
Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2021, Vol. 57, No. 1, 455–468
https://doi.org/10.1214/20-AIHP1084
© Association des Publications de l’Institut Henri Poincaré, 2021

Continuity in κ in SLEκ theory using a constructive method and
Rough Path Theory

Dmitry Beliaeva,*, Terry J. Lyonsa,† and Vlad Margarintb

aUniversity of Oxford, Mathematical Institute, Radcliffe Observatory, Andrew Wiles Building, Woodstock Rd, Oxford OX2 6GG, United Kingdom.
E-mail: *belyaev@maths.ox.ac.uk; †terry.lyons@maths.ox.ac.uk

bNYU-ECNU Institute of Mathematical Sciences at NYU Shanghai, 1555 Century Ave, Pudong, Shanghai, 200122, China. E-mail: vdm2@nyu.edu

Received 26 February 2020; revised 16 June 2020; accepted 1 July 2020

Abstract. Questions regarding the continuity in κ of the SLEκ traces and maps appear very naturally in the study of SLE. In order to
study the first question, we consider a natural coupling of SLE traces: for different values of κ we use the same Brownian motion. It is
very natural to assume that with probability one, SLEκ depends continuously on κ . It is rather easy to show that SLE is continuous in
the Carathéodory sense, but showing that SLE traces are continuous in the uniform sense is much harder. In this note we show that for
a given sequence κj → κ ∈ (0,8/3), for almost every Brownian motion SLEκ traces converge locally uniformly. This result was also
recently obtained by Friz, Tran and Yuan using different methods. In our analysis, we provide a constructive way to study the SLEκ

traces for varying parameter κ ∈ (0,8/3). The argument is based on a new dynamical view on the approximation of SLE curves by
curves driven by a piecewise square root approximation of the Brownian motion.

The second question can be answered naturally in the framework of Rough Path Theory. Using this theory, we prove that the
solutions of the backward Loewner Differential Equation driven by

√
κBt when started away from the origin are continuous in the

p-variation topology in the parameter κ , for all κ ∈R+.

Résumé. Des questions touchant à la continuité en κ des traces et des applications conformes du SLEκ apparaissent très naturellement
dans l’étude des SLE. Afin d’étudier la première de ces questions, nous considérons un couplage naturel des traces des SLE: pour
différentes valeurs de κ nous utilisons le même mouvement brownien. Il est très naturel de supposer qu’avec probabilité 1, SLEκ

dépend continument de κ . Il est assez facile de montrer la continuité dans le sens de Carathéodory, mais montrer une telle continuité
uniforme est bien plus ardu. Dans cette note, nous montrons que pour une suite donnée κj → κ ∈ (0,8/3), et pour presque toute
trajectoire du mouvement brownien, les traces de SLEκ convergent localement uniformément. Ce résultat a été également obtenu
récemment par Friz, Tran et Yuan par d’autres méthodes. Dans notre analyse, nous donnons une façon constructive d’étudier les traces
de SLEκ pour un paramètre variable κ ∈ (0,8/3). L’argument se base sur un nouveau point de vue dynamique sur les approximations
des courbes SLE par des courbes conduites par des approximations par morceaux de fonctions racine carrée du mouvement brownien.

La seconde question peut être résolue naturellement dans le cadre de la théorie des chemins rugueux. À l’aide de cette théorie,
nous montrons que les solutions de l’équation différentielle de Loewner rétrograde conduite par

√
κBt , partant loin de l’origine, sont

continues dans la topologie de la p-variation en le paramètre κ , pour tout κ ∈R+.
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1. Introduction and main results

The Schramm–Loewner evolution SLEκ is a one-parameter family of random planar growth processes constructed as a
solution to Loewner equation when the driving term is a Brownian motion with diffusivity κ > 0. It was introduced in [12]
by Oded Schramm, in order to give meaning to the scaling limits of Loop-Erased Random Walk and Uniform Spanning
Trees.

The problem of continuity of the traces generated by Lowener chains was studied in the context of chains driven by
bounded variation drivers in [14], where the continuity of the traces generated by the Loewner chains was established.
Also, the question appeared in [9], where the Loewner chains were driven by Hölder-1/2 functions with norm bounded

https://imstat.org/journals-and-publications/annales-de-linstitut-henri-poincare/
https://doi.org/10.1214/20-AIHP1084
mailto:belyaev@maths.ox.ac.uk
mailto:terry.lyons@maths.ox.ac.uk
mailto:vdm2@nyu.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


456 D. Beliaev, T. J. Lyons and V. Margarint

by σ with σ < 4. In this context, the continuity of the corresponding traces was established with respect to the uniform
topologies on the space of drivers and with respect to the same topology on the space of simple curves in H. Another
paper that addressed a similar problem is [13], in which the condition ‖U‖1/2 < 4 is avoided at the cost of assuming some
conditions on the limiting trace. Some stronger continuity results are obtained in [2] under the assumption that the driver
has finite energy, in the sense that U̇ is square integrable.

The question appeares naturally when considering the solution of the corresponding welding problem in [1]. In this
paper it is proved that the trace obtained when solving the corresponding welding problem is continuous in a parameter
that appears naturally in the setting. In the context of SLEκ traces the problem was studied in [6], where the continuity in
κ of the SLEκ traces was proved for any κ < 2.1. In [3] the authors proved the continuity of the traces for κ < 8/3.

We emphasize that our proof uses a result from [3] but the method of showing the continuity is different from the one
presented in [3]. In particular, our method gives a constructive way to prove the continuity in κ for κ ∈ (0,8/3) by square
root interpolating the Brownian motion driver.

Another element of the analysis is Rough Path Theory [10] introduced by Terry Lyons in 1998. The theory provides
a deterministic platform to study stochastic differential equations which extends both Young’s integration and stochas-
tic integration theory beyond regular functions and semi-martingales. Also, Rough Path Theory provides a method of
constructing solutions to differential equations driven by paths that are not of bounded variation but have controlled
roughness. In this note, we use Rough Path Theory in order to study the backward Loewner differential equation started
away from the origin. More precisely, we first show that the backward Loewner differential equation driven by

√
κBt

started away from singularity is a Rough Differential Equation as in Rough Path Theory and then we prove the continuity
of the solutions of this equation in the parameter κ in the Rough Path p-variation topology.

The forward (chordal) Loewner evolution driven by function λ(t), t ∈ [0, T ] is defined as the solution of the following
ODE

∂tgt (z) = 2

gt (z) − λ(t)
, g0(z) = z, z ∈ H. (1)

The corresponding backward Loewner evolution is the solution of

∂tht (z) = − 2

ht (z) − λ(t)
, h0(z) = z, z ∈ H. (2)

The connection between them is that if we take the driving function λ(T − t) in the backward evolution, then hT = g−1
T .

It is a standard fact that gt : Ht = H \ Kt → H where Ht is the set of points where the solution exists up to time t .
Under certain assumptions there is a continuous curve γ (t) = limy→0 g−1

t (λ(t)+ iy). This curve is called the trace of the
Loewner evolution and Ht is the unbounded component of H \ γ ([0, t]).

Stochastic Loewner Evolution SLEκ with κ ≥ 0 is the Loewner Evolution driven by
√

κBt , where Bt is the standard
Brownian motion. It is known that the trace of SLE exist almost surely.

It is natural to ask how the trace of SLE depends on κ . This question has many different interpretations. In this note we
are interested in the following form. Given a sample of the Brownian motion, we would like to show that with probability
one, SLEκ trace γ κ(t) is continuous in κ in the metric of the sup-norm on [0, T ] for any T .

Johansson Viklund, Rohde and Wong proved [6] this type of continuity for κ ∈ [0,8(2−√
3)). Friz, Tran and Yuan [3]

obtained a similar result for κ < 8/3. In this note we obtain a constructive method to compare SLEκ traces with varying
parameter κ and prove their continuity in κ for κ ∈ (0,8/3). Compared with the method in [3], we show how one can
compare the SLEκ traces using an approximation algorithm developed in [16]. We emphasize that the algorithm in [16]
is defined for fixed κ , while in this note, we construct a dynamical version of this algorithm to compare SLEκ traces for
κ ∈ (0,8/3).

Theorem 1.1. Let us fix κ ∈ (0,8/3) and a sequence κj → κ , then for every T and almost every ω

sup
t∈[0,T ]

∣∣γ κj (t) − γ κ(t)
∣∣ → 0,

where ω is an element of the probability space on which we define the Brownian motion. Moreover, for the curves γ n,κj (t)

generated by the square-root interpolation of the drivers
√

κjBt (which will be rigorously defined by (3) in Section 2), we
have that for almost every Brownian motion

sup
t∈[0,T ]

∣∣γ n,κj (t) − γ n,κ (t)
∣∣ → 0.
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The second main result of the paper is Theorem 3.14 which roughly speaking states that the backward Loewner
Evolution started away from the origin is a well defined Rough Differential Equation and its unique solution depends
continuously on the starting point and on the parameter κ . To give the precise statement we will need some rough paths
background that will be introduced in Section 3 and so the precise formulation will be given at the end of Section 3.2.

2. Proof of the first main result

2.1. Deterministic results

We will use a rather natural approximation algorithm that was introduced by Marshall and Rohde and subsequently used
by many authors. The ODE structure of the Loewner evolution implies that gt+s can be written as a composition of two
Loewner evolutions, one run by λ on [0, t] and the other by λ on [t, t + s]. The same is true if we split the initial time
interval into many small time interval. This suggests that if we can split the time interval (we will always use [0,1] for the
sake of simplicity) into small intervals and on each interval we approximate the driver by a simple function for which the
Loewner evolution can be solved explicitly, then we can approximate the original Lowener evolution by a composition of
many relatively simple explicit functions.

There are, essentially, only two cases where the Loewner evolution can be solved explicitly: when the driver is constant
and when it is a multiple of the square root. If the driver function is Hölder-1/2 continuous or weakly Hölder-1/2
continuous, then it is natural to approximate the driver by a piecewise square root function. To be more precise, we fix
some integer n and consider tk = k/n, k = 0, . . . , n. For a driving function λ(t) we define the approximation λn(t) which
is defined by

λn(t) = √
n
(
λ(tk+1) − λ(tk)

)√
t − tk + λ(tk) t ∈ [tk, tk+1]. (3)

This is a piecewise square root function which coincides with λ at all tj .
It is known [7] that if the driving function is of the form λ(t) = c

√
t + d then the Loewner evolution can be solved

explicitly and gt is a relatively simple Christoffel-Schwarz type function whose explicit form is not that important. What
is important, is that the corresponding trace is a straight interval. Its length is proportional to

√
t with constant which

explicitly depends on c and it makes an angle απ with the positive real axis where

α = 1

2
− 1

2

c√
16 + c2

.

From now on we make some assumptions about the regularity of the driving function.

Assumption 2.1. A function λ is weakly Hölder-1/2 continuous. This means that there exists a subpower function φ

(that is the function growing at infinity slower that any positive power) such that for all δ > 0

osc(λ, δ) := sup
{∣∣λ(t) − λ(s)

∣∣ : s, t ∈ [0,1], |t − s| ≤ δ
} ≤ √

δφ

(
1

δ

)
. (4)

Assumption 2.2. There exist c0 > 0, y0 > 0 and 0 < β < 1 such that∣∣f̂ ′
t (iy)

∣∣ ≤ c0y
−β, ∀y ≤ y0,

where f̂t (z) = g−1
t (z + λ(t)).

It is known [5] that if the Loewner evolution satisfies Assumptions 2.1 and 2.2, then there is a trace. Under the same
assumptions Tran proved that LE trace generated by the driving function λn converges to the trace generated by λ.

Theorem 2.3 (Theorem 2.2 of [16]). Let us assume that the driving function λ(t) satisfies Assumptions 2.1 and 2.2. Let
λn be a square root approximation defined by (3). Let γ and γ n be the corresponding traces. Then there exists a subpower
function φ̃(n) which depends on φ, c0 and β (from Assumptions mentioned above), such that for all n ≥ 1

y2
0

and t ∈ [0,1]
we have that

∣∣γ n(t) − γ (t)
∣∣ ≤ φ̃(n)

n
1
2 (1−

√
1+β

2 )

.
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This theorem shows that γ n converges uniformly to γ , moreover, we have a control of the rate of convergence in terms
of β .

Theorem 2.3 is one of the main ingredients in our proof. Beyond it, we will also need several technical results that
were proved before. We reproduce them here for readers’ convenience.

First, following [16], we define

An,c,φ =
{
x + iy ∈H : |x| ≤ φ(n)√

n
,

1√
nφ(n)

≤ y ≤ c√
n

}
. (5)

To shorten many formulas we will use the following notations. Recall that tk = k/n. We define γk to be the image of
γ under gtk − λ, namely,

γk(s) = gtk

(
γ (tk + s)

) − λ(tk), 0 ≤ s ≤ 1 − tk.

In the same way we define

γ n
k (s) = gn

tk

(
γ n(tk + s)

) − λn(tk), 0 ≤ s ≤ 1 − tk.

We would like to say that γk(1/n) is in some An,c,ψ , but unfortunately this might be false. Instead we have the
following Lemma.

Lemma 2.4 (Lemma 3.2 of [16]). There exists a subpower function ψ depending only on φ, c0 and β (as in Assumptions
2.1 and 2.2) such that for n ≥ 1 and 0 ≤ k ≤ n − 1, there exists s ∈ [0, 2

n
] such that γk(s) ∈ A

n,2
√

2,ψ
.

For γ n
k we have a similar, but slightly simpler, estimate.

Lemma 2.5 (Lemma 3.3 of [16]). There exists a subpower function ψ̃ depending only on φ, c0 and β (as in Assumptions
2.1 and 2.2) such that γ n

k (r) is in the box A
n,2

√
2,ψ̃

for n ≥ 1, 0 ≤ k ≤ n − 1 and r ∈ [ 1
n
, 2

n
].

We will need the following result describing the uniform continuity of traces.

Lemma 2.6 (Proposition 3.8 of [5]). Let us consider a Loewner evolution satisfying Assumptions 2.1 and 2.2. Then,
there exists a subpower function φ1 such that if 0 ≤ t ≤ t + s ≤ 1, we have that

∣∣γ (t + s) − γ (t)
∣∣ ≤ φ1

(
1

y

)
2

1 − β
y1−β (6)

for 0 ≤ s ≤ y2 ≤ y2
0 .

Finally, we will need a result stating that Loewner evolutions with close drivers are close to each other away from the
real line.

Lemma 2.7 (Lemma 2.3 of [6]). Let 0 < T < ∞. Suppose that for t ∈ [0, T ], h(1)
t and h

(2)
t satisfy the backward Loewner

differential equation (2) with drivers λ
(1)
t and λ

(2)
t . Let

ε = sup
s∈[0,T ]

∣∣λ(1)
s − λ(2)

s

∣∣.
Then for u = x + iy ∈ H we have

∣∣h(1)
T (u) − h

(2)
T (u)

∣∣
≤ ε exp

[
1

2

(
log

IT ,y |(h(1)
T )′(u)|
y

log
IT ,y |(h(2)

T )′(u)|
y

)1/2

+ log log
IT ,y

y

]
,

where IT ,y = √
4T + y2.
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We will need a slight modification of this result, i.e. we need to apply it for two different staring points u1 and u2 with
the same imaginary value y = Imu1 = Imu2. Let z

(j)
s := h

(j)
s (z) − λ

(j)
s , for j = 1,2. Following, the proof of the result in

[6], one can integrate the differential equation for H(s) = h
(1)
s (z) − h

(2)
s (z), i.e.

Ḣ (s) − H(s)ψ(s) = (
λ(2)

s − λ(1)
s

)
ψ(s),

with ψ(s) = 2
z
(1)
s z

(2)
s

. The solution to this equation is

H(s) = u(s)−1
(

H(0) +
∫ s

0

(
λ(2)

r − λ(1)
r

)
u(r)ψ(r) dr

)
, (7)

with u(s) = exp(− ∫ r

0 ψ(s) ds). The estimate in Lemma 2.7 is obtained for H(0) = 0. One can show (see [6]) that the

following bound holds u(s)−1 = exp(
∫ r

0 ψ(s) ds) ≤ (4s+y2)1/2

y
. Thus, when the two initial conditions have different real

parts, one obtains and additional factor and the estimate reads

∣∣h(1)
T (u1) − h

(2)
T (u2)

∣∣ ≤ ∣∣Re(u1) − Re(u2)
∣∣IT ,y

y
+ ε exp

[
1

2
(logA1 logA2)

1/2 + log log
IT ,y

y

]
, (8)

where

Ak = IT ,y |(h(k)
T )′(u)|
y

, k = 1,2.

2.2. Proof of Theorem 1.1

In this section we apply the results of the previous part in the case when the driving function is of the form
√

κBt . We are
interested in how things change when κ is changing.

We start by discussing Assumptions 2.1 and 2.2. It is easy to see that the first one is satisfied for sufficiently small δ

since osc(Bt , δ)/
√

2δ log(1/δ) → 1. For all δ we use the following result.

Proposition 2.8 (Theorem 3.2.4 in [8]). Let Bt be the standard Brownian motion on [0,1]. There is an absolute constant
c < ∞ such that for all 0 < δ ≤ 1 and r > c

P
[
osc(Bt , δ) ≥ r

√
δ log(1/δ)

] ≤ cδ(r/c)2
.

This means that if we take r large enough, then we have a uniform bound on osc with very high probability. Alterna-
tively, for almost every Bt there is (random) r such that osc ≤ r

√
δ log(1/δ). Throughout our analysis the driver is

√
κBt ,

with κ ∈ (0,8/3). Thus, we can merge the constant κ in the modulus of continuity of the driver
√

κBt and estimate it
directly with the biggest value. We will do the probabilistic version of this estimate in the next section.

Assumption 2.2 was established for SLE in [3].

Proposition 2.9 (Corollary 4.2 in [3]). Let 0 < κ− < κ+ < 8/3. Then there exist β < 1 and a random variable C(ω) < ∞
such that almost surely

sup
(t,κ)∈[0,1]×[κ−,κ+]

∣∣f̂ ′
t (iy)

∣∣ ≤ C(ω)y−β

for all y ∈ [0,1].

Let us consider two parameters κ1, κ2 ∈ (0,8/3) and two Loewner evolutions driven by
√

κ1Bt and
√

κ2Bt . The
corresponding maps and curves will be denoted by superscripts (1) and (2) correspondingly.

Throughout this section, the precise subpower function that we use is changing from line to line. Unless it might lead
to a confusion, we do not track these changes in order to simplify notations.

Our goal is to estimate the supremum of |γ (1)(t) − γ (2)(t)|. By the triangle inequality∣∣γ (1)(t) − γ (2)(t)
∣∣ ≤ ∣∣γ (1)(t) − γ n,(2)(t)

∣∣ + ∣∣γ n,(2)(t) − γ (2)(t)
∣∣ (9)

where γ n,(j) is the trace obtained form interpolating with square root terms the driver
√

κjBt .
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In order to control the first term, we first fix an arbitrary interval I = [tk, tk+2], with 0 ≤ k ≤ n − 2. We will estimate
|γ (1)(s + tk) − γ n,(2)(r + tk)| for all r ∈ [ 1

n
, 2

n
], and for the specific point s obtained in the Lemma 2.4. Combining with

the uniform continuity of γ from Lemma 2.6, we will have an estimate for |γ (1)(r + tk)−γ n,(2)(r + tk)| for all r ∈ [ 1
n
, 2

n
].

Redoing the same analysis on each interval in the time discretization, we obtain the desired estimate. The second term in
the inequality (9) is estimated by Theorem 2.3.

Then, to be more precise, let z = γ
(1)
k (s), w = γ

n,(2)
k (r), with s and r , as before.

∣∣γ (1)(s + tk) − γ n,(2)(r + tk)
∣∣ ≤ ∣∣f̂ (1)

tk
(z) − f̂

(1)
tk

(w)
∣∣ + ∣∣f̂ (1)

tk
(w) − f̂

n,(2)
tk

(w)
∣∣. (10)

As in [16], we estimate the first term in (10) using

∣∣f̂ (1)
tk

(z) − f̂
(1)
tk

(w)
∣∣ ≤ (2 Im z)

∣∣(f̂ (1)
tk

)′
(z)

∣∣ exp
(
4dH,hyp(z,w)

)
,

where dH,hyp(z,w) = Arccosh(1 + |z−w|2
2 Im z Imw

) is the hyperbolic distance in H. To estimate this we use the Proposition 2.9.
To estimate the second term in (10) we use Lemma 2.7. For this we estimate the distance between the two driving

terms:
√

κ1Bt and the square root interpolation of the
√

κ2Bt

∣∣λn
κ2

(t) − √
κ1Bt

∣∣ ≤ ∣∣λn
κ2

(t) − √
κ2Bt

∣∣ + |√κ2Bt − √
κ1Bt |.

Thus, we obtain combining the estimates with the ones in Subsection 3.2 of [16], that

ε := sup
t∈[0,1]

∣∣λn
κ2

(t) − √
κ1Bt

∣∣ ≤ φ(n)√
n

+ |√κ1 − √
κ2| sup

t∈[0,1]
|Bt | ≤ φ(n)√

n
+ c|√κ1 − √

κ2|.

Let u1 = x1 + iy := w + √
κ1Btk and let u2 = x2 + iy := w + λn

κ2
(tk). Then λn

κ2
(tk) is constructed such that λn

κ2
(tk) =√

κ2Btk . Thus, we have that |Re(u1) − Re(u2)| ≤ |√κ1 − √
κ2|Btk . By (8), we have that

∣∣f (1)
tk

(u1) − f
n,(2)
tk

(u2)
∣∣ ≤ |√κ1 − √

κ2|Btk

Itk,y

y
+ ε exp

[
1

2
(logA1 logA2)

1/2 + log log
Itk,y

y

]
, (11)

where

Aj = Itk,y |(f (j)
tk

)′(uj )|
y

, j = 1,2

with

ε ≤ 2φ(n)√
n

+ c|√κ1 − √
κ2|.

These estimates are used for points inside the boxes An,c,φ . Thus, for y = Imu1 = Imu2 = Imw ∈ [ 1√
nφ(n)

, 2
√

2√
n

] we have
that

Itk,y

y
≤ 2

√
2
√

nφ(n),

where φ(n) is some subpower function of n. Using that f̂ ′
tk
(w) = (f

(1)
tk

)′(u1), we obtain from Proposition 2.9 the estimate

∣∣(f (1)
tk

)′
(u1)

∣∣ ≤ cy−β(κ1) ≤ cφ(n)β(κ1)
√

n
β(κ1)

.

and the general estimate

∣∣(f n,(2)
tk

)′
(u2)

∣∣ ≤ C(1/y + 1) ≤ 2Cφ(n)
√

n.
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Note that the second estimate holds true for any conformal map of H. Combining these estimates, we obtain that

∣∣f (1)
tk

(u1) − f
n,(2)
tk

(u2)
∣∣

≤ |√κ1 − √
κ2|Btk 2

√
2
√

nφ(n)

+ φ(n)√
n

exp

[√
1 + β(κ1)

2
log

(
cφ(n)

√
n
) + log log 2

√
2nφ(n)

]

+ c|√κ1 − √
κ2| exp

[√
1 + β(κ1)

2
log

(
cφ(n)

√
n
) + log log 2

√
2nφ(n)

]

≤ φ(n)

√
n

1−
√

1+β(κ1)

2

+ �
(|√κ1 − √

κ2|, n
) + �

(|√κ1 − √
κ2|, κ1, n

)
,

where

�
(|√κ1 − √

κ2|, n
) = �(n) := |√κ1 − √

κ2|ĉ2
√

2
√

nφ(n)

with ĉ < ∞ a.s. and

�
(|√κ1 − √

κ2|, κ1, n
) = �(n) := c|√κ1 − √

κ2| exp

[√
1 + β(κ1)

2
log

(
cφ(n)

√
n
) + log log 2

√
2nφ(n)

]
.

Thus, using that f̂
(1)
tk

(w) − f̂
n,(2)
tk

(w) = f
(1)
tk

(w + √
κ1Bt) − f

n,(2)
tk

(w + λn
κ2

) and (10) we obtain that

∣∣γ (1)(s + tk) − γ n,(2)(r + tk)
∣∣ ≤ φ1(n)

√
n

1−β(κ1)
+ φ(n)

√
n

1−
√

1+β(κ1)

2

+ �(n) + �(n),

for all r ∈ [ 1
n
, 2

n
]. Using that

√
1+β

2 > β , we obtain that

∣∣γ (1)(s + tk) − γ n,(2)(r + tk)
∣∣ ≤ φ2(n)

√
n

1−
√

1+β(κ1)

2

+ �(n) + �(n), (12)

for all r ∈ [tk+1, tk+2] and 0 ≤ k ≤ n − 2 and hence for all r ∈ [0,1].
In order to estimate the second term in (9), i.e. |γ (2)(t) − γ n,(2)(t)|, we use directly the result from Theorem 2.3, i.e.

we have that

∣∣γ n,(2)(t) − γ (2)(t)
∣∣ ≤ φ̃(2)(n)

n
1
2 (1−

√
1+β(κ2)

2 )

,

where φ̃(2)(n) is a subpower function that depends on the approximation of the driver
√

κ2Bt .
Thus, overall we have the following estimate that we control using the probabilistic estimates in the next section

∣∣γ (1)(t) − γ (2)(t)
∣∣ ≤ φ2(n)

√
n

1−
√

1+β(κ1)

2

+ �(n) + �(n) + φ̃(2)(n)

n
1
2 (1−

√
1+β(κ2)

2 )

.

2.3. Probabilistic estimates

We first consider the estimate in Proposition 2.9 in order to obtain control on the derivative of f̂t (z). It follows from
Proposition 2.8 that there exists constants c1 (depending on κ) and c2 such that

P

[
osc

(√
κBt ,

1

m

)
≥ c1

√
logm

m

]
≤ c2

n2
. (13)
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Notice that in Theorem 2.3 the subpower function is φ(n) = √
log(n). Then as in [16], by going through the proof, one

sees that the subpower functions are changed by adding, multiplying and exponentiating constants. Hence the if we merge
the dependence on κ in the initial subpower function, i.e. we start with

√
κ logn, then we end up with c(

√
κ logn)c

′
for

some constants c and c′. Using (12) we obtain that

P

[∥∥γ (1) − γ n,(2)
∥∥[0,1],∞ ≤ c6(κ logm)c7

√
m

1−
√

1+β(κ1)

2

+ �(m) + �(m) for all m ≥ n

]

≥ 1 −
(

c2(κ1)

n2
+ c3(κ1)

nc4(κ1)/2

)
.

Next, by [16], there are c4 and c5 depend on κ2 such that

P

[∥∥γ (2)(t) − γ m,(2)(t)
∥∥[0,1],∞ ≤ c1(κ2 log(m))c2

√
m

1−
√

1+β(κ2)

2

for all m ≥ n

]
≥ 1 − c4

nc5
.

The previous analysis performed for the two values κ1 and κ2 can be extended for sequences κj → κ .
First, we apply the previous Lemmas 2.4 and 2.5 for sequences κj → κ . Next, we use the almost sure estimate from

Proposition 2.9 for the sequence κj → κ by making use that the constant C(ω) in

sup
(t,κ)∈[0,1]×[κ−,κ+]

∣∣f̂ ′
t (iy)

∣∣ ≤ C(ω)y−β

does not depend on the sequence κj → κ .
Continuing the analysis, the sizes of the boxes An,c,φ depend on κj via the dependence of the subpower function that

we choose, on β = β(κj ) and on φ (that depends also on κj , since the driver is
√

κjBt ). However, since the constant

c = 2
√

2 is fixed, the upper level of the boxes remains the same as we consider κj → κ , only their width and lower level
changes.

We consider κj → κ by choosing for each j the largest box that contains both points z and w in order to estimate the
hyperbolic distance between them, i.e. we make use of the fact that the upper height of the boxes coincides and we work
on A

n,2
√

2,ξ(κj )
with ξ(κj ) = max(ψ(κj ), ψ̃(κ)). This is a dynamical version (as we vary the index j ) of the analysis in

[16] that is performed for fixed κ . For each fixed j , the estimates work in the same manner.
In order to assure that �(|√κ − √

κj |, n) and �(|√κ − √
κj |, κ, n) converge to zero as j → ∞, we choose n = n(κj )

such that as j → ∞
ĉ|√κ − √

κj |2
√

2
√

nφ(n) → 0

and

c|√κ − √
κj | exp

[√
1 + β(κ)

2
log

(
cφ(n)

√
n
) + log log 2

√
2nφ(n)

]
→ 0.

Combining the previous estimates and using a union bound, we obtain the result.
For the second part of the result, the continuity in κ for κ ∈ (0,8/3) of the curves generated by the algorithm is

obtained by estimating∣∣γ n,(1)(t) − γ n,(2)(t)
∣∣ ≤ ∣∣γ n,(2)(t) − γ (2)(t)

∣∣ + ∣∣γ (2)(t) − γ (1)(t)
∣∣ + ∣∣γ (1)(t) − γ n,(1)(t)

∣∣.
The first and the last term can be directly estimated using Theorem 2.3, since these are terms that compare the SLEκ1

and SLEκ2 traces with the corresponding approximated traces. The middle term is estimated using the analysis performed
in the proof so far, and the conclusion follows.

Remark 2.10. The algorithm uses estimates on the derivative of the conformal maps. We remark that the derivative of
the composition of the conformal maps obtained when solving Loewner equation on each element of the partition of the
time interval [tk, tk+1] (where tk = k

n
, 0 ≤ k ≤ n) with c

√
t + d with c, d ∈R, is not easy to estimate directly. That is why

we used in our proof the estimate on the derivative of the Loewner map

sup
(t,κ)∈[0,1]×[κ−,κ+]

∣∣f̂ ′
t (iy)

∣∣ ≤ C(ω)y−β

from Proposition 2.9 with β(κ) < 1, ∀κ �= 8.
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3. Rough paths continuity

3.1. Rough Path Theory overview

First, in this subsection we give an overview of Rough Path Theory following [10], that we refer the reader to for more
details.

For T > 0 a real number and V a finite dimensional vector space, we let X[s,t] denote the restriction of the continuous
function X : [0, T ] → V to the compact interval [s, t]. Next, we introduce the notion of p-variation.

Definition 3.1. Let V be a finite dimensional real vector space with dimension d and basis vectors e1, . . . , ed . The p-
variation of a path X : [0, T ] → V is defined by

‖X[0,T ]‖p−var := sup
D=(t0,t1,...,tn)⊂[0,T ]

(
n−1∑
i=0

d(Xti ,Xti+1)
p

) 1
p

,

where the supremum is taken over all finite partitions of the interval [0, T ].
Throughout the next sections we use the notation Xs,t = Xt − Xs . Let us further define �T = {(s, t) ∈ [0, T ] ×

[0, T ]|0 ≤ s ≤ t ≤ T }. We introduce next the fundamental notion of control.

Definition 3.2. A control on [0, T ] is a non-negative continuous function

ω : �T → [0,∞)

for which

ω(s, t) + ω(t, u) ≤ ω(s,u),

for all 0 ≤ s ≤ t ≤ u ≤ T , and ω(t, t) = 0, for all t ∈ [0, T ].
Furthermore, we introduce the following.

Definition 3.3. Let T ((V )) := {a = (a0, a1, . . .) : an ∈ V ⊗n∀n ≥ 0} denote the set of formal series of tensors of V .

Definition 3.4. The tensor algebra T (V ) := ⊕
k≥0 V ⊗k is the infinite sum of all tensor products of V .

Let e1, e2, . . . , ed be a basis for V . The space V ⊗k is a dk dimensional vector space with basis elements of the
form (ei1 ⊗ ei2 . . . ⊗ eik )(i1,...,ik)∈{1,...,d}k . We store the indices (i1, . . . , ik) ∈ {1,2, . . . d}k in a multi-index I and let eI =
ei1 ⊗ ei2 ⊗ . . . eik . The metric ‖ · ‖ on T ((V )) is the projective norm defined for

x =
∑
|I |=k

λI eI ∈ V ⊗k

via

‖x‖ =
∑
|I |=k

|λI |.

Thus, the bound ‖Xi
s,t‖ ≤ w(s,t)i/p

β( i
p

)! , ∀i ≥ 1, ∀(s, t) ∈ �T , gives control on the sum of i-iterated integrals. We collect all

the iterated integrals in the following way. We consider for

X : �T → T
(
(R)

)
the collection of iterated integrals as

(s, t) → Xs,t = (
1,X1

s,t , . . . ,X
[p]
s,t , . . . ,Xm

s,t , . . .
) ∈ T

(
(V )

)
.

We call the collections of iterated integrals the signature of the path X.
We now define the notion of multiplicative functional.
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Definition 3.5. Let n ≥ 1 be an integer and let X : �T → T (n)(V ) be a continuous map. Denote by Xs,t the image of the
interval (s, t) by X, and write

Xs,t = (
X0

s,t , . . .X
n
s,t

) ∈R⊕ V ⊕ V ⊗2 . . . ⊕ V ⊗n.

The function X is called multiplicative functional of degree n in V if X0
s,t = 1 and for all (s, t) ∈ �t we have

Xs,u ⊗ Xu,t = Xs,t ∀s, u, t ∈ [0, T ].

Throughout our analysis, we will use the notion of p-rough path that we define in the following.

Definition 3.6. A p-rough path of degree n is a map X : �T → T̃ (n)(V ) which satisfies Chen’s identity Xs,t ⊗ Xt,u =
Xs,u and the following ‘level dependent’ analytic bound

∥∥Xi
s,t

∥∥ ≤ w(s, t)
i
p

βp( i
p
)! ,

where y! = �(y + 1) whenever y is a positive real number and βp is a positive constant.

Furthermore, we introduce a metric on �p(V ) which transform the space �p(V ) in a complete metric space. For
X,Y ∈ �p(V ) we define

dp(X,Y ) = max
1≤i≤[p]

sup
D⊂[0,T ]

(∑
D

∥∥Xi
ti ,ti+1

− Y i
ti ,ti+1

∥∥ p
i

) i
p

.

Related to this notion is a notion of convergence that is the convergence in the p-variation topology. Formally, this is
defined in terms of converging sequences.

Definition 3.7. A sequence (X(n))n≥1 ∈ �p(V ) is said to converge to X ∈ �p(V ) in p-variation topology if there exists
a p-control w of X and X(n) for all n ≥ 1, and a sequence (a(n))n≥1 of positive reals such that limn→∞ a(n) = 0 and

∥∥X(n)is,t − Xi
s,t

∥∥ ≤ a(n)w(s, t)
i
p ,

for all (s, t) ∈ �T and 1 ≤ i ≤ [p].

We are now ready to define the notion of a geometric rough path.

Definition 3.8. A geometric p-rough path is a p-rough path that can be expressed as a limit of 1-rough paths in the
p-variation metric.

The space of geometric p-rough paths in V is denoted by G�p(V ).
In order to state our second main result, we need to introduce the notion of Lip(γ ) function (that we define more

generally in order to follow the exposure in [11]).

Definition 3.9. Let V and W be two Banach spaces. Let k ≥ 0 be an integer. Let γ ∈ (k, k + 1] be a real number. Let
F be a closed subset of V . Let f : F → W be a function. For each integer j = 1, . . . , k let f j : F → L(V ⊗j ,W) be a
function which takes its values in the space of j -linear mappings from V to W . The collection (f = f 0, f 1, . . . , f k) is
an element of Lip(γ,F ) if the following condition holds.

There exists a constant M such that, for each j = 0, . . . , k,

sup
x∈F

∣∣f j (x)
∣∣ ≤ M

and there exists a function Rj : V × V → L(V ⊗j ,W) such that, for each x, y ∈ F and each v ∈ V ⊗j , we have

f j (y)(v) =
k−j∑
l=0

1

l!f
j+l (x)

(
v ⊗ (y − x)⊗l

) + Rj(x, y)(v),
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and ∣∣Rj (x, y)
∣∣ ≤ M|x − y|γ−j .

The smallest M for which the inequalities hold for all j is called the Lip(γ,F )-norm of f .

Following [11], when V is finite dimensional, we obtain that there exist for all closed F a continuous extension
operator Lip(γ,F ) → Lip(γ,V ). Thus, in this manner we obtain Lip(γ,V ) = Lip(γ ), i.e. bounded continuous functions
on V which are k-times continuously differentiable with bounded derivatives on V and whose k-th differential is Hölder
continuous with parameter γ − k.

3.2. Universal Limit Theorem and the backward Loewner differential equation

In the next sections, we work with the backward Loewner differential equation

∂th(t, z) = −2

h(t, z) − √
κBt

, h(0, z) = z, z ∈H, (14)

where 0 �= κ ∈ R+ and Bt a standard one-dimensional Brownian motion. By performing the identification Zt = ht (z) −√
κBt , we obtain the following dynamics in H that we consider throughout this section

dZt = −2

Zt

dt − √
κ dBt , Z0 = z0 ∈ H.

We consider the backward Loewner differential equation started from Z0 ∈ H with |Z0| = δ, for any δ > 0. Further-
more, one can write the backward Loewner differential equation as dZt = V (Zt ) dXt , with V (Z) = (V1(Z),V2(Z)),
where V1(Z) = −2

Z
d
dz

and V2(Z) = √
κ d

dx
are the two vector fields of the equation. Moreover, the equation is driven by

the two-dimensional path Xt = (t,Bt ).

Remark 3.10 (Geometric Rough Path lift of Xt = (t,Bt )). When discussing continuity properties of the solution to
the backward Loewner differential equation with respect to the parameter κ , we need that the pair Xt = (t,Bt ) to be a
geometric rough path. Thus, we need to consider a different lift from the Itô one. Since t is of bounded variation, the
pair Xt is a Young pairing. Since Bt is one-dimensional Brownian motion, then there is a canonical lift to a geometric
rough path (for higher dimensions, it is shown in [15] that the Stratonovich lift of the Brownian motion is a geometric
rough path). We use this lift to see the pair Xt = (t,Bt ) as a geometric p-rough path for p > 2. For further details, see
Section 9.4 in [4].

We remark also the following.

Remark 3.11. In the case of the backward Loewner differential equation driven by
√

κBt the Itô lift or the Stratonovich
lift of the the iterated integrals produce the same solution. Indeed, when considering the Itô-Stratonovich correction for a
time-homogeneous diffusion

dZt = μ(Zt) dt + σ(Zt ) dBt ,

we have∫ T

0
σ(Zt ) ◦ dBt = 1

2

∫ T

0

dσ(Zt )

dx
σ(Zt ) dt +

∫ T

0
σ(Zt ) dBt .

In our case, since dZt = −2
Zt

dt − √
κ dBt , we have that σ(Zt ) is a constant. Thus, when studying this equation we obtain

∫ T

0
σ(Zt ) ◦ dBt =

∫ T

0
σ(Zt ) dBt .

We further define the notion of solution to a Rough Differential Equation.



466 D. Beliaev, T. J. Lyons and V. Margarint

Definition 3.12. Let f : W → L(V,W) be a Lip(γ − 1) function and let us consider

X ∈ G�p(V ) and ζ ∈ W.

Set fζ (·) = f (· + ζ ). Define h : V ⊕ W → End(V ⊕ W) via

[
IdV 0

fζ (y) 0

]
.

We call Z ∈ G�p(V ⊕W) a solution to the differential equation dYt = f (Yt ) dXt , Y0 = ζ > 0 if the following conditions
hold

• Z = ∫
h(Z)dZ,

• �V (Z) = X, where �V (·) is the projection map to the first component.

The main result that we use in our proof is the following theorem.

Theorem 3.13 (Universal Limit Theorem, Theorem 5.3 in [11]). Let p ≥ 1 and let γ > p be real numbers. Let f :
W → L(V,W) be a Lip(γ ) function. For all X ∈ G�p(V ) and all ζ ∈ W , the equation

dYt = f (Yt ) dXt , Y0 = ζ

admits a unique solution Z = (X,Y ) ∈ G�p(V ⊕ W) in the sense of the Definition 3.12. The solution depends continu-
ously on X and ζ and the mapping

If : G�p(V ) × W → G�P (W)

which sends (X, ζ ) to Y is the unique extension of the Itô map which is continuous in the p-variation topology.

In the remaining part of the paper we prove the following theorem.

Theorem 3.14. For δ > 0, the backward Loewner differential equation driven by
√

κBt with κ > 0, started from z0
with |z0| = δ > 0 is a well defined Rough Differential Equation that has a unique solution. This unique solution is a.s.
continuous with respect to the starting point z0 ∈H and

√
κBt in the p-variation topology, for p ∈ (2,3].

3.3. Proof of Theorem 3.14

We first prove the following lemma.

Lemma 3.15. For κ > 0, let us consider κn → κ , as n → ∞. Then,

(t,
√

κnBt ) → (t,
√

κBt )

in the p-variation topology as κn → κ , for p ∈ (2,3].

Proof of Lemma 3.15. Let is consider the sequence
√

κn → √
κ as n → ∞, for κ > 0. Since in the first component

there are no changes, we focus directly on the second component of the paths (t,
√

κnBt ) and (t,
√

κBt ). Without loss of

generality we can choose an increasing sequence. Using the control ω(s, t) = √
κ(t − s) and the sequence aκ

n =
√

κ−√
κn√

κ

in the Definition 3.7 we obtain the convergence of in the p-variation topology for p ∈ (2,3] of the paths (t,
√

κnBt ) and
(t,

√
κBt ). Indeed, we have that ω(s, t) = √

κ(t − s) is a control for both
√

κBs,t as well as
√

κnBs,t and |√κBs,t −√
κnBs,t | ≤ |√κBs,t ||1 −

√
κn√
κ

|.
Thus, for any 0 �= κ ∈ R+ we have limn→∞ aκ

n → 0. Then, the bound in the Definition 3.7, holds for all pairs s, t ∈ �T .
It can be directly checked that the same convergence result holds with the choice w(s, t) := √

κ(t − s) for higher levels
1 < i ≤ [p], and we obtain the desired result. �

We are now ready to prove the second result of this paper.
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Proof of Theorem 3.14. We consider the geometric p-rough path for lift for Xt = (t,Bt ). In order to prove that the
backward Loewner differential equation started from z0 ∈ H with |Z0| = δ > 0 is a Rough Differential Equation with
a unique solution, we show that the vector fields V1(Z) and V2(Z) are indeed Lip(γ ) vector fields for γ > 2. The
problematic vector field is V1(z) since the second one is clearly Lip(γ ) for γ ≥ 4.

In order to show that indeed the first vector field is Lip(γ ) for γ > 3 we use that

d

dz

1

z
= −1

z2
,

d

dz

−1

z2
= 2

z3
,

d

dz

2

z3
= −6

z4

and

d

dz

−6

z4
= 24

z5
.

Thus, the Lip(4) norm of the vector field 1/z is bounded for |z| > δ > 0. Note that, in general, dn

dz
1
z

= c(n)

zn+1 , where the
function c(n) = (−1)nn!. Thus, the Lip(γ ) norm of the vector fields is bounded for any finite γ . In our analysis, we
restrict to p ∈ (2,3] and thus checking γ > 3 is enough.

In addition, we observe that for the imaginary part of the backward Loewner differential equation Yt , we have

dYt = 2Yt

X2
t + Y 2

t

dt.

In particular, Yt ≥ Y0, for all t ≥ 0. Thus, we have that Yt > 0 for all t ∈ [0, T ]. Since the imaginary part Yt increases
the vector field V1(Z) remains bounded for all times t ∈ [0, T ]. Using the Stratonovich lift of the pair (t,Bt ) and the
bounds on Lip(3) norms of the vector fields, we obtain that indeed the backward Loewner differential equation started
from z0 with |z0| = δ > 0 is a Rough Differential equation. In particular, since the vector fields of the backward Loewner
differential equation are Lip(γ ) for γ ≥ 3 we obtain applying Theorem 3.13 that the solution of the backward Loewner
differential equation driven by

√
κBt , started from z0 ∈H with |z0| = δ > 0, exists and is unique.

Let us consider the paths X
κn
t = (t,

√
κnBt ) and Xκ

t = (t,
√

κBt ). Using Lemma 3.15, for κn → κ , as n → ∞, we
obtain that X

κn
t → Xκ

t in the p-variation topology, for p ∈ (2,3]. Next, by applying Theorem 3.13 we obtain that the
solution of the backward Loewner differential equation started from δ > 0, for any δ > 0, is continuous in both staring
point and Xt = (t,

√
κBt ) in the p-variation topology, for p ∈ (2,3], and the conclusion follows. �
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