≥
α1 − εβ ≥ 4β −C − εβ holds for every h≥ 1 by Corollary 5.2. Hence,

m

n1
− 1≤m


n2
≤m


n1
,

and we may consider Ln,k = n2−k for the minimal k ≥ 0 that would satisfy

m

Ln,k
=m


n − �.

(The fact that �≥ 1 implies that k > 0.) We claim that this k satisfies

k ≤ k1 :=
⌈
(4β + e−4β)�

2 log 2

⌉
.
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To see this, recall from Corollary 5.2 and the inequality below (5.4) that

2 log(2n)− 2β < αm

n
≤ αm


n−� + (
4β + e−4β)�;

thus (using that 2 log(2n)= 2 log(2Ln,k)+ k log 4 for every k ≥ 0)

αm

n−� > 2 log(2Ln,k1)− 2β + k1 log 4− (

4β + e−4β)�≥ 2 log(2Ln,k1)− 2β,

so m

Ln,k1
≤m


n − � and k ≤ k1 by definition. Since k1 =O(1), we have n/Ln,k =O(1), and
Proposition 7.1 implies that

μ∓n
(
Mn ≤m


n − �
)= μ∓Ln,k

(
MLn,k

≤m

Ln,k

)4k + o(1)≥ (1− εβ)4k1 + o(1)

≥ exp
(−4k1

)≥ exp
(−4e(4β+e−4β)�),

where we used that 1− εβ > e−1 for every large enough β in the transition between the lines,
absorbing the o(1)-term for n large enough in the process. This implies the desired lower
bound.

For the upper bound, let Ln,k = n2−k for the minimal k ≥ 0 that would satisfy

m

Ln,k
=m


n − �+ 2.

Further, assume for now that �≥ 3 (hence, k > 0); our resulting upper bound will hold triv-
ially for �= 1,2. We immediately note that k ≤ k1, since we saw above that m


Ln,k1
≤m


n− �.
We will need a lower bound on k to yield the required tail estimate. Once again, appealing to
Corollary 5.2, we have

αm

n−�+2 ≤ αm


n
− α�−2 + εβ ≤ 2 log(2n)+ 2β − α�−2 + ε′β

for some other sequence ε′β > 0 vanishing as β→∞, where we used (6.1) and the relation
between αh, α̃h in (5.4). It now follows that

k ≥ k2 :=
⌊
α�−2 − 4β − 1

2 log 2

⌋
,

since, for β large enough so that ε′β < 1, we have

αm

n−�+2 ≤ 2 log(2Ln,k2)− 2β + (

4β + ε′β − α�−2 + k2 log 4
)
< 2 log(2Ln,k2)− 2β.

Applying Proposition 7.1 (recalling that k ≤ k1 and so n/Ln,k =O(1) as before), we deduce
that

μ∓n
(
Mn ≤m


n − �
)= μ∓Ln,k

(
MLn,k

≤m

Ln,k
− 2

)4k + o(1)≤ (
(1+ εβ)e2β−α̃1

)4k2
,

using Proposition 6.1 for the last inequality. Using that α̃1 ≥ 4β −C and absorbing log(1+
εβ) into this constant, we see that

(7.3)
μ∓n

(
Mn ≤m


n − �
)≤ exp

(−(2β −C)4k2
)

≤ exp
(−(2β −C)eα�−2−4β−1)≤ exp

(−eα�−12β),
where in the last inequality we used that α�−2 ≥ α� − 8β − εβ (again by Corollary 5.2) and,
thereafter, added the term 1+ εβ to the exponent in exchange for the factor 2β −C, which is
valid for large β . (Note that, as promised above, the resulting bound holds also for �= 1,2,
becoming trivial since α1 ≤ α2 ≤ 8β + εβ .) �
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7.2.2. Right tail. The exponential upper bound on the right tail of the centered maximum
was established in Proposition 6.1, implying, via the relation (5.4) between αh, α̃h, that (with
room to spare), for every �≥ 1,

μ∓n
(
Mn ≤m


n + �
)≤ exp(−α� + 3β).

It remains to provide a corresponding lower bound, as given by the following lemma.

LEMMA 7.4. There exists β0 > 0 such that, for every β > β0, the following holds. For
every fixed �≥ 1 and every large enough n that is a power of 2,

μ∓n
(
Mn ≤m


n + �
)≥ exp

(−(4β + e−4β)�− 4(β + 1)
)
.

PROOF. The proof will follow from coupling i.i.d. copies of μ∓n (Mn ∈ ·) to the maximum
of a larger scale. As in the proof of Lemma 7.3—now viewing increasing rather than decreas-
ing side lengths—we have that if n1 = n2j and n2 = n2j+1, then m


n1
≤m


n2
≤m


n1
+ 1, and,

therefore, we may consider Ln,k = n2k for the minimal k ≥ 0 (in fact, k > 0 necessarily) that
satisfies

m

Ln,k
=m


n + �+ 1.

We claim that

k ≤ k1 :=
⌈

4β + 1+ (4β + e−4β)�

2 log 2

⌉
.

Too see this, recall from Corollary 5.2 and (6.1) (combined with the usual relation between
α̃h, αh) that

αm

n+� ≤ αm


n
+ (

4β + e−4β)�≤ 2 log(2n)+ 2β + εβ + (
4β + e−4β)�.

Writing 2 log(2n)= 2 log(2Ln,k)− k log 4, we get that, for any k ≥ 0,

αm

n+� ≤ 2 log(2Ln,k)− 2β + (

4β + εβ + (
4β + e−4β)�− k log 4

)
,

and substituting k = k1, as chosen above, now yields (for β large enough so that εβ < 1)

αm

n+� < 2 log(2Ln,k1)− 2β,

and, therefore, m

Ln,k1

> m

n+�; that is, m


Ln,k1
≥m


n+�+1, implying that k ≤ k1 as claimed.
Since k1 =O(1), so n/Ln,k =O(1), we may invoke Proposition 7.1 and find that

μ∓Ln,k

(
MLn,k

< m

Ln,k
− 1

)= μ∓n
(
Mn < m


n + �
)4k

,

and so

μ∓Ln,k

(
MLn,k

≥m

Ln,k
− 1

)≤ 4kμ∓n
(
Mn ≥m


n + �
)
.

Using Proposition 6.1 to bound the left-hand side from below by 1− εβ , we obtain that

μ∓n
(
Mn ≥m


n + �
)≥ (1− εβ)4−k

≥ (1− εβ)4−k1 ≥
(

1

4
− ε′β

)
exp

(−4β − 1− (
4β + e−4β)�)

≥ exp
(−4β − 3− (

4β + e−4β)�)
for large enough β , as required. �
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PROOF OF THEOREM 2. For n that is a power of 2, the bounds in Theorem 2 were all
established: the lower bounds were obtained in Lemmas 7.3 and 7.4 for a choice of ᾱ =
4β + e−4β ; the upper bounds were obtained by Lemma 7.3 and by (7.3) (which followed
from Proposition 6.1). It remains to extend the estimates in Lemmas 7.3 and 7.4 to general n,
which will follow from the decorrelation inequalities of Section 5.

Let N be a power of 2 such that N/4 < n < N/2. By Corollary 5.6 we have that∥∥μ∓n ((Px)x∈L−0,n
∈ ·)−μ∓N

(
(Px)x∈L−0,n

∈ ·)∥∥TV =O
(
e−c log2 n)= o(1).

Recall that m

n ≤m


N ≤m

n + 1 (since the scales changed by, at most, a factor of 2, whereas

αh+1 − αh ≥ 4β − C, as explained in the proofs of Lemmas 7.3 and 7.4). Furthermore, if
M−n =max{ht(Px) : x ∈ L−0,n}, then Claim 7.2 shows that μ∓n (Mn 	=M−n )= o(1), and so

μ∓n
(
Mn ≤m


n − �
)= μ∓n

(
M−n ≤m


n − �
)+ o(1)≥ μ∓N

(
MN ≤m


N − �− 1
)+ o(1).

A lower bound on the probability in the right-hand side is given by Lemma 7.3, whereby
(recalling ᾱ = 4β + e−4β )

μ∓N
(
MN ≤m


N − �− 1
)≥ exp

(−eᾱ(�+1)+3)≥ exp
(−eᾱ�+4(β+1)),

a lower bound that extends to μ∓n (Mn ≤m

n − �)+ o(1) via the preceding inequality.

The remaining two inequalities (the upper bound on the right tail in (7.3) was already
established for all n) will follow from a comparison of μ∓n to μ∓N where N is a power of 2
such that 2N < n < 4N . The same coupling mentioned above shows that∥∥μ∓N (

(Px)x∈L−0,N
∈ ·)−μ∓n

(
(Px)x∈L−0,N

∈ ·)∥∥TV =O
(
e−c log2 n)= o(1).

As before, μ∓N(MN 	=M−N )= o(1), and now we have m

N ≤m


n ≤m

N + 1, whence

μ∓n
(
Mn ≤m


n − �
)≤ μ∓N

(
M−N ≤m


N − �+ 1
)+ o(1)= μ∓N

(
MN ≤m


N − �+ 1
)+ o(1).

By the upper bound in Lemma 7.3,

μ∓N
(
MN ≤m


N − �+ 1
)≤ exp

(−eα�−1−12β)≤ exp
(−eα�−(16β+1)).

Similarly, we have

μ∓n
(
Mn ≥m


n + �
)≥ μ∓N

(
M−N ≥m


N + �+ 1
)− o(1)= μ∓N

(
MN ≥m


N + �+ 1
)− o(1),

whereas by Lemma 7.4,

μ∓N
(
MN ≥m


N + �+ 1
)≥ exp

(−ᾱ(�+ 1)− 4(β + 1)
)≥ exp

(−ᾱ�− (8β + 5)
)
,

thus concluding the proof. �

7.3. Nonconvergence of the centered maximum. The following simple corollary of
Proposition 7.1 will be used to derive Proposition 3.

COROLLARY 7.5. Let Mn be the maximum height of I under μ∓n . Fix ω ∈R+. Then,

lim sup
n→∞

sup
x

∣∣μ∓n (Mn ≤ x)−μ∓�n/ω�(M�n/ω� ≤ x)ω
2 ∣∣= 0.

PROOF. Fix any ε > 0, set nω = �n/ω� for brevity and let

� = �ε,n ∪ �ε,nω where �ε,n = {
x ∈R : μ∓n (Mn ≤ x)≥ ε

}
.
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By writing

sup
xn

∣∣μ∓n (Mn ≤ xn)−μ∓nω
(Mnω ≤ xn)

ω2 ∣∣≤ ε+ sup
xn∈�

∣∣μ∓n (Mn ≤ xn)−μ∓nω
(Mnω ≤ xn)

ω2 ∣∣,
it will suffice to prove that the second term in the right-hand vanishes as n→∞ for any such
choice of ε.

Applying Proposition 7.1 to μ∓n (Mn ∈ ·) with Ln = �n/ logn�, whereby κn = (1 +
o(1)) log2 n, we obtain

sup
xn∈�

∣∣μ∓n (Mn ≤ xn)− pκn
n,xn

∣∣= o(1) where pn,xn = μ∓Ln
(MLn ≤ xn).

Another application of Proposition 7.1, this time to μ∓nω
(Mnω ∈ ·) yet with the same Ln =

�n/ logn�, gives

sup
xn∈�

∣∣μ∓nω
(Mnω ≤ xn)− p

κ ′n
n,xn

∣∣= o(1),

where pn,xn is as before, and κ ′n = (ω−2 + o(1))κn (recall that ω ∈R+ is fixed).

For xn ∈ �ε,n, we have that p
κn
n,xn ≥ ε− o(1), whence p

(1+o(1))fn
n,xn = p

fn
n,xn + o(1) if fn has

order log2 n, and the same conclusion holds if xn ∈ �ε,nω (as κ ′n is also of order log2 n). In
particular,

sup
xn∈�

∣∣μ∓n (Mn ≤ xn)− plog2 n
n,xn

∣∣= o(1) and sup
xn∈�

∣∣μ∓nω
(Mnω ≤ xn)− pω−2 log2 n

n,xn

∣∣= o(1),

and, combining these inequalities, yields that

sup
xn∈�

∣∣μ∓n (Mn ≤ xn)−μ∓nω
(Mnω ≤ xn)

ω2 ∣∣= o(1),

as required. �

PROOF OF PROPOSITION 3. Suppose that mn is a sequence such that {Mn−mn} weakly
converges to a nondegenerate random variable M∞ with a distribution function G. Since
mn mod 1 must converge (as Mn is integer valued), we may assume w.l.o.g. that mn ∈ Z

(whence G is also integer valued). Observe that the bounds in Theorem 2 (in fact, already
those of Proposition 6.1) imply that we must have

lim sup
n→∞

∣∣mn −m

n

∣∣ <∞.

Fix k ≥ 2, and consider Corollary 7.5 with ω=√k. By assumption, limn→∞μ∓n (Mn ≤mn+
x)=G(x) for all x, and the above corollary then implies that

lim
n→∞μ∓�n/

√
k�(M�n/

√
k� ≤mn + x)=G1/k(x).

However, |m

n−m


�n/
√

k�| ≤ C(β) log k (see, e.g., the estimate (6.1)), and the above bound on

|mn −m

n| thus implies that

ak,n :=mn −m�n/
√

k�
satisfies lim supn→∞ |ak,n| <∞. Let (ak,nj

)j≥1 be a converging subsequence of (ak,n)n≥1,
and denote its limit by ak , whereby, recalling that mn ∈ Z, we must have ak,nj

= ak for all
sufficiently large j . Thus, for every large enough j ,

μ∓� nj√
k
�(M�

nj√
k
� ≤mnj

+ x)= μ∓� nj√
k
�(M�

nj√
k
� ≤m� nj√

k
� + x + ak)−−−→

j→∞ G(x + ak),
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where the last equality is again by our weak convergence assumption. Together, this implies
that, for every x ∈ R, we have Gk(x + ak)=G(x); having established this for every k ≥ 2,
we find that G is max-stable, yet G is discrete, contradicting the fact that the only (nonde-
generate) max-stable distributions are continuous ones, belonging to one of the three classes
of extreme value distributions (see, e.g., [21], Theorem 1.3.1). �
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