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The Mars rover Curiosity carries an instrument called ChemCam to de-
termine the composition of the soil and rocks via laser-induced breakdown
spectroscopy (LIBS). Los Alamos National Laboratory has developed a simu-
lation capability that can predict spectra from ChemCam, but there are major-
scale differences between the prediction and observation. This presents a
challenge when using Bayesian model calibration to determine the unknown
physical parameters that describe the LIBS observations. We present an anal-
ysis of LIBS data to support ChemCam based on including a structured dis-
crepancy model in a Bayesian model-calibration scheme. This is both a novel
application and an illustration of the importance of setting scientifically in-
formed and constrained discrepancy models within Bayesian model calibra-
tion.

1. Introduction. The Mars rover Curiosity was designed to study whether Mars “ever
[had] the right environmental conditions to support small life forms” (NASA (2019)). As part
of the mission, Curiosity carries an instrument called ChemCam, developed by Los Alamos
National Laboratory and L’Institut de Recherche en Astrophysique et Planétologie, to deter-
mine the composition of the soil and rocks. ChemCam uses laser-induced breakdown spec-
troscopy (LIBS) for this task. In LIBS a laser is fired at a target to produce a high-temperature
plasma. As the plasma cools, the target emits a spectrum of light over a range of wavelengths
that is recorded by a CCD camera. On ChemCam these are captured with three spectrometers
covering three different wavelength ranges: ultraviolet (UV), violet (VIO) and visible and
near-infrared (VNIR). Figure 1 shows examples of simulated and measured spectra. Each
spectrum shows the intensity of light as a function of wavelength. The spectral patterns can
be used to identify chemical species and their relative abundances in the target. The presence
or absence of certain species and their relative abundances are important clues in answering
questions about whether Mars could have ever sustained simple life.

Estimating the chemical composition of soils and rock via LIBS can be difficult. While
experts can often easily identify the presence of chemical constituents based on the presence
of certain peaks in a spectrum, identifying the relative abundances of the constituents is more
difficult due to interactions within the plasma between atoms of the constituents. These in-
teractions, called matrix effects (Judge et al. (2016)), can change peak heights in a nonlinear
manner. Matrix effects make the disaggregation problem difficult because the spectrum for
a target with several chemical species is not a simple linear combination of the spectra for
the individual species. Los Alamos National Laboratory has developed a physics simulation
code called ATOMIC (Magee et al. (2004)) that can predict spectra in the presence of ma-
trix effects, given inputs such as the chemical species, their relative abundances and other
terms that we discuss later. Our long-term goal is to use this simulation capability, along with
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FIG. 1. Simulated and measured chemical spectra of the compound NaCl over the three ChemCam spectrome-
ters: UV, VIO and VNIR. Note that we have plotted these spectra on the log scale to aid our analyses, while the
spectroscopy community always views spectra on the linear scale. ChemCam measures chemical spectral intensity
in photon counts (bottom line), while ATOMIC computes spectral intensity in power per volume per photon energy
per unit solid angle (top line). This results in clear scaling differences which require quantitative estimation for
proper statistical calibration.

Bayesian model calibration techniques (Kennedy and O’Hagan (2001)), to determine which
chemical species are present in a target and in what relative abundances based on measured
spectra, thus providing vital clues to answering questions about the history of Mars.

This work focuses on the use of Bayesian model calibration for estimating plasma temper-
ature and density for simpler compounds. This lets us address one particular challenge within
this larger problem—accounting for scale differences between simulation and observation.
LIBS instruments measure chemical spectra in photon counts as a function of wavelength.
In contrast, ATOMIC provides spectra in power per volume per photon energy per unit solid
angle. In other words, ATOMIC can predict the shape of the spectrum as a function of inputs.
Observed spectra will differ from an ideal simulation by some unknown scaling, as seen in
Figure 1. That scaling can depend on many factors, such as laser power, standoff distance
and angle and CCD camera properties. Some of these differences can be corrected based on
scientific knowledge and testing. We also note that there are other differences beyond the
scaling. The measured spectra are noisier, owing to the stochasticity in the measurement pro-
cess, and there are sharp downward spikes due to very low counts at some wavelengths. The
former issue will be handled with a measurement error model, and the latter issue is avoided
by concentrating on strong peaks of interest.

In the context of ChemCam, the scientists typically treat this scaling factor as approxi-
mately constant within each spectrometer, but it may vary as a function of wavelength. Cur-
rent efforts (Colgan et al. (2015)) to account for the scaling factor for LIBS spectra do not take
advantage of advanced statistical techniques. Thus, they fail to account for potential uncer-
tainty in the scaling difference, make no attempt to quantify the uncertainty in the estimates
of the plasma parameters and, ultimately, the chemical composition.

Our scaling difference is a simple instance of a common issue in model calibration: data
must be processed because the experiment and simulation do not produce the same output.
One example arises in materials science when split Hopkinson pressure bar experiments are
used to calibrate flow stress models (Sjue et al. (2020)) but only after the measured strains
are converted to stress-strain curves (Gray III (2000)). When done outside of the statistical
framework, this process can introduce bias or conceal uncertainty. Our work addresses this
by including the difference between theory and observation as a structured discrepancy. This
paper presents an analysis of LIBS data that includes estimation of scaling factors as a struc-
tured discrepancy within Bayesian model calibration. The structure allows us to strongly
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incorporate expert knowledge and avoid problems arising from overly flexible discrepancy
specifications (Brynjarsdóttir and O’Hagan (2014)). Additionally, this process provides un-
certainty estimates for the plasma parameters as well. In future work we also expect to provide
uncertainty for estimates of chemical composition which will provide scientists with a more
nuanced understanding of the possible conditions in Mars’s past.

Differences between theory and observation of this type are common. In their model cal-
ibration work, Kennedy and O’Hagan (2001) initially include two components, one multi-
plicative and one additive, to account for these differences. One of these is an “unknown
regression parameter” that they call ρ that scales the simulation output. This term is typically
dropped in later work in this area, apparently for identifiability reasons. One exception is
found in Joseph and Melkote (2009).

The other component for modeling differences is an additive discrepancy that they call δ.
This term has been the focus of much research. Brynjarsdóttir and O’Hagan (2014) is one
of the most important recent references and a key influence on our current work. One of
that paper’s important conclusions is that “(I)n order to obtain realistic learning about model
parameters or to extrapolate outside the range of the observations, it is important not just to
incorporate model discrepancy but to model carefully the available prior information about
it.” This principle guides the construction of our discrepancy modeling. Plumlee (2017) is
another important entry in this literature. This work constructs a prior for the bias term that
is orthogonal to the gradient of the computer model, alleviating issues with an overly broad
posterior on the calibration parameters. Gu and Wang (2018) present an interesting approach
to provide good predictions and model fit both with and without the model discrepancy,
by using a scaled Gaussian process discrepancy, which more explicitly models the L2 loss
between the simulator and the experimental data. Finally, we note the interesting work of
Marmin and Filippone (2018) in which the challenges presented by the traditional framework
are addressed using deep Gaussian processes and variational inference to produce a very
scalable approach to Bayesian model calibration.

Outside the world of Bayesian model calibration, many people have thought about statisti-
cal modeling that includes additional components beyond those that account for the physical
process under consideration and, of particular interest here, those that account for effects of
the measuring instrument or process. In the case of Raman spectroscopy, Ray and McCreery
(1997) present an approach for determining this instrument effect. The problem also arises
in astronomical observations of spectra, as in Van Dyk et al. (2001), Lee et al. (2011) and
Meng (2018). Statistical quality control methods have been applied to monitor the stability
of instrument effects in chromotagraphy (Stover and Brill (1998)). The impact of the detector
or sensor on the measured data has also been considered an important source of variability
that must be accommodated in statistical modeling under the names of “machine characteris-
tics and performance” in functional magnetic resonance imaging (Genovese, Noll and Eddy
(1997)) and “systematic variation” in electrophoresis imaging (Sellers et al. (2007)). We note
that these effects of the measuring instrument or process are often called instrument response,
but we avoid that term here because “instrument response” in the LIBS community refers to
a specific effect that is removed during preprocessing. The LIBS version of instrument re-
sponse could be included in the framework that we present here, but for now we rely on the
scientists’ preprocessing.

In this paper we present a novel application of Bayesian model calibration to the problem
of laser-induced breakdown spectroscopy. This includes an approach to incorporating scale
differences between theory and observation into inference based on computationally intensive
forward physics models. We use the Bayesian model calibration framework described by
Higdon et al. (2008). We will use a highly-structured discrepancy to capture the systematic
scale differences. Because of the variation in the simulation output and measured data, we will
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operate on the log scale which also allows us to handle the scale difference using the additive
discrepancy described above. We will consider two versions of such a discrepancy—one
constant, one linear with wavelength—and later discuss a general approach to this problem.
Our work will be developed in the context of laboratory measurements that mimic Martian
conditions using a ChemCam instrument like the one deployed on the Curiosity rover.

The rest of this paper is organized as follows. In Section 2 we give an overview of mea-
sured LIBS spectra from the ChemCam instrument and modeled spectra from the ATOMIC
computer model. In Section 3 we provide some background on Bayesian model calibration
and present our approach for including scaling factor estimation into model calibration. Next,
we demonstrate the approach using perfect model experiments in Section 4 and show results
on measured ChemCam data from a laboratory experiment. Finally, we conclude with some
discussion and avenues for future research.

2. Laser-induced breakdown spectroscopy. Here, we give some details on the col-
lection of measured spectra using ChemCam and predictions from the theoretical ATOMIC
model. In both the experimental and theoretical cases, the output is dependent on the chem-
ical composition of the material being measured or simulated. In the long term our goal is
to automate the identification of the chemical species comprising the target material. For the
present our goal is narrower—build a modeling approach that can correctly identify unknown
scaling differences between theory and measurement, while also correctly estimating a num-
ber of other physics parameters. As such, we will not be including a detailed discussion of
how the chemical constituents affect measurements nor will we be varying this important
input in the theoretical predictions.

All of our data, both measured and theoretical, will come from five relatively pure com-
pounds: KCl, NaCl, SiO2, Zn and CaCl2. For both theory and measurement, rather than work-
ing with the full spectra across all wavelengths, we will focus on the wavelengths around an
expert-identified set of elemental peaks that are relevant for those five compounds. These
peaks are used by experts to identify the presence of these compounds in LIBS spectra, and
we believe that the remaining wavelengths outside these peaks will be relatively uninfor-
mative for our task. The wavelength locations of these important spectral peaks are known
to have considerable precision, but observed peak locations can be slightly shifted due to
spectral adjustments and the resolution of the detector. For a selected peak at a specified
wavelength, we consider a surrounding width that should roughly cover the full width of the
peak at half its maximum but no more than one nanometer (nm) at each side. These peaks
and widths are indicated by the colors in Figure 2.

2.1. Measured spectra from the ChemCam instrument. ChemCam measurements begin
by firing a laser at a target, such as soil or rock. The laser ablates a tiny portion of the
target and produces a small plasma. This excites atoms and emits photons. The light from
these photons is optically collected by the CCD camera. A diffraction grating refracts the
light, separating the wavelengths and directing the light to the appropriate spectrometer: UV
(wavelengths 240–342 nm), VIO (382–470 nm) and VNIR (474–850 nm). The result is a
chemical spectrum which is a set of photon counts as a function of wavelength. Different
chemical compositions in the target produce different high-intensity spectral peaks. Another
source of peaks is the surrounding atmosphere, an unknown proportion of which couples into
the plasma, introducing additional peaks into the spectrum. For instance, the Martian atmo-
sphere is 95% CO2 at a pressure of seven Torr, and this usually results in a noticeable carbon
peak at 247 nm regardless of the composition of the target. More information regarding the
details of the collection of the ChemCam experiment may be found in Wiens et al. (2013)
and Maurice et al. (2012).
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FIG. 2. Each row shows the observed spectrum for one of our five compounds, computed by averaging the 75
laser shots for that compound. The dark regions indicate the expert-identified elemental peaks that were consid-
ered to be the most relevant for these five compounds. These selected peaks are overlaid over the full spectrum
in each panel. Note that each spectrum includes peaks from the CO2 atmosphere. The vertical lines indicate the
wavelength break points (at 342 nm and 470 nm) that divide the spectrum across the three instruments: UV, VIO
and VNIR spectrometers. We will use the selected peaks rather than the full set of wavelengths in each spectrum
to estimate the scaling factors and physics parameters in each of the three ChemCam spectrometers.

Our experimental data, shown in Figure 2, come from laboratory measurements collected
with a ChemCam instrument under Martian conditions as follows. For each target, laser shots
are repeated 30 times at each of three locations on the target. We discard the first five shots
at each location, as they are potentially contaminated by surface dust, and are left with 75
measured spectra for each target. These are postprocessed by the scientists to remove the so-
called dark spectra (what the spectrometer records with no light hitting it) and other effects.
We examined the shot-to-shot variation in the data and judged it to be small and lacking any
structure. Therefore, our observation for each target compound (KCl, NaCl, SiO2, Zn, and
CaCl2) is the average of the 75 postprocessed spectra for that compound.

2.2. ATOMIC computer model. The ATOMIC forward model was developed to simulate
the emission spectra of chemical compounds using first principles theoretical atomic physics,
the details of which can be found in Magee et al. (2004). Briefly, ATOMIC is a general-
purpose plasma modeling and kinetics code that has been designed to compute emission
(or absorption) spectra from plasmas either in local-thermodynamic equilibrium (LTE) or in
non-LTE. The primary inputs are the plasma temperature and density along with a model
describing the atomic structure and scattering data of the constituent material(s). ATOMIC
receives data (energy levels, transition probabilities, quantum numbers, etc.) from the Los
Alamos suite of atomic physics codes (Fontes et al. (2015)). In the simulations discussed in
this paper, the results were generated from the CATS code (Cowan (1981)) with modifica-
tions made for plasmas generated from LIBS (Colgan et al. (2014)). ATOMIC then uses these
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data to compute the average ionization of the plasma (for a given temperature and density)
and the resulting emissivity of the plasma. ATOMIC has recently been used to model the
emissivity from a number of LIBS plasmas (Colgan et al. (2014, 2015), Judge et al. (2016)).

For each of our five compounds, we run simulations over the space of three parameters:

1. Plasma temperature T , with units electron volts (eV) and range [0.5,1.5];
2. Mass density ρ, with units of g/cm3 and range [−7,−4] on the log10 scale;
3. Proportion of target p in the plasma with range [0.1,0.98]. Because the plasma produced

by the laser includes components of the atmosphere near the target of interest, this param-
eter distinguishes the fraction of the plasma that comes from the target, as opposed to the
atmosphere.

This gives a total of 15 parameters (three parameters for each of five compounds). These
ranges also indicate the bounds for our uniform prior distributions in the calibration described
below to estimate these parameters. The output is a spectrum for the specified compound with
intensity as a function of wavelength. The simulation provides intensity as power per volume
per photon energy per unit solid angle. ATOMIC predictions account for matrix effects but do
not account for any effects arising from the spectrometer itself. Computation time for a single
run of ATOMIC for a compound can range from minutes to hours on a high-performance
computing system, depending on the chemical complexity of the compound.

3. Calibration with scale differences. As seen in LIBS and other applications, the ob-
servations are a scaled version of the output from the physics simulations at some unknown
value of the input. In other words, we expect the scaling factor to be multiplicative. However,
we will operate on the log scale for all of our modeling. As a result, we will model our scale
difference using an additive discrepancy. A number of points argue for the use of the log
scale in this problem. First, the rawest data are photon counts, which we might expect to fol-
low a Poisson distribution. Although the data are processed, their Poisson origin suggests a
partially multiplicative structure. Further, Michel and Chave (2007) show that repeated LIBS
measurements are right-skewed with a few large measurements. Finally, we note that the sim-
ulation output itself varies by orders of magnitude over the design. Each of these issues can
often be tamed by modeling the data on the log scale. Some exploratory analysis confirms
this. As part of that exploratory work, we also attempted a crude version of the analysis on the
linear scale and found that the emulator accuracy is reduced and the resulting residuals are
right-skewed and heavy-tailed. For this reason we let yobs be the log of a measured spectrum.

3.1. Computer model calibration. Bayesian computer model calibration is, by now, a
well-studied problem. We will generally follow the approach described in Kennedy and
O’Hagan (2001) and extended in Higdon et al. (2008). We will review this briefly. In short,
the goal is to find the parameters and systematic biases of a computer simulation that make it
best match experimental data.

Assume that an output y, possibly a vector, is observed with measurement error from a true
physical system (e.g., a ChemCam measurement). Physical reality can be be approximated by
a simulator (e.g., ATOMIC) denoted η(·) with parameters θ . This approximation may have
systematic biases or discrepancy, denoted δ, which may be a function of the measurement
index (e.g., a function of wavelength) or other experimental conditions. Therefore, a general
model for the measurement yobs, using the computer simulation η(·), is

(1) yobs = η(θ) + δ + ε,

where ε captures the measurement error. In our case the observation and simulations consist
of the spectra at the selected wavelengths shown in Figure 2. The spectra are concatenated
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across compounds. Thus, the observation vector includes all five compounds, as does each run
of the simulation. Our parameters are plasma temperature T, mass density ρ and proportion
of target p for each of the five compounds, thus

θ = (TKCl, ρKCl,pKCl, TNaCl, ρNaCl,pNaCl, TSiO2, ρSiO2,pSiO2,

TZn, ρZn,pZn, TCaCl2, ρCaCl2,pCaCl2).

The goal in the Bayesian paradigm is to estimate the posterior distribution for θ and δ.
Since ATOMIC, like other simulators used in such problems, is computationally expensive,
we need to build an emulator, a statistical approximation to the physics simulation. For this
work we follow the approach of Higdon et al. (2008), as implemented in the software package
GPMSA (Gattiker et al. (2016)). The simulator is run over a design of inputs (described later
for our specific case). For each input vector ti , we observe the simulation result ηi = η(ti).
These will be used to build the emulator. The emulator is decomposed as

(2) η(t) = μ + σ

pη∑

h=1

khwh(t),

where μ is the mean vector of the training simulations and σ is a scalar computed as the
standard deviation across the output index over all the training runs. The kh are computed
based on a singular value decomposition of the standardized simulations. Let zi be the ith
training simulation standardized with μ and σ . Let Z = [z1, . . . , zm] be the matrix with the
standardized training simulations as columns. Compute the singular value decomposition:
Z = USV ′. Let K = US/

√
m. The kh are the columns of this matrix K which may be

truncated to include only those associated with large singular values. We typically choose pη

to account for at least 99% of the total variance in the training simulations. We project Z onto
K to get the training weights for each basis vector. The weights wh(t) for each basis vector
are fit using a Gaussian process (GP) over the input design. Hyperpriors for the GP, as well
as further details on emulation, are described in Higdon et al. (2008).

The discrepancy model δ is also based on a basis representation,

(3) δ =
pδ∑

h=1

dhαh.

In Higdon et al. (2008), the basis vectors dh are normal kernels evenly spaced over the output
space (wavelength in our case), and the basis weights αh have a zero mean Gaussian prior
with a marginal precision λαh. The number of vectors pδ , and effectively the spacing between
the Gaussian kernels, is chosen based on the desired flexibility of the discrepancy function
(fewer discrepancy basis vectors of evenly spaced Gaussian kernels implies longer correlation
lengths). If the discrepancy is modeled as a function of experimental conditions, the prior
becomes a Gaussian process over this space. The discrepancy can be viewed as a convolution
of the kernels dh and the weights αh. A weakly informative Gamma(1,0.001) prior is placed
on the λαh. Unless the data informs otherwise, λαh will remain at a large value consistent with
almost zero discrepancy. Lastly, the measurement error is represented as εi ∼ N(0, 1

λyi

yi),

where 
yi is an n × n covariance matrix that may be specified by the user.

3.2. Discrepancy for scale differences. While the framework of Higdon et al. (2008)
provides considerable flexibility, we prefer to constrain any possible discrepancy for both
statistical and scientific reasons. Statistically, a flexible discrepancy can cause identifiabil-
ity problems. A spectrum is composed of a number of peaks. If a discrepancy model over
wavelength can make adjustments at the scale of peak widths, then this will be confounded
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with physics model adjustments to peak heights. For this reason we need to carefully choose
a discrepancy basis that adjusts physics model output on scales that avoid confounding. We
also need to ensure that our discrepancy basis is not confounded with parameter effects in the
physics code; this is discussed more below.

Scientifically, we expect discrepancy to behave in particular ways, so we should encode
that knowledge in a constrained basis. First, as mentioned earlier, the scaling factor is mostly
assumed to be constant within each of the spectrometers. However, there are a few other
possibilities of scientific interest. In particular, there are well-known LIBS instrument effects
at the edges of each of the spectrometers where the sensitivity decreases. These are known
well enough to be corrected in postprocessing (Wiens et al. (2012)), but effects may linger. In
general, the scaling factor could change as a function of wavelength. For this paper we will
consider two simple models: a constant scaling factor for each spectrometer and a scaling
factor for each spectrometer that varies linearly with wavelength. The latter is the simplest
model that considers variation with wavelength. In Section 5 we discuss extensions of this
approach when the modeling is done on the linear scale.

For the constant scaling factor model, we use three basis functions for the discrepancy, one
for each spectrometer,

(4) δcon = dUVαUV + dVIOαVIO + dVNIRαVNIR.

Each of the basis vectors dUV, dVIO and dVNIR has length equal to the number of wavelengths
in our model. We set the ωth entry dh,ω = 1 for all wavelengths ω in spectrometer h and 0
otherwise. Hence, the basis weights αk may be interpreted directly as scaling factors.

For the linear scaling factor model, we use six basis vectors for the discrepancy represent-
ing the intercept and slope for each of the three spectrometers,

(5)

δlin = dUV,0αUV,0 + dUV,1αUV,1

+ dVIO,0αVIO,0 + dVIO,1αVIO,1

+ dVNIR,0αVNIR,0 + dVNIR,1αVNIR,1.

Again, all of the basis vectors have length equal to the number of wavelengths in our model.
The intercept terms dh,0 are identical to the dh from the constant model. For the slope terms
we set the ωth entry dh,1,ω = ω when the wavelength ω is in spectrometer h and 0 otherwise.
Now, the basis weights describe a linear model for the scaling factor.

Returning to the question of identifiability, we believe that it is especially important to
evaluate the parameter effects using the emulator. In our experience in other computer model
calibration problems, there are often parameters whose effect is largely in the form of a
constant shift or a change in the slope of an output. Therefore, we run the risk that our
discrepancy model may mimic the main effect of a physics model parameter. To explore this
possibility, we computed a simplified main effect for each parameter in which each physics
parameter is varied over its range while all other parameters are fixed at the center of the
design range. This is good practice under any circumstance but especially so here. We present
the results of this diagnostic study in Section 4.1.

Prior distributions for the ATOMIC model parameters are assumed to be uniform on the
parameter bounds given in Section 2.2. We use pη = 15 principal component basis vectors to
build the emulator. As in Higdon et al. (2008), prior distributions on the discrepancy coeffi-
cients are assumed to be Gaussian with zero mean and unknown precision. These precisions
are weakly informative Gamma(1,0.001) priors. We construct the measurement error matrix

yi by treating wavelengths independently—based on the assumption of independent Pois-
son error in the photon counts for each wavelength—and taking the variance over the 75 shots
at each wavelength. We estimate the error precision terms λyi with Gamma priors.
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FIG. 3. Bivariate scatterplot for an m = 600 point LHS design in gray, showing a subset of the full design.
Here we show the three ATOMIC model parameters T , ρ, and p for one compound, KCl. This is a subset of the
full 600-run by 15-parameter design covering the parameters for all five compounds. The black points show a
separate set of thirty input settings chosen for emulator testing and evaluation.

4. Results. Here, we present results and diagnostics from the calibration of ATOMIC
spectra to ChemCam spectra to learn about the scaling factors for each of the three spectrom-
eters. For this entire study we use two sets of ATOMIC runs, a subset of which is shown
in Figure 3, for emulator construction and evaluation. The gray points are a 600-run Latin
hypercube design for training. The black points are a 30-run Latin hybercube design for test-
ing and evaluation. This figure shows the three parameters for KCl, which are a subset of
the full 600-run, 15-parameter design covering the parameters for all five compounds. For all
estimation we use MATLAB software, called GPMSA (Gattiker et al. (2016)), for emulation
and model calibration. GPMSA employs Markov chain Monte Carlo (MCMC) methods to
estimate unknown parameters. For the calibration for each of the three spectrometers, we ran
the MCMC for 40,000 iterations after a burn-in of 3750 samples using an adaptive step.

Below we first present the results for the emulator diagnostics using cross-validation and
main effects. Next, we show the calibration results for a perfect model experiment for both
the constant and linear scaling factors, and, last, we give the results for our calibration of the
ATOMIC model to the ChemCam LIBS data.

4.1. Emulator diagnostics. We begin by evaluating the quality of the emulator using the
test set. To do so, we compute R2 = 1 − σ 2

res/σ
2
raw where σ 2

raw is the variance of the test set
around its empirical mean and σ 2

res is the variance of the test set residuals, that is, the test
set minus the emulator predictions. Computed pointwise at each of the wavelengths that we
modeled, the minimum R2 was 0.9904, suggesting that the emulator does an excellent job.
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FIG. 4. Of our 15 parameters (three input parameters × five compounds), target proportion p for CaCl2 ap-
pears to be the most likely to be confounded with our discrepancy, and we explore that in this figure. The bottom
panel shows the measured spectrum for CaCl2 with the eight selected peaks highlighted as in Figure 2. The eight
panels in the top two rows show the main effect plots for the target proportion of CaCl2 for these peaks, presented
in increasing order of wavelength and labeled with the element and center wavelength. For each panel, we fix
the parameters plasma temperature T and density ρ at the center of their ranges and vary the target proportion
parameter p over its domain, with light gray indicating the lower bound and dark gray the upper bound. We
subtracted the center prediction from all results. Even here, we expect there to be no problem with identifiability
because the carbon peak at 247.86 nm has additional structure, and the magnitudes of the other shifts are neither
constant across all peaks nor varying with any notable structure, linear or otherwise.

As discussed earlier, the main effects of the parameters are especially important in this
application because of potential identifiability issues with the discrepancy. In particular, we
will be concerned if we find parameter effects that cause nearly constant shifts or shifts that
are approximately constant and change linearly over length. Our explorations found that the
most worrisome parameters in our study are those associated with target proportion p, some-
thing we will discuss later in Figure 5. Across our five compounds the effect of p for CaCl2
showed the most potential difficulty, as illustrated in Figure 4. Even here, there seems to be
little cause for concern. Although many of the peaks, such as the three oxygen peaks, show
roughly constant shifts, other peaks, particularly the carbon peak in the top-left panel, can be
used to separate these effects from discrepancy. Even among peaks that show constant shifts,
the magnitudes of those shifts are neither constant nor varying with discernible structure
across wavelengths.

4.2. Perfect model experiment. To demonstrate that computer model calibration ap-
proaches can be successful in estimating the ATOMIC model parameters and the scaling
factors for chemical spectra output, we perform several perfect model experiments. From the
600 runs that were used to train the emulator, we hold out one run θ‡ and add white noise
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FIG. 5. Plots of the posterior mean vs. the true value of the ATOMIC model parameters for 12 perfect model
experiments. Each panel has 60 points: 12 experiments times five compounds. The top row represents the con-
stant scaling factor case, the bottom row the linear scaling factor. The columns from left to right represent the
parameters temperature T , density ρ, and target proportion p for all five compounds. The 95% credible regions,
shown with horizontal lines, largely cover the true value of the parameter (when the credible interval crosses the
diagonal identity line).

and the relevant scaling factor (constant or linear) to its modeled spectrum η(θ‡) to create
a synthetic measured spectrum y‡. We apply our calibration approach to y‡ to verify that
we can recover its original parameters θ‡ and true generating discrepancy. We repeated this
process for 12 different runs selected from interior design points that are closest to the center
of the design while not having a value in the top or bottom 5% of the range for any parameter.

The results, shown in Figures 5 and 6, are encouraging. Figure 5 shows that we are accu-
rately able to recover the true ATOMIC parameters, particularly once posterior uncertainty is
taken into account. The estimates for temperature T and density ρ are particularly close to
the true values, while we have wider uncertainties for our estimates of target proportion p.
Figure 6 shows that we also accurately recover the discrepancy parameters used to generate
the data for each of the perfect model experiments. We note that the slope parameters of the
VIO spectrometer exhibit wide uncertainty (noted 44.5% in the figure). This is likely related
to the paucity of data for this spectrometer; there are just 16 peaks in the VIO spectrometer,
as seen in Figure 2.

4.3. ChemCam LIBS data. These perfect model results and our earlier diagnostics
strongly suggest that we can accurately model measured ChemCam data, which we now
consider. Figure 7 summarizes the posterior distributions for the ATOMIC model parameters
for both the constant (black) and linear (dark gray) scaling factors. There are some visible
differences between the two models. For instance, the model with the constant scaling factor
favors a smaller value for the NaCl temperature parameter, while the linear scaling model is
bimodal and generally flatter. There is a slight tendency for this behavior in other parameters
too (e.g., the Zn parameters). This might indicate that the more flexible linear scaling model
is inducing fewer constraints on the physics model, but this effect is not pronounced or always
consistent (e.g., SiO2 temperature). A few parameters (e.g., the CaCl2 density and target pro-
portion) show evidence of bimodality, indicating that ATOMIC may match experimental data
with more than one parameter setting.
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FIG. 6. For each spectrometer and scaling factor parameter, we show the posterior mean and 95% credible
interval for all 12 perfect model experiments. These intervals are calculated by: (1) computing the mean and
0.025 and 0.975 quantiles from the MCMC sample, (2) recentering the 95% interval by subtracting the true
parameter value and (3) standardizing the width of the interval by the average of the 12 standard deviations from
each MCMC sample. For most experiments, the true scaling parameters are accurately recovered, as indicated by
the intervals covering the black dots. To quantify the size of our uncertainty, we report the average length of the
95% interval over the 12 experiments as a percentage of the true parameter value. The slope parameter for the
VIO spectrometer has the largest uncertainty; the average length of its 95% interval is 44.5% of the true value.
This uncertainty could be due to the relative paucity of data for this spectrometer, as shown in Figure 2.

The difference between the two scaling-factor models is more pronounced for the dis-
crepancy parameters shown Figure 8. For the UV and VNIR spectrometers the constant and
linear scaling factor models are similar. The posterior distributions for the intercept term in
the linear model (bottom-left panel) are close to the posterior distributions for the respec-
tive constant terms (top-left panel). The slope parameters for those two spectrometers (right
panel) both span the zero line. The VIO spectrometer, however, seems to strongly favor a
linear scaling factor. The intercept term (bottom-left panel) is noticeably higher than the con-
stant term (top-left panel). Further, the slope parameter appears to be significantly negative
with no mass near zero. This is a surprise, given the scientists’ expectation of a constant shift.

Figure 9 shows calibrated predictions from the emulator (i.e., we use the draws of the
parameters from the posterior distribution as inputs to the emulator and add draws from the
posterior of the scaling discrepancy) for both scaling models for a subset of peaks from KCl
(top row), SiO2 (second row) and CaCl2 (bottom two rows). The gray bands show the 95%
credible intervals for the posterior predictions of the data used in calibration. The black lines
show the experimental data. We are looking to see the colored bands mostly cover the black
lines. The left panels show the predictions using the constant scaling factor, and the right
panels show the predictions using the linear scaling factor.

Overall, the calibrated model does well in capturing the data. In general, the calibrated
predictions match the overall level of the response. The calibrated predictions sometimes
miss at the ends of the peaks (e.g., O-795.08). This might indicate that ATOMIC has trouble
replicating the shoulders of the peaks. This suggests that further discrepancy modeling may
be helpful to correct this behavior.

The predictions for most peaks are similar between the two models, but the calcium peaks
in the third row demonstrate the significance of the linear scaling factor. The predictions in
blue for the linear discrepancy are closer to both calcium peaks than the corresponding pre-
dictions for the constant discrepancy. This suggests that the linear discrepancy model for this
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FIG. 7. Posterior distributions for the ATOMIC model parameters for the constant (black) and linear (dark
gray) scaling factors. The parameters are temperature T , density ρ and target proportion p for each of the five
compounds: KCl, NaCl, SiO2, Zn and CaCl2.

FIG. 8. Posterior distributions for the constant scaling parameter (top row) and for the intercept term (bottom
left) and slope term (bottom right) in the linear scaling model. The UV and VNIR constant scaling parameters
are similar in value to the intercepts for the linear scaling model, and the slope parameters span the zero line. In
contrast, the VIO spectrometer shows a strong linear effect. The intercept term for VIO is higher than the constant
scaling parameter, and the posterior for the slope is significantly negative.
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FIG. 9. Plots of the posterior calibration model predictions and 95% credible intervals (in shaded gray) for the
constant scaling factor approach (left) and linear scaling factor approach (right). Black lines in each panel show
the measured spectral peaks. While we analyzed all the selected peaks for all five compounds, in this figure we
highlight just a few from KCl (top row), SiO2 (second row) and CaCl2 (bottom two rows). The panel text indicate
the element and center wavelength of the peak.

spectrometer does a better job of simultaneously capturing these peaks at low wavelengths
and the rest of the calcium peaks at higher wavelengths in this spectrometer (see Figure 2
for the locations of the remaining peaks). The location of the constant discrepancy seems to
be dominated by these other peaks, while the linear discrepancy can capture a trend over the
data. Both models have difficulty in capturing these peaks, but the linear scaling model does
a much better job. Calcium has 12 of the 16 selected peaks in the VIO spectrometer which is
the only instrument to show a significant linear response. Because calcium peaks dominate
this spectrometer, this effect may have more to do with this compound than the instrument. As
shown in Figure 10, the simulated spectra for CaCl2 have broad peaks that decay slowly over
the range of this spectrometer. The observed spectrum does not show this behavior, and the
linear scaling factor helps to correct the difference. There seems to be a real effect here worth
investigating further, whether it’s due to the spectrometer’s characteristics or to ATOMIC’s
ability to simulate this compound.
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FIG. 10. Comparison of experimental data (dotted black) and a simulation (solid gray) for CaCl2 on the VIO
spectrometer. Here, we shifted the simulation using the mean intercept, but not the linear term, for the VIO linear
scaling model. The ATOMIC simulation shows a slow decay from the prominent calcium peaks between 390 and
400 nm. This decay is not evident in the experimental data. This difference may be the major contributor to the
significant linear effect we found for this spectrometer. Since calcium dominates this spectrometer, the linear
scaling effect may be the result of ATOMIC’s modeling of CaCl2 and not intrinsic to the spectrometer itself.

5. Discussion. Because of the potential for confounding with the physics model
(Brynjarsdóttir and O’Hagan (2014)), building an effective discrepancy model is a difficult
process. Careful construction of the modeling class and prior distribution is vital to getting
valid solutions for calibration. This is especially true in the case when the scaling factor dis-
crepancy doesn’t necessarily represent missing physics. In our case, while we have a few
suggestions that ATOMIC might not be correctly modeling the underlying physics of LIBS
in a few cases, such as the concerns we described with CaCl2 and with the shoulders of the
oxygen peaks, what we are really missing is a forward model of the detector. Treating this as
a strongly constrained discrepancy lets us solve the calibration problem without the need for
this detector model.

As discussed, we have entertained two fairly simple scaling-factor models. One could
consider a more general function of wavelength, f (ω). For instance, this could be crafted
to account for edge effects within each spectrometer. Other physics needs can also be rep-
resented here. As before, the main effects of the physics parameters should be examined to
avoid confounding. The analysis can also be considered on the original scale as opposed to
the log scale that we use here. In this case the model becomes yobs = ef (ω) � η(θ)+ ε,where
� indicates pointwise multiplication. As discussed earlier, this is similar to the initial model
development described in Kennedy and O’Hagan (2001). Our case is somewhat easier since
our multivariate output makes the problem more identifiable. We could also consider a hier-
archical approach to either connect discrepancies across spectrometers or to allow scaling to
vary somewhat across compounds.

In the future, we will consider compounds made of several elements instead of the simple
two-element compounds considered here. This work will require the estimation of a new set
of parameters, the fraction of each element in the target. This aspect of estimation is a key
component of addressing the science mission of ChemCam. It remains to be seen how this
new parameter space will interact with potential scaling issues. The current work lays the
groundwork for this larger goal.
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