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In last passage percolation models lying in the Kardar–Parisi–Zhang uni-
versality class, maximizing paths that travel over distances of order n accrue
energy that fluctuates on scale n1/3; and these paths deviate from the linear
interpolation of their endpoints on scale n2/3. These maximizing paths and
their energies may be viewed via a coordinate system that respects these scal-
ings. What emerges by doing so is a system indexed by x, y ∈R and s, t ∈R

with s < t of unit order quantities Wn(x, s;y, t) specifying the scaled energy
of the maximizing path that moves in scaled coordinates between (x, s) and
(y, t). The space-time Airy sheet is, after a parabolic adjustment, the putative
distributional limit W∞ of this system as n → ∞. The Airy sheet has recently
been constructed in (Dauvergne, Ortmann and Virág (2020)) as such a limit
of Brownian last passage percolation. In this article, we initiate the study of
fractal geometry in the Airy sheet. We prove that the scaled energy difference
profile given by R → R : z → W∞(1,0; z,1) − W∞(−1,0; z,1) is a nonde-
creasing process that is constant in a random neighbourhood of almost every
z ∈ R; and that the exceptional set of z ∈ R that violate this condition almost
surely has Hausdorff dimension one-half. Points of violation correspond to
special behaviour for scaled maximizing paths, and we prove the result by
investigating this behaviour, making use of two inputs from recent studies of
scaled Brownian LPP; namely, Brownian regularity of profiles, and estimates
on the rarity of pairs of disjoint scaled maximizing paths that begin and end
close to each other.

1. Introduction.

1.1. Kardar–Parisi–Zhang universality and last passage percolation. The Kardar–
Parisi–Zhang [KPZ] equation is a stochastic PDE putatively modelling a wide array of models
of one-dimensional local random growth subject to restraining forces such as surface tension.
The theory of KPZ universality predicts that these models share a triple (1,1/3,2/3) of ex-
ponents: in time of scale t1, a growing interface above a given point in its domain differs
from its mean value by a height that is a random quantity of order t1/3; and it is by varying
this point on a spatial scale of t2/3 that nontrivial correlation between the associated random
heights is achieved. When the random height over a given point is scaled by dividing by
t1/3, a scaled quantity is obtained whose limiting law in high t is governed by the extreme
statistics of certain ensembles of large random matrices. Research in KPZ has been animated
in recent years by a spectrum of integrable, probabilistic, geometric and analytic ideas. We
make no attempt to offer an overview of these exciting developments but point the interested
reader to the review articles [11, 22] and [38].

In last passage percolation [LPP] models, a random environment which is independent in
disjoint regions is used to assign random values called energies to paths that run through it.

Received April 2019; revised March 2020.
MSC2020 subject classifications. 82C22, 82B23, 60H1.
Key words and phrases. Brownian last passage percolation, geodesics, polymers, Airy sheet, disjointness, frac-

tal geometry.

485

https://imstat.org/journals-and-publications/annals-of-probability/
https://doi.org/10.1214/20-AOP1444
http://www.imstat.org
mailto:rbasu@icts.res.in
mailto:sganguly@berkeley.edu
mailto:alanmh@berkeley.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


486 R. BASU, S. GANGULY AND A. HAMMOND

A path with given endpoints of maximal energy is called a geodesic. LPP is concerned with
the behaviour of energy and geometry of geodesics that run between distant endpoints. The
large-scale behaviour of many LPP models is expected to be governed by the KPZ exponent
triple—pioneering rigorous works concerning Poissonian LPP are [4] and [28]—and it is
natural to view these models through the lens of scaled coordinates whose choice is dictated
by this triple. Scaled LPP models are expected to be described by the KPZ fixed point, a
scaled form of the KPZ equation in the limit of late time.

The study of last passage percolation in scaled coordinates depends critically on inputs
of integrable origin, but it has been recently proved profitable to advance it through several
probabilistic perspectives on KPZ universality. It will become easier to offer signposts to per-
tinent articles after we have specified the LPP model that we will study. This paper is devoted
to giving rigorous expression to a novel aspect of the KPZ fixed point: to the fractal geom-
etry of the stochastic process given by the difference in scaled energy of a pair of geodesics
rooted at given fixed distant horizontally displaced lower endpoints as the higher endpoint,
which is shared between the two geodesics, is varied horizontally. The concerned result is
proved by exploiting and developing recent advances in the rigorous theory of KPZ in which
probabilistic tools are harnessed in unison with limited but essential integrable inputs.

We next present the Brownian last passage percolation model that will be our object of
study; explain how it may be represented in scaled coordinates; briefly discuss recent proba-
bilistic tools in KPZ; and state our main theorem.

1.2. Brownian last passage percolation: Geodesics and their energy. In this LPP model,
a field of local randomness is specified by an ensemble B : Z×R → R of independent two-
sided standard Brownian motions B(k, ·) : R → R, k ∈ Z, defined on a probability space
carrying a law that we will label P.

Any nondecreasing path φ mapping a compact real interval to Z is ascribed an energy
E(φ) by summing the Brownian increments associated to φ’s level sets. To wit, let i, j ∈ Z

with i ≤ j . We denote the integer interval {i, . . . , j} by �i, j �. Further let x, y ∈ R with x ≤ y.
Each nondecreasing function φ : [x, y] → �i, j � with φ(x) = i and φ(y) = j corresponds to
a nondecreasing list {zk : k ∈ �i + 1, j �} of values zk ∈ [x, y] if we select zk = sup{z ∈ [a, b] :
φ(z) ≤ k − 1}. With the convention that zi = x and zj+1 = y, the path energy E(φ) is set

equal to
∑j

k=i(B(k, zk+1) − B(k, zk)). We then define the maximum energy

M(x,i)→(y,j) = sup

{ j∑
k=i

(
B(k, zk+1) − B(k, zk)

)}
,

where this supremum of energies E(φ) is taken over all such paths φ. The random process
M(0,1)→(·,n) : [0,∞) →R was introduced by [19] and further studied in [6] and [35].

It is perhaps useful to visualise a nondecreasing path such as φ above by viewing it as
the associated staircase. The staircase associated to φ is a subset of the planar rectangle
[x, y] × [i, j ] given by the range of a continuous path between (x, i) and (y, j) that alter-
nately moves horizontally and vertically. The staircase is a union of horizontal and vertical
planar line segments. The horizontal segments are [zk, zk+1] × {k} for k ∈ �i, j �; while the
vertical segments interpolate the right and left endpoints of consecutively indexed horizontal
segments.

1.3. Scaled coordinates for Brownian LPP: Polymers and their weights. The one-third
and two-thirds KPZ scaling considerations are manifest in Brownian LPP. When the ending
height j exceeds the starting height i by a large quantity n ∈ N, and the location y exceeds
x also by n, then the maximum energy grows linearly, at rate 2n, and has a fluctuation about
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this mean of order n1/3. Indeed, the maximum energy of any path of journey (0,0) → (n,n)

verifies

(1) M(0,0)→(n,n) = 2n + 21/2n1/3Wn,

where Wn is a scaled expression for energy; since M(0,0)→(n,n) has the law of the uppermost
particle at time n in a Dyson Brownian motion with n + 1 particles by [35], Theorem 7,
and the latter law has the distribution of the uppermost eigenvalue of an (n + 1) × (n + 1)

matrix randomly drawn from the Gaussian unitary ensemble with entry variance n by [20],
Theorem 3, the quantity Wn converges in distribution as n → ∞ to the Tracy–Widom GUE
distribution. Any nondecreasing path φ : [0, n] → �0, n� that attains this maximal energy will
be called a geodesic, and denoted for use in a moment by Pn; the term geodesic is further
applied to any nondecreasing path that realizes the maximal energy assumed by such paths
that share its initial and final values.

Moreover, when the horizontal coordinate of the ending point of the journey (0,0) →
(n + y,n) is permitted to vary away from y = 0, then it is changes of n2/3 in the value of y

that result in a nontrivial correlation of the maximum energy with its original value.
Universal large-scale properties of LPP may be studied by using scaled coordinates to

depict geodesics and their energy; a geodesic thus scaled will be called a polymer and its
scaled energy will be called its weight.

(The term “polymer,” here a synomym of “scaled geodesic,” is often used to refer to a
typical realization of a random measure on paths naturally associated to last passage perco-
lation problems at positive temperature—which correspond to solutions of the KPZ equation
at finite times t . Its present usage thus has some capacity to generate confusion. We hope not
unduly so, since this usage would be expected to arise from the positive temperature meaning
when scaled coordinates are used and the limit of low temprerature is taken.)

Let Rn : R2 → R
2 be the scaling map, namely the linear map sending (n,n) to (0,1) and

(2n2/3,0) to (1,0). The image of any staircase under the scaling map will be called an n-
zigzag. An n-zigzag is comprised of planar line segments that are consecutively horizontal
and downward sloping but near horizontal, the latter type each having gradient −2n−1/3. For
x, y ∈ R and n ∈ N, let ρn(x, y), a subset of R × [0,1], denote the image under Rn of the
staircase associated to the LPP geodesic whose endpoints are R−1

n (x,0) and R−1
n (y,1). For

example, ρn(0,0) is the image under the scaling map of the staircase attached to the geodesic
Pn; for x, y ∈ R, ρn(x, y) is the n-polymer (or scaled geodesic), which crosses the unit-strip
R × [0,1] between (x,0) and (y,1). For any given pair (x, y) that we consider, ρn(x, y) is
well defined, because there almost surely exists a unique n-polymer from (x,0) to (y,1) by
[25], Lemma 4.6(1). This n-polymer is depicted in Figure 1. The label n is used consistently
when n-zigzags and n-polymers are considered, and we refer to them simply as zigzags and
polymers.

Scaled geodesics have scaled energy: in the case of ρn(0,0), its scaled energy is the quan-
tity Wn appearing in (1). We now set Wn(0,0) := Wn with a view to generalizing. Indeed, for
x, y ∈ R satisfying y − x ≥ −2−1n1/3, the unit-order scaled energy or weight Wn(x, y) of
ρn(x, y) is given by

(2) Wn(x, y) = 2−1/2n−1/3(
M(2n2/3x,0)→(n+2n2/3y,n) − 2n − 2n2/3(y − x)

)
,

where note that M(2n2/3x,0)→(n+2n2/3y,n) is equal to the energy of the LPP geodesic whose
staircase maps to ρn(x, y) under Tn.

The random weight profile of scaled geodesics emerging from (0,0) to reach the horizon-
tal line at height one, namely R → R : z → Wn(0, z), converges1 in the high n limit to a

1The concerned convergence is proved for geometric LPP in [29], Theorem 1.2. For Brownian LPP, the result
is proved across several papers. O’Connell and Yor [35] prove that the weight profile has the same distribution
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FIG. 1. The staircase in the left sketch is associated to a geodesic. When the scaling map Rn is applied to it, the
outcome is the polymer ρn(x, y) in the right sketch.

canonical object in the theory of KPZ universality. This object, which is the Airy2 process
after the subtraction of a parabola x2, has finite-dimensional distributions specified by Fred-
holm determinants. (It is in fact incorrect to view the domain of such profiles as Wn(0, ·) as
the whole of R, but we tolerate this abuse until correcting it shortly.)

1.4. Probabilistic and geometric approaches to last passage percolation. This determi-
nantal information about profiles such as R → R : z → Wn(0, z) offers a rich store of exact
formulas which nonetheless has not per se led to derivations of certain putative properties of
this profile such as the absolute continuity, uniformly in high n, of the profile on a compact
interval with respect to a suitable vertical shift of Brownian motion. Probabilistic and geo-
metric perspectives on LPP, allied with integrable inputs, have led to several recent advances,
including the solution of this problem. The above profile may be embedded [6, 35] as the
uppermost curve in an n-curve ordered ensemble of curves whose law is that of a system of
Brownian motions conditioned on mutual avoidance subject to a suitable boundary condition.
As such, this uppermost curve enjoys a simple Brownian Gibbs resampling property when it
is resampled on a given compact interval in the presence of data from the remainder of the
ensemble. The Brownian Gibbs property has been exploited in [12] to prove Brownian abso-
lute continuity of the Airy2 process as well as Johansson’s conjecture. This conjecture asserts
that the high n weak limit of the profile R → R : z → Wn(0, z), namely the parabolically
adjusted Airy2 process, has an almost surely unique maximizer; the result has been obtained
in several ways, such as an explicit formula for the maximizer due to Moreno Flores, Quastel
and Remenik [33]; and an argument of Pimentel [36] showing that any stationary process
minus a parabola has a unique maximizer. A positive temperature analogue of the Brownian
Gibbs property has treated [12] questions of Brownian similarity for the scaled narrow wedge
solution of the KPZ equation; and a more refined understanding [23] of Brownian regularity
of the profile R→R : z → Wn(0, z) has been obtained by further Brownian Gibbs analysis.

Robust probabilistic tools harnessing merely integrable one-point tail bounds have been
used to study nonintegrable perturbations of LPP problems, such as in the solution [10] of the
slow bond problem; bounds on coalescence times for LPP geodesics [9]; and to identify [7,
16, 17] a Hölder exponent of 1/3—for the weight profile when the latter endpoint is varied in
the vertical, or temporal, direction. As [39] surveys, geometric properties such as fluctuation

as Dyson Brownian motion. Adler and van Moerbeke [1], Proposition 1.7, prove that the scaling limit of Dyson
Brownian motion at the edge is the parabolic Airy2 process in the sense of convergence of kernels. This translates
to convergence for finite dimensional distributions via [40], Proposition 3.10. The topology of convergence is
further improved by [12].
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and coalescence of geodesics have been studied [5, 37] in stationary versions of LPP by using
queueing theory and the Burke property.

The distributional convergence in high n of the profile R→R : z → Wn(0, z)—and coun-
terpart convergences for certain other integrable LPP models—to a limiting stochastic pro-
cess is by now a classical part of the rigorous theory of LPP. It has expected since at least
[13] that a richer universality object, the space-time Airy sheet, specifying after a parabolic
adjustment the limiting weight of polymers between pairs of planar points (x, u) and (y, v)

that are arbitrary except for the condition that u �= v, should exist uniquely. Two signifi-
cant recent advances address this and related universal objects. The polymer weight profile
R → R : z → W∞(0, z) may be viewed as the limiting time-one snapshot of an evolution in
positive time begun from the special initial condition consisting of a Dirac delta mass at the
origin. In the first advance [32], this evolution is constructed for all positive time from an
almost arbitrary general initial condition (in fact, the totally asymmetric exclusion process
is used as the prelimiting model, in place of Brownian LPP); explicit Fredholm determinant
formulas for the evolution are provided. (The Brownian regularity of the time-one snapshot
of this evolution from general initial data is studied in [25] for the Brownian LPP prelimit.)
The second recent contribution [14] constructs the “directed landscape,” namely the space-
time Airy sheet parabolically adjusted so as to describe limiting LPP polymer weights. The
construction uses an extension of the Robinson–Schensted–Knuth correspondence which per-
mits the sheet’s construction in terms of a last passage percolation problem whose underly-
ing environment is itself a copy of the high n distributional limit of the narrow wedge profile
R →R : z → Wn(0, z). The analysis of [14] is assisted by [15], an article making a Brownian
Gibbs analysis of scaled Brownian LPP in order to provide valuable estimates for the study
of the very novel LPP problem introduced in [14].

1.5. The main result, concerning fractal random geometry in scaled Brownian LPP. All
of the above is to say that robust probabilistic tools have furnished a very fruitful arena in the
recent study of scaled LPP problems. In the present article, we isolate an aspect of the newly
constructed Airy sheet in order to shed light on the fractal geometry of this rich universal
object. We will use the lens of the prelimiting scaled Brownian LPP model to express our
principal result, and then record a corollary that asserts the corresponding statement about
fractal geometry in the Airy sheet.

The novel process that is our object of study is the random difference weight profile given
by considering the relative weight of unit-height polymers in Brownian LPP emerging from
the points (−1,0) and (1,0); namely, z → Wn(1, z)−Wn(−1, z). This real-valued stochastic
process is defined under the condition z ≥ −2−1n1/3 + 1 that ensures that the constituent
weights are well specified by (2); but we may extend the process’ domain of definition to
the whole of the real line by setting it equal to its value at −2−1n1/3 + 1 for smaller z-
values. Since the random functions z → Wn(x, z) for each x ∈ R are almost surely continuous
by [24], Lemma 2.2(1), we see that R → R : z → Wn(1, z) − Wn(−1, z) is almost surely
an element of the space C of real-valued continuous functions on R. Equipping C with the
topology of locally uniform convergence, we may consider weak limit points in the limit of
high n of this difference weight profile. Our principal result asserts that such limit points are
the distribution functions of random Cantor sets: see Figure 2 for a simulation.

THEOREM 1.1. Any weak limit as n → ∞ of the sequence of random processes R →
R : z → Wn(1, z) − Wn(−1, z) is a random function Z :R→R such that:

(1) Z is almost surely continuous and nondecreasing;
(2) Z is constant in a random neighbourhood of almost every z ∈ R;
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FIG. 2. A simulation of an LPP model by Junou Cui, Zoe Edelson and Bijan Fard. With n = 500, the difference
in energy of geodesics making the unscaled journeys (−n2/3,0) → (z, n) and (n2/3,0) → (z, n) is plotted against
x-coordinate z.

(3) the set E of points z ∈ R that violate the preceding condition—those z about which Z

is not locally constant—is thus a Lebesgue null set a.s.; this set almost surely has Hausdorff
dimension one-half.

We have expressed our principal result in the language of weak limit points in order to
permit its adaptation to other LPP models; and because it is natural to prove the result by
deriving counterpart assertions (which may be useful elsewhere) for the Brownian LPP pre-
limit. Significantly, however, the Airy sheet has been constructed; moreover, it is Brownian
LPP which is the prelimiting model in that construction. We may thus express a corollary in
terms of the Airy sheet.

That is, let W = W∞ : R2 → R denote the parabolically shifted Airy sheet constructed
in [14]. Namely, endowing the space of continuous real-valued functions on R

2 with the
topology of locally uniform convergence, the random function (x, y) → Wn(x, y) converges
weakly to W :R2 →R as n → ∞ by [14], Theorem 1.3.

COROLLARY 1.2. Theorem 1.1 remains valid when the random function Z : R → R is
set equal to Z(z) = W(1, z) − W(−1, z).

PROOF. Since the weak limit point Z in Theorem 1.1 exists, is unique, and is given in
law by R→R : z → W(1, z) − W(−1, z), the result follows from the theorem. �

Theorem 1.1 concerns the fractal geometry of random Cantor sets that are embedded
in a canonical universal object that arises as a scaling limit of statistical mechanical mod-
els. It shares these features with the distribution function of the local time at zero of one-
dimensional Brownian motion—in fact, as [34], Theorem 4.24, shows, even the one-half
Hausdorff dimension of the random Cantor set is shared with this simple example. The qual-
itative features are also shared with the distribution function associated to a natural local
time constructed [27] on the set of exceptional times of dynamical critical percolation on the
hexagonal lattice, in which case, the Hausdorff dimension of the exceptional set is known by
[18] to equal 31/36.
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Although we have presented Theorem 1.1 as our main result, its proof will yield an inter-
esting consequence, establishing the sharpness of the exponent in a recent upper bound on
the probability of the presence of a pair of disjoint polymers that begin and end at nearby
locations. Since we will anyway review the concerned upper bound in the next section, we
defer the statement of this second theorem to Section 2.

We end this section by mentioning that an analogue at positive temperature of our study of
the difference in polymer weight profiles begun from Dirac delta initial conditions at distinct
points has been investigated in [31]. Generalizing work of Hairer [21], it is shown that the
difference at any positive time of two solutions of the KPZ equation, driven by a shared white
noise, and begun at two delta initial conditions, lies in the Hölder space C3/2−.

2. Brownian profiles, disjoint polymer rarity and an overview of the main proof. In
the first two subsections, we provide the two principal inputs for our main result; in a third,
we explain in outline how to use them to prove it; in a fourth, we state our second principal
result, Theorem 2.4; and, in the fifth, we record some basic facts about polymers.

2.1. Polymer weight change under horizontal perturbation of endpoints. Set Q :R→R

equal to the parabola Q(z) = 2−1/2z2. For any given x ∈ R, the polymer weight profile y →
Wn(x, y) has in the large scale a curved shape that in an average sense peaks at x, the profile
hewing to the curve −Q(y − x). When this parabolic term is added to the polymer weight,
the result is a random process in (x, y) which typically suffers changes of order ε1/2 when x

or y are varied on a small scale ε > 0. Our first main input gives rigorous expression to this
statement, uniformly in (n, x, y) ∈ N × R × R for which the difference |y − x| is permitted
to inhabit an expanding region about the origin, of scale n1/18.

THEOREM 2.1 ([24], Theorem 1.1). Let ε ∈ (0,2−4]. Let n ∈ N satisfy n ≥ 1032c−18,
and let x, y ∈ R verify |x − y| ≤ 2−23−1cn1/18. Let R ∈ [104,103n1/18]. Then

P

(
sup

u∈[x,x+ε]
v∈[y,y+ε]

∣∣Wn(u, v) + Q(v − u) − Wn(x, y) − Q(y − x)
∣∣ ≥ ε1/2R

)

is at most 10,032C exp{−c12−21R3/2}, where c1 = min{2−5/2c,1/8}.
The bound in Theorem 2.1, and in several later results, has been expressed explicitly up to

two positive constants c and C. We reserve these two symbols for this usage throughout. The
concerned pair of constants enter via bounds that we will later quote in Theorem 3.13 on the
upper and lower tail of the uppermost eigenvalue of an n × n matrix randomly selected from
the Gaussian unitary ensemble.

The imposition in Theorem 2.1 that R ≤ 103n1/18 is rather weak in the sense that much of
the result’s interest lies in high choices of n. Indeed, we now provide a formulation in which
this condition is absent.

COROLLARY 2.2. There exist positive constants C1 and c2 such that, for α ∈ (0,1/2)

and ε ∈ (0,2−4],

(3)
lim sup

n∈N
P

(
sup

v1,v2∈[y,y+ε]
∣∣Wn(0, v2) + Q(v2) − Wn(0, v1) − Q(v1)

∣∣ ≥ εα
)

≤ C1 exp
{−c2ε

3(2α−1)/4}
.

PROOF. Set c2 equal to the quantity 2−21c1 from Theorem 2.1. Then apply this result
with R set equal to ε(2α−1)/2, choosing C1 high enough that the hypothesis R ≥ 104 may be
supposed due to the desired result being vacuously satisfied in the opposing case. �
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2.2. The rarity of pairs of polymers with close endpoints. Let n ∈ N and let I, J ⊂ R be
intervals. Set MaxDisjtPolyn(I, J ) equal to the maximum cardinality of a pairwise disjoint
set of polymers each of whose starting and ending points have the respective forms (x,0) and
(y,1) where x is some element of I and y is some element of J .

The second principal input gauges the rarity of the event that this maximum cardinality
exceeds any given k ∈ N when I and J have a given short length ε. We will apply the input
with k = 2, since it is the rarity of pairs of polymers with nearby starting and ending points
that will concern us.

THEOREM 2.3 ([26], Theorem 1.1). There exists a positive constant G such that the
following holds. Let n ∈ N; and let k ∈ N, ε > 0 and x, y ∈ R satisfy the conditions that
k ≥ 2,

ε ≤ G−4k2
, n ≥ Gk2(

1 + |x − y|36)
ε−G

and |x − y| ≤ ε−1/2(log ε−1)−2/3G−k .
Setting I = [x − ε, x + ε] and J = [y − ε, y + ε], we have that

P
(
MaxDisjtPolyn(I, J ) ≥ k

) ≤ ε(k2−1)/2 · R,

where R is a positive correction term that is bounded above by Gk3
exp{Gk(log ε−1)5/6}.

An alternative regime, where ε is of unit order and k ∈ N is large, is addressed by [8],
Theorem 2: the counterpart for exponential LPP of P(MaxDisjtPolyn([−1,1], [−1,1]) ≥ k)

is bounded above by exp{−dk1/4} for some positive constant d .
Both inputs Theorem 2.1 and Theorem 2.3 have derivations depending on the Brownian

Gibbs resampling technique that we mentioned in Section 1.4. This use is perhaps more
fundamental in the case of Theorem 2.3, whose proof operates by showing that the presence
of k polymers with ε-close endpoint pairs typically entails a near touch of closeness of order
ε1/2 at a given point on the part of the uppermost k curves in the ordered ensembles of curves
to which we alluded in Section 1.4; Brownian Gibbs arguments provide an upper bound on
the latter event’s probability.

2.3. A conceptual outline of the main proof. Theorem 1.1 is proved by invoking the two
results just cited. Here, we explain roughly how, thus explicating how our result on fractal
geometry in scaled LPP is part of an ongoing probabilistic examination of universal KPZ
objects.

The theorem has three parts, and our heuristic discussion of the result’s proof treats each
of these in turn.

2.3.1. Heuristics 1: Continuity of the weight difference profile. The limiting profile Z is a
difference of parabolically shifted Airy2 processes (which are coupled together in a nontrivial
way). Since the Airy2 process is almost surely continuous, so is Z. That Z is nondecreasing
is a consequence of a short planarity argument of which we do not attempt an overview, but
which has appeared in the proof of [14], Proposition 3.8; and a variant of which originally
addressed problems in first passage percolation [2].

2.3.2. Heuristics 2: Local constancy of Q about almost every point. Logically, Theo-
rem 1.1(2) is merely a consequence of Theorem 1.1(3), but it may be helpful to offer a guide
to a proof in any case. Implicated in the assertion is the geometric behaviour of the associ-
ated pair of random fields of polymers {ρn(±1, z) : z ∈ R}. For given z ∈ R, ρn(−1, z) and
ρn(1, z), respectively, leave (−1,0) and (1,0). They arrive together at (z,1) having merged
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FIG. 3. Left. When z ∈ R is given, the bold curves ρn(−1, z) and ρn(1, z) coalesce at a random height which
has a probability of being close to one that is low, uniformly in high n. The trunks of the trees rooted at −1
and 1 being shared above an intermediate height, the trees’ canopies are also shared around the tip (z,1) of the
trunk; heuristically at least follows the local constancy of y → Wn(1, y) − Wn(−1, y) near z. Right. In this case,

z ∈ E′; the bold curves are ρleft
n (x, z) and ρ

right
n (x, z); and the fainter curves, namely ρn(±1, z), merge with the

respective bold curves as height rises. Since z ∈ E′, the curves ρn(±1, z) are special in that they meet only at

height one; some x ∈ [−1,1] exists for which the polymers ρleft
n (x, z) and ρ

right
n (x, z) have the doubly remarkable

characteristic that intersection occurs merely at heights zero and one despite both endpoints being shared.

at some random intermediate height hn ∈ (0,1). A key coalescence observation—which we
will not verify directly in the actual proof but which is a close cousin of Theorem 2.3—is that
this merging occurs, in a sense that is uniform in n, away from the final time one, that is, the
probability that hn ≥ 1−ε is small when ε > 0 is small, uniformly in n. Suppose now that late
coalescence is indeed absent, and consider the random difference Wn(x, z + η) − Wn(x, z)

in the cases that x = −1 and x = 1. As Figure 3(left) illustrates, when |η| small enough,
this difference may be expected to be shared between the two cases, forcing the weight dif-
ference profile to be locally constant near z. Indeed, the difference in polymer trajectories
between (−1,0) → (z + η,1) and (−1,0) → (z,1) is given by a diversion of trajectory only
after the coalescence time hn(z); and this same polymer trajectory difference holds between
(1,0) → (z + η,1) and (1,0) → (z,1).

2.3.3. Heuristics 3: The Hausdorff dimension of exceptional points. Proving the lower
bound on the Hausdorff dimension of a random fractal is often more demanding than deriv-
ing the upper bound. In this problem, however, two seemingly divorced considerations yield
matching lower and upper bounds. Local Gaussianity of weight profiles forces the dimension
to be at least one-half; while the rarity of disjoint pairs of polymers with nearby endpoints
yields the matching upper bound.

There are thus two tasks that require overview. For the lower bound, take ε > 0 small and
let Cε be the set of ε-length subintervals of [−1,1] of the form [εk, ε(k + 1)], k ∈ Z, on
which Z is not constant. Since Z is a difference of Airy2 processes—formally, Z(v) equals
Wn(−1, v) − Wn(1, v) with n = ∞—and the Gaussian local variation of these processes
is gauged by Theorem 2.1, Z may vary on a length-ε interval only by order ε1/2. Since
Z(1) − Z(−1) is a random quantity of unit order, we see that typically |Cε| ≥ O(1)ε−1/2,
whence, roughly speaking, is the Hausdorff dimension of E seen to be at least one-half.

Deriving the matching upper bound is a matter of showing that the exceptional set of points
E about whose members Z is not locally constant is suitably sparse. In view of the preceding
argument for the almost everywhere local constancy of Z, we see that E ⊆ E′, where E′
denotes the set of z ∈ R such that the paths ρn(−1, z) and ρn(1, z) coalesce only at the final
moment, at height one (when we take n = ∞ formally). The plan is to argue that the number
ε-length intervals in a mesh that contain such a point z is typically of order at most ε−1/2,
since then an upper bound on the Hausdorff dimension of E ⊆ E′ follows directly. Suppose
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that z ∈ E′ and consider dragging the lower spatial endpoint u of the polymer ρn(u, z) right-
wards from u = −1 until the first moment x at which the moving polymer intersects its initial
condition ρn(−1, z) only at the ending height one—see Figure 3(right) for a depiction. That
z ∈ E′ implies that x ≤ 1. The journey (x,0) → (z,1) is doubly special, since polymer dis-
jointness is achieved at both the start and the end of the journey. Indeed, there exists a pair of
polymers, which may be called ρ left

n (x, z) and ρ
right
n (x, z), each running from (x,0) to (z,1),

that are disjoint except at these endpoints. Consider intervals I and J between consecutive el-
ements of the mesh εZ that respectively contain x and y. The event MaxDisjtPolyn(I, J ) ≥ 2
occurs, because the just recorded polymer pair in essence realizes it; merely in essence due
to the meeting at start and end, a problem easily fixed. Theorem 2.3 shows that the dominant
order of this event’s probability is at most ε3/2. In light of this bound, the total number of
such interval-pairs I × J inside [−1,1] × [−1,1] is at most ε−1 · ε−1 · ε3/2 = ε−1/2. Since
each ε-interval in a mesh that intersects E′ furnishes a distinct such pair (I, J ), we see that
such intervals typically number at most order ε−1/2, as we sought to show.

2.4. Sharpness of the estimate on rarity of polymer pairs with nearby endpoints. Con-
jecture 1.3 in [26] asserts that Theorem 2.3 is sharp in the sense that no improvement can be
made in the exponent k2 − 1. The method of proof of Theorem 1.1 proves this conjecture in
the case that k = 2.

THEOREM 2.4. There exists d > 0 such that, for η > 0, we may find ε0 = ε0(d, η) for
which, whenever ε ∈ (0, ε0), there exists n0 = n0(d, ε, η) so that n ∈ N, n ≥ n0, implies that

P
(
MaxDisjtPolyn

([0,2ε], [0,2ε]) ≥ 2
) ≥ dε3/2+η.

This result implies directly that

lim sup
ε↘0

lim sup
n

logP(MaxDisjtPolyn([0,2ε], [0,2ε]) ≥ k)

log ε
≤ k2 − 1

2

when k = 2; after the double replacement of [0,2ε] by [−ε, ε]—replacements permitted by
the stationary increments of the underlying noise field B—we indeed obtain [26], Conjecture
1.3, with k = 2.

2.5. Polymer basics. A splitting operation on polymers will be needed.

DEFINITION 2.5. Let n ∈ N and let x, y ∈ R verify y − x ≥ 2−1n1/3. Let ρ denote
a polymer from (x,0) to (y,1), and let (z, s) ∈ R × [0,1] be an element of ρ for which
s ∈ n−1

Z; in this way, z lies in one of ρ’s horizontal planar line segments. The removal
of (z, s) from ρ generates two connected components. Taking the closure of either of these
amounts to adding the point (z, s) back to the component in question. The resulting sets are
n-zigzags from (x,0) to (z, s) and from (z, s) to (y,1), and it is a simple matter to check
that each of these zigzags is in fact a polymer. Denoting these two polymers by ρ− and ρ+,
we use the symbol ◦ evoking concatenation to express this splitting of ρ at (z, s), writing
ρ = ρ− ◦ ρ+.

We have mentioned that [25], Lemma 4.6(1), implies that the polymer making the journey
(x,0) to (y,1) is almost surely unique for any given x, y ∈ R for which it exists; namely,
for those (x, y) satisfying y − x ≥ −2−1n1/3. Although it may at times aid intuition to con-
sider the almost surely unique such polymer ρn(x, y), as we did in the preceding heuristical
presentation, it is not logically necessary for the presentation of our proofs, which we have
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formulated without recourse to almost sure polymer uniqueness. As a matter of convenience,
we will sometimes invoke the almost sure existence of polymers with given endpoints; this
result is an exercise that uses compactness and invokes the continuity of the underlying Brow-
nian ensemble B : Z×R→R.

A few very straightforward properties of zigzags and polymers will be invoked implicitly:
examples include that any pair of zigzags that intersect do so at a point, necessarily of the
form (u, s) ∈ R × n−1

Z, that lies in a horizontal line segment of both zigzags; and that the
subpath of a polymer between two of its members having this form is itself a polymer.

3. The proofs of the main theorems. By far the hardest element of Theorem 1.1 is its
third assertion, concerning Hausdorff dimension. After introducing a little notation and re-
calling the definition of this dimension, we reformulate Theorem 1.1(3) as the two-part The-
orem 3.4 in which the needed upper and lower bounds are expressed. These bounds are then
proved in ensuing two subsections. A fourth subsection provides the proof of Theorem 2.4.

We set Zn :R →R to be the weight difference profile

Zn(z) = Wn(1, z) − Wn(−1, z),

where the domain of definition of Zn may be chosen to be R by use of the convention spec-
ified before Theorem 1.1. Recall from the theorem and for use shortly that Z denotes any
weak limit point of the random functions Zn.

Let f be a real-valued function defined on R or a compact interval thereof. We will write
LV(f ) for the subset of the domain of f that comprises points z of local variation of f about
which no interval exists on which f is constant.

DEFINITION 3.1. Let d ∈ [0,∞). The d-dimensional Hausdorff measure Hd(X) of a
metric space X equals limδ↘0 Hd

δ (X) where, for δ > 0, we set

Hd
δ (X) = inf

{∑
i

diam(Ui)
d : {Ui} is a countable cover of X with 0 < diamUi < δ

}
.

The Hausdorff content Hd∞(X) of X is specified by choosing δ = ∞ here, a choice that
renders vacuous the diameter condition on the covers.

The Hausdorff dimension dH (X) of X equals the infimum of those positive d for which
Hd(X) equals zero; and it is straightforwardly seen that the Hausdorff measure Hd(X) may
here be replaced by the Hausdorff content Hd∞(X) to obtain an equivalent definition.

We will write |Ui | in place of diamUi , doing so without generating the potential for con-
fusion because every considered Ui will be an interval.

PROOF OF THEOREM 1.1. (1) By [24], Lemma 2.2(1), for each n ∈ N and x ∈ R, the
random function z → Wn(x, z) is almost surely continuous on its domain of definition z ≥
x − 2−1n1/3. The process Z : R → R is thus a weak limit point of continuous stochastic
processes mapping the real line to itself. The Skorokhod representation of weak convergence
thus implies that the prelimiting processes may be coupled with the limit Z in such a way
that, almost surely, they converge locally uniformly to Z. Thus Z is seen to be continuous
almost surely.

To show that Z : R → R is nondecreasing, we will derive a counterpart monotonicity
assertion in the prelimit. Our later purpose is served by making a slightly more general claim
for which an extension of notation is useful.

DEFINITION 3.2. Let n ∈ N and x1, x2, z ∈ R satisfy x1 ≤ x2, as well as that 2−1n1/3

exceeds |x1 − z| and |x2 − z|. Set Zn([x1, x2], z) = Wn(x2, z) − Wn(x1, z).
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The inequality on parameters in this definition is needed merely to ensure that the con-
cerned weights Wn(x, z), x ∈ {x1, x2}, are well specified by the defining formula (2). The
new notation extends the old, in the sense that Zn(z) equals Zn([−1,1], z).

LEMMA 3.3. Let n ∈ N and x1, x2, y, z ∈ R satisfy x1 < x2, y < z, as well as that
2−1n1/3 is at least max{|y − x2|, |z − x1|}. Then Zn([x1, x2], z) ≥ Zn([x1, x2], y).

PROOF. Similar to what we have just noted, the parameter hypothesis ensures that the
weights Wn(x, v), x ∈ {x1, x2}, v ∈ {y, z}, are well specified by (2). With the condition im-
posed, there almost surely exist polymers, which we denote by ρ1 and ρ2, that make the
respective journeys (x1,0) → (z,1) and (x2,0) → (y,1). By planarity, we may find an el-
ement (w, s) ∈ R × [0,1] of ρ1 ∩ ρ2 with s ∈ n−1

Z. Let ρ1 = ρ1− ◦ ρ1+ and ρ2 = ρ2− ◦ ρ2+
denote the polymer decompositions resulting from splitting the two polymers at (w, s). We
write Wi± with i ∈ {1,2} for the weights of the four polymers so denoted.

Note that Wn(x1, z) = W 1− +W 1+ and Wn(x2, y) = W 2− +W 2+. The quantity Wn(x2, z) is at
least the weight of ρ2− ◦ ρ1+; which is to say, Wn(x2, z) ≥ W 2− + W 1+. Likewise, Wn(x1, y) ≥
W 1− + W 2+. We have two equalities and two inequalities—we use them all to prove the bound
that we seek. Indeed, we have that

Zn

([x1, x2], z) = Wn(x2, z) − Wn(x1, z) ≥ (
W 2− + W 1+

) − (
W 1− + W 1+

) = W 2− − W 1−.

We also see that

Zn

([x1, x2], y) = Wn(x2, y) − Wn(x1, y) ≤ (
W 2− + W 2+

) − (
W 1− + W 2+

) = W 2− − W 1−.

That is, Zn([x1, x2], z) ≥ Zn([x1, x2], y), as we sought to show. �

Lemma 3.3 implies that Zn(z) ≥ Zn(y) for y, z ∈ R with z ≥ y and for n ∈ N high enough.
Theorem 1.1(1) follows via the Skorokhod representation that was noted a few moments ago.

(2) This is implied by the third part of the theorem.
(3) This follows from the next result. �

THEOREM 3.4. (1) The Hausdorff dimension of LV(Z) is at most one-half almost surely.
(2) Let δ > 0. There exists M = M(δ) > 0 such that, with probability at least 1 − δ,

LV(Z) ∩ [−M,M] has Hausdorff dimension at least one-half.

3.1. The upper bound on Hausdorff dimension. Here, we prove Theorem 3.4(1). The
principal component is the next result, which offers control on the d-dimensional Hausdorff
measure of LV(Zn) for n finite but large. The result is stated for the prelimiting random func-
tions Zn in order to quantify explicitly the outcome of our method, but, for our application,
we want to study the weak limit point Z. With this aim in mind, we present Theorem 3.5, and
further results en route to Theorem 3.4(1), so that assertions are made about both the prelimit
and the limit. The notational device that permits this is to set Z∞ equal to the weak limit
point Z; thus the choice n = ∞ corresponds to the limiting case.

THEOREM 3.5. Let d > 1/2 and M > 0. Consider any positive sequences {δk : k ∈ N}
and {ηk : k ∈ N} that converge to zero. For each k ∈ N, there exists nk = nk(d,M, δk, ηk)

such that, for n ∈N∪ {∞} with n ≥ nk ,

P
(
Hd∞

(
LV(Zn) ∩ [−M,M]) ≤ ηk

) ≥ 1 − δk.

LEMMA 3.6. Let n ∈ N and let x1, x2, z1, z2 ∈ R satisfy x1 < x2 and z1 < z2. Suppose
that there exist polymers making the journeys (x1,0) → (z1,1) and (x2,0) → (z2,1) whose
intersection is nonempty. Then Zn([x1, x2], ·) is constant on [z1, z2].
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PROOF. Let ρleft and ρright be polymers of respective journeys (x1,0) → (z1,1) and
(x2,0) → (z2,1) whose existence is hypothesised. Let (u, s) ∈ R × [0,1] with s ∈ n−1

Z

denote an element of ρleft ∩ ρright.
For ρ equal to ρleft or ρright, we will consider the decomposition ρ = ρ− ◦ ρ+ from

Definition 2.5, where ρ is split at (u, s). We will write ρleft = ρleft,− ◦ ρleft,+ and ρright =
ρright,− ◦ ρright,+. The weight of ρleft,− will be labelled Wleft,−; analogously the other three
zigzags.

By weight additivity, Wn(x1, z1) = Wleft,− +Wleft,+ and Wn(x2, z2) = Wright,− +Wright,+.
The zigzag ρleft,−◦ρright,+ makes a journey from (x1,0) to (z1,1); its weight is at most that of
the polymer on this route, whence Wleft,− + Wright,+ ≤ Wn(x1, z2). By likewise considering
ρright,− ◦ ρleft,+, we see that Wright,− + Wleft,+ ≤ Wn(x2, z1).

(The argument that we are giving bears comparison to the derivation of Lemma 3.3. In
both, we obtain a pair of equalities and a pair of inequalities. The present situation is however
opposite in a sense, because the equalities now concern the diagonal case where left is paired
with left, and right with right.)

By definition of Zn([x1, x2], ·),
Zn

([x1, x2], z2
) − Zn

([x1, x2], z2
)

= (
Wn(x2, z2) − Wn(x1, z2)

) − (
Wn(x2, z1) − Wn(x1, z1)

)
= (

Wn(x1, z1) + Wn(x2, z2)
) − (

Wn(x1, z2) + Wn(x2, z1)
)
.

The two equalities and the two inequalities obtained before the parenthetical comment serve
to show that the displayed expression is nonnegative. Lemma 3.3 then implies Lemma 3.6.

�

PROPOSITION 3.7. Let n ∈ N, z ∈ R and ε > 0. When the event that LV(Zn) ∩ [z, z +
ε] �= ∅ occurs, there almost surely exists u ∈ {−1} ∪ {1 − ε} ∪ ((−1,1 − ε) ∩ εZ) such that
the quantity MaxDisjtPolyn([u,u + ε], [z, z + ε]) is at least two.

REMARK. With this result, we locate the doubly special polymer pair that we called
ρleft

n (x, z) and ρ
right
n (x, z) in the heuristic presentation of Section 2.3.3. We follow a short

proof offered by a referee rather than the argument of dragging the lower spatial end-
point rightward until the polymer detaches from its initial condition. In a similar vein, we
have benefited from the referee’s proposal of the preceding short proof of Lemma 3.6;
this replaces an argument which perhaps offers some geometric insight into polymer coa-
lescence. The interested reader may consult the third version of the arXiv preprint https:
//arxiv.org/abs/1904.01717 of the present paper for the more geometric proofs of the lemma
and the proposition.

PROOF OF PROPOSITION 3.7. In view of Lemma 3.3, the occurrence of LV(Zn)∩[z, z+
ε] �= ∅ entails that Zn(z+ ε)−Zn(z) is positive. Partition the interval [−1,1] into closed in-
tervals of length ε delimited by consecutive elements in εZ∩ [−1,1], and two further closed
intervals of length at most ε respectively delimited by minus one and one. The positive quan-
tity Zn(z + ε) − Zn(z) equals

∑
I (Zn(I, z + ε) − Zn(I, z)), where the summand I ranges

over intervals in the partition. One of the summands, indexed say by I = [u, v], is thus posi-
tive. By contrapositively applying Lemma 3.6 with [x1, x2] = I and [z1, z2] = [z, z + ε], and
noting that v −u ≤ ε, we obtain Proposition 3.7 provided that I contains neither −1 nor 1. If
I contains −1, we set [x1, x2] = [−1,−1 + ε] in applying this proposition; and if I contains
1, we instead set [x1, x2] = [1 − ε,1]. �

https://arxiv.org/abs/1904.01717
https://arxiv.org/abs/1904.01717
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PROPOSITION 3.8. There exist positive constants C0 and C1 such that, for M > 0, we
may find ε0 = ε0(M) > 0 for which, when ε ∈ (0, ε0) and n ∈ N∪ {∞} satisfies n ≥ C1(M +
2)36ε−C1 , we have that

P
(
LV(Zn) ∩ [z, z + ε] �= ∅

) ≤ ε1/2 · exp
{
C0

(
log ε−1)5/6}

whenever z ∈ [−M,M − ε].

PROOF. We defer consideration of the case that n = ∞ and suppose that n ∈ N. By
Proposition 3.7, the event whose probability we seek to bound above is seen to entail the
existence of a pair of disjoint polymers that make the journey [u,u+ ε] → [z, z+ ε] between
times zero and one. Theorem 2.3 with k = 2, x = u + ε/2 and y = z (and with ε taken
to one-half of its present value) provides an upper bound on the probability of this polymer
pair’s existence for given u, since the condition that n ≥ C1(M +2)36ε−C1 for a suitably high
choice of the constant C1 permits the use of this theorem. A union bound over the at most
ε−1 + 1 choices of u provided by the use of Proposition 3.7 then yields Proposition 3.8 for
finite choices of n, where suitable choices of ε0 and C0 absorb the factor of ε−1 +1 generated
by use of the union bound.

To treat the case that n = ∞, note that, by the Skorokhod representation, the processes
Zn indexed by finite n may be coupled to the limit Z∞ so as to converge along a suitable
subsequence uniformly on any compact set. Momentarily relabelling so that Zn denotes the
convergent subsequence, we see that, for any closed interval I ⊆ [−M,M],

lim sup
n→∞

P(Zn is constant on I ) ≤ P(Z constant on I ).

Thus does Proposition 3.8 in the remaining case that n = ∞ follow from the case of finite n.
�

For given M > 0, let Nn(M) denote the number of intervals [u,u + ε] with u ∈ εZ that
intersect [−M,M] and on which Zn fails to be constant. Proposition 3.8 permits us to bound
the upper tail of Nn(M).

COROLLARY 3.9. There exists n0 = n0(ε,M) such that, for n ∈N∪ {∞} with n ≥ n0,

P
(
Nn(M) ≥ ε−1/2 · 4δ−1M exp

{
C0

(
log ε−1)5/6}) ≤ δ.

PROOF. Proposition 3.8 implies that ENn(M) ≤ 4Mε−1/2 exp{C0(log ε−1)5/6}, so that
Markov’s inequality implies the desired result. �

PROOF OF THEOREM 3.5. Recall that d > 1/2 and M > 0; and that {δk : k ∈ N} and
{ηk : k ∈ N} are positive sequences that are arbitrary subject to their converging to zero. Let
k ∈N. We must, on an event of probability at least 1−δk , exhibit for all n ∈N∪{∞} verifying
n ≥ nk a cover of LV(Zn) ∩ [−M,M] comprised of intervals Ui that satisfy

∑
i |Ui |d ≤ ηk .

Here, nk may depend on d , M , δk and ηk .
The cover is chosen to be equal to the set of those intervals of the form [u,u + ε] with

u ∈ εZ whose intersection with LV(Zn) ∩ [−M,M] is nonempty. Corollary 3.9 implies that
it is with probability at least 1 − δk that∑

i

|Ui |d ≤ 4δ−1
k MC0ε

d−1/2 exp
{
C0

(
log ε−1)5/6}

,

provided that n exceeds a value that is determined by M and ε. Since d > 1/2, this right-hand
side converges to zero in the limit of ε ↘ 0 provided that every other parameter is held fixed.
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Recalling the given sequences δ and η, we may select ε0 = ε0(M,d, δk, ηk) so that, when
ε ∈ (0, ε0), the preceding right-hand side is at most ηk whenever the parameter n to chosen
to be high enough. Thus do we conclude the proof of Theorem 3.5. �

PROOF OF THEOREM 3.4(1). It follows directly from Theorem 3.5 with n = ∞ that,
given any d > 1/2; any summable sequence {δk : k ∈ N}; any sequence {ηk : k ∈ N} that
converges to zero; and further any sequence {Mk : k ∈ N} that converges to ∞; there exists,
with probability at least 1 − δk , a countable cover of LV(Z∞) ∩ [−Mk,Mk] that witnesses
the Hausdorff content Hd∞(LV(Z∞) ∩ [−Mk,Mk]) being less than ηk . A use of the Borel–
Cantelli lemma then shows that almost surely there exists a random K0 ∈ N such that, for k ≥
K0, Hd∞(LV(Z∞)∩[−Mk,Mk]) ≤ ηk . Since ηk converges to zero, we see that Hd∞(LV(Z∞))

is zero almost surely for every d > 1/2; and thus do we prove Theorem 3.4(1). �

3.2. The matching lower bound. Here, we prove Theorem 3.4(2). We will do so by in-
voking the following mass distribution principle, a tool that offers a lower bound on the
Hausdorff dimension of a set which supports a nontrivial measure that attaches low values to
small balls. In this assertion, a mass distribution is a measure μ defined on the Borel sets of
a metric space E for which μ(E) ∈ (0,∞).

THEOREM 3.10 ([34], Theorem 4.19). Suppose given a metric space E and a value
α > 0. For any mass distribution μ on E, and any positive constants K and η > 0, the
condition that

(4) μ(V ) ≤ K|V |α
for all closed sets V ⊆ E of diameter |V | at most η ensures that the Hausdorff measure
Hα(E) is at least K−1μ(E) > 0; and thus that the Hausdorff dimension dH (E) is at least α.

The set LV(Z) under study in Theorem 3.4(2) supports a natural random measure μ in
view of Theorem 1.1(1): we may specify μ(a, b] = Z(b) − Z(a) for a, b ∈ R with a ≤ b, so
that Z is the distribution function of μ.

For M > 0, we aim to apply Theorem 3.10 for any given α ∈ (0,1/2), with E = [−M,M]
and μ given by restriction to E. What is needed are two inputs: an assertion of nondegeneracy
that the so defined μ is typically positive when M > 0 is high; and an assertion of distribution
of measure—absence of local concentration for μ—that will validate the hypothesis (4).

We present these two inputs; use them to prove Theorem 3.4(2) via Theorem 3.10; and
then prove the two input assertions in turn.

PROPOSITION 3.11 (Nondegeneracy). Let δ ∈ (0,1). When the bounds M ≥
c−2/3(log 4Cδ−1)2/3 and n ≥ (M + 1)9c−9 ∨ c−2(log 4Cδ−1)2 are satisfied,

P
(
Zn(M) − Zn(−M) ≥ 4

(
21/2 − 1

)
M

) ≥ 1 − δ.

This assertion also holds when Zn is replaced by Z.

For ε,K > 0 and α < 1/2, a real-valued function f whose domain contains [−M,M]
is said to be (ε,K,α)-regular if, for all intervals I ⊂ [−M,M] of length ε, supy∈I f (y) −
infy∈I f (y) ≤ Kεα .

PROPOSITION 3.12 (Distribution of measure). Let α ∈ (0,1/2) and M > 0. Almost
surely, there exists a random value ε∗ > 0 such that Z is (ε,8, α)-regular on [−M,M] for
all ε ∈ (0, ε∗].
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PROOF OF THEOREM 3.4(2). We indeed take E = [−M,M] and μ specified by
μ(a, b] = Z(b)−Z(a) in Theorem 3.10. Choosing M ≥ 4−1(21/2 −1)−1 in Proposition 3.11,
and applying this result in the case of Z, we see that μ(E) ≥ 1 with probability at least 1 − δ.
(In fact, this lower bound of one is not needed; merely that μ(E) > 0 would suffice.) From
Proposition 3.12, we see that the hypothesis (4) is verified for any given α ∈ (0,1/2) with
K = 8 and for a random but positive choice of the constant η. Thus we find, as desired, that
the Hausdorff dimension of LV(Z) ∩ [−M,M] is at least one-half with a probability that is
at least 1 − δ. �

In order to prove Proposition 3.11, we recall upper and lower tail bounds for the parabol-
ically adjusted weight Wn(0, z) + 2−1/2z2. The next result is quoted from [23], but it is a
consequence of bounds on the upper and lower tails of the highest eigenvalue of a matrix
randomly drawn from the Gaussian unitary ensemble, bounds respectively due to Aubrun [3]
and Ledoux [30].

THEOREM 3.13 ([23], Proposition 2.5). If x, y ∈ R satisfy y − x ≥ −2−1n1/3 and |y −
x| ≤ cn1/9, then

P
(∣∣Wn(x, y) + 2−1/2(y − x)2∣∣ ≥ s

) ≤ C exp
{−cs3/2}

for all s ∈ [1, n1/3].
PROOF OF PROPOSITION 3.11. The latter assertion of the proposition, concerning Z,

follows from the former by the Skorokhod representation of weak convergence. To prove
the former, consider x, y ∈ R that satisfy y − x ≥ −2−1n1/3, and set ω(x, y) = Wn(x, y) +
2−1/2(y − x)2 equal to the parabolically adjusted weight associated to the polymer ρn(x, y).
Note that

Zn(M) = ω(1,M) − ω(−1,M) + 23/2M and

Zn(−M) = ω(1,−M) − ω(−1,−M) − 23/2M.

Set m0 = c−2/3(log 4Cδ−1)2/3. Theorem 3.13 implies that, when m0 ≥ 1, M > 0 and n ≥
(M + 1)9c−9 ∨ m3

0,

P
(
max

{∣∣ω(1,M)
∣∣, ∣∣ω(−1,M)

∣∣, ∣∣ω(1,−M)
∣∣, ∣∣ω(−1,−M)

∣∣} ≥ m0
) ≤ δ,

Suppose now that M ≥ m0. The four ω quantities are all at most M in absolute value except
on an event of probability at most δ. In this circumstance, we have the bound Zn(M) −
Zn(−M) ≥ (25/2 − 4)M , so that the proof of Proposition 3.11 is completed. �

It remains only to validate our second tool, concerning distribution of measure.

PROOF OF PROPOSITION 3.12. Let Z∞;±1 denote a random function whose law is an
arbitrary weak limit point of z → Wn(±1, z) as n → ∞. First, note that it suffices to prove
that almost surely there exists ε∗ such that Z∞;−1 and Z∞;1 are (ε,4, α)-regular on [−M,M]
for all ε ∈ (0, ε∗]. We will prove this for Z∞;−1, the other argument being no different. With
εk = 2−k , it is moreover enough to argue that there exists a random value K0 ∈ N for which
Z∞;−1 is (εk,2, α)-regular whenever k ≥ K0, since this implies that this random function is
(εk,4, α)-regular for each ε ≤ εK0 .

Corollary 2.2 implies that, for any M , there exists k0 = k0(M) such that, for k ≥ k0,

lim sup
n∈N

P

(
sup

y∈[−M,M],
η1,η2∈[0,2−k]

∣∣Wn(0, y + η2) − Wn(0, y + η1)
∣∣ ≥ 2−kα

)
≤ exp

{−23k(1−2α)/4}
.



FRACTAL GEOMETRY OF THE AIRY SHEET 501

Since this right-hand side is summable in k, the Borel–Cantelli lemma implies that almost
surely there exists a random positive integer K0 such that on [−M,M], the weak limit point
Z∞;−1 is (εk,2, α)-regular for all k ≥ K0. This completes the proof of Proposition 3.12. �

3.3. A lower bound on the probability of polymer pairs with close endpoints. These last
paragraphs are devoted to giving a remaining proof, that of Theorem 2.4. The derivation has
three parts. First, we state and prove Proposition 3.14, which is an averaged version of the
sought result. Then follows Proposition 3.15, which indicates all terms being averaged are
about the same. From this, we readily conclude that Theorem 2.4 holds.

To state our averaged result, let K and ε be positive parameters; and write I(K, ε) for
the set of intervals of the form [u,u + ε] that intersect [−K,K] and for which u ∈ εZ. The
cardinality of I(1, ε) × I(K, ε) is of order Kε−2, so that Proposition 3.14 indeed concerns
the average value of the probability that MaxDisjtPolyn(I, J ) ≥ 2 as I and J vary over those
intervals in a compact region that abut consecutive elements of εZ.

PROPOSITION 3.14. There exists K0 > 0 such that, for η > 0 and K ≥ K0, we may find
ε0 = ε0(K,η) for which, whenever ε ∈ (0, ε0), there exists n0 = n0(K, ε, η) so that n ∈ N,
n ≥ n0, implies that

(5) ε2
∑

I∈I(1,ε),
J∈I(K,ε)

P
(
MaxDisjtPolyn(I, J ) ≥ 2

) ≥ 2−3ε3/2+η.

PROOF. The proposition asserts its result when K ≥ K0, ε ∈ (0, ε0) and n ∈ N satisfies
n ≥ n0. We begin the proof by noting that explicit choices of these three bounds on parameters
will be seen to be given by K0 = c−2/3(log 8C)2/3;

ε0 = 2−1 min
{
10−13K−2C−2(

c12−1923/2η−1)2/η
,
(
21/2(K + 1)

)−1/(1+η)
,
(
5 · 103)−1/η};

and n0 = max{236318c−18(K + 1)18,21810−6ε−18η, (K + 1)9c−9, c−2(log 8C)2}.
Note first that

Zn(K) − Zn(−K) = (
Wn(1,K) − Wn(1,−K)

) − (
Wn(−1,K) − Wn(−1,−K)

)
is at most∑

J∈I(K,ε)

sup
v1,v2∈J

(∣∣Wn(−1, v1) − Wn(−1, v2)
∣∣ + ∣∣Wn(1, v1) − Wn(1, v2)

∣∣) · 1J∩LV(Zn) �=∅,

where the indicator function 1 may be included because Zn(K) − Zn(−K) may be viewed
as a telescoping sum of differences indexed by intervals J ∈ I(K, ε) of which those disjoint
from LV(Zn) contribute zero.

Let J ∈ I(K, ε) be given. We now apply Theorem 2.1 with parameter choices x = −1;
y ∈ [−K,K] the left endpoint of J ; and R = 2ε−η. By supposing that ε ≤ (21/2(K +
1))−2/(1+2η), the parabolic term |Q(v − u) − Q(y − x)| in this theorem is at most 21/2(K +
1)ε ≤ ε1/2−η, so that the theorem implies that

P

(
sup

v1,v2∈J

∣∣Wn(−1, v1) − Wn(−1, v2)
∣∣ ≥ ε1/2−η

)
≤ 10,032C exp

{−c12−1923/2ε−3η/2}
provided that n ≥ max{1032c−18,236318c−18(K +1)18,21810−6ε−18η} and ε ≤ (5 ·103)−1/η.
We may equally apply Theorem 2.1 with x = 1 to find that the same estimate holds when the
quantity |Wn(1, v1) − Wn(1, v2)| is instead considered.

Setting G to be the event that supv1,v2∈J |Wn(x, v1) − Wn(x, v2)| < ε1/2−η holds for all
x ∈ {−1,1} and J ∈ I(K, ε), we see that, on G,

Zn(K) − Zn(−K) ≤ 2ε1/2−η · ∣∣{J ∈ I(K, ε)J ∩ LV(Zn) �=∅
}∣∣,



502 R. BASU, S. GANGULY AND A. HAMMOND

and that

(6) P
(
Gc) ≤ (

2Kε−1 + 1
) · 2 · 10,032C exp

{−c12−1923/2ε−3η/2}
.

By taking M = K ≥ 4−1(21/2 − 1)−1 in Proposition 3.11, our choice of K ≥
c−2/3(log 8C)2/3 ensures that, when n ∈ N satisfies n ≥ (M + 1)9c−9 ∨ c−2(log 8C)2, it
is with probability at least one-half that the event Zn(K)−Zn(−K) ≥ 1 occurs. We thus find
that

P
(
2ε1/2−η · ∣∣{J ∈ I(K, ε) : J ∩ LV(Zn) �= ∅

}∣∣ ≥ 1
) ≥ 1/4,

provided that the right-hand side of (6) is at most 1/4—as it is, due to a brief omitted esti-
mate that uses ε ≤ 1, K ≥ 1 and the hypothesised upper bound ε ≤ 10−13K−2C−2(c12−19 ×
23/2η−1)2/η. We see then that

E
∣∣{J ∈ I(K, ε) : J ∩ LV(Zn) �= ∅

}∣∣ ≥ 2−3ε−1/2+η.

Proposition 3.7 implies that, for J ∈ I(K, ε),

P
(
J ∩ LV(Zn) �= ∅

) ≤ ∑
I∈I(1,2ε)

P
(
MaxDisjtPolyn(I, J ) ≥ 2

)
.

(The multiple of two against ε appears because the interval [u,u + ε] in Proposition 3.7 has
endpoints outside the mesh εZ in two special cases.) Thus,∑

I∈I(1,2ε),
J∈I(K,ε)

P
(
MaxDisjtPolyn(I, J ) ≥ 2

) ≥ 2−3ε−1/2+η.

The conclusion of Proposition 3.14 would be achieved were I(1,2ε) to read I(1, ε). We
relabel ε to be the present 2ε in order to achieve this; note that it is this relabelling which is
responsible for the presence of a factor of one-half in the specification of the value of ε0 at
the beginning of the proof. �

The next result—that the terms being averaged are all roughly equal—is inspired by the
first line of page 34 of the second version of [14].

PROPOSITION 3.15. Let n ∈N and x, y ∈ R satisfy y − x ≥ −2−1n1/3. Then

P
(
MaxDisjtPolyn

([x, x + ε], [y, y + ε]) ≥ 2
) = P

(
MaxDisjtPolyn

([
0, ε′], [

0, ε′]) ≥ 2
)
,

where ε′ > 0 is a quantity that differs from ε by at most O(1)n−1/3(|y − x| + ε)|y − x|. The
constant factor implied by the use of the O(1) notation has no dependence on (n, x, y).

PROOF. Let n ∈ N and x ∈ R. Since the Brownian paths in the underlying environment
B : Z × R → R have stationary increments, we may replace this ensemble by the system
Z × R → R : (k, z) → B(k, z − 2n2/3x) without changing the ensemble’s law. By the form
of the scaling map Rn :R2 →R

2, we find that

P
(
MaxDisjtPolyn

([x, x + ε], [y, y + ε]) ≥ 2
)

= P
(
MaxDisjtPolyn

([0, ε], [y − x, y − x + ε]) ≥ 2
)
.

It is thus enough to prove Proposition 3.15 in the case that x = 0. To this end, we let n ∈ N

and y ∈ R be given. Consider again the ensemble B : Z × R → R. Set B ′(k, z) = B(k,αz)

with α = 1 + 2n−1/3y. Equally, we may write B ′ = α1/2B , and this identity shows us that
LPP under B and B ′ differ merely by a multiplication of energy by a factor of α1/2; so that
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the change B → B ′ makes no difference in law to the geometry of geodesics including their
disjointness.

A geodesic specified by the ensemble B ′ : Z×R → R that runs between (0,0) and (n,n)

corresponds to a geodesic specified by B : Z × R → R that runs between (0,0) and (n +
2n2/3y,n). When the scaling map Rn is applied, polymers (0,0) → (y,1) and (0,0) → (0,1)

result from the primed and original environments. On the other hand, an original geodesic
running between (2n2/3ε,0) and (n + 2n2/3(y + ε), n) corresponds to a primed geodesic
between (2n2/3ε,0) and (n,n + 2n2/3ε + γ ), where the small error γ is readily verified
to satisfy γ = O(1)n1/3(|y| + ε)|y|. Applying the scaling map again, original and primed
polymers are seen to run respectively (ε,0) → (ε,1) and (ε′,0) → (ε′,1), where ε′ > 0
satisfies |ε−ε′| = O(1)n−1/3(|y|+ε)|y|. Thus do we confirm Proposition 3.15 in the desired
special case that x = 0. �

PROOF OF THEOREM 2.4. By Proposition 3.15, P(MaxDisjtPolyn([0,2ε], [0,2ε]) ≥ 2)

is at least the value of every summand on the left-hand side of (5), provided that n exceeds
a level determined by K and ε. Since |I(K, ε)| ≤ 2Kε−1 + 2, we see that Proposition 3.14
with K = K0 implies Theorem 2.4 with d = 2−7K−1

0 . �
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