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Abstract. The existence of global-in-time bounded martingale solutions to a general class of cross-diffusion systems with multiplica-
tive Stratonovich noise is proved. The equations describe multicomponent systems from physics or biology with volume-filling effects
and possess a formal gradient-flow or entropy structure. This structure allows for the derivation of almost surely positive lower and
upper bounds for the stochastic processes. The existence result holds under some assumptions on the interplay between the entropy
density and the multiplicative noise terms. The proof is based on a stochastic Galerkin method, a Wong–Zakai type approximation
of the Wiener process, the boundedness-by-entropy method, and the tightness criterion of Brzeźniak and coworkers. Three-species
Maxwell–Stefan systems and n-species biofilm models are examples that satisfy the general assumptions.

Résumé. Nous prouvons l’existence des solutions globales et bornées pour une classe générale de systèmes de diffusion croisées avec
bruit de Stratonovich multiplicatif. Les équations décrivent des systèmes à plusieurs composantes issus de la physique ou de la biologie,
avec des effets de remplissage de volume (« volume-filling »), et possèdent une structure formelle de flot de gradient ou d’entropie.
Cette structure permet d’obtenir des limites presque-sures inférieures et supérieures positives pour les processus stochastiques. Le
résultat d’existence a lieu sous certaines hypothèses sur l’interaction entre la densité d’entropie et les termes de bruit multiplicatif.
La preuve est basée sur une méthode stochastique de Galerkin, une approximation de type Wong–Zakai du processus de Wiener, la
méthode « boundedness-by-entropy » et le critère de tension de Brzeźniak et de ses collaborateurs. Les systèmes de Maxwell–Stefan à
trois espèces et les modèles de biofilms à n espèces sont des exemples qui satisfont les hypothèses générales.

MSC2020 subject classifications: 60H15; 35R60; 35Q35; 35Q92
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1. Introduction

Cross-diffusion systems arise in many application areas like fluid dynamics of mixtures, electrochemistry, cell biology,
and biofilm modeling. Cross diffusion occurs if the gradient in the concentration of one species induces a flux of another
species. In many applications, volume-filling effects need to be taken into account because of the finite size of the species
or components, which means that the unknowns are volume fractions which sum up to one. Such cross-diffusion systems
with volume filling in deterministic setting were analyzed in, for instance, [7,11,19] in the context of gas mixtures or ion
transport through membranes. The boundedness-by-entropy method [33] provides a framework for the existence analysis
and the proof of positive lower and upper bounds for the concentrations. The aim of this paper is to extend this technique
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to the stochastic setting. We prove the global-in-time existence of martingale solutions to cross-diffusion systems with
volume filling and Stratonovich stochastic forcing.

1.1. Model equations

The dynamics of the concentration (or volume fraction) vector u = (u1, . . . , un) is given by

dui − div

(
n∑

j=1

Aij (u)∇uj

)
dt =

n∑
j=1

σij (u) ◦ dWj(t) in O, t > 0, (1)

where i = 1, . . . , n and O ⊂ R
d (1 ≤ d ≤ 3) is a bounded domain, supplemented with the no-flux boundary and initial

conditions,

n∑
j=1

Aij (u)∇uj · ν = 0 on ∂O, t > 0, ui(0) = u0
i in O, i = 1, . . . , n. (2)

Here, ν is the exterior unit normal vector to ∂O and u0
i is a possibly random initial datum. The concentrations ui(ω, x, t)

are defined on � ×O × [0, T ], where ω ∈ � represents the stochastic variable, x ∈ O the spatial variable, and t ∈ [0, T ]
the time. Together with the solvent concentration un+1, the concentrations fill up the domain, i.e.,

∑n+1
i=1 ui = 1. We call

this assumption volume filling. The matrix A(u) = (Aij (u)) is the diffusion matrix, σ(u) = (σij (u)) is the multiplicative
noise term, and W = (W1, . . . ,Wn) is an n-dimensional Wiener process. Details on the stochastic framework will be
given in Section 1.3. The stochastic forcing represents external perturbations or a lack of knowledge of certain physical
or biological parameters.

Equations (1) can be equivalently formulated in the Itô form [20, Section 6.5]:

dui − div

(
n∑

j=1

Aij (u)∇uj

)
dt =

n∑
j=1

σij (u)dWj(t) + 1

2

(
n∑

k=1

n∑
j=1

σkj (u)
∂σij

∂uk

(u)

)
dt,

where i = 1, . . . , n, and this formulation will be also used in our analysis. The formulation of (1) in the Stratonovich
form comes purely from a modeling viewpoint. In fact, our analysis uses the Wong–Zakai approximation, where we
approximate the noise by smooth functions, thus obtaining a system of PDEs, which in turn converge in the limit to
stochastic differential equations in the Stratonovich form. Alternatively, we could consider (1) in the Itô form and include
the correction term in the formulation. In fact, considering the Itô formulation would enable us to treat more general
infinite-dimensional noise but increasing the already involved technicalities. Therefore, this aspect will be discussed in a
future work.

Quasilinear stochastic partial differential equations (SPDEs) (e.g. the porous-media equation) have been extensively
analyzed using the theory of (locally) monotone operators [3,25,40,44] or approximating the corresponding coefficients
by locally monotone ones [28]. Recently, there has been a growing interest in developing various solution concepts for
quasilinear SPDEs such as: kinetic [16,21,26], strong (in the probabilistic sense) and weak (in the PDE sense) [15,28],
entropy [12], martingale [16,17] or (pathwise) mild solutions [38]. We mention that solution concepts for certain quasilin-
ear SPDEs have been developed also via rough paths theory [43], paracontrolled calculus [2,22], or regularity structures
[23]. To our best knowledge, the techniques employed in this context heavily rely on the fact that the diffusion matrix
is symmetric and/or positive-(semi)definite [15,16,28,30]. However, in many applications, the diffusion matrix does not
satisfy these requirements, i.e., it is neither symmetric nor positive semi-definite. Therefore, most of the techniques avail-
able in the literature on quasilinear SPDEs do not apply or allow only local-in-time solutions [30,38]. The main goal of
this work is to prove the global-in-time existence of martingale solutions for quasilinear SPDEs whose diffusion matrix
is neither symmetric nor positive semi-definite, but admits a certain structure, which we precisely describe below.

It turns out that deterministic cross-diffusion systems arising from (thermodynamic) applications often have a special
structure, a so-called entropy or formal gradient-flow structure, which can be exploited for the existence analysis. This
means that there exists an entropy density h : [0,∞)n →R such that the deterministic analog of (1) can be formulated in
terms of the entropy variables wi := ∂h/∂ui as

∂tui(w) − div

(
n∑

j=1

Bij (w)∇wj

)
= 0, i = 1, . . . , n, (3)
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and the so-called Onsager matrix B(w) = A(u(w))h′′(u(w))−1 is positive semi-definite, where h′′(u)−1 denotes the
inverse of the Hessian of h and u = u(w) = (h′)−1(w) is now interpreted as a vector-valued function of w, assuming that
the inverse of h′ exists. An example is the Boltzmann-type entropy density hB(u) =∑n+1

i=1 (ui(logui − 1) + 1). Using wi

as a test function in (3), a formal computation leads to

d

dt

∫
O

h(u)dx +
∫
O

∇u : h′′(u)A(u)∇udx = 0, (4)

where “:” denotes the Frobenius matrix product. Since B(w) is positive semi-definite, so is h′′(u)A(u), and we infer that
t 
→ ∫

O h(u(t))dx is a Lyapunov functional along solutions to (3).

The volume-filling condition
∑n+1

i=1 ui = 1 implies that the solvent concentration can be replaced by the other con-
centrations ui ≥ 0 according to un+1 = 1 − ∑n

i=1 ui . This means that the concentration vector u = (u1, . . . , un) is an
element of the Gibbs simplex D = {u ∈ (0,1)n :∑n

i=1 ui < 1}. If h is invertible on D, we can define u(w) = (h′)−1(w),
and this function maps R

n to D. Thus, if w(x, t) is a solution to (3), u(w(x, t)) ∈ D is componentwise positive and
bounded from above. This provides L∞ estimates without using a maximum principle which generally cannot be applied
to cross-diffusion systems. In this paper, we show that this idea can be extended to the stochastic case, allowing for L∞
bounds almost surely.

Examples for cross-diffusion systems (1) with volume filling are the Maxwell–Stefan equations and certain biofilm
models (see Section 3 for details). For fluid mixtures with three components, the Maxwell–Stefan diffusion matrix equals

A(u) = 1

a(u)

(
d2 + (d0 − d2)u1 (d0 − d1)u1

(d0 − d2)u2 d1 + (d0 − d1)u2

)
, where

a(u) = d0d1u1 + d0d2u2 + d1d2u3,

and di > 0 for i = 0,1,2. This matrix is generally non-symmetric and not positive definite, but its eigenvalues are positive
(this allows for local smooth deterministic solutions; see [1]). The first global existence result for deterministic Maxwell–
Stefan equations was proved in [27] for initial data around the constant equilibrium state. The existence of local classical
solutions was shown in [5]. The entropy structure was revealed in [35], and a general global existence result was proved.
Other cross-diffusion models with volume filling arise in ion-transport and biofilm modeling [13,24]. A general class of
volume-filling systems was formally derived in [49] from a random walk on a lattice.

In the stochastic setting, we need to overcome some technical obstacles. First, since the diffusion matrix is not sym-
metric and not positive definite, standard semigroup theory is not applicable. Second, the application of the Itô formula
to derive the stochastic analog of the entropy identity (4) requires that the entropy density be an element of C2(D) which
is usually not the case. For instance, the Boltzmann-type entropy density satisfies ∂2hB/∂u2

i = 1/ui + 1/un+1 which is
undefined when ui = 0 or un+1 = 0. Third, the system (3) is approximated in [33] by the implicit Euler discretization
which is not compatible with the stochastic term (neither in Itô nor in Stratonovich form). We point out that the implicit
Euler discretization, which is implemented in [33], could be avoided by introducing an additional regularization, hence
avoiding the incompatibility issue, but this idea needs to be explored further.

Our key idea is to approximate the noise by a Wong–Zakai type argument and the space by a stochastic Galerkin
method. This results in a system of ordinary differential equations which can be treated by the boundedness-by-entropy
method [33]. The limit of vanishing Wong–Zakai parameter requires also the existence of solutions to a Galerkin stochas-
tic differential system. This is proved by a fixed-point argument up to a stopping time τR > 0, i.e., up to the first time a
certain norm of the solution is larger than some R > 0. Estimates uniform in the Galerkin dimension N ∈ N are derived
from an entropy inequality, which needs a regularization hδ of the entropy density h, such that hδ ∈ C2(D) with δ > 0.
The final step are the limits δ → 0, R → ∞, and N → ∞. Details of this procedure are given in Section 1.4.

1.2. Notation and stochastic framework

Let O ⊂R
d (d ≥ 1) be a bounded domain. The usual Lebesgue and Sobolev spaces are denoted by Lp(O) and Wk,p(O),

respectively, where p ∈ [1,∞], k ∈ N, and we set Hk(O) = Wk,2(O). The norm of a function u = (u1, . . . , un) ∈
L2(O;Rn) is understood as ‖u‖2

L2(O)
=∑n

i=1 ‖ui‖2
L2(O)

, and we use this notation also for other vector- or matrix-valued

functions. We write 〈u,v〉 for the dual product between H 3(O)′ and H 3(O). We use the same notation if u, v ∈ L2(O),
and in this case, 〈u,v〉 = ∫

O uv dx. In the vector-valued case, we have 〈u,v〉 =∑n
i=1

∫
O uivi dx for u, v ∈ L2(O;Rn).

The set D = {u ∈ (0,1)n :∑n
i=1 ui < 1} is the Gibbs simplex in R

n, and we set un+1 := 1 −∑n
i=1 ui > 0 if u ∈ D.
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Let (�,F ,P) be a probability space endowed with a complete right-continuous filtration F = (F)t≥0 and let H be a
Hilbert space. The space L2(�;H) consists of all H -valued random variables u such that

E‖u‖2
H :=

∫
�

∥∥u(ω)
∥∥2

H
P(dω) < ∞.

Let (η̃k)
n
k=1 be the canonical basis of Rn. We denote by

L2
(
R

n;L2(O)
) :=

{
L :Rn → L2(O) linear continuous:

n∑
k=1

‖Lη̃k‖2
L2(O)

< ∞
}

the space of Hilbert–Schmidt operators from R
n to L2(O) endowed with the norm

‖L‖2
L2(R

n;L2(O))
:=

n∑
k=1

‖Lη̃k‖2
L2(O)

.

The multiplicative noise term σ : �×[0, T ]×L2(O) � (ω, t, u) → σ(ω, t, u) ∈R
n×n with σ = (σij )i,j=1,...,n is assumed

to be B(L2(O) × [0, T ]) ⊗F;B(L2(R
n;L2(O)))-measurable and F-adapted.

1.3. Assumptions and main result

We impose the following assumptions.

(A1) Domain: O ⊂ R
d (d ≤ 3) is a bounded domain with Lipschitz boundary.

(A2) Initial datum: u0 ∈ L2(�;L∞(O)) is F0-measurable and u0
i (x) ∈ D for a.e. x ∈O P-a.s., i = 1, . . . , n.

(A3) Diffusion matrix: A = (Aij ) ∈ C0(D;Rn×n) is Lipschitz continuous.
(A4) Multiplicative noise σ : L2(O) → L2(R

n;L2(O)) satisfies for some constant Cσ > 0 and any u ∈ L2(O), i, j, k =
1, . . . , n,∥∥∥∥∂σij

∂uk
(u)

∥∥∥∥
L(L2(O);L2(O))

≤ Cσ .

(A5) Entropy density: (i) There exists a convex function h ∈ C2(D; [0,∞)) ∩ C0(D; [0,∞)) such that its derivative
h′ :D →R

n is invertible; (ii) there exist ch > 0, 0 ≤ m < 1 such that for all u ∈D, z ∈ R
n,

z�h′′(u)A(u)z ≥ ch

n∑
i=1

z2
i

u2m
i

.

(A6) Interaction of entropy density and noise: There exists Ch > 0 such that for all u ∈D,

max
j=1,...,n

∣∣∣∣∣
n∑

i=1

∂h

∂ui

(u)σij (u)

∣∣∣∣∣+
∣∣∣∣∣

n∑
i,j,k=1

σkj (u)
∂σij

∂uk

(u)
∂h

∂ui

(u)

∣∣∣∣∣
+
∣∣∣∣∣

n∑
i,j,k=1

σik(u)
∂2h(u)

∂ui ∂uj

σjk(u)

∣∣∣∣∣≤ Ch.

(A7) Approximation of the entropy density: Let

[ui]δ = ui + δ/n

1 + δ
for i = 1, . . . , n

and set [u]δ = ([u1]δ, . . . , [un]δ) for u ∈ D. It holds that for all u ∈D and z ∈R
n,

z�h′′([u]δ
)
A(u)z − ch

n∑
i=1

z2
i

[ui]2m
δ

≥ z�Rδ(u)z,

where Rδ(u) ∈ R
n×n is a correction matrix that appears as a result of the compatibility of the regularized entropy

h([u]δ) with Assumption (A5)(ii), and it holds that Rδ(u) → 0 as δ → 0 uniformly in D.
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Remark 1 (Discussion of the assumptions). Assumptions (A1)–(A3), (A5) are essentially the same conditions imposed
in the (deterministic) boundedness-by-entropy method [33]. We assume additionally that the diffusion matrix is Lipschitz
continuous, which is needed to apply classical existence results for stochastic differential equations (see, e.g., [44]).
Assumption (A5)(ii) means that the Onsager matrix is positive definite but not necessarily uniformly in u. It provides
gradient estimates for u1−m

i , i.e., the diffusion matrix has a fast-diffusion-type degeneracy. Assumption (A4) implies
global Lipschitz continuity for the multiplicative noise term, which is a standard condition for SPDEs; see, e.g., [44].
Assumption (A6) allows us to deal with the stochastic part when we derive the entropy estimate. The idea is that the
multiplicative noise is chosen in order to compensate possible singularities of h′(u) and h′′(u). Finally, Assumption (A7)
is needed since generally h is not a C2(D) function and cannot be used in the Itô lemma, whereas its regularization
hδ(u) = h([u]δ) is a C2(D) function and therefore admissible in the Itô lemma. We suppose that hδ is compatible with
Assumption (A5)(ii). We present two examples from applications fulfilling Assumptions (A3)–(A7) in Section 3.

Remark 2 (Extensions). Our setting can be slightly generalized in different directions. The space dimension d can be
arbitrarily large. The condition d ≤ 3 is needed to conclude the continuous embedding H 3(O) ↪→ W 1,∞(O). For general
d ≥ 1, we need to work with Hs(O) with s > 1 + d/2 instead of H 3(O). We may include a nonlinear source term F(u)

(satisfying standard local Lipschitz continuity assumptions) which additionally interacts with the corresponding entropy
density [34, Assumption H3, p. 86], namely∫

O
F(u) · h′(u)dx ≤ CF

(
1 +

∫
O

h(u)dx

)
.

Moreover, we may allow for random initial data, i.e., we may prescribe an initial probability measure instead of a given
initial data. We refer to [17, Remark 18] for details. We consider only finite-dimensional Wiener processes instead of
infinite-dimensional ones because we need to quantify the interaction of the entropy density and noise terms in Assump-
tion (A6). Our technique also works with (trace-class) Q-Wiener processes but the proof becomes very technical without
introducing new ideas, which is the reason why we restrict ourselves to the finite-dimensional case.

Our main result is the global-in-time existence of martingale solutions to (1)–(2). First, we make precise the definition
of martingale solutions.

Definition 1 (Global martingale solution). For any fixed T > 0, the triple (Ũ , W̃ , ũ) is a global martingale solution to
(1)–(2) if Ũ = (�̃, F̃, P̃, F̃) is a stochastic basis with filtration F̃ = (F̃t )t∈[0,T ], W̃ is an R

n-valued Wiener process on this
filtered probability space, and ũ(t) = (̃u1(t), . . . , ũn(t)) is a progressively measurable stochastic process for all t ∈ [0, T ]
such that for all i = 1, . . . , n,

ũi ∈ L2(�̃;C0([0, T ];L2
w(O)

))∩ L2(�̃;L2(0, T ;H 1(O)
))

,

the law of ũi (0) is the same as for u0
i , and ũ satisfies for all φ ∈ H 1(O) and i = 1, . . . , n,∫

O
ũi (t)φ dx =

∫
O

ũi (0)φ dx +
n∑

j=1

∫ t

0

∫
O

Aij

(̃
u(s)

)∇ũj (s) · ∇φ dx ds

+
n∑

j=1

∫
O

(∫ t

0
σij

(̃
u(s)

) ◦ dW̃j (s)

)
φ dx.

Here, C0([0, T ];L2
w(O)) is the space of weakly continuous functions u : [0, T ] → L2(O) such that

sup0<t<T ‖u(t)‖L2(O) < ∞.

Theorem 3 (Existence of a global martingale solution). Let Assumptions (A1)–(A7) hold and let T > 0. Then
there exists a global martingale solution to (1)–(2) satisfying ũ(x, t) ∈ D for a.e. (x, t) ∈ O × (0, T ) P̃-a.s. and
ũi ∈ Lp(�̃;L∞(0, T ;L∞(O))) for any p < ∞.

1.4. Key ideas

We explain the strategy of the proof of Theorem 3. The approximation procedure combines the techniques of [17] and
[33] and is illustrated in Figure 1.



582 G. Dhariwal et al.

Fig. 1. Steps of the proof of the existence theorem.

Step 1: Stochastic Galerkin approximation. Equations (1) are projected on a Galerkin space with finite dimension
N ∈ N. The existence of a unique solution u(N) to the stochastic differential system up to a stopping time τR is shown
by Banach’s fixed-point theorem, exploiting the Lipschitz continuity of the nonlinearities. We recall that R > 0 is a
previously chosen parameter in the definition of the stopping time τR , describing the upper bound of a certain norm.
Since the contraction constant depends on R, we cannot pass to the limit R → ∞. For global solutions, we need a priori
estimates which can be derived in principle from the entropy inequality, similar to (4). However, this requires that the
solution is positive and bounded, which cannot be deduced from this technique. We need the boundedness-by-entropy
method.

Step 2: Wong–Zakai approximation. In order to obtain the uniform boundedness for the solutions, we regularize the
noise in the sense of the Wong–Zakai approximation with parameter η > 0, giving a system of ordinary differential equa-
tions, which is parametrized by the stochastic variable. The existence of a solution u(N,η) follows from the boundedness-
by-entropy method [33]. A consequence of this technique is the nonnegativity and boundedness of u(N,η)(x, t) P-a.s.
We also obtain estimates from an entropy inequality, but they depend on η and therefore cannot be further applied. The
Wong–Zakai theory allows us to pass to the limit η → 0, showing that u(N,η) converges to the solution u(N) obtained in
Step 1. Since this solution is unique, we deduce that u(N) is nonnegative and bounded, more precisely u(N)(x, t) ∈ D for
a.e. (x, t) ∈O × (0, T ) P-a.s.

Step 3: Entropy estimates. Gradient estimates uniform in N are obtained from the entropy inequality, which is derived
in the deterministic setting by using the test function h′(u(N)). Since the entropy density h generally does not belong to
C2(D), we cannot use the Itô lemma. We need to regularize the entropy density by a function hδ (with parameter δ > 0)
which belongs to C2(D). Itô’s lemma then allows us to derive entropy estimates which are uniform in δ, R, and N . After
passing to the limit δ → 0, we infer the following entropy estimates uniform in the Galerkin dimension N :

E

∫
O

h
(
u(N)(t)

)
dx + C1E

∫ t

0

∫
O

n∑
i=1

∣∣∇(u(N)
i

)1−m∣∣2 dx ds ≤ C2, (5)

where C1, C2 > 0 are independent of N and R and m < 1. Since the right-hand side does not depend on R, we may pass
to the limit R → ∞, thus obtaining global approximate solutions u(N).

Step 4: Tightness of the laws. The tightness of the laws of (u(N)) in a sub-Polish space is shown by applying the
tightness criterion of Brzeźniak and Motyl [9]. It involves the verification of some a priori estimates which can be deduced
from (5).

Step 5: Convergence. The tightness of the laws of (u(N)) and the Skorokhod–Jakubowski theorem allow us to perform
the limit N → ∞ in the sense that there exist random variables ũ(N), with the same law as u(N), converging to a martingale
solution to (1)–(2). Unfortunately, the property u(N)(x, t) ∈ D does not directly imply that ũ(N)(x, t) ∈ D since only the
laws of these random variables coincide. Our idea is to show, using the Kuratowski theorem, that

∑n
i=1 ‖ũ(N)

i ‖L∞ ≤ 1

P̃-a.s. and that ũ
(N)
i lies in the union of the unit balls around zero and around one (with respect to the L∞ norm) from

which we conclude that ũ(x, t) ∈ D P̃-a.s.
These steps are detailed in Section 2. Two examples fulfilling Assumptions (A3)–(A7) are presented in Section 3 and

some theorems from stochastic analysis are recalled in Appendix.
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2. Existence analysis

We prove Theorem 3 by approximating system (1) by a stochastic Galerkin method and later by a Wong–Zakai type
approximation of the R

n-valued Wiener process.

2.1. Stochastic Galerkin approximation

We prove the existence of a strong (in the probability sense) solution to an approximate system up to a stopping time by
using the Banach fixed-point theorem.

The approximate system is obtained from projecting (1) onto the finite-dimensional Hilbert space HN =
span{e1, . . . , eN }, where N ∈ N and (ej )j∈N is an orthonormal basis of L2(O) such that HN ⊂ H 1(O) ∩ L∞(O). We
introduce the projection operator �N : L2(O) → HN by

�N(v) =
N∑

i=1

〈v, ei〉ei for v ∈ L2(O).

We need the basis in H 1(O) ∩ L∞(O) for later purposes, i.e in the proof of Proposition 5.
The approximate problem is the following system of stochastic differential equations,

du
(N)
i = �N div

(
n∑

j=1

Aij

(
u(N)

)∇u
(N)
j

)
dt +

n∑
j=1

�N

(
σij

(
u(N)

))
dWj(t)

+ 1

2
�N

(
n∑

k=1

n∑
j=1

σkj

(
u(N)

)∂σij

∂uk

(
u(N)

))
dt, i = 1, . . . ,N, (6)

with the initial conditions

u
(N)
i (0) = �N

(
u0

i

)
, i = 1, . . . ,N. (7)

Since the solutions u(N) may not lie in the Gibbs simplex D, we need to extend the functions Aij and σij to the whole
space R

n. This is done in such a way that Aij and σij are Lipschitz continuous on R
n (we do not change the notation).

This implies that Aij and σij grow at most linearly.
Given T > 0, we introduce the space XT = L2(�;L∞(0, T ;HN)) with the norm ‖u‖2

XT
:= E(sup0<t<T ‖u(t)‖HN

)2.
For given R > 0 and u ∈ XT , we define the stopping time

τR := inf
{
t ∈ [0, T ] : ∥∥u(t)

∥∥
H 1(O)

> R
}
.

Furthermore, we introduce the Itô correction operator T = (T1, . . . ,Tn) : L2(O;Rn) → L2(O;Rn) by

Ti (u) =
n∑

k=1

n∑
j=1

σkj (u)
∂σij

∂uk

(u), u ∈ L2(O;Rn
)
.

Proposition 4. Let T > 0, R > 0 be fixed, and let Assumptions (A1)–(A5) hold. Then there exists a unique strong (in the
probabilistic sense) solution u(N) ∈ XT ∧τR

to (6)–(7) such that for any t ∈ [0, T ∧ τR],
〈
u(N)(t), φ

〉= 〈
u0, φ

〉− ∫ t

0

〈
A
(
u(N)(s)

)∇u(N)(s),∇φ
〉
ds

+ 1

2

∫ t

0

〈
T
(
u(N)(s)

)
, φ
〉
ds +

∫ t

0

〈
σ
(
u(N)(s)

)
dW(s),φ

〉
(8)

for any φ = (φ1, . . . , φN) ∈ W 1,∞(O;Rn) ∩ Hn
N and XT ∧τR

:= L2(�;L∞(0, T ∧ τR;HN)).
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Proof. The idea of the proof is to apply the Banach fixed-point theorem to the mapping S : XT → XT ,

〈
S
(
u(N)

)
(t), φ

〉= 〈
u0, φ

〉− ∫ t

0

〈
A
(
u(N)

)
(s)∇u(N)(s),∇φ

〉
ds

+ 1

2

∫ t

0

〈
T
(
u(N)(s)

)
, φ
〉
ds +

∫ t

0

〈
σ
(
u(N)(s)

)
dW(s),φ

〉
, (9)

where u(N) ∈ XT and φ ∈ W 1,∞(O;Rn) ∩ Hn
N . The linear growth of A and σ allows us to show that S indeed maps XT

into itself and that S is a contraction for some T ∗ ∈ (0, T ∧ τR]. Although the arguments are rather standard, we provide
a full proof for completeness.

We show first the self-mapping property. Let u ∈ XT and φ ∈ W 1,∞(O;Rn) ∩ Hn
N . Then definition (9) gives

∥∥〈S(u),φ
〉∥∥2

L2(�;L∞(0,T ∧τR))
= E

(
sup

0<t<T ∧τR

∣∣〈S(u)(t), φ
〉∣∣)2

≤ ‖φ‖2
L2(O)

E
∥∥u0

∥∥2
L2(O)

+ CE

∫ T ∧τR

0

∣∣〈A(u(s)
)∇u(s),∇φ

〉∣∣2 ds

+ CE

∫ T ∧τR

0

∣∣〈T (u(s)
)
, φ
〉∣∣2 ds + CE

(
sup

0<t<T ∧τR

∣∣∣∣∫ t

0

〈
σ
(
u(s)

)
dW(s),φ

〉∣∣∣∣)2

=: I1 + · · · + I4.

We estimate the terms I2, I3, and I4. Because of the linear growth of A and the equivalence of the norms in HN , we find
that

I2 ≤ C‖∇φ‖2
L∞(O)E

∫ T ∧τR

0

(
1 + ∥∥u(s)

∥∥2
L2(O)

)∥∥∇u(s)
∥∥2

L2(O)
ds

≤ C(T ∧ τR)‖∇φ‖2
L∞(O)E

(
1 + sup

0<t<T ∧τR

∥∥u(t)
∥∥2

L2(O)

)
R2

≤ C(N,R)T ‖φ‖2
HN

(
1 + ‖u‖2

XT ∧τR

)
.

Assumption (A4) implies that T (u) grows at most linearly, so

I3 ≤ C‖φ‖2
L2(O)

E

∫ T ∧τR

0

∥∥T (u(s)
)∥∥2

L2(O)
ds

≤ C‖φ‖2
L2(O)

E

∫ T ∧τR

0

(
1 + ∥∥u(s)

∥∥2
L2(O)

)
ds ≤ C(N)T ‖φ‖2

HN

(
1 + ‖u‖2

XT ∧τR

)
.

We obtain from the Burkholder–Davis–Gundy inequality [37, Proposition 2.12]

I4 ≤ C‖φ‖2
L2(O)

E

∫ T ∧τR

0

∥∥σ (u(s)
)∥∥2

L2(R
n;L2(O))

ds

≤ C‖φ‖2
L2(O)

E

∫ T ∧τR

0

(
1 + ∥∥u(s)

∥∥2
L2(O)

)
ds ≤ C(N)T ‖φ‖2

L2(O)

(
1 + ‖u‖2

XT ∧τR

)
.

Summarizing these estimates, we find that∥∥S(u)
∥∥2

XT ∧τR

≤ CE
∥∥u0

∥∥2
L2(O)

+ C(N,R)T
(
1 + ‖u‖2

XT ∧τR

)
,

which implies that S maps XT ∧τR
to XT ∧τR

.
Next, we show that S : XT → XT is a contraction if 0 < T < τR is sufficiently small. Let u, v ∈ XT , φ ∈

W 1,∞(O;Rn) ∩ Hn
N , and R > 0 and set

τR = inf
{
t ∈ [0, T ] : ∥∥u(t)

∥∥
H 1(O)

> R
}∧ inf

{
t ∈ [0, T ] : ∥∥v(t)

∥∥
H 1(O)

> R
}
.
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Then ∥∥〈S(u) − S(v),φ
〉∥∥2

L2(�;L∞(0,T ∧τR))

≤ CE

(
sup

0<t<T ∧τR

∣∣∣∣∫ t

0

〈
A
(
u(s)

)∇u(s) − A
(
v(s)

)∇v(s),∇φ(s)
〉
ds

∣∣∣∣)2

+ C

2
E

(
sup

0<t<T ∧τR

∣∣∣∣∫ t

0

〈
T
(
u(s)

)− T
(
v(s)

)
, φ
〉
ds

∣∣∣∣)2

+ CE

(
sup

0<t<T ∧τR

∣∣∣∣∫ t

0

〈(
σ
(
u(s)

)− σ
(
v(s)

))
dW(s),φ

〉∣∣∣∣)2

=: I5 + I6 + I7.

Assumption (A3) shows that

I5 ≤ CTE

∫ T ∧τR

0

∣∣〈(A(u) − A(v)
)∇u + A(v)∇(u − v),∇φ

〉∣∣2 ds

≤ CT ‖∇φ‖2
L∞(O)E

∫ T ∧τR

0

(∥∥u(s) − v(s)
∥∥2

L2(O)

∥∥∇u(s)
∥∥2

L2(O)

+ (
1 + ∥∥v(s)

∥∥2
L2(O)

)∥∥∇(u − v)(s)
∥∥2

L2(O)

)
ds

≤ C(N)R2T 2‖∇φ‖2
L∞(O)‖u − v‖2

XT ∧τR
.

Similarly, exploiting the linear growth of σ and T ,

I6 ≤ CTE

∫ T ∧τR

0

∣∣〈T (u) − T (v),φ
〉∣∣2 ds ≤ CT 2‖φ‖2

L2(O)
‖u − v‖2

XT ∧τR
,

I7 ≤ CT ‖φ‖2
L2(O)

E

∫ T ∧τR

0

∥∥σ(u) − σ(v)
∥∥2
L2(R

n;L2(O))
ds ≤ CT 2‖φ‖2

L2(O)
‖u − v‖2

XT ∧τR
.

Consequently,∥∥S(u) − S(v)
∥∥

XT ∧τR

≤ C(N,R)T 2‖u − v‖XT ∧τR
,

which shows that S : XT ∗ → XT ∗ is a contraction for 0 < T ∗ < T ∧ τR satisfying C(N,R)(T ∗)2 < 1.
By the Banach fixed-point theorem, there exists a unique fixed point u(N) ∈ XT ∗ , which means that u(N) solves (8)

for any t ∈ (0, T ∗). The local solution can be uniquely extended to a global one on the whole interval [0, T ∧ τR] since
T ∗ > 0 is independent of the initial datum. Standard results [38, Lemma 3.23] show that the stopping time τR is P-a.s.
positive. �

2.2. Wong–Zakai-type approximation

We prove the existence of global-in-time solutions to another approximate system of (1), consisting of a system of ordinary
differential equations (ODE). For this, we introduce two levels of approximations with the following parameters: the
Galerkin dimension N ∈N and a Wong–Zakai type approximation of the Rn-valued Wiener process with time step η > 0.
More precisely, we project (1) as in the previous subsection onto the finite-dimensional Galerkin space HN and introduce
a uniform partition of the time interval [0, T ] with time step η = T/M , where M ∈ N and tk = kη for k = 0, . . . ,M . The
Wiener process is approximated by the process

W(η)(t) = W(tk) + t − tk

η

(
W(tk+1) − W(tk)

)
, t ∈ [tk, tk+1], k = 0, . . . ,M. (10)

Approximations like this or via convolution with a smooth kernel are generally referred to as Wong–Zakai approxi-
mations and were introduced in [48] in one dimension and in [45] for systems. Further generalizations can be found in
[41,46,47].
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The approximate equations read as

du(N,η)

dt
= �N div

(
A
(
u(N,η)

)∇u(N,η)
)+ �N

(
σ
(
u(N,η)

))dW(η)

dt
, (11)

with the initial conditions

u(N,η)(0) = �N

(
u0). (12)

This is a finite-dimensional system of ODEs. The existence of global-in-time solutions is deduced from the boundedness-
by-entropy technique of [33].

Proposition 5. Let T > 0, N ∈ N, η > 0, and let Assumptions (A1)–(A5) hold. Then for almost all ω ∈ �, there exists a
global-in-time weak solution u(N,η) = (u

(N,η)
1 , . . . , u

(N,η)
n ) to (11)–(12) satisfying

u
(N,η)
i (ω, ·, ·) ∈ L2(0, T ;H 1(O)

)
, ∂tu

(N,η)
i (ω, ·, ·) ∈ L2(0, T ;H 1(O)′

)
for i = 1, . . . , n and a.e. ω ∈ �,

u(N,η)(x, t) ∈D for (x, t) ∈ O × (0, T ) P-a.s.,

u(N,η)(0) = �N(u0) in the sense of H 1(O)′, and

〈
u(N,η)(t), φ

〉= 〈
u0, φ

〉− ∫ t

0

〈
A
(
u(N,η)(s)

)∇u(N,η)(s),∇φ
〉
ds +

∫ t

0

〈
σ
(
u(N,η)(s)

)dW(η)

dt
(s), φ

〉
ds

for any φ ∈ L2(0, T ;H 1(O) ∩ HN)n.

Proof. In principle, the proof follows by applying the boundedness-by-entropy method [33, Theorem 2] to the cross-
diffusion system (11) with the source term

f (u, t) := �N

(
σ
(
u(N,η)(t)

))dW(η)

dt
(t).

We drop the ω dependence to simplify the notation. For the convenience of those readers who are not familiar with this
technique, we recall the main steps of the proof. Details can be found in [33,34].

The idea is to formulate (11) as a finite-dimensional diffusion problem with variable w = h′(u(N,η)). After solving
this problem in w, we can then define u(N,η) := (h′)−1(w), and since the range of (h′)−1 is the bounded set D, we
find that u(N,η)(ω, x, t) ∈ D for a.e. ω ∈ �. The transformation causes two difficulties: First, the flux transforms to
A(u(N,η))∇u(N,η) = B(w)∇w, but the new diffusion matrix B(w) = A(u(N,η))h′′(u(N,η))−1 is generally only positive
semi-definite. Second, the time derivative becomes ∂tu

(N,η) = h′′(u(N,η))∂tw, but h′′(u(N,η)) may be not invertible on
∂D. Both issues can be solved by discretizing (11) in time and adding a regularization. In fact, for the fixed T > 0,
L ∈ N, we consider a time grid πL (which is finer than the uniform time partition considered for the Wong–Zakai type
approximation), and set τ = T/L > 0. Let ε > 0 and wk−1 ∈ L∞(O;Rn) be given. We wish to solve i.e. find wk ∈
H 1(O;Rn), such that

1

τ

∫
O

(
u
(
wk
)− u

(
wk−1)) · φ dx +

∫
O

n∑
i,j=1

Bij

(
wk
)∇φi · ∇wk

j dx + ε

∫
O

wk · φ dx

=
∫
O

f
(
u
(
wk
)
, tk
) · φ dx, (13)

where u(w) := (h′)−1(w) and φ ∈ H 1(O;Rn).
Step 1: Solution of the approximate problem. We prove the existence of a solution to (12) and (13) by applying the

Leray–Schauder fixed-point theorem. Let the Galerkin space HN be a subset of H 1(O;Rn) such that HN ⊂ L∞(O;Rn).
(This is possible by choosing appropriate basis functions.) Let y ∈ L∞(O;Rn) and ϑ ∈ [0,1] be given. We consider the
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following linear problem: Find w = wk ∈ HN such that

a(w,φ) = F(φ) for all φ ∈ HN, (14)

where

a(w,φ) =
∫
O

n∑
i,j=1

Bij (y)∇φi · ∇wj dx + ε

∫
O

w · φ dx,

F (φ) = −ϑ

τ

∫
O

(
u(y) − u

(
wk−1)) · φ dx + ϑ

∫
O

f
(
u(y), tk

) · φ dx.

The boundedness of y and the Cauchy–Schwarz inequality show that a and F are bounded on HN . Since B(y) is positive
semi-definite and all norms are equivalent in finite dimensions,

a(w,w) ≥ ε‖w‖2
L2(O)

≥ εC(N)‖w‖2
H 1(O)

,

which means that a is coercive on HN . By the Lax–Milgram lemma, there exists a unique solution w ∈ HN to (14) and
it holds that w ∈ L∞(O;Rn). This defines the fixed-point operator S : HN × [0,1] → HN , S(y,ϑ) = w, where w solves
(14).

We verify the assumptions of the Leray–Schauder theorem. The only solution to (14) with ϑ = 0 is w = 0; thus
S(y,0) = 0. The continuity of S follows from standard arguments; see the proof of [33, Lemma 5] for details. Since HN

is finite-dimensional, S is compact. It remains to prove a uniform bound for all fixed points of S(·, ϑ). Let w ∈ HN be
such a fixed point. Then w solves (14) with y replaced by w. Choosing the test function φ = w, we obtain P-a.s.

ϑ

τ

∫
O

(
u(w) − u

(
wk−1)) · w dx +

∫
O

n∑
i,j=1

Bij (w)∇wi · ∇wj dx + ε

∫
O

|w|2 dx

= ϑ

∫
O

f
(
u(w), tk

) · w dx. (15)

The convexity of h (see Assumption (A5)(i)) shows that

ϑ

τ

∫
O

(
u(w) − u

(
wk−1)) · w dx ≥ ϑ

τ

∫
O

(
h
(
u(w)

)− h
(
u
(
wk−1)))dx.

Since B(w) is positive semi-definite, we have
∑n

i,j=1 Bij (w)∇wi · ∇wj ≥ 0. Finally, we use Assumption (A4), (10)
along with Kolmogorov’s continuity theorem to infer that for all u ∈ [0,∞)n,

f
(
u(w), tk

) · h′(u(w)
)= 1

η

n∑
i,j=1

σij

(
u(w)

)(
Wj(tk+1) − Wj(tk)

) ∂h

∂ui

(
u(w)

)
≤ 1

η

n∑
j=1

∣∣Wj(tk+1) − Wj(tk)
∣∣ max
j=1,...,n

n∑
i=1

∣∣∣∣σij

(
u(w)

) ∂h

∂ui

(
u(w)

)∣∣∣∣≤ C(η).

This shows that the right-hand side of (15) is bounded uniformly in ϑ and w. We infer that ε‖w‖2
L2(O)

≤ C(η) and
consequently ‖w‖H 1(O) ≤ C(η, ε,N) P-a.s. This yields the desired uniform bound, and we can apply the Leray–Schauder
fixed-point theorem to conclude the existence of a weak solution wk ∈ HN to (13).

Step 2: Uniform estimates. Since we do not have any uniform estimates for w, we switch to the original variable
u(wk). Let w(τ)(ω, x, t) = wk(ω,x) and u(τ)(ω, x, t) = u(wk(ω,x)) for ω ∈ �, x ∈ O, and t ∈ ((k − 1)τ, kτ ], k =
1, . . . ,L. At time t = 0, we set w(τ)(·,0) = h′(u0) and u(τ)(·,0) = u0. We also need the shift operator (�τu

(τ))(ω, x, t) =
u(wk−1(ω, x)) for ω ∈ �, x ∈O, and t ∈ ((k − 1)τ, kτ ]. In this notation, the weak formulation (13) can be written as

1

τ

∫ T

0

∫
O

(
u(τ) − �τu

(τ)
) · φ dx dt +

∫ T

0

∫
O

n∑
i,j=1

Aij

(
u(τ)

)∇φi · ∇u
(τ)
j dx dt + ε

∫ T

0

∫
O

w(τ) · φ dx dt

=
∫ T

0

∫
O

f
(
u(τ)

) · φ dx dt (16)

for piecewise constant functions φ : (0, T ) → HN .
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We derive now some uniform estimates, using the test function φ = w(τ) in (16). At this point, we need Assumption
(A5)(ii):

n∑
i,j=1

Aij

(
u(τ)

)∇w
(τ)
i · ∇u

(τ)
j =

n∑
i,j=1

(
h′′(u(τ)

)
A
(
u(τ)

))
ij
∇u

(τ)
i · ∇u

(τ)
j

≥ ch

n∑
i=1

|∇u
(τ)
i |2

(u
(τ)
i )2m

= ch

(1 − m)2

n∑
i=1

∣∣∇(u(τ)
i

)1−m∣∣2.
Hence, summing (16) over k = 1, . . . , � with � ≤ L, it follows similarly as in Step 1 that P-a.s.

∫
O

h
(
u
(
w�
))

dx + τ

�∑
k=1

n∑
i=1

∫
O

∣∣∇ui

(
wk
)1−m∣∣2 dx + ετ

�∑
k=1

∥∥wk
∥∥2

L2(O)
≤ C,

where C > 0 depends on h(u0), η but not on ε or τ . Together with the uniform L∞ bound for u(τ), this yields∥∥(u(τ)
)1−m∥∥

L2(0,T ;H 1(O))
+ √

ε
∥∥w(τ)

∥∥
L2(0,T ;L2(O))

≤ C.

Moreover, ∇u(τ) = (1 − m)−1(u(τ))m∇(u(τ))1−m is uniformly bounded in L2(O × (0, T )). (Here, we need that
0 ≤ m < 1.) A straightforward computation shows that τ−1(u(τ) − �τu

(τ)) is uniformly bounded in L2(0, T ;H 1(O)′).
Step 3: Limit ε → 0 and τ → 0. The uniform estimates from Step 2 allow us to apply the Aubin–Lions lemma in the

version of [18], which provides the existence of a subsequence of (u(τ)), which is not relabeled, such that, as (ε, τ ) → 0,

u(τ) → u strongly in L1(O × (0, T )
)
P-a.s.

In view of the uniform L∞ bound, this convergence holds in any Lp(O× (0, T )) for p < ∞ and a.e. in O× (0, T ) P-a.s.
This allows us to identify the nonlinear weak limits. Moreover, by weak compactness, P-a.s.

∇u(τ) ⇀ ∇u weakly in L2(0, T ;L2(O)
)
,

τ−1(u(τ) − �τu
(τ)
)
⇀ ∂tu weakly in L2(0, T ;H 1(O)′

)
,

εw(τ) → 0 strongly in L2(0, T ;L2(O)
)
.

Performing the limit (ε, τ ) → 0 in (16) shows that u(N,η) := u solves (11) for all test functions φ ∈ L2(0, T ;H 1(O)) (by
density). We verify as in [33] that u satisfies the initial condition (12). �

The proof of [33, Theorem 2] provides some a priori estimates through the entropy inequality, but they depend on η

because of the dependence of the source term on η. We derive some uniform bounds in Section 2.3.
Next, we show that the Wong–Zakai approximations converge to the strong solution to (6)–(7). The key consequence

is the L∞ bound for the solution to (6)–(7).

Proposition 6. Let u(N,η) be the solution to (11)–(12), constructed in Proposition 5, and let u(N) be the unique strong (in
the probabilistic sense) solution to (6)–(7), proved in Proposition 4. Then u(N,η) → u(N) in probability up to a stopping
time τR = inf{t ∈ [0, T ] : ‖u(N)(t)‖H 1(O) > R} as η → 0 (M → ∞). Moreover, it holds that u(N)(x, t) ∈ D for (x, t) ∈
O × (0, T ) P-a.s.

Proof. The result is a consequence of Theorem 14 in the Appendix. We can apply this theorem since the right-hand side
of (11) is Lipschitz continuous and has linear growth in u(N,η) (see the proof of Proposition 4). �

2.3. Uniform estimates

We prove some estimates uniform in the approximation parameter N . The starting point is a stochastic version of the
entropy inequality.
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Lemma 7. The solution u(N) to (6)–(7) is global-in-time and satisfies the a priori estimate

E

∫
O

h
(
u(N)(t)

)
dx + C1E

∫ t

0

∫
O

n∑
i=1

∣∣∇(u(N)
i

)1−m∣∣2 dx ds ≤ C2,

where C1, C2 > 0 are independent of N and R.

Proof. Let u(N) be the solution to (6)–(7) up to the stopping time τR . Since the entropy density h, defined in Assump-
tion (A5)(i), may be not a C2 function on D, we cannot apply the Itô lemma to this function. Therefore, we need to
regularize h. Let us recall the notation from Assumption (A7): Let δ > 0 and define [u]δ = ([u1]δ, . . . , [un]δ), where

[ui]δ := ui + δ/n

1 + δ
, i = 1, . . . , n, [un+1]δ := un+1

1 + δ
,

and un+1 = 1 −∑n
i=1 ui . Then [un+1]δ = 1 −∑n

i=1[ui]δ and [u]δ ∈ D for any u ∈ D. It follows that hδ(u) := h([u]δ)
satisfies hδ ∈ C2(D; [0,∞)).

We can now apply the Itô lemma to hδ . It holds for t ∈ [0, T ∧ τR] that∫
O

hδ

(
u(N)(t ∧ τR)

)
dx =

∫
O

hδ

(
u(N)(0)

)
dx

−
∫ t∧τR

0

∫
O

∇u(N)(s) : h′′
δ

(
u(N)(s)

)
A
(
u(N)(s)

)∇u(N)(s)dx ds

+
∫ t∧τR

0

∫
O

(
σ
(
u(N)(s)

)
dW(s)

) · h′
δ

(
u(N)(s)

)
dx

+ 1

2

∫ t∧τR

0

∫
O

h′
δ

(
u(N)(s)

) · T (u(N)(s)
)

dx ds

+ 1

2

∫ t∧τR

0

∫
O

Tr
(
σ
(
u(N)(s)

)
h′′

δ

(
u(N)(s)

)
σ
(
u(N)(s)

)∗)dx ds.

Taking the expectation on both sides and observing that the expectation of the Itô integral vanishes, we find that

E

∫
O

hδ

(
u(N)(t ∧ τR)

)
dx =

∫
O

hδ

(
u(N)(0)

)
dx

−E

∫ t∧τR

0

∫
O

∇u(N)(s) : h′′
δ

(
u(N)(s)

)
A
(
u(N)(s)

)∇u(N)(s)dx ds

+ 1

2
E

∫ t∧τR

0

∫
O

h′
δ

(
u(N)(s)

) · T (u(N)(s)
)

dx ds

+ 1

2
E

∫ t∧τR

0

∫
O

Tr
(
σ
(
u(N)(s)

)
h′′

δ

(
u(N)(s)

)
σ
(
u(N)(s)

)∗)
dx ds

=: J (δ)
1 + · · · + J

(δ)
4 . (17)

Our aim is to perform the limit δ → 0 in (17). We know that the function h is continuous on D and that, as δ → 0,

[
u(N)(ω, x, t ∧ τR)

]
δ
→ u(N)(ω, x, t ∧ τR) for a.e. (ω, x, t) ∈ � ×O × (0, T ).

This implies that

hδ

(
u(N)(ω, x, t ∧ τR)

)= h
([

u(N)(ω, x, t ∧ τR)
]
δ

)→ h
(
u(N)(ω, x, t ∧ τR)

)
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for a.e. (ω, x, t) ∈ � × O × (0, T ). Moreover, the integral E
∫
O hδ(u

(N)(t ∧ τR))dx is uniformly bounded in δ (since h

is bounded on D by assumption). We conclude from the dominated convergence theorem that, as δ → 0,

E

∫
O

hδ

(
u(N)(t ∧ τR)

)
dx → E

∫
O

h
(
u(N)(t ∧ τR)

)
dx,

J
(δ)
1 = E

∫
O

hδ

(
u(N)(0)

)
dx → E

∫
O

h
(
�N

(
u0))dx.

By Assumption (A7), we have

J
(δ)
2 = − 1

(1 + δ)2
E

∫ t∧τR

0

∫
O

∇u(N)(s) : h′′([u(N)(s)
]
δ

)
A
(
u(N)(s)

)∇u(N)(s)dx ds

≤ − ch

(1 + δ)2
E

∫ t∧τR

0

∫
O

n∑
i=1

|∇u
(N)
i (s)|2

[u(N)
i (s)]2m

δ

dx ds

− 1

(1 + δ)2
E

∫ t∧τR

0

∫
O

∇u(N)(s) : Rδ

(
u(N)(s)

)∇u(N)(s)dx ds. (18)

Since Rδ(u
(N)(s)) → 0 as δ → 0 uniformly in u(N)(s) and ∇u(N)(s) is bounded in L2(O), the last integral tends to zero

as δ → 0. Because of

1

(1 + δ)2

|∇u
(N)
i |2

[u(N)
i ]2m

δ

↗ |∇u
(N)
i |2

(u
(N)
i )2m

= |∇(u
(N)
i )1−m|2

(1 − m)2

as δ → 0, the monotone convergence theorem implies that

E

∫ t∧τR

0

∫
O

n∑
i=1

|∇u
(N)
i (s)|2

[u(N)
i ]2m

δ

dx ds → 1

(1 − m)2
E

∫ t∧τR

0

∫
O

n∑
i=1

∣∣∇(u(N)
i

)1−m∣∣2 dx ds

and we infer from (18) that

lim
δ→0

J
(δ)
2 ≤ − ch

(1 − m)2
E

∫ t∧τR

0

∫
O

n∑
i=1

∣∣∇(u(N)
i

)1−m∣∣2 dx ds.

The following a.e. pointwise limits hold:

h′
δ

(
u(N)(s)

) · T (u(N)(s)
)= 1

1 + δ

n∑
i,j,k=1

σkj

(
u(N)(s)

)∂σij

∂uk

(
u(N)(s)

) ∂h

∂ui

([
u(N)(s)

]
δ

)
→ h′(u(N)

) · T (u(N)(s)
)

and

Tr
(
σ
(
u(N)(s)

)
h′′

δ

(
u(N)(s)

)
σ
(
u(N)(s)

)∗)
= 1

(1 + δ)2

n∑
i,j,k=1

σik

(
u(N)(s)

) ∂2h

∂ui ∂uj

([
u(N)(s)

]
δ

)
σjk

(
u(N)(s)

)
→ Tr

(
σ
(
u(N)(s)

)
h′′(u(N)(s)

)
σ
(
u(N)(s)

)∗)
for a.e. � ×O × [0, T ∧ τR]. Then the bounds imposed in Assumption (A6) imply by dominated convergence that these
expressions converge in L1(� ×O × [0, T ∧ τR]), which means that

J
(δ)
3 → 1

2
E

∫ t∧τR

0

∫
O

h′(u(N)(s)
) · T (u(N)(s)

)
dx ds,

J
(δ)
4 → 1

2
E

∫ t∧τR

0

∫
O

Tr
(
σ
(
u(N)(s)

)
h′′(u(N)(s)

)
σ
(
u(N)(s)

)∗)dx ds.
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Using Assumption (A6) again, we see that the limits of J
(δ)
3 and J

(δ)
4 are bounded with respect to N and R, and As-

sumption (A2) implies that the limit of J
(δ)
1 is uniformly bounded in N . Then the limit δ → 0 in (17) yields the entropy

inequality

E

∫
O

h
(
u(N)(t ∧ τR)

)
dx + C1E

∫ t∧τR

0

∫
O

n∑
i=1

∣∣∇(u(N)
i (s)

)1−m∣∣2 dx ds ≤ E

∫
O

h
(
�N

(
u0))dx + C2,

where the constants C1 > 0 and C2 > 0 are independent of N and R. Consequently, the right-hand side of this inequality
does not depend on the chosen sequence of stopping times τR , and we can pass to the limit R → ∞. Hence, the previous
inequality holds for any t ∈ [0, T ]. The uniform L∞ estimate implies that

sup
N∈N

E

(
sup

0<t<T

∥∥u(N)(t)
∥∥p

L2(O)

)
≤ C

(
T ,u0) (19)

for all 1 ≤ p < ∞, and the entropy inequality shows that

sup
N∈N

E
∥∥u(N)

∥∥2
L2(0,T ;H 1(O))

≤ C
(
T ,u0), (20)

where C(T ,u0) > 0 is independent of N , since

E
∥∥∇u

(N)
i

∥∥2
L2(0,T ;L2(O))

=
∫

�

∫ T

0

∫
O

∣∣∣∣ 1

1 − m

(
u

(N)
i

)m∇(u(N)
i

)1−m

∣∣∣∣2dx dt dP(ω)

= 1

(1 − m)2

∫
�

∫ T

0

∫
O

∣∣u(N)
i

∣∣2m∣∣∇(u(N)
i

)1−m∣∣2dx dt dP(ω)

≤ 1

(1 − m)2

∫
�

∫ T

0

∫
O

∣∣∇(u(N)
i

)1−m∣∣2dx dt dP(ω)

= 1

(1 − m)2
E
∥∥∇(u(N)

i

)1−m∥∥2
L2(0,T ;L2(O))

≤ C.

Here, we used |u(N)(ω, x, t)| ≤ 1 for almost all (ω, x, t) ∈ �×O×[0, T ] and that m < 1. Since T > 0 was arbitrary, the
solution u(N) to (6)–(7) is global-in-time. �

2.4. Tightness of the laws of (u(N))

Let u(N) be a solution to (6)–(7), constructed in Lemma 7. We show that the laws of u(N) are tight in a certain sub-Polish
space. (This is a topological space in which there exists a countable family of continuous functions that separate points
[6, Definition 2.1.3].) For this, we proceed similarly as in [17] and introduce the following spaces:

• C0([0, T ];H 3(O)′) is the space of continuous functions u : [0, T ] → H 3(O)′ with the topology T1 induced by the
norm ‖u‖C0([0,T ];H 3(O)′) = supt∈(0,T ) ‖u(t)‖H 3(O)′ ;

• L2
w(0, T ;H 1(O)) is the space L2(0, T ;H 1(O)) with the weak topology T2;

• L2(0, T ;L2(O)) is the space of square integrable functions u : (0, T ) → L2(O) with the topology T3 induced by the
norm ‖ · ‖L2(0,T ;L2(O));

• C0([0, T ];L2
w(O)) is the space of weakly continuous functions u : [0, T ] → L2(O) endowed with the weakest topol-

ogy T4 such that for all ψ ∈ L2(O), the mappings

C0([0, T ];L2
w(O)

)→ C0([0, T ];R), u 
→ 〈
u(·),ψ 〉,

are continuous.

We define the space

ZT := C0([0, T ];H 3(O)′
)∩ L2

w

(
0, T ;H 1(O)

)∩ L2(0, T ;L2(O)
)∩ C0([0, T ];L2

w(O)
)
,

endowed with the topology T that is the maximum of the topologies Ti , i = 1,2,3,4, of the corresponding spaces. It is
shown in [17, Lemma 12] that ZT is a sub-Polish space.



592 G. Dhariwal et al.

Lemma 8. The set of laws (L(u(N)))N∈N is tight in ZT .

Proof. The idea is to apply the tightness criterion of Brzeźniak and Motyl [9, Corollary 2.6] with the spaces U = H 3(O),
V = H 1(O), and H = L2(O) (also see the proof of Lemma 11 in [17]). Estimates (19) and (20) are exactly conditions
(a) and (b) in [9]. It remains to show that (u(N))N∈N satisfies the Aldous condition in H 3(O)′. We need to show that for
any ε > 0 and κ > 0, there exists θ0 > 0 such that for any sequence (τN)N∈N of F-stopping times, it holds that

sup
N∈N

sup
0<θ<θ0

P
{∥∥u(N)(τN + θ) − u(N)(τN)

∥∥
H 3(O)′ ≥ κ

}≤ ε.

We proceed similarly as in [17, Lemma 11]. Let (τN)N∈N be a sequence of F-stopping times such that 0 ≤ τN ≤ T and
let t ∈ [0, T ] and φ ∈ H 3(O). The solution u(N) to (6)–(7) solves

〈
u

(N)
i (t), φ

〉= 〈
�N

(
u0

i

)
, φ
〉− ∫ t

0

n∑
j=1

〈
Aij

(
u(N)

)∇u
(N)
j ,∇�Nφ

〉
ds

+ 1

2

∫ t

0

〈
�N(Ti

(
u(N)

)
, φ
〉
ds +

〈∫ t

0

n∑
j=1

�N

(
σij

(
u(N)

))
dWj,φ

〉

=: J (N)
1 + J

(N)
2 (t) + J

(N)
3 (t) + J

(N)
4 (t). (21)

Consider first the term involving the diffusion coefficients. Let θ > 0. We use assumption (A3), the continuous embed-
ding H 3(O) ↪→ W 1,∞(O) (for d ≤ 3), and estimates (19)–(20) to find that

E

∣∣∣∣∫ τN+θ

τN

〈
Aij

(
u(N)

)∇u
(N)
j ,∇�Nφ

〉
ds

∣∣∣∣
≤ CE

∫ τN+θ

τN

(
1 + ∥∥u(N)

∥∥
L2(O)

)∥∥∇u(N)
∥∥

L2(O)
‖∇φ‖L∞(O) ds

≤ Cθ1/2
E
((

1 + ∥∥u(N)
∥∥

L∞(0,T ;L2(O))

)∥∥∇u(N)
∥∥

L2(0,T ;L2(O))

)‖φ‖H 3(O)

≤ Cθ1/2
{

1 +E

(
sup

0<t<T

∥∥u(N)(t)
∥∥2

L2(O)

)}1/2
{
E

∫ T

0

∥∥∇u(N)
∥∥2

L2(O)
ds

}1/2

‖φ‖H 3(O)

≤ Cθ1/2‖φ‖H 3(O),

where we applied first the Cauchy–Schwarz inequality with respect to time and then with respect to the random variable.
For the Itô correction term, we use the boundedness of u(N) and the Cauchy–Schwarz inequality:

E

∣∣∣∣∫ τN+θ

τN

〈
�N(Ti

(
u(N)

)
, φ
〉
ds

∣∣∣∣≤ E

∫ τN+θ

τN

∥∥Ti

(
u(N)

)∥∥
L2(O)

‖φ‖L2(O) ≤ Cθ1/2‖φ‖H 3(O).

For the stochastic term, we take into account Assumption (A4), the Itô isometry, and again the Cauchy–Schwarz inequal-
ity:

E

∣∣∣∣〈∫ τN+θ

τN

�N

(
σij

(
u(N)

))
dWj,φ

〉
ds

∣∣∣∣2
≤ E

∫ τN+θ

τN

∥∥σ (u(N)(s)
)∥∥2

L2(R
n;L2(O))

ds‖φ‖2
L2(O)

≤ E

∫ τN+θ

τN

(
1 + ∥∥u(N)(s)

∥∥2
L2(O)

)
ds‖φ‖2

L2(O)
≤ C

{
θ + θ1/3

(
E

∫ T

0

∥∥u(N)(s)
∥∥3

L2(O)
ds

)2/3}
‖φ‖2

L2(O)

≤ Cθ1/3‖φ‖2
H 3(O)

.

Note that the previous estimates could be simplified since u(N) is uniformly bounded. Our estimates hold under mini-
mal requirements and may be used for generalizations.



Global martingale solutions for quasilinear SPDEs 593

Let κ > 0 and ε > 0. In view of the previous estimates and using the Chebyshev inequality, it follows for i = 2,3 that

P
{∥∥J (N)

i (τN + θ) − J
(N)
i (τN)

∥∥
H 3(O)′ ≥ κ

}≤ 1

κ
E
∥∥J (N)

i (τN + θ) − J
(N)
i (τN)

∥∥
H 3(O)′

= 1

κ
sup

‖φ‖
H3(O)

=1
E
∣∣〈J (N)

i (τN + θ) − J
(N)
i (τN),φ

〉∣∣≤ Cθ1/2

κ
,

while for i = 4, we have

P
{∥∥J (N)

4 (τN + θ) − J
(N)
4 (τN)

∥∥
H 3(O)′ ≥ κ

}
≤ 1

κ
sup

‖φ‖
H3(O)

=1
E
∣∣〈J (N)

i (τN + θ) − J
(N)
i (τN),φ

〉∣∣
≤ C

κ
sup

‖φ‖
H3(O)

=1

(
E
∣∣〈J (N)

i (τN + θ) − J
(N)
i (τN),φ

〉∣∣2)1/2 ≤ Cθ1/6

κ
.

Thus, choosing θ0 = min{1, (κε/C)6}, we infer that for i = 2,3,4,

sup
N∈N

sup
0<θ<θ0

P
{∥∥J (N)

i (τN + θ) − J
(N)
i (τN)

∥∥
H 3(O)′ ≥ κ

}≤ ε.

This shows that the Aldous condition holds for all three terms J
(N)
i (i = 2,3,4) and consequently, in view of (21), also

for (u
(N)
i )N∈N. Thus, by [9, Corollary 2.6], the set of laws of (u(N))N∈N is tight in ZT . �

2.5. Convergence of (u(N))N∈N

Since ZT × C0([0, T ];Rn) satisfies the assumptions of the Skorokhod–Jakubowski theorem [10, Theorem C1] and the
sequence of laws of (u(N))N∈N is tight on (ZT ,T) by Lemma 8, this theorem implies the existence of a subsequence
of (u(N))N∈N, which is not relabeled, a probability space (�̃, F̃, P̃) and, on this space, (ZT × C0([0, T ];Rn))-valued
random variables (̃u, W̃ ) and (̃u(N), W̃ (N)) for N ∈ N such that (̃u(N), W̃ (N)) has the same law as (u(N),W) on B(ZT ×
C0([0, T ];Rn)) and, as N → ∞,(̃

u(N), W̃ (N)
)→ (̃u, W̃ ) in ZT × C0([0, T ];Rn

)
P̃-a.s.

Because of the definition of the space ZT , this convergence means P̃-a.s.,

ũ(N) → ũ in C0([0, T ];H 3(O)′
)
,

ũ(N) ⇀ ũ weakly in L2(0, T ;H 1(O)
)
,

ũ(N) → ũ in L2(0, T ;L2(O)
)
, (22)

ũ(N) → ũ in C0([0, T ];L2
w(O)

)
,

W̃ (N) → W̃ in C0([0, T ];Rn
)
.

We wish to derive some regularity properties for the limit ũ. To this end, we proceed as in [17, Section 2.5]. Since u(N)

is an element of C0([0, T ];HN) P-a.s., C0([0, T ];HN) is a Borel set of C0([0, T ];H 3(O)′)∩L2(0, T ;L2(O)), and u(N)

and ũ(N) have the same law on B(ZT ), we infer that

L
(̃
u(N)

)(
C0([0, T ];HN

))= 1 for all N ∈ N.

Observe that ũ is a ZT -Borel random variable since B(ZT × C0([0, T ];Rn)) is a subset of B(ZT ) × B(C0([0, T ];Rn)).
Furthermore, estimates (19)–(20) and the equivalence of the laws of ũ(N) and u(N) on B(ZT ) yield for any p ≥ 1 the
following uniform estimates:

sup
N∈N

Ẽ

(
sup

0<t<T

∥∥ũ(N)(t)
∥∥p

L∞(O)

)
≤ C,
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sup
N∈N

Ẽ

(∫ T

0

∥∥ũ(N)(t)
∥∥2

H 1(O)
dt

)
≤ C.

We deduce the existence of a subsequence of (̃u(N))N∈N (not relabeled) which is weakly* converging in L2(�̃;
Lp(0, T ;L∞(O))) and weakly converging in Lp(�̃;L∞(0, T ;H 1(O))) as N → ∞. Since ũ(N) → ũ in ZT P̃-a.s., we
conclude that ũ ∈ Lp(�̃;L∞(0, T ;L∞(O))) for any p ≥ 1 and ũ ∈ L2(�̃;L2(0, T ;H 1(O))), i.e.

Ẽ

(
sup

0<t<T

∥∥ũ(t)
∥∥p

L∞(O)

)
< ∞, Ẽ

∫ T

0

∥∥ũ(t)
∥∥2

H 1(O)
dt < ∞.

We claim that ũ is even bounded in D P̃-a.s.

Lemma 9. The limit ũ satisfies ũ(x, t) ∈ D for a.e. (x, t) ∈O × (0, T ) P̃-a.s.

Proof. By Proposition 6, u(N)(x, t) ∈ D for a.e. (x, t) ∈O × (0, T ) P-a.s. In particular,

∥∥u(N)
∥∥

L∞(0,T ;L∞(O))
:=

n∑
i=1

∥∥u(N)
i

∥∥
L∞(0,T ;L∞(O))

≤ 1. (23)

The set L∞(0, T ;L∞(O)) is continuously embedded in L∞(0, T ;H 3(O)′) ∩ L2(0, T ;L2(O)). Thus, by the Ku-
ratowski theorem (see Theorem 13 in the Appendix), L∞(0, T ;L∞(O)) is a Borel set of L∞(0, T ;H 3(O)′) ∩
L2(0, T ;L2(O)). Therefore, by [8, Lemma B.1], the set L∞(0, T ; L∞(O))∩ZT is a Borel subset of L∞(0, T ;H 3(O)′)∩
L2(0, T ;L2(O)) ∩ ZT which in turn is ZT . The equivalence of the laws of ũ(N) and u(N) on B(ZT ) as well as (23) then
show that

P̃
{∥∥ũ(N)

∥∥
L∞(0,T ;L∞(O))

≤ 1
}= P

{∥∥u(N)
∥∥

L∞(0,T ;L∞(O))
≤ 1

}= 1.

By the definition of the norm in (23), this means that

n∑
i=1

∣∣̃u(N)
i (x, t)

∣∣≤ 1 for a.e. (x, t) ∈O × (0, T ) P̃-a.s. (24)

Next, we show that ũ
(N)
i (x, t) ≥ 0 for a.e. (x, t) ∈ O × (0, T ) P̃-a.s. Let v ∈ L∞(0, T ; L∞(O)) and define the closed

unit ball

B(v) = {
u ∈ L∞(0, T ;L∞(O)

) : ‖u − v‖L∞(0,T ;L∞(O)) ≤ 1
}
.

We deduce from (24) that

P̃
(̃
u

(N)
i ∈ B(0)

)= 1, i = 1, . . . , n.

Since 0 ≤ u
(N)
i (x, t) ≤ 1 a.e. in O × (0, T ) P-a.s., we have ‖u(N)

i − 1‖L∞(0,T ;L∞(O)) ≤ 1 for all i = 1, . . . , n and conse-
quently, by the equivalence of the laws,

P̃
(̃
u

(N)
i ∈ B(1)

)= P
(
u

(N)
i ∈ B(1)

)= 1.

We infer that

P̃
(̃
u

(N)
i ∈ B(1) ∩ B(0)

)= 1,

and this implies that 0 ≤ ũ
(N)
i (x, t) ≤ 1 P̃-a.s. and, taking into account (24),

∑n
i=1 ũ

(N)
i (x, t) ≤ 1, i.e. ũ(N)(x, t) ∈ D

P̃-a.s. Moreover, from (22) we know that ũ(N) converges to ũ strongly in L2(0, T ;L2(O)) P̃-a.s. and thus we conclude
that ũ(x, t) ∈ D for a.e. (x, t) ∈O × (0, T ) P̃-a.s. �

We denote by F̃ and F̃
(N) the filtrations generated by (̃u, W̃ ) and (̃u(N), W̃ (N)), respectively. Lemmas 14–15 in [17]

imply that ũ is progressively measurable with respect to F̃ and that ũ(N) is progressively measurable with respect to F̃
(N).

The following lemma is needed to prove that (̃u, W̃ ) is a martingale solution to (1)–(2).
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Lemma 10. It holds for all s, t ∈ [0, T ] with s ≤ t and all φ1 ∈ L2(O) and φ2 ∈ H 3(O) satisfying ∇φ2 · ν = 0 on ∂O
that

lim
N→∞ Ẽ

∫ T

0

〈̃
u

(N)
i (t) − ũi (t), φ1

〉2 dt = 0, (25)

lim
N→∞ Ẽ

〈̃
u

(N)
i (0) − ũi (0),φ1

〉2 = 0, (26)

lim
N→∞ Ẽ

∫ T

0

∣∣∣∣∣
n∑

j=1

∫ t

0

〈
Aij

(̃
u(N)(s)

)∇ũ
(N)
j (s) − Aij

(̃
u(s)

)∇ũj (s),∇φ2
〉
ds

∣∣∣∣∣dt = 0, (27)

lim
N→∞ Ẽ

∫ T

0

∣∣∣∣∫ t

0

〈
Ti

(̃
u(N)(s)

)− Ti

(̃
u(s)

)
, φ1

〉
ds

∣∣∣∣dt = 0, (28)

lim
N→∞ Ẽ

∫ T

0

∣∣∣∣∣
n∑

j=1

∫ t

0

〈
σij

(̃
u(N)(s)

)
dW̃

(N)
j (s) − σij

(̃
u(s)

)
dW̃j (s),φ1

〉∣∣∣∣∣
2

dt = 0. (29)

Proof. The convergences (25) and (26) can be shown as in the proof of [17, Lemma 16]. The convergence (27) follows
from the Lipschitz continuity of Aij in the bounded domain D:∣∣∣∣∫ t

0

〈
Aij

(̃
u(N)(s)

)∇ũ
(N)
j (s) − Aij

(̃
u(s)

)∇ũj (s),∇φ2
〉
ds

∣∣∣∣
≤
∫ t

0

∥∥Aij

(̃
u(N)(s)

)− Aij

(̃
u(s)

)∥∥
L2(O)

∥∥∇ũ
(N)
j (s)

∥∥
L2(O)

‖∇φ2‖L∞(O) ds

+
∣∣∣∣∫ t

0
Aij

(̃
u(s)

)∇ (̃u(N)(s) − ũ(s)
) · ∇φ2 ds

∣∣∣∣.
Since (̃u(N)) is bounded in L∞(0, T ;L∞(O)) P̃-a.s. and the function u 
→ Aij (u) is Lipschitz continuous on bounded
sets, the strong L2 convergence of (̃u(N)) implies that Aij (̃u

(N)) → Aij (̃u) strongly in L2(0, T ;L2(O)) P̃-a.s. Therefore,
the first term on the right-hand side converges to zero. We deduce from the weak convergence ∇ũ(N) → ∇ũ weakly in
L2(0, T ;L2(O)) P̃-a.s. that also the second term on the right-hand side converges to zero. This shows that

lim
N→∞

∫ t

0

〈
Aij

(̃
u(N)(s)

)∇ũ
(N)
j (s),∇φ2

〉
ds =

∫ t

0

〈
Aij

(̃
u(s)

)∇ũj (s),∇φ2
〉
ds P̃-a.s. (30)

for all φ2 ∈ H 3(O) satisfying ∇φ2 · ν = 0 on ∂O. We compute

Ẽ

∣∣∣∣∫ t

0

〈
Aij

(̃
u(N)(s)

)∇ũ
(N)
j (s),∇φ2

〉
ds

∣∣∣∣3/2

≤ ‖∇φ2‖3/2
L∞(O)

Ẽ

∣∣∣∣∫ t

0

(
1 + ∥∥ũ(N)(s)

∥∥
L2(O)

)∥∥∇ũ(N)(s)
∥∥

L2(O)
ds

∣∣∣∣3/2

≤ C‖φ2‖3/2
H 3(O)

T 3/4
Ẽ

{(
1 + ∥∥ũ(N)

∥∥
L∞(0,T ;L2(O))

)3/2
(∫ T

0

∥∥∇ũ(N)(s)
∥∥2

L2(O)
ds

)3/4}
≤ C‖φ2‖3/2

H 3(O)
T 3/4(

Ẽ
(
1 + ∥∥ũ(N)

∥∥6
L∞(0,T ;L2(O))

))1/4(
Ẽ
∥∥ũ(N)

∥∥2
L2(0,T ;H 1(O))

)3/4 ≤ C.

This bound and the P̃-a.s. convergence (30) allow us to apply the Vitali convergence theorem to infer that (27) holds.
Analogous arguments lead to the convergence Ti (̃u

(N)) → Ti (̃u) strongly in L2(0, T ; L2(O)) P̃-a.s. (since ∂σ/∂uk is
bounded). Moreover, for φ1 ∈ L2(O),

Ẽ

∣∣∣∣∫ t

0

〈
Ti

(̃
u(N)(s)

)
, φ1

〉
ds

∣∣∣∣2 ≤ ‖φ1‖2
L2(O)

Ẽ

∣∣∣∣∫ t

0

∥∥Ti

(̃
u(N)(s)

)∥∥
L2(O)

ds

∣∣∣∣2
≤ C‖φ1‖2

L2(O)
T Ẽ

(
1 + ∥∥ũ(N)

∥∥2
L2(0,T ;L2(O))

)≤ C,
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and Vitali’s convergence theorem implies that (28) holds.
It remains to prove convergence (29). Since W̃ (N) → W̃ in C0([0, T ];Rn), it is sufficient to show that σij (̃u

(N)) →
σij (̃u) in L2(0, T ;L2(O)) P̃-a.s. We estimate for φ1 ∈ L2(O),∫ t

0

∣∣〈σij

(̃
u(N)(s)

)− σij

(̃
u(s)

)
, φ1

〉∣∣2 ds ≤
∫ t

0

∥∥σij

(̃
u(N)(s)

)− σij

(̃
u(s)

)∥∥2
L2(O)

‖φ1‖2
L2(O)

ds

≤ C
∥∥ũ(N)(s) − ũ(s)

∥∥2
L2(0,T ;L2(O))

‖φ1‖2
L2(O)

.

Then, by the strong L2 convergence P̃-a.s. of (̃u(N)),

lim
N→∞

∫ t

0

∣∣〈σij

(̃
u(N)(s)

)− σij

(̃
u(s)

)
, φ1

〉∣∣2 ds = 0.

Furthermore,

Ẽ

∣∣∣∣∫ t

0

∣∣〈σij

(̃
u(N)(s)

)− σij

(̃
u(s)

)
, φ1

〉∣∣2 ds

∣∣∣∣2
≤ C‖φ1‖4

L2(O)
Ẽ

∫ t

0
(
∥∥σij

(̃
u(N)(s)

)∥∥4
L2(O)

+ ‖σij

(̃
u(s)‖4

L2(O)

)
ds

≤ CT ‖φ1‖4
L2(O)

Ẽ
(

sup
0<s<T

∥∥ũ(N)(s)
∥∥4

L2(O)
+ sup

0<s<T

∥∥ũ(s)
∥∥4

L2(O)

)
≤ C.

In view of Vitali’s convergence theorem, we deduce from this bound and the previous convergence that

lim
N→∞ Ẽ

∫ t

0

∣∣〈σij

(̃
u(N)(s)

)− σij

(̃
u(s)

)
, φ1

〉∣∣2 ds = 0.

We deduce from the Itô isometry that

lim
N→∞ Ẽ

∣∣∣∣〈∫ t

0
(σij

(̃
u(N)(s) − σij

(̃
u(s)

))
dW̃j (s),φ1

〉∣∣∣∣2 = 0, (31)

and we can estimate as

Ẽ

∣∣∣∣〈∫ t

0

(
σij

(̃
u(N)(s)

)− σij

(̃
u(s)

))
dW̃j (s),φ1

〉∣∣∣∣2
= Ẽ

∫ t

0

∣∣〈σij

(̃
u(N)(s)

)− σij

(̃
u(s)

)
, φ1

〉∣∣2 ds

≤ ‖φ1‖2
L2(O)

Ẽ

∫ t

0

∥∥σij

(̃
u(N)(s)

)− σij

(̃
u(s)

)∥∥2
L2(O)

ds

≤ CT ‖φ1‖2
L2(O)

Ẽ

(
sup

0<s<T

∥∥ũ(N)(s)
∥∥2

L2(O)
+ sup

0<s<T

∥∥ũ(s)
∥∥2

L2(O)

)
≤ C.

This bound and convergence (31) allow us to apply the dominated convergence theorem to conclude that for any φ1 ∈
L2(O),

lim
N→∞ Ẽ

∫ T

0

∣∣∣∣〈∫ t

0

(
σij

(̃
u(N)(s)

)− σij

(̃
u(s)

))
dW̃j (s),φ1

〉∣∣∣∣2 dt = 0.

This shows (29) and finishes the proof. �

We define

�
(N)
i

(̃
u(N), W̃ (N),φ

)
(t) := 〈

�N

(̃
ui(0)

)
, φ
〉
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−
n∑

j=1

∫ t

0

〈
Aij

(̃
u(N)(s)

)∇ũ
(N)
j (s),∇φ

〉
ds

+ 1

2

∫ t

0

〈
�NTi

(̃
u(N)(s)

)
, φ
〉
ds +

n∑
j=1

〈∫ t

0
�Nσij

(̃
u(N)(s)

)
dW̃

(N)
j (s),φ

〉
,

�i (̃u, W̃ ,φ)(t) := 〈̃
ui(0),φ

〉− n∑
j=1

∫ t

0

〈
Aij

(̃
u(s)

)∇ũj (s),∇φ
〉
ds

+ 1

2

∫ t

0

〈
Ti

(̃
u(s)

)
, φ
〉
ds +

n∑
j=1

〈∫ t

0
σij

(̃
u(s)

)
dW̃j (s),φ

〉
,

for t ∈ [0, T ] and i = 1, . . . , n. The following corollary is essentially a consequence of Lemma 10; see [17, Corollary 17]
for a proof.

Corollary 11. It holds for any φ1 ∈ L2(O) and any φ2 ∈ H 3(O) satisfying ∇φ2 · ν = 0 on ∂O that

lim
N→∞

∥∥〈̃u(N)
i , φ1

〉− 〈̃ui,φ1〉
∥∥

L2(�̃×(0,T ))
= 0,

lim
N→∞

∥∥�(N)
i

(̃
u(N), W̃ (N),φ2

)− �i(̃u, W̃ ,φ2)
∥∥

L1(�̃×(0,T ))
= 0.

With these preparations, we can finish the proof of Theorem 3. Indeed, since u(N) is a strong solution to (6)–(7), it
satisfies the identity〈

u
(N)
i (t), φ

〉= �
(N)
i

(
u(N),W,φ

)
(t) P-a.s.

for a.e. t ∈ [0, T ], i = 1, . . . , n, and φ ∈ H 1(O). In particular, it follows that∫ T

0
E
∣∣〈u(N)

i (t), φ
〉− �

(N)
i

(
u(N),W,φ

)
(t)
∣∣dt = 0, i = 1, . . . , n.

Moreover, since the laws L(u(N),W) and L(̃u(N), W̃ (N)) coincide,∫ T

0
Ẽ
∣∣〈̃u(N)

i (t), φ
〉− �

(N)
i

(̃
u(N), W̃ (N),φ

)
(t)
∣∣dt = 0, i = 1, . . . , n.

We deduce from Corollary 11 that in the limit N → ∞, this equation becomes∫ T

0
Ẽ
∣∣〈̃ui(t), φ

〉− �i(̃u, W̃ ,φ)(t)
∣∣dt = 0, i = 1, . . . , n.

This identity holds for all φ ∈ H 3(O) satisfying ∇φ · ν = 0 on ∂O and, by density, also for all φ ∈ H 1(O). Hence, for
a.e. t ∈ [0, T ] and P̃-a.s.,∣∣〈̃ui(t), φ

〉− �i(̃u, W̃ ,φ)(t)
∣∣= 0, i = 1, . . . , n.

The definition of �i implies that for a.e. t ∈ [0, T ] P̃-a.s. and for all φ ∈ H 1(O),

〈̃
ui(t), φ

〉= 〈̃
ui(0),φ

〉− n∑
j=1

∫ t

0

〈
Aij

(̃
u(s)

)∇ũj (s),∇φ
〉
ds

+ 1

2

∫ t

0

〈
Ti

(̃
u(s)

)
, φ
〉
ds +

n∑
j=1

〈∫ t

0
σij

(̃
u(s)

)
dW̃j (s),φ

〉
.
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Setting Ũ = (�̃, F̃, F̃, P̃), we deduce that (Ũ , ũ, W̃ ) is a martingale solution to (1)–(2), and the stochastic process ũ

satisfies the estimates

Ẽ

∫ T

0

∥∥ũ(t)
∥∥2

H 1(O)
dt < ∞, Ẽ

(
sup

0<t<T

∥∥ũ(t)
∥∥p

L∞(O)

)
< ∞ for p < ∞.

3. Examples

We present two examples that fulfill Assumptions (A3)–(A7).

3.1. Maxwell–Stefan systems

Maxwell–Stefan equations describe the dynamics of fluid mixtures in the diffusion regime. Applications include mem-
brane electrolysis processes [29], ion transport through nanopores [4], and dynamics of lithium-ion batteries [42].
Here, we consider an uncharged three-species mixture with the concentrations u1, u2 and the solvent concentration
u3 = 1 − u1 − u2. The diffusion matrix is given by

A(u) = 1

a(u)

(
d2 + (d0 − d2)u1 (d0 − d1)u1

(d0 − d2)u2 d1 + (d0 − d1)u2

)
, where

a(u) = d0d1u1 + d0d2u2 + d1d2u3,

and di > 0 for i = 0,1,2 are diffusion coefficients [34, Section 4.1]. The matrix A(u) is Lipschitz continuous on D since
a(u) is strictly positive and bounded from above (Assumption (A3)). The entropy density is given by

h(u) =
3∑

i=1

(
ui(logui − 1) + 1

)
.

Its derivative w = h′(u) = (log(u1/u3), log(u2/u3))
� can be explicitly inverted on D:

ui = ewi

1 + ew1 + ew2
, i = 1,2.

Moreover, there exists c > 0 such that for z ∈ R
n,

z�h′′(u)A(u)z = d2z
2
1

u1a(u)
+ d1z

2
2

u2a(u)
+ d0(z1 + z2)

2

u3a(u)
≥ c

(
z2

1

u1
+ z2

2

u2

)
.

Thus, Assumption (A5) is satisfied with m = 1/2.
We choose the multiplicative noise

σ(u) =
(

u1u3 0
0 u2u3

)
,

where we recall that u3 = 1 −u1 −u2. This noise term guarantees that the solutions stay in the Gibbs simplex a.s. Similar
terms are well-known in stochastic reaction-diffusion equations; see, e.g. [36, (8)]. Then the expressions∣∣∣∣ ∂h

∂ui

(u)σii(u)

∣∣∣∣= ∣∣∣∣uiu3 log
ui

u3

∣∣∣∣,∣∣∣∣σii(u)
∂σii

∂ui

(u)
∂h

∂ui

(u)

∣∣∣∣= ∣∣∣∣uiu3(u3 − ui) log
ui

u3

∣∣∣∣,∣∣∣∣σii(u)
∂2h

∂u2
i

(u)σii(u)

∣∣∣∣= uiu3(ui + u3), i = 1,2,
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are bounded for u ∈D, proving Assumption (A6). It remains to verify Assumption (A7). To simplify the notation, we set
uδ = (uδ

1, u
δ
2) with uδ

i := [ui]δ . and uδ
3 = 1 − uδ

1 − uδ
2. We compute the elements Mδ

ij of the matrix h′′(uδ)A(u):

Mδ
11 = 1

a(u)

(
d2

uδ
1

+ (d0 − d2)

(
u1

uδ
1

− u3

uδ
3

)
+ d0

uδ
3

)
,

Mδ
12 = 1

a(u)

(
(d0 − d1)

(
u1

uδ
1

− u3

uδ
3

)
+ d0

uδ
3

)
,

Mδ
21 = 1

a(u)

(
(d0 − d2)

(
u2

uδ
2

− u3

uδ
3

)
+ d0

uδ
3

)
,

Mδ
22 = 1

a(u)

(
d2

uδ
1

+ (d0 − d1)

(
u2

uδ
2

− u3

uδ
3

)
+ d0

uδ
3

)
.

It holds for z ∈R
n that

z�h′′(uδ
)
A(u)z − ch

2∑
i=1

z2
i

uδ
i

≥ z�Rδ(u)z,

where ch = min{d0d1, d0d2, d1d2} > 0 and

z�Rδ(u)z = d0 − d2

a(u)(1 + δ)2

(
u1

uδ
1

− u3

uδ
3

)
z2

1 + d0 − d1

a(u)(1 + δ)2

(
u1

uδ
1

− u3

uδ
3

)
z1z2

+ d0 − d2

a(u)(1 + δ)2

(
u2

uδ
2

− u3

uδ
3

)
z1z2 + d0 − d1

a(u)(1 + δ)2

(
u2

uδ
2

− u3

uδ
3

)
z2

2.

Since ui/u
δ
i is bounded for u ∈ D and i = 1,2,3, it follows that Rδ(u) → 0 as δ → 0 uniformly in u ∈ D. We infer that

Assumption (A7) is fulfilled.

3.2. Biofilm model

Consider a fluid mixture consisting of n concentrations u1, . . . , un and the solvent concentration un+1 such that∑n+1
i=1 ui = 1. We suppose that the concentrations are driven by the partial pressures pi = ui (i = 1, . . . , n), while the

solvent has the constant partial pressure pn+1. Allowing for the presence of an interphase force and neglecting inertia
effects, a volume-filling cross-diffusion model with diffusion matrix A(u), defined by

Aii(u) = 1 − ui, Aij (u) = −ui for i �= j,

was formally derived in [34, Example 4.3] from an Euler system with linear friction force. This model can be also used to
describe the dynamics of a bacterial biofilm with subpopulations u1, . . . , un and the volume fraction un+1 of “free space”,
in which the biofilm can expand [14]. As in the previous example, we choose the entropy density and the noise term

h(u) =
n+1∑
i=1

(
ui(logui − 1) + 1

)
, σii(u) = uiun+1, σij (u) = 0 for i �= j.

The previous example has shown that Assumption (A6) is satisfied. Assumption (A5) is fulfilled with m = 1/2 since for
all u ∈D and z ∈R

n,

z�h′′(u)A(u)z =
n∑

i=1

z2
i

ui

.

It remains to check Assumption (A7). For this, we compute

z�h′′(uδ
)
A(u)z −

n∑
i=1

z2
i

uδ
i

= z�Rδ(u)z, where
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Rδ(u) =
n∑

i,j=1

(
un+1

uδ
n+1

− ui

uδ
i

)
zizj .

It holds that Rδ(u) → 0 as δ → 0 uniformly in u ∈D.

Appendix: Technical results

For the convenience of the reader, we recall some technical results used in this paper. Since we are working on the non-
metric space ZT , we need Jakubowski’s generalization of the Skorokhod theorem in the form given in [10, Theorem C.1]
(see [32] for the original theorem).

Theorem 12 (Skorokhod–Jakubowski). Let Z be a topological space such that there exists a sequence (fm)m∈N of
continuous functions fm : Z → R that separate points of Z. Let S be the σ -algebra generated by (fm)m∈N. Then

(1) Every compact subset of Z is metrizable.
(2) If (μm)m∈N is a tight sequence of probability measures on (Z,S), then there exists a subsequence (μmk

)k∈N, a
probability space (�̃, F̃, P̃), and Z-valued Borel measurable random variables ξk and ξ such that (i) μmk

is the law
of ξk and (ii) ξk → ξ almost surely on �̃.

The following result is proved in [39] (also see [8, Theorem B2]).

Theorem 13 (Kuratowski). Let X be a separable complete metric space, Y a Borel set of X, and f : Y → X a one-to-
one Borel measurable mapping. Then for any Borel set B ⊂ Y , the image f (B) is a Borel set.

The Wong–Zakai approximations converge to the Wiener process. This was proved in [48] in the one-dimensional
case, extended in [45] to higher dimensions, and unified in [31, Chapter 6, Theorem 7.2].

Theorem 14 (Convergence of Wong–Zakai approximations). Let X(η) be the solutions to the family of ODEs, indexed
by the random variable ω ∈ �, on a finite-dimensional vector space H ,

dX(η)(t) = a
(
X(η)(t), t

)
dt + b

(
X(η)(t), t

)
dW(η)(t), t ∈ [0, T ], X(η)(0) = X0,

where W(η) are the Wong–Zakai approximations (10) of a Wiener process with time step η > 0; a(X, ·), b(X, ·),
(∂b/∂t)(X, ·), and (∂b/∂X)(X, ·) are continuous; and a(·, t), b(·, t), and (∂b/∂X)(·, t) are Lipschitz continuous (and
consequently grow at most linearly). Furthermore, let X be a solution to the Stratonovich stochastic differential equation

dX(t) = a
(
X(t), t

)
dt + b

(
X(t), t

) ◦ dW(t), t ∈ [0, T ], X(0) = X0.

Then

lim
η→0

E

(
sup

0<t<T

∥∥X(η)(t) − X(t)
∥∥2

H

)
= 0.
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