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A NEW MCKEAN–VLASOV STOCHASTIC INTERPRETATION OF THE
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Recently, we proposed a new stochastic interpretation of the parabolic-
parabolic Keller–Segel system without cut-off via a McKean–Vlasov stochas-
tic process. The process was defined through an original type of interaction
kernel which involved, in a singular way, all its past time marginal distri-
butions. In the present paper, we study this McKean–Vlasov representation
in the two-dimensional case. In this setting, there exists a possibility of a
blow-up in finite time for the Keller–Segel system if some parameters of the
model are large. Indeed, we prove the global in time well-posedness of the
McKean–Vlasov process under some constraints involving a parameter of the
model and the initial datum. Under these constraints, we also prove the global
well-posedness for the Keller–Segel model in the plane.

1. Introduction. The standard d-dimensional parabolic-parabolic Keller–Segel model
for chemotaxis reads

(1.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tρ(t, x) = ∇ ·
(

1

2
∇ρ − χρ∇c

)
(t, x), t > 0, x ∈ Rd,

α∂tc(t, x) = 1

2
�c(t, x) − λc(t, x) + ρ(t, x), t > 0, x ∈ Rd,

ρ(0, x) = ρ0(x), c(0, x) = c0(x).

It describes the time evolution of the density ρt of a cell population and of the concentration
ct of a chemical attractant. The parameter χ > 0 is called the chemotactic sensitivity and,
together with the total mass M := ∫

ρ0(x) dx, plays an important role in the well-posedness
theory for (1.1). For a very thorough review of this theory for the standard Keller–Segel model
and its variations, see the reviews of Horstmann [9, 10]. For a review of the results obtained
in past 15 years, see for example, Tomašević [21].

When α = 0, the system is in its parabolic-elliptic version, while when α = 1 (more gen-
erally α > 0) the system is known as the parabolic-parabolic Keller–Segel model.

Our goal is to provide, in an original manner, a probabilistic interpretation of the parabolic-
parabolic Keller–Segel system and new existence and uniqueness results for the PDE in
d = 2. We emphasize here that this is the first result of this type on the standard parabolic-
parabolic Keller–Segel model. That is, to the best of our knowledge, our stochastic represen-
tation of the system (1.1) has not been studied so far in the literature.

In the Mc-Kean–Vlasov context, the originality of our stochastic interpretation comes from
its unusual interaction with the law of the process. Namely, the process interacts with all the
past time marginals of its probability distribution through a functional involving a singular
kernel. That is why it cannot be analysed by means of standard coupling methods or Wasser-
stein distance contractions.
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As we will see in the next section, with our choice of space for the family (ρt )t≥0, the
drift of the process will not be in the framework of Krylov and Röckner [13]. That is, it will
not be possible to control the drift with a function whose Lp((0, T );Lq(R2))-norm is finite
for 1/p + 1/q < 1/2. Nevertheless, we will construct a solution to the associated nonlinear
martingale problem. Thus, our strategy will not be based on the strategy in [13].

In Talay and Tomasevic [20], we propose the following stochastic representation of
the parabolic-parabolic version of (1.1): The family (ρt )t≥0 is seen as a family of one-
dimensional time marginal distributions of the law of a McKean–Vlasov stochastic process
and the family (ct )t≥0 as its transformation. Namely, we consider the following stochastic
differential equation:

(1.2)

⎧⎪⎨
⎪⎩

dXt = b
(d)
0 (t,Xt) dt +

{∫ t

0

(
K

(d)
t−s ∗ ρs

)
(Xt) ds

}
dt + dWt, t > 0,

ρs(y) dy := L(Xs), X0 ∼ ρ0(x) dx,

where

K
(d)
t (x) := χe−λt∇(

g
(d)
t (x)

)
and b

(d)
0 (t, x) := χe−λt∇(

c0 ∗ g
(d)
t (x)

)
.

Here, g
(d)
t (x) := 1

(2πt)d/2 e
−|x|2

2t , (Wt)t≥0 is a d-dimensional Brownian motion on a filtered

probability space (�,F,P, (Ft )) and X0 is an Rd -valued F0-measurable random variable.
Then, we define

c(t, x) := e−λt (g(d)
t ∗ c0

)
(x) +

∫ t

0
ρt−s ∗ e−λsg(d)

s (x) ds.

The couple (ρ, c) is our stochastic interpretation of the system in (1.1).
The unusual interaction with the law of the process leads to a system of interacting parti-

cles with an uncommon interaction. Namely, the particle system is of non-Markovian nature
where each particle interacts in the current time with all the past of all the other particles
through a singular functional involving the kernel K(d).

In [20], the authors overcome the above mentioned difficulties and validate the above
stochastic interpretation in the framework of d = 1 with no constrains on the parameters of
the model. Namely, under the assumptions that ρ0 is a finite measure on R and that c0 belongs
to C1

b(R), the global (in time) well-posedness of the Mc-Kean–Vlasov SDE (1.2) in d = 1 is
proven. As a consequence, the same holds for the Keller–Segel PDE. This result generalizes
the results in Osaki and Yagi [16] and Hillen and Potapov [8]. One of the key points in [20] is
that the one-dimensional kernel (K(1)) belongs to the space L1((0, T );L1(R)). The singular-
ity is tamed by the help of precise L∞(R)-norm density estimates. Namely, Picard’s iteration
procedure is used to exhibit a weak solution to (1.2). At each step the L∞([0, T ] ×R)-norm
of the drift and L1((0, T ];L∞(R))-norm of the marginal densities were controlled simulta-
neously. These controls were obtained thanks to a probabilistic method which exhibits sharp
density estimates for one-dimensional Itô processes with bounded drift term (see Qien and
Zheng [18] and [20]).

Furthermore, Jabir et al. [11] prove the well-posedness of the interacting particle system
associated to (1.2) in d = 1 and its propagation of chaos. The non-Markovian nature of the
system is treated with techniques based on the Girsanov theorem (see [13]). The calculation
was based on the fact that the kernel K(1) is in L1((0, T );L2(R)). In order to get the tightness
in number of particles and the propagation of chaos, the authors needed to use the so-called
“partial” Girsanov transformations removing a finite number of particles from the system.

Contrary to the one-dimensional case, a blow up may occur for the Keller–Segel system
in the two-dimensional setting if the parameter χ is large. In the parabolic-elliptic version
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of the system, its behaviour has been completely understood. That is, the system exhibits
the “threshold” behaviour: if Mχ < 8π the solutions are global in time, if Mχ > 8π every
solution blows-up in finite time (see, e.g., Blanchet et al. [2] and Nagai and Ogawa [15]).

The fully parabolic model does not exhibit the same bahaviour. It has been proved that
when Mχ < 8π one has global existence (see Calvez and Corrias [5] and Mizogouchi [14]).
However, in Biller et al. [1] the authors find an initial configuration of the system in which
a global solution in some sense exists with Mχ > 8π . Then, Herrero and Velázquez [7]
construct a radially symmetric solution on a disk that blows-up and develops δ-function
type singularities when Mχ > 8π . Finally, a unique solution with any positive mass exists
when the parameter α is large enough (Corrias et al. [6]). Thus, in the case of parabolic-
parabolic model, the value 8π can somehow be understood as a threshold, but in a dif-
ferent sense: under it there is global existence, over it there exists a solution that blows
up.

In order to shed a new light on the parabolic-parabolic model in d = 2, we study our
stochastic representation. To obtain an existence result for it, we will perform a regularization
of the singular interaction kernel and combine probabilistic and PDE techniques to exhibit
a solution to the nonlinear martingale problem related to (1.2). A condition on the size of
parameter χ will be necessary to obtain some drift and density estimates for the regularized
process that are uniform w.r.t. regularization parameter.

A consequence of the existence result for (1.2) is the global existence for (1.1) in d = 2.
This generalizes the result in [6] by removing the assumption on the smallness of the initial
datum (for more details see the next section).

The uniqueness of the constructed solution to (1.1) in d = 2 is obtained under an additional
condition on the size of parameter χ . Then, the uniqueness for the nonlinear martingale
problem is obtained from uniqueness of the solution to the linearised martingale problem.
The latter comes from the so-called transfer of uniqueness from the (linear) Fokker–Planck
equation to the (linear) martingale problem (see Trevisan [22] and the references therein).

We conclude this part with a remark concerning the interacting particle system associated
to (1.2) in d = 2. As on the mean-field level we will work with a drift function that does not
fit in the framework of [13], the technique, based on Girsanov transformation, used in [11]
will not work in 2-d case. The existence of solutions to the nonregularized particle system
and its propagation of chaos are still a work in progress.

Plan of the paper. The plan of the paper is the following: In Section 2 we state our main
results and compare them with the above mentioned Keller–Segel literature. In Section 3 we
present our regularization procedure and we obtain density estimates These estimates enable
us to prove in Section 4 the existence of a solution to the nonlinear martingale problem
corresponding to (1.2). Then, in the same section we prove the global existence for the Keller–
Segel system in d = 2. Section 5 is devoted to uniqueness. Finally, in the Appendix we prove
the well-posedness of a smoothed version of (1.2).

Notation. In all the paper C will denote a generic constant, Cp will denote a constant de-
pending on a parameter p and C(p1,p2, . . . ) will denote a constant depending on parameters
p1,p2, . . . Next, H 1(R2) will denote the Sobolev space W 1,2(R2) (see [3], page 263). In ad-
dition, from now on we will drop the dimension index in the definitions of the interaction
kernel (K(d)) and linear drift (b(d)

0 ).

2. Main results. Let T > 0. On a filtered probability space (�,F,P, (Ft )), equipped
with a two-dimensional Brownian motion (Wt)0≤t≤T , we consider the following nonlinear
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stochastic process:

(2.1)

⎧⎪⎨
⎪⎩

dXt = dWt + b0(t,Xt) dt + χ

{∫ t

0
e−λ(t−s)(Kt−s ∗ ps)(Xt) ds

}
dt,

ps(y) dy := L(Xs), X0 ∼ ρ0.

Here X0 is an R2-valued F0-measurable random variable independent of W , gt denotes the
probability density of Wt and for (t, x) ∈ (0, T ] ×R2 we denote

(2.2) b0(t, x) := χe−λt (∇c0 ∗ gt )(x) and Kt(x) := ∇gt (x) = − x

2πt2 e−|x|2
2t .

Note that Kt is a two-dimensional vector. We denote its coordinates by Ki
t with i = 1,2 and

bi(t, x;p) := bi
0(t, x) + χ

∫ t

0
e−λ(t−s)

∫
Ki

t−s(x − y)ps(y) dy ds dt.

In order to prove the (weak) well-posedness of (2.1), we will solve the associated nonlin-
ear martingale problem. By classical arguments, one can then pass from a solution to this
martingale problem to the existence of a weak solution to (2.1) (see, e.g., [12]).

An important issue when formulating the nonlinear martingale problem is to choose an
appropriate functional space for the family (ps)s≥0 that would enable one to claim that
b(t, x;p) is well defined and integrable in time.

In the one-dimensional framework, L1((0, T );L∞(R)) turned out to be an appropriate
functional space for the marginals. However, the increase in the space dimension leads to an
increase in the strength of the singularity of the interaction kernel K . This has a significant
impact on the techniques used in [20] to prove the well-posedness of (1.2) in d = 1.

To see this, a generalization to the multidimensional case of the results in [18] can be
found in Qian et al. [17] in the case of time homogeneous drifts. There, the authors show that
the estimate of the transition density of a d-dimensional stochastic process is a product of
one-dimensional estimates provided that the Euclidean norm of the drift vector is uniformly
bounded. With the arguments we used in d = 1, one can extend the results in [17] to time
inhomogeneous drifts. However, under reasonable conditions on ρ0 and χ , one can only
construct local solutions to (2.1) using the strategy in [20].

This is the reason why a new functional space for the marginals needs to be introduced
and the next obvious choice are the Lq -spaces. Analysing a priori the mild equation for the
one-dimensional time marginals pt , one can note that if ρ0 ∈ L1(R2), the term depending
on the initial condition gives an Lq -norm in space of order ∼ t−(1−1/q). Thus, if we were to
impose the following Gaussian behaviour for pt : supt≤T t1−1/q‖pt‖Lq(R2) < ∞ for a q > 2,

then one would obtain that ‖b(t, ·;p)‖L∞(R2) is of order ∼ t− 1
2 .

Therefore, we define the nonlinear martingale problem related to (2.1) as follows:

DEFINITION 2.1. Consider the canonical space C([0, T ];R2) equipped with its canon-
ical filtration. Let Q be a probability measure on this canonical space and denote by Qt its
one-dimensional time marginals. Q solves the nonlinear martingale problem (MP) if:

(i) Q0 = ρ0.
(ii) For any t ∈ (0, T ], Qt have densities qt w.r.t. Lebesgue measure on R2. In addition,

they satisfy

(2.3) ∀1 < r < ∞ ∃Cr(χ) > 0, sup
t≤T

t1− 1
r ‖qt‖Lr(R2) ≤ Cr(χ).
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(iii) For any f ∈ C2
K(R2) the process (Mt)t≤T , defined as

Mt := f (wt) − f (w0) −
∫ t

0

[
1

2
�f (wu) + ∇f (wu) ·

(
b0(u,wu)

+ χ

∫ u

0

∫
Ku−τ (wu − y)qτ (y) dy dτ

)]
du

is a Q-martingale where (wt ) is the canonical process.

REMARK 2.2. Under the condition c0 ∈ H 1(R2) one has, applying Hölder’s inequality
and (3.2), ∫ t

0

∣∣b0(s, x)
∣∣ds ≤ C‖∇c0‖L2(R2)

∫ t

0

1√
s

ds.

Similarly, (2.3) and (3.1) imply∫ t

0

∣∣∣∣
∫ s

0
Ks−u ∗ qu(x) du

∣∣∣∣ds ≤ C

∫ t

0

1√
s

ds.

Moreover, if c0 ∈ H 1(R2) and if (2.3) holds, then

(2.4) ∀2 ≤ r ≤ ∞ ∃Cr > 0, sup
t≤T

t
1
2 − 1

r
∥∥b(t, ·;q)

∥∥
Lr(R2) ≤ Cr.

Now, we present our first main result.

THEOREM 2.3. Let λ ≥ 0, T > 0 and fix a q ∈ (2,4). Suppose that ρ0 is a density
function. Furthermore, assume that c0 ∈ H 1(R2). Then, (MP) admits a solution under the
following condition:

(2.5) Aχ‖∇c0‖L2(R2) + B
√

χ < 1,

where

A = C1
(
q ′)C2

(
2q

q + 2

)
β

(
3

2
− 2

q
,

3

2
− 1

q ′
)
,

B = 2

√
C2(q)C1

(
q ′)C1(1)β

(
3

2
− 2

q
,

3

2
− 1

q ′
)
β

(
1 − 1

q
,

1

2

)
.

Here q ′ is such that 1
q

+ 1
q ′ = 1 and the functions C1(·),C2(·) and β(·, ·) are defined in

Lemma 3.1, Lemma 3.2 and equation (3.3), respectively.

To prove the above result, we do not apply Picard’s iteration procedure since in each
iteration step we will need a well-posedness result for a linear SDE whose drift satis-
fies (2.4). In view of Krylov and Röckner [13], the well-posedness follows from a finite
Lq((0, T );Lr(R2))-norm of the drift with 1/q + 1/r < 1/2. Unfortunately, the property
in (2.4) will imply the opposite condition 1/p + 1/r > 1/2 for the same norm to be finite.

Thus, to prove Theorem 2.3 we will use a mollification procedure. We prove that the time
marginals of the regularized version of (2.1) satisfy the property (2.3) with uniform constants
with respect to the regularization parameter. That is where the condition (2.5) emerges. Then,
the tightness will follow thanks to (2.4) for r = ∞. It will remain, then, to show that (MP)

admits a solution. The strong well-posedness of the regularized equation is an adaptation of
the results in Sznitman [19] presented in a general way in the Appendix.
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In addition, the incompatibility of (2.4) and the condition in [13] makes us doubt that the
Girsanov transform techniques would work and that the law of (2.1) is absolutely continuous
w.r.t. Wiener’s measure even under (2.5).

The next objective is to use Theorem 2.3 to get the well-posedness of the Keller–Segel
model in d = 2. The system reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
(t, x) = ∇ · (1

2
∇ρ(t, x) − χρ(t, x)∇c(t, x)), t > 0, x ∈R2,(2.6a)

∂c

∂t
(t, x) = 1

2
�c(t, x) − λc(t, x) + ρ(t, x), t > 0, x ∈ R2,(2.6b)

ρ(0, x) = ρ0(x), c(0, x) = c0(x),

where χ > 0 and λ ≥ 0. Notice that the two diffusion coefficients are deliberately chosen to
be equal to 1

2 in order to have a unit diffusion coefficient and a standard Gaussian kernel in
the formulation of (2.1).

Now, remember that M denotes the total mass of the cell population. The new func-
tions ρ̃(t, x) := ρ(t,x)

M
and c̃(t, x) := c(t,x)

M
satisfy the system (2.6) with the new parameter

χ̃ := χM . Therefore, w.l.o.g. we may and do thereafter assume that M = 1. We consider the
following notion of a solution to (2.6).

DEFINITION 2.4. Given the functions ρ0 and c0, and the constants χ > 0, λ ≥ 0, T > 0,
the pair (ρ, c) is said to be a solution to (2.6) if ρ(t, ·) is a probability density function for
every 0 ≤ t ≤ T ; one has

(2.7) ∀1 < r < ∞ ∃Cr(χ) > 0 : sup
t≤T

t1− 1
r
∥∥ρ(t, ·)∥∥Lr(R2) ≤ Cr(χ);

and the following equality:

(2.8) ρ(t, x) = gt ∗ ρ0(x) − χ

2∑
i=1

∫ t

0
∇igt−s ∗ (∇ic(s, ·)ρ(s, ·))(x) ds

is satisfied in the sense of the distribution with

(2.9) c(t, x) = e−λt (g(t, ·) ∗ c0
)
(x) +

∫ t

0
e−λs(gs ∗ ρ(t − s, ·))(x) ds.

Notice that the function c(t, x) defined by (2.9) is a mild solution to (2.6b). These solutions
are known as integral solutions and they have already been studied in PDE literature for the
two-dimensional Keller–Segel model (see [6] and references therein).

A consequence of Theorem 2.3 is the following result for (2.6).

THEOREM 2.5. Let T > 0, λ ≥ 0 and χ > 0. Let ρ0 a probability density function and
c0 ∈ H 1(R2). Under the condition (2.5) the system (2.6) admits a global solution in the sense
of Definition 2.4.

Let us compare the above result with the literature mentioned in the Introduction. In [5]
the authors obtain the global existence in sub-critical case assuming:

(i) ρ0 ∈ L1(R2) ∩ L1(R2, log(1 + |x|2)dx) and ρ0 logρ0 ∈ L1(R2);
(ii) c0 ∈ H 1(R2) if λ > 0 or c0 ∈ L1(R2) and |∇c0| ∈ L2(R2) if λ = 0;

(iii) ρ0c0 ∈ L1(R2).
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We emphasize that their sub-critical condition translates into 4χ < 8π for (2.6) due to the
additional diffusion coefficients in it and the assumption M = 1. In the same sub-critical
case, the global existence result is obtained in [14] assuming ρ0 ∈ L1(R2) ∩ L∞(R2) and
c0 ∈ H 1(R2) ∩ L1(R2). Our result does not assume any additional conditions other than that
ρ0 is a density function and c0 ∈ H 1(R2). The price to pay is the condition (2.5) that not just
involves the parameter χ , but the initial datum as well.

It is more appropriate to compare Theorem 2.5 to the result in [6], Theorem 2.1. Indeed,
the assumptions on the initial conditions are the same as well the notion of the solution.
However, the setting and the objectives are different. In [6], the parameter α (see (1.1)) is not
fixed to be equal to 1 and plays an important role. The goal is to prove the global existence
for any positive mass M and χ = 1. This is achieved under the following conditions:

C1: There exists δ = δ(M,α) such that ‖∇c0‖L2(R) < δ,
C2: There exists a constant C = C(α) such that M < C(α).

The condition C2 is similar to the Condition (2.5) for χ . We cannot totally compare them
as the constants are not explicitely written in [6]. What is important is that C(α) grows with
α, so one can have M as large as one likes in C2 as soon as α is large enough as well. In
the present paper our objective is to get results for the classical Keller–Segel model (α = 1)
with respect to the chemo-attractant sensitivity. When we assume the same (α = 1, M = 1
and χ > 0) in the framework of [6], we see that we have removed the assumption on the
smallness of the initial datum (C1). The reason lies in our method: in [6] Banach’s fixed point
is used to construct a solution locally in time (where C1 emerges) and, then, such solution is
globalized (where C2 emerges). In our case only a condition of C2 type appears as, thanks
to our regularization procedure, we directly construct a global solution. In addition, as our
condition is explicitly written in Section 3, one can analyse the constants in order to find the
optimal condition on χ .

Our next main result concerns the uniqueness of the constructed solutions.

THEOREM 2.6. Let the assumptions of Theorem 2.3 hold. Then, the Keller–Segel system
(2.6) admits a unique solution in the sense of Definition 2.4 provided that χ satisfies the
following additional condition:

(2.10) C0χ
(‖∇c0‖L2(R2) + Bq(χ)

)
< 1.

Here, C0 is a universal constant and Bq(χ) is given in (3.17).

Finally, using the so-called transfer of uniqueness we prove the uniqueness of the solution
to (MP). Namely, we will use the results in Trevisan [22] to prove the following theorem.

THEOREM 2.7. Let the assumptions of Theorem 2.6 hold. The martingale problem
(MP) admits a unique solution.

Organization of proofs. To summarize, the organization of our proofs is as follows: First, in
Section 4.2 we prove Theorem 2.3 about the existence of a solution to the problem (MP);
Second, in Section 4.3 we prove the existence of a solution to (2.6) (Theorem 2.5); Third, the
uniqueness of Theorem 2.6 for the system (2.6) is proved in Section 5.1; Finally, the proof of
Theorem 2.7 about the uniqueness of solutions to (MP) is in Section 5.2.

3. Regularization procedure and density estimates. In this section we present our reg-
ularization procedure. Then, we get estimates on the marginals of the regularized process
that are uniform in the regularization parameter. This is where we derive the explicit condi-
tion (2.5) on the size of χ . We start with a preliminary section.
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3.1. Preliminaries. The following lemmas will be used throughout the paper.

LEMMA 3.1. Let t > 0 and i ∈ {1,2}. Then, for any 1 ≤ q < ∞ one has

(3.1)
∥∥Ki

t

∥∥
Lq(R2) = ‖∇igt‖Lq(R2) = C1(q)

t
3
2 − 1

q

,

where

C1(q) = 2
1
q
− 1

2

π
1− 1

2q q
1
q
+ 1

2

(
�

(
q + 1

2

)) 1
q

.

Here �(x) denotes the Gamma function: �(x) = ∫ ∞
0 zx−1e−z dz.

Notice that for q ≥ 2, the L1((0, T );Lq(R2))–norm of Ki explodes. On the other side, in
d = 1 the kernel belongs to L1((0, T );Lq(R)) for any 1 ≤ q < ∞. It is in this sense that the
two–dimensional kernel is more singular than the one-dimensional one.

PROOF. Let 1 ≤ q < ∞. One has

∥∥Ki
t

∥∥
Lq(R2) =‖∇igt‖Lq(R2) = 1

2πt2

(∫
R2

|xi |qe− q|x|2
2t dx

) 1
q

= 1

2πt2

(∫
R

e−q x2
2t dx

∫
R

|x|qe−q x2
2t dx

) 1
q

= 1

2πt2

(√
2πt√
q

2
∫ ∞

0
xqe−q x2

2t dx

) 1
q

.

Apply the change of variables qx2

2t
= y. It becomes

∥∥Ki
t

∥∥
Lq(R2) = ‖∇igt‖Lq(R2) = 1

2πt2

(√
2πt√
q

2
(

2t

q

) q−1
2

∫ ∞
0

y
q−1

2 e−y t

q
dy

) 1
q

= 1

2πt2

(
2t

q

) 1
q
+ 1

2
π

1
2q

(
�

(
q + 1

2

)) 1
q

.

This ends the proof. �

The change of variables x√
t
= z leads to the following claim.

LEMMA 3.2. Let t > 0. Then, for any 1 ≤ q < ∞ one has

(3.2) ‖gt‖Lq(R2) = 1

(2π)
1− 1

q q
1
q t

1− 1
q

=: C2(q)

t
1− 1

q

.

The functions C1(q) and C2(q) will be used only when we need the explicit constants in a
computation. In all other cases we will use the notation Cq that may change from line to line.

Now, for 0 < a,b < 1, we denote

(3.3) β(a, b) :=
∫ 1

0

1

ua(1 − u)b
du.

The change of variables s
t
= u implies the following result.
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LEMMA 3.3. Let t > 0 and 0 < a,b < 1. Then,∫ t

0

1

sa(t − s)b
ds = t1−(a+b)β(a, b).

Next, we state here the two standard convolution inequalities in their general form. The
following is proven in Brezis [3], Theorem 4.15.

LEMMA 3.4 (The convolution inequality). Let f ∈ Lp(Rd) and g ∈ L1(Rd) with 1 ≤
p ≤ ∞. Then, f ∗ g ∈ Lp(Rd) and

(3.4) ‖f ∗ g‖Lp(Rd ) ≤ ‖f ‖Lp(Rd )‖g‖L1(Rd ).

The following is an extension of the preceding inequality (see [3]), Theorem 4.33.

LEMMA 3.5 (The convolution inequality). Let f ∈ Lp(Rd) and g ∈ Lq(Rd) with 1 ≤
p,q ≤ ∞ and 1

r
= 1

q
+ 1

p
− 1 ≥ 0. Then, f ∗ g ∈ Lr(Rd) and

(3.5) ‖f ∗ g‖Lr(Rd ) ≤ ‖f ‖Lp(Rd )‖g‖Lq(Rd ).

Now, we are ready to prove the following lemma about the behaviour of the linear part of
the drift.

LEMMA 3.6. Let t > 0. Then, the function bi
0(t, ·) is continuous on R2 and for r ∈

[2,∞], one has

∥∥bi
0(t, ·)

∥∥
Lr(R2) ≤ χ‖∇c0‖L2(R2)(R2)

C2(
2r

r+2)

t
1
2 − 1

r

.

PROOF. As ∇ic0 is only in L2(R2) we cannot apply the classical results of convolution
with a continuous function. The continuity of bi

0(t, ·) = χ∇ic0 ∗gt is a direct consequence of
[3], Example 4.30–3, as for a t > 0 both gt and ∇ic0 belong to L2(R2).

Let q ≥ 1 be such that 1
q

+ 1
2 = 1 + 1

r
. By the convolution inequality (3.5), one has

∥∥bi
0(t, ·)

∥∥
Lr(R2) ≤ χ‖∇ic0‖L2(R2)‖gt‖Lq(R2).

In view of estimates on ‖gt‖Lq(R2) and the relation above between r and q , one has

∥∥bi
0(t, ·)

∥∥
Lr(R2) ≤ χ‖∇c0‖L2(R2)‖gt‖

L
2r

r+2
≤ χ‖∇c0‖L2(R2)

C2(
2r

r+2)

t1−( 1
r
+ 1

2 )
. �

The following lemma is a direct application of Lemma 8 in Brezis and Cazenave [4] with
N = 2 and q = 1.

LEMMA 3.7. Let p0 be a probability density function on R2 and 1 < r < ∞. One has

lim sup
t→0

t1− 1
r ‖gt ∗ p0‖Lr(R2) = 0.
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3.2. Regularization. We define the regularized version of the interaction kernel K and
the linear part of the drift as follows. For ε > 0 and (t, x) ∈ (0, T ) ×R2 define

Kε
t := t2

(t + ε)2 Kt(x), gε
t (x) := t

(t + ε)
gt (x) and bε

0(t, x) := χe−λt (∇c0 ∗ gε
t

)
(x).

For a t ≤ T , the regularized Mc-Kean–Vlasov equation reads

(3.6)

⎧⎪⎨
⎪⎩

dXε
t = dWt + bε

0
(
t,Xε

t

)
dt + χ

{∫ t

0
e−λ(t−s)(Kε

t−s ∗ με
s

)(
Xε

t

)
ds

}
dt,

με
s := L

(
Xε

s

)
, Xε

0 ∼ ρ0.

Set

bε(t, x;με) := bε
0(t, x) + χ

∫ t

0
e−λ(t−s)

∫
Kε

t−s(x − y)με
s (dy) ds.

Similar computations such as the ones to get (3.1) and (3.2) lead to the following estimates.
For t ∈ (0, T ] and 1 ≤ q < ∞, one has

(3.7)
∥∥Kε,i

t

∥∥
Lq(R2) ≤ C1(q)

(t + ε)
3
2 − 1

q

and
∥∥gε

t

∥∥
Lq(R2) ≤ C2(q)

(t + ε)
1− 1

q

.

Repeating the arguments as in the proof of Lemma 3.6, one gets the following.

LEMMA 3.8. For t > 0 and r ∈ [2,∞] one has

∥∥bε,i
0 (t, ·)∥∥Lr(R2) ≤ χ‖∇c0‖L2(R2)

C2(
2r

r+2)

(t + ε)
1
2 − 1

r

.

PROPOSITION 3.9. Let T > 0, χ > 0, λ ≥ 0, c0 ∈ H 1(R2) and ρ0 be a density function
on R2. Then, for any ε > 0, equation (3.6) admits a unique strong solution. Moreover, the
one-dimensional time marginals of the law of the solution admit probability density functions,
(pε

t )t≤T . In addition, for t ∈ (0, T ), pε
t satisfies the following mild equation in the sense of

the distributions:

(3.8) pε
t = gt ∗ ρ0 −

2∑
i=1

∫ t

0
∇igt−s ∗ (

pε
s b

ε,i(s, ·;pε))ds.

PROOF. It is clear that there exists Cε > 0 such that for any t ∈ (0, T ) and any x, y ∈ R2,
one has

∣∣bε
0(t, x) − bε

0(t, y)
∣∣ + ∣∣Kε

t (x) − Kε
t (y)

∣∣ ≤ Cε|x − y| and
∣∣bε

0(t, x)
∣∣ + ∣∣Kε

t (x)
∣∣ ≤ Cε.

Thus, Theorem A.1 implies that the strong solution to equation (3.6) is uniquely well-defined.
In addition, as the drift term is bounded, we can apply Girsanov’s transformation and con-
clude that the one-dimensional time marginals of the law of the solution admit probability
density functions. By classical arguments (see, e.g., [20]), one can prove that for t ∈ (0, T ),
pε

t satisfies (3.8) in sense of the distributions. �
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3.3. Density estimates. For a 1 < q < ∞, let us define

(3.9) N ε
q (t) := sup

s∈(0,t)

s
1− 1

q
∥∥pε

s

∥∥
Lq(R2).

The following lemma provides a first estimate for N ε
q (t) for a fixed ε > 0. This estimate is

not the optimal one in ε, but it is necessary in order to be sure that all the quantities we work
with are well defined. Also, it will be used in order to obtain the limit behaviour of N ε

q (t) as
t → 0.

LEMMA 3.10. Let 0 < t ≤ T and ε > 0 be fixed. For any 1 < q < ∞, there exists
Cε(T ,χ) > 0 such that

(3.10) N ε
q (t) ≤ Cε(T ,χ).

Moreover, one has

(3.11) lim
t→0

N ε
q (t) = 0.

As Kε is smooth, we can propose a simplified version of the arguments in [4], pages 285–
286, for the proof of (3.11).

PROOF. The drift of the regularized stochastic equation is bounded. Indeed, |Kε
t | ≤ C

ε3/2

and Lemma 3.8 imply

∥∥bε,i(t, ·;pε)∥∥
L∞(R2) ≤ C√

ε
+ Ct

ε3/2 =: Cε(1 + t).

For 1 < q < ∞ and q ′ such that 1
q

+ 1
q ′ = 1 integrate (3.8) w.r.t. a test function f ∈ Lq ′

(R2)

and apply Hölder’s inequality. It becomes∣∣∣∣
∫

pε
t (x)f (x) dx

∣∣∣∣ ≤ ‖f ‖
Lq′

(R2)

(
‖gt ∗ ρ0‖Lq(R2)

(3.12)

+
2∑

i=1

∫ t

0

∥∥∇igt−s ∗ (
pε

s b
ε,i
s

)∥∥
Lq(R2) ds

)
.

Now, we split the proof in two parts: q ∈ (1,2) and q ≥ 2.
Assume q ∈ (1,2). The above drift bound and the convolution inequality (3.4) applied in

(3.12), lead to

∥∥pε
t

∥∥
Lq(R2) ≤ ‖gt ∗ ρ0‖Lq(R2) + Cε(1 + t)

2∑
i=1

∫ t

0
‖∇igt−s‖Lq(R2)

∥∥pε
s

∥∥
L1(R2) ds.

In view of (3.1), we deduce that∫ t

0
‖∇igt−s‖Lq(R2)

∥∥pε
s

∥∥
L1(R2) ds ≤ Cq

∫ t

0

1

(t − s)
3
2 − 1

q

= Cqt
1
q
− 1

2 .

Thus,

(3.13) t
1− 1

q
∥∥pε

t

∥∥
Lq(R2) ≤ t1−1/q‖gt ∗ ρ0‖Lq(R2) + t

1− 1
q
+ 1

q
−1/2

Cε(1 + t).

To get (3.10), in (3.13) use the convolution inequality (3.4) and that ‖gt‖Lq(R2) = C

t
1− 1

q

. To

get (3.11) use Lemma 3.7 for the first term of the r.h.s. of (3.13) and the fact that the second
term tends to zero as t → 0.
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Assume q ≥ 2 and set 1
p1

= 1
p2

= 1
2 + 1

2q
. Then, 1 < p1,p2 < 2 and 1 + 1

q
= 1

p1
+ 1

p2
. The

convolution inequality (3.5) and the drift estimate above together with (3.12), lead to∥∥pε
t

∥∥
Lq(R2) ≤ ‖gt ∗ ρ0‖Lq(R2)

+ Cε(1 + T )

2∑
i=1

∫ t

0
‖∇igt−s‖Lp1 (R2)

∥∥pε
s

∥∥
Lp2 (R2) ds.

In view of (3.1) and the result for q ∈ (1,2), one has

t
1− 1

q
∥∥pε

t

∥∥
Lq(R2) ≤ t

1− 1
q ‖gt ∗ ρ0‖Lq(R2)

+ Cε(1 + T )t
1− 1

q

∫ t

0

Cq

(t − s)
3
2 − 1

p1

C(ε,T )

s
1− 1

p2

ds.

Apply Lemma 3.3 and use the relation between the exponents. It becomes:

t
1− 1

q
∥∥pε

t

∥∥
Lq(R2) ≤ t

1− 1
q ‖gt ∗ ρ0‖Lq(R2) + t

1− 1
q
C(ε, T )

t
1
2 − 1

q

β

(
1 − 1

p2
,

3

2
− 1

p1

)
.

To obtain the desired result, repeat the exact same steps as in the part q ∈ (1,2) of the proof.
�

The following proposition enables one to control N ε
q (t) for a fixed q and uniformly in

small ε.

PROPOSITION 3.11. Let the assumptions of Theorem 2.3 hold. Then, there exists C > 0
such that for any t ∈ (0, T ], N ε

q (t) defined in (3.9) satisfies

∀0 < ε < 1 : N ε
q (t) ≤ C.

PROOF. Integrating (3.8) w.r.t. a test function f ∈ Lq ′
(R2), one starts from∣∣∣∣

∫
pε

t (x)f (x) dx

∣∣∣∣ ≤ ‖f ‖
Lq′

(R2)

(3.14)

×
(
‖gt ∗ ρ0‖Lq(R2) +

2∑
i=1

∫ t

0

∥∥∇igt−s ∗ (
pε

s b
ε,i
s

)∥∥
Lq(R2) ds

)
.

Let us fix i ∈ {1,2}, s < t and denote Ai
s := ‖∇igt−s ∗ (pε

s b
ε,i
s )‖Lq(R2). Observe that 1

q ′ + 2
q

=
1 + 1

q
. Apply the convolution inequality (3.5) and then use (3.1). It comes

Ai
s ≤ ‖∇igt−s‖Lq′

(R2)

∥∥pε
s b

ε,i
s

∥∥
L

q
2 (R2)

≤ C1(q
′)‖bε,i

s ‖Lq(R2)s
1− 1

q ‖pε
s‖Lq(R2)

(t − s)
3
2 − 1

q′ s1− 1
q

≤ C1
(
q ′)N ε

q (t)
‖bε,i

s ‖Lq(R2)

(t − s)
3
2 − 1

q′ s1− 1
q

.

In view of Lemma 3.8, (3.7) and Lemma 3.3, we get

∥∥bε,i
s

∥∥
Lq(R2) ≤ C2(

2q
q+2)χ‖∇c0‖L2(R2)

(s + ε)
1
2 − 1

q

+ χ

∫ s

0

∥∥Ki,ε
s−u

∥∥
L1(R2)

∥∥pε
u

∥∥
Lq(R2) du

≤ C2(
2q

q+2)χ‖∇c0‖L2(R2)

s
1
2 − 1

q

+ χC1(1)N ε
q (t)

∫ s

0

1
√

s − uu
1− 1

q

ds
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≤ C2(
2q

q+2)χ‖∇c0‖L2(R2) + χC1(1)N ε
q (t)β(1 − 1

q
, 1

2)

s
1
2 − 1

q

.

It becomes

Ai
s ≤ C1

(
q ′)χN ε

q (t)
C2(

2q
q+2)‖∇c0‖L2(R2) + C1(1)N ε

q (t)β(1 − 1
q
, 1

2)

(t − s)
3
2 − 1

q′ s
3
2 − 2

q

.

Plug this into (3.14). The condition q ∈ (2,4) ensures that 3
2 − 2

q
< 1 and 3

2 − 1
q ′ < 1. Thus,

Lemma 3.3 leads to∣∣∣∣
∫

pε
t (x)f (x) dx

∣∣∣∣
≤ ‖f ‖

Lq′
(R2)

(
‖gt ∗ ρ0‖Lq(R2) + 2C1

(
q ′)χN ε

q (t)

× C2(
2q

q+2)‖∇c0‖L2(R2) + C1(1)N ε
q (t)β(1 − 1

q
, 1

2)

t
1− 1

q

β

(
3

2
− 2

q
,

3

2
− 1

q ′
))

.

Take sup‖f ‖
Lq′ =1 in the preceding inequality. It follows from the convolution inequality (3.4)

and (3.2) that
∥∥pε

t

∥∥
Lq(R2) ≤ C2(q)

t
1− 1

q

+ 2χC1
(
q ′)β(

3

2
− 2

q
,

3

2
− 1

q ′
)
N ε

q (t)

× C2(
2q

q+2)‖∇c0‖L2(R2) + C1(1)N ε
q (t)β(1 − 1

q
, 1

2)

t
1− 1

q

.

Let us denote

K1 := 2C1
(
q ′)C1(1)β

(
3

2
− 2

q
,

3

2
− 1

q ′
)
β

(
1 − 1

q
,

1

2

)
,

(3.15)

K2 := 2C1
(
q ′)C2

(
2q

q + 2

)
β

(
3

2
− 2

q
,

3

2
− 1

q ′
)
.

After rearranging the terms,

(3.16) 0 ≤ K1χ
(
N ε

q (t)
)2 + (

K2χ‖∇c0‖L2(R2) − 1
)
N ε

q (t) + C2(q).

Under the assumptions

K2χ‖∇c0‖L2(R2) − 1 < 0 and
(
K2χ‖∇c0‖L2(R2) − 1

)2 − 4K1C2(q)χ > 0,

the polynomial function

P(z) = K1χz2 + (
K2χ‖∇c0‖L2(R2) − 1

)
z + C2(q)

admits two positive roots.
The relation (3.16) implies that P(N ε

q (t)) ≥ 0 for any t ∈ [0, T ]. In view of Lemma 3.10,
one has that limt→0 N ε

q (t) = 0. Necessarily, for any t ∈ [0, T ], N ε
q (t) is bounded from above

by the smaller root of the polynomial function P(z). As the constants do not depend on T

and ε, this estimate is uniform in time and does not depend on the regularization parameter.
Note that the above condition is equivalent to

K2χ‖∇c0‖L2(R2) + 2
√

K1C2(q)χ < 1.

Denote A := K2 and B := 2
√

C2(q)K1 to finish the proof. �
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REMARK 3.12. Fix q,A,B and χ as in Proposition 3.11. An upper bound C of N ε
q (t)

is given by

(3.17) Bq(χ) :=
1 − Aχ‖∇c0‖L2(R2) −

√
(1 − Aχ‖∇c0‖L2(R2))

2 − B2χ

2K1χ
,

where K1 is defined in (3.15).

From now on, the q and χ we chose in Proposition 3.11 are fixed and so is the constant
Bq(χ).

Now, we will analyse N ε
r (t), for different values of r w.r.t. the q ∈ (2,4) fixed in Propo-

sition 3.11. We will see that different arguments are used when r < q and r > q in order to
control N ε

r (t). The result obtained for r < q will be used to control ‖bε
t ‖Lr(R2), for r ≥ 2. All

the estimates on N ε
r (t) will be regrouped in the end of this section.

COROLLARY 3.13. Let the assumptions of Theorem 2.3 hold. Then, for any 1 < r < q ,
there exists a constant B

�
r (χ) > 0 such that it holds

∀0 < ε < 1, N ε
r (T ) ≤ B�

r (χ).

PROOF. Let 1 < r < q . Define θ := 1− 1
r

1− 1
q

. Then, 1
r

= 1 − θ + θ
q

. As pε
t ∈ L1(R2), “inter-

polation inequalities” (see [3], page 93) lead to

∥∥pε
t

∥∥
Lr(R2) ≤ ∥∥pε

t

∥∥1−θ

L1(R2)

∥∥pε
t

∥∥θ
Lq(R2) ≤ Bq(χ)θ

t
θ(1− 1

q
)

=: B
�
r (χ)

t1− 1
r

.

Here Bq(χ) is precised in Remark 3.12. �

COROLLARY 3.14. Let the assumptions of Theorem 2.3 hold. Then, for 2 ≤ r ≤ ∞,

∀0 < ε < 1,
∥∥bε

t

∥∥
Lr(R2) ≤ Cr(χ,‖∇c0‖L2(R2))

t
1
2 − 1

r

.

PROOF. In view of Lemma 3.8, one has for i ∈ {1,2}

(3.18)
∥∥bi,ε

t

∥∥
Lr(R2) ≤ C(χ,‖∇c0‖L2(R2))

t
1
2 − 1

r

+ χ

∫ t

0

∥∥Kε,i
t−s ∗ pε

s

∥∥
Lr(R2) ds.

Let q ∈ (2,4) fixed in Proposition 3.11. We split the proof in two parts: r ∈ [2, q) and r ∈
[q,∞].

For r ∈ [2, q), Corollary 3.13 immediately implies

∥∥Kε,i
t−s ∗ pε

s

∥∥
Lr(R2) ≤ C

√
t − ss1− 1

r

.

For q ≤ r ≤ ∞, choose p1 such that 1
p1

:= 1+ 1
r
− 1

q
. Observe that, as 2 < q ≤ r , it follows

that 1
2 < 1

p1
≤ 1. Applying the convolution inequality (3.5) and Corollary 3.13, one has

∥∥Kε,i
t−s ∗ pε

s

∥∥
Lr(R2) ≤ C

(t − s)
3
2 − 1

p1 s
1− 1

q

.

To finish the proof, in both cases, one plugs the obtained estimates in (3.18) and applies
Lemma 3.3. �
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COROLLARY 3.15. Let the assumptions of Theorem 2.3 hold. Then, for any r ∈ (q,∞),
there exists a constant B

�
r (χ) > 0 such that it holds

∀0 < ε < 1, N ε
r (T ) ≤ B�

r (χ).

PROOF. Let 1 < q1, q2 < 2 such that 1
q1

= 1
q2

= 1
2 + 1

2r
. Then, 1 + 1

r
= 1

q1
+ 1

q2
. Convo-

lution inequality (3.5) leads to

∥∥pε
t

∥∥
Lr(R2) ≤ ‖gt ∗ ρ0‖Lr(R2) +

2∑
i=1

∫ t

0
‖∇igt−s‖Lq1 (R2)

∥∥pε
s b

ε,i
s

∥∥
Lq2 (R2) ds.

Let us apply Hölder’s inequality for 1
λ1

+ 1
λ2

= 1 such that λ1 = q
2 ,∥∥pε

s b
ε,i
s

∥∥
Lq2 (R2) ≤ ∥∥pε

s

∥∥
Lλ1q2 (R2)

∥∥bε,i
s

∥∥
Lλ2q2 (R2).

Notice that 1 < λ1 < 2 since 2 < q < 4 by hypothesis. Then, λ2 > 2, thus λ2q2 > 2. In
addition, λ1q2 = q

2 q2 < q . In view of Corollaries 3.13 and 3.14, one has

∥∥pε
s b

ε,i
s

∥∥
Lq2 (R2) ≤ C

s
1− 1

λ1q2
+ 1

2 − 1
λ2q2

= C

s
3
2 − 1

q2

.

Therefore,

t
1− 1

q
∥∥pε

t

∥∥
Lr(R2) ≤ C + t

1− 1
q

∫ t

0

C

(t − s)
3
2 − 1

q1 s
3
2 − 1

q2

ds.

Apply Lemma 3.3 to finish the proof. �

Note that the choice of the constants A and B depends only on the initially chosen q ∈
(2,4). One may analyze the constants in Condition (2.5) as a function of this q to get an
optimal condition on χ .

REMARK 3.16. Fix q and χ as in Proposition 3.11. Gathering all the above estimates one
may explicit the constants B

�
r (χ) appearing in the Corrolaries 3.13 and 3.15 in the following

way:

(3.19) B�
r (χ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Bq(χ)
(r−1)q
r(q−1) , r < q;

C2(r) + C1

(
2r

r + 1

)
B

�
qr

r+1
(χ)

(
χ‖∇c0‖L2(R)C2

(
2r

r + 1

)

+ B
�

2qr
(q−2)(r+1)

∧q
(χ)C2

(
1 ∨ 2rq

3rq + q − 4r − 2

))
, r > q.

Here, Bq(χ) is fixed in (3.17).

4. Martingale problem and Keller–Segel PDE: Existence. The goal of this section
is to prove Theorems 2.3 and 2.5 which respectively establish existence of solutions to the
nonlinear martingale problem (MP) and the Keller–Segel PDE (2.6).

4.1. Preliminaries. As the proofs need some preparation, in this section we establish the
tightness of the constructed probability laws and two stability results.

PROPOSITION 4.1. Let the assumptions of Theorem 2.3 hold. Let εk := 1
k

, for k ∈ N.
Pεk denotes the law of the solutions to (3.6) regularized with εk . Then, the probability laws
(Pεk )k≥1 are tight in C([0, T ];R2) w.r.t. k ∈ N.
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PROOF. For m > 2 and 0 < s < t ≤ T , observe that

E
∣∣Xε

t − Xε
s

∣∣m ≤ E

((∫ t

s
bε,1(

u,Xε
u

)
du

)2
+

(∫ t

s
bε,2(

u,Xε
u

)
du

)2)m
2

+E|Wt − Ws |m.

In view of the drift estimate for r = ∞ in Corollary 3.14, one has

E
∣∣Xε

t − Xε
s

∣∣m ≤
(

2
∫ t

s

C(χ,‖∇c0‖L2(R2))√
u

du

)m

+ C(t − s)
m
2

≤ C
(
χ,‖∇c0‖L2(R2)

)
(t − s)

m
2 .

Then, Kolmogorov’s criterion implies tightness. �

Now we prove two auxiliary lemmas useful for the proof of Theorem 2.3.

LEMMA 4.2. Let t > 0 and r ∈ (2,∞]. Then,∥∥bεk

0 (t, ·) − b0(t, ·)
∥∥
Lr(R2) → 0, k → ∞.

PROOF. Notice that for t > 0 and x ∈R2

∣∣bεk

0 (t, x) − b0(t, x)
∣∣ ≤ C

χe−λtεk

t (t + εk)

∣∣∣∣
∫
R2

∇c0(x − y)e−|y|2
2t dy

∣∣∣∣
≤ εk‖∇c0‖L2(R2)√

t(t + εk)
.

Thus, ‖bεk

0 (t, ·) − b0(t, ·)‖L∞(R2) → 0, k → ∞. Similarly, for t > 0 and r > 2,

∥∥bεk

0 (t, ·) − b0(t, ·)
∥∥
Lr(R2) ≤ ‖∇c0‖L2(R2)

εk

t (t + εk)
Ct

1
r
+ 1

2 .

Let k → ∞ to finish the proof. �

LEMMA 4.3. Let t > 0, 1 < r < 2 and i ∈ {1,2}. Then, for any s ∈ (0, t), one has

∥∥Kεk,i
t−s − Ki

t−s

∥∥
Lr(R2) → 0, k → ∞.

PROOF. Fix 0 < s < t and x ∈R2. Notice that

∣∣Kεk,i
t−s (x) − Ki

t−s(x)
∣∣ ≤ (t − s)εk + ε2

k

(t − s)2(t − s + εk)2

∣∣xi
∣∣e |x|2

2(t−s) .

Thus, for any x ∈R2, we have that |Kεk,i
t−s (x) − Ki

t−s(x)| → 0, k → ∞. After integration, for
any 1 < r < 2 one has

∥∥Kεk,i
t−s − Ki

t−s

∥∥
Lr(R2) ≤ Cr

(t − s)εk + ε2
k

(t − s)2(t − s + εk)2 (t − s)
1
2 + 1

r .

Let k → ∞ to finish the proof. �
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4.2. Proof of Theorem 2.3. In view of Proposition 4.1, there exists a weakly convergent
subsequence of (Pεk )k≥1, that we will still denote by (Pεk )k≥1. Denote its limit by P∞. To
prove Theorem 2.3, we will prove that P∞ solves the martingale problem (MP).

Part (i) trivially holds.
Now we prove (ii). Define the functional �t(ϕ) by

�t(ϕ) :=
∫
R2

ϕ(y)P∞
t (dy), ϕ ∈ CK

(
R2)

.

By weak convergence we have

�t(ϕ) = lim
k→∞

∫
ϕ(y)p

εk
t (y) dy,

and thus for any 1 < r < ∞ and its conjugate r ′, in view of Proposition 3.11 and Corollaries
3.13 and 3.15 one has ∣∣�t(ϕ)

∣∣ ≤ C

t1− 1
r

‖ϕ‖
Lr′ (R2)

.

Therefore, for each 0 < t ≤ T , �t is a bounded linear functional on a dense subset of Lr ′
(R2).

Thus, �t can be extended to a linear functional on Lr ′
(R2). By Riesz-representation the-

orem (e.g., [3], Theorems 4.11 and 4.14), there exists a unique p∞
t ∈ Lr(R2) such that

‖p∞
t ‖Lr(R2) ≤ C

t1− 1
r

and p∞
t is the probability density of P∞

t (dy).

It remains to prove (iii). Set

M∞
t := f (wt) − f (w0) −

∫ t

0

[
�f (wu) + ∇f (wu) ·

(
b0(u,wu)

+ χ

∫ u

0
e−λ(u−τ)

∫
Ku−τ (wu − y)p∞

τ (y) dy dτ

)]
du,

where (wt ) is the canonical process. In order to prove that (M∞
t )t≤T is a P∞ martingale, we

will check that for any N ≥ 1, 0 ≤ t1 < · · · < tN < s ≤ t ≤ T and any φ ∈ Cb((R
2)N), one

has

(4.1) EP∞
[(

M∞
t − M∞

s

)
φ(wt1, . . . ,wtN )

] = 0.

As Pεk solves the nonlinear martingale problem related to (3.6) with εk = 1
k

, one has

Mk
t := f (wt) − f

(
x(0)

) − χ

∫ t

0

[
�f (wu) + ∇f (wu) ·

(
b

εk

0 (u,wu)

+ χ

∫ u

0
e−λ(u−τ)(Kεk

u−τ ∗ pεk
τ

)
(wu)dτ

)]
du

is a martingale under Pεk . Thus,

0 = EPεk

[(
Mk

t − Mk
s

)
φ(wt1, . . . ,wtN )

]
= EPεk

[
φ(. . . )

(
f (wt) − f (ws)

)]
+EPεk

[
φ(. . . )

∫ t

s
�f (wu)du

]
+EPεk

[
φ(. . . )

∫ t

s
∇f (wu) · bεk

0 (u,wu)du

]

+ χEPεk

[
φ(. . . )

∫ t

s
∇f (wu) ·

∫ u

0
e−λ(u−τ)(Kεk

u−τ ∗ pεk
τ

)
(wu)dτ du

]
.

Since (Pεk ) weakly converges to P∞, the first two terms on the r.h.s. converge to their ana-
logues in (4.1). It remains to check the convergence of the last two terms. We will analyze
separately the parts coming from the linear and non-linear drifts.
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Linear part. Observe that

EPεk

[
φ(. . . )

∫ t

s
∇f (wu) · bεk

0 (u,wu)du

]
−EP∞

[
φ(. . . )

∫ t

s
∇f (wu) · b0(u,wu)du

]

=
(
EPεk [φ(. . . )

∫ t

s
∇f (wu) · (

b
εk

0 (u,wu) − b0(u,wu)
)
du

)

+
(
EPεk

[
φ(. . . )

∫ t

s
∇f (wu) · b0(u,wu)du

]

−EP∞
[
φ(. . . )

∫ t

s
∇f (wu) · b0(u,wu)du

])
=: Ik + IIk.

We start from IIk . Define for x ∈ C([0, T ];R2) the functional

F(x) := φ(xt1, . . . , xtN )

∫ t

s
∇f (xu) · b0(u, xu) du.

In view of Lemma 3.6, for u > 0 and i = 1,2, the function bi
0(u, ·) is bounded and continuous

on R2 and one has ‖bi
0(u, ·)‖L∞(R2) ≤ C√

u
. By dominated convergence one gets that F(·)

is continuous. In addition, F(·) is bounded on C([0, T ];R2). Thus, by weak convergence,
IIk → 0, as k → ∞.

We turn to Ik :

|Ik| ≤ ‖φ‖∞
∫ t

s

2∑
i=1

∫
R2

∣∣∇if (z)
(
b

εk,i
0 (u, z) − bi

0(u, z)
)∣∣pεk

u (z) dz ds.

Apply the Hölder’s inequality for 1
λ

+ 1
λ′ = 1 such that 1 < λ < 2. In view of Corollary 3.13,

one has

|Ik| ≤ ‖φ‖∞‖∇f ‖∞
∫ t

s

C

u1− 1
λ

2∑
i=1

∥∥bεk,i
0 (u, ·) − bi

0(u, ·)∥∥
Lλ′

(R2)
du.

In view of Lemma 4.2, ‖bεk,i
0 (u, ·) − bi

0(u, ·)‖
Lλ′

(R2)
→ 0 as k → ∞. In addition, Lemmas

3.6 and 3.8 lead to

C

u1− 1
λ

2∑
i=1

∥∥bεk,i
0 (u, ·) − bi

0(u, ·)∥∥
Lλ′

(R2)
≤ C

u
1
λ′ + 1

2 − 1
λ′

.

By dominated convergence, Ik → 0, as k → ∞.

Nonlinear part. As in the linear part, we decompose

EPεk

[
φ(. . . )

∫ t

s
∇f (wu) ·

∫ u

0

(
K

εk
u−τ ∗ pεk

τ

)
(wu)dτ du

]

−EP∞
[
φ(. . . )

∫ t

s
∇f (wu) ·

∫ u

0

(
Ku−τ ∗ p∞

τ

)
(wu)dτ du

]

≤
(
EPεk

[
φ(. . . )

∫ t

s
∇f (wu) ·

∫ u

0

(
K

εk
u−τ ∗ pεk

τ

)
(wu)dτ du

]

−EPεk

[
φ(. . . )

∫ t

s
∇f (wu) ·

∫ u

0

(
Ku−τ ∗ p∞

τ

)
(wu)dτ du

])

+
(
EPεk

[
φ(. . . )

∫ t

s
∇f (wu) ·

∫ u

0

(
Ku−τ ∗ p∞

τ

)
(wu)dτ du

]
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−EP∞
[
φ(. . . )

∫ t

s
∇f (wu) ·

∫ u

0

(
Ku−τ ∗ p∞

τ

)
(wu)dτ du

])

=: Ck + Dk.

Start from Dk . Similar to the linear part, we need the boundness and continuity of the func-
tional

H(x) := φ
(
x(t1), . . . , x(tN)

) ∫ t

s
∇f

(
x(u)

) ·
∫ u

0

(
Ku−τ ∗ p∞

τ

)(
x(u)

)
dτ du,

where x ∈ C([0, T ];R2). The continuity comes from the fact that the kernel is a con-
tinuous function on R2 whenever τ < u. Namely, if xn ∈ C([0, T ];R2) converges to
x ∈ C([0, T ];R2), then Ki

u−τ (xn(u) − y) → Ki
u−τ (x(u) − y). In addition |Ki

u−τ (xn(u) −
y)p∞

τ (y)| ≤ C
(u−τ)3/2 p

∞
τ (y), for i ∈ {1,2}, as n → ∞. Thus, by dominated convergence, for

τ < u one has

Ki
u−τ ∗ p∞

τ

(
xn(u)

) → Ki
u−τ ∗ p∞

τ

(
x(u)

)
, n → ∞.

For 1
r

+ 1
r ′ = 1 such that r > 2 apply Hölder’s inequality and after the estimate in (ii). It

comes ∣∣Ki
u−τ ∗ p∞

τ

(
xn(u)

)∣∣ ≤ Cr

(u − τ)
3
2 − 1

r′ τ 1− 1
r

.

By dominated convergence,∫ u

0

(
Ki

u−τ ∗ p∞
τ

)(
xn(u)

)
dτ →

∫ u

0

(
Ki

u−τ ∗ p∞
τ

)(
x(u)

)
dτ, n → ∞.

Moreover, in view of Lemma 3.3, one has∣∣∣∣∇f
(
xn(u)

) ·
∫ u

0
Ku−τ ∗ p∞

τ

(
xn(u)

)
dτ

∣∣∣∣ ≤ C‖∇f ‖∞
β(1 − 1

r
, 3

2 − 1
r ′ )√

u
.

Finally, after one more application of dominated convergence the continuity of the functional
H follows. This procedure obviously implies H is a bounded functional on C([0, T ];R2).
Thus, by weak convergence, Dk converges to zero.

We turn to Ck . Let us just for this part denote by bi(t, x) := ∫ t
0 (Ki

t−s ∗ p∞
s )(x) ds and

bk,i(t, x) := ∫ t
0 (K

εk,i
t−s ∗p

εk
s )(x). Assume for a moment that for any t > 0 and x ∈ R2, one has

(4.2) lim
k→∞

∣∣bk,i(t, x) − bi(t, x)
∣∣ = 0.

Notice that

|Ck| ≤ ‖φ‖∞
∫ t

s

2∑
i=1

∫
R2

∣∣∇if (z)
(
bk,i(u, z) − bi(u, z)

)∣∣pεk
u (z) dz.

After the Hölder inequality for 1
r

+ 1
r ′ = 1 such that r > 2, one has

|Ck| ≤ ‖φ‖∞
∫ t

s

C

u
1− 1

r′

2∑
i=1

(∫ ∣∣∇if (z)
∣∣r ∣∣bk,i(u, z) − bi(u, z)

∣∣r dz

)1/r

du.

Let u > 0. In view of (4.2), |bk,i(u, z) − bi(u, z)|r → 0 as k → ∞. Now, we do not omit
|∇if (z)|q as in the linear part. Instead, we use it in order to integrate in space with respect to
drift bounds. Namely, for u > 0 and i = 1,2, we have that |bk,i(u, ·)|+ |bi(u, ·)| ≤ C√

u
. Thus,

∣∣∇if (z)
∣∣r ∣∣bk,i(u, z) − bi(u, z)

∣∣r ≤ C

u
r
2

∣∣∇if (z)
∣∣r .
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By dominated convergence,∥∥∇if (·)(bk,i(u, ·) − bi(u, ·))∥∥Lr(R2) → 0, k → ∞.

Using that ‖bk,i(u, ·)‖Lr(R2) + ‖bi(u, ·))‖Lr(R2) ≤ C

u
1
2 − 1

r

, one gets

1

u
1− 1

r′

∥∥∇if (·)(bk,i(u, ·) − bi(u, ·))∥∥Lr(R2) ≤ ∥∥∇if (·)∥∥∞
C

u
1
2 − 1

r
+1− 1

r′
.

Thus, by dominated convergence, we get that Ck → 0, as k → ∞.
As all the terms converge, we get that (4.1) holds true. Thus, the process (M∞

t )t≤T is a
P∞ martingale.

To finish the proof, it remains to show (4.2). For t > 0, x ∈ R2 and i ∈ 1,2, one has∣∣bk,i(t, x) − bi(t, x)
∣∣

=
∣∣∣∣
∫ t

0

(
K

εk,i
t−s ∗ pεk

s

)
(x) ds −

∫ t

0

(
Ki

t−s ∗ p∞
s

)
(x) ds

∣∣∣∣
≤

∣∣∣∣
∫ t

0

((
K

εk,i
t−s − Ki

t−s

) ∗ pεk
s

)
(x) ds

∣∣∣∣ +
∣∣∣∣
∫ t

0

(
Ki

t−s ∗ (
pεk

s − p∞
s

))
(x) ds

∣∣∣∣
=: Ak + Jk.

We start from Jk . For s < t and i = 1,2, the kernel Ki
t−s(·) is a continuous and bounded

function on R2. Thus, by weak convergence we have that limk→∞(Ki
t−s ∗p

εk
s )(x) = (Ki

t−s ∗
p∞

s )(x). In addition, for r > 2 Hölder’s inequality, part (ii) and Proposition 3.11 lead to

∣∣(Ki
t−s ∗ pεk

s

)
(x) − (

Ki
t−s ∗ p∞

s

)
(x)

∣∣ ≤ Cr

(t − s)
3
2 − 1

r′ s1− 1
r

.

As the bound is integrable in (0, t), the dominated convergence theorem implies that Jk → 0,
as k → ∞.

In Ak we apply Hölder’s inequality with 1 < r < 2 and the density bounds from Corol-
lary 3.13. It becomes

|Ak| ≤
∫ t

0

∥∥Kεk,i
t−s − Ki

t−s

∥∥
Lr(R2)

Cr

s
1− 1

r′
ds.

In view of (3.1) and (3.7), one has

∥∥Kεk,i
t−s − Ki

t−s

∥∥
Lr(R2) ≤ ∥∥Kεk,i

t−s

∥∥
Lr(R2) + ∥∥Ki

t−s

∥∥
Lr(R2) ≤ Cr

(t − s)
3
2 − 1

r

.

Lemma 4.3 and the preceding inequality enable us to apply dominated convergence. Thus,
Ak → 0, as k → ∞.

4.3. Proof of Theorem 2.5. Fix χ > 0 as in (2.5). Denote by ρ(t, ·) ≡ qt (x) the time
marginals of the solution to (MP) constructed in Theorem 2.3. As such, ρ satisfies for any
1 ≤ r < ∞,

sup
t≤T

t1− 1
r
∥∥ρ(t, ·)∥∥Lq(R2) ≤ Cr(χ).

Here Cr(χ) are, depending on r , given in either (3.17) or (3.19). The corresponding drift
function satisfies for any 1 ≤ r ≤ ∞,

t
1
2 − 1

r
∥∥b(t, ·;ρ)

∥∥
Lr(R2) ≤ Cr(χ).
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Following the arguments in Proposition 4.1 in [20] one may derive the mild equation for
ρ(t, ·). The above estimates ensure that everything is well defined. One arrives to the follow-
ing: For any f ∈ C∞

K (R2) and any t ∈ (0, T ],∫
f (y)ρ(t, y) dy =

∫
f (y)(gt ∗ ρ0)(y) dy

−
2∑

i=1

∫
f (y)

∫ t

0

[∇igt−s ∗ (
bi(s, ·;ρ)ρ(s, ·))](y) ds dy.

Thus ρ satisfies in the sense of the distributions

(4.3) ρ(t, ·) = gt ∗ ρ0 −
2∑

i=1

∫ t

0
∇igt−s ∗ (

bi(s, ·;ρ)
)
ρ(s, ·)) ds.

Now, define the function c(t, x) as

c(t, x) := e−λt (g(t, ·) ∗ c0
)
(x) +

∫ t

0
e−λsρ(t − s, ·) ∗ g(s, ·)(x) ds.

Thanks to the density estimates c(t, x) is well defined for all x ∈ R2 as soon as t > 0. Indeed,

∣∣c(t, x)
∣∣ ≤ ‖c0‖L2(R2)√

t
+ C

∫ t

0

∥∥ρ(t − s, ·)∥∥L2(R2)‖gs‖L2(R2) ds

≤ ‖c0‖L2(R2)√
t

+ Cβ

(
1

2
,

1

2

)
.

It is obvious that c(t, ·) ∈ L2(R2). Thanks to the density estimates and the fact that gt is
strongly differentiable as soon as t > 0, c(t, x) is differentiable at any point x and

∂

∂xi

c(t, x) = e−λt∇i

(
g(t, ·) ∗ c0

)
(x) +

∫ t

0
e−λs(ρt−s ∗ ∇ig(s, ·))(x) ds.

The fact that c0 ∈ H 1(R2) enables us to write ∇i (g(t, ·) ∗ c0) = (g(t, ·) ∗∇ic0). Now, remark
that χ ∂

∂xi
c(t, x) is exactly the drift in (4.3). Thus, the couple (ρ, c) satisfies Definition 2.4.

This concludes the proof of Theorem 2.5.
The following remark will be useful in the proof of uniqueness of the above constructed

solution.

REMARK 4.4. Take the same χ > 0 as above. Let (ρ̃, c̃) be a solution to the Keller–Segel
equation in the sense of Definition 2.4 with such χ . Let C̃r (χ) be the corresponding constant
in (2.7). Applying step by step the same computations as in Proposition 3.11 to the equation
(2.8) and afterwards all the computations from Corollaries 3.13 and 3.15, one obtains that for
any r > 1, C̃r (χ) can be chosen equal to Bq(χ) (if r = q) or B

�
r (χ) (if r �= q) fixed in (3.17)

or (3.19), respectively.

5. Martingale problem and Keller–Segel PDE: Uniqueness. The goal of this section
is to prove Theorems 2.6 and 2.7 which respectively establish uniqueness of solutions to the
Keller–Segel PDE (2.6) and the nonlinear martingale problem (MP).

In principle, uniqueness of solutions to the Keller–Segel system should be derived from
the stability theorem in [6], Theorem 2.6. We believe the statement is true. However, at the
beginning of the proof a term seems to be missing in the expression for the difference of two
integral solutions at time t + τ . The missing term seems to jeopardise the Gronwall lemma
used later on. We propose here a proof for uniqueness only which is not a stability result
and, thus, does not require the use of the Gronwall lemma. The price to pay is an additional
condition on the size of parameter χ .
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5.1. Proof of Theorem 2.6. By assumption, q is fixed such that q ∈ (2,4). Assume there
exist two pairs (ρi, ci), i = 1,2, satisfying Definition 2.4 with the same initial condition
(ρ0, c0). As such, one has

∀1 ≤ r < ∞ ∃Ci
r(χ) > 0 : sup

t≤T

t1− 1
r
∥∥ρi

t

∥∥
Lr(R2) ≤ Ci

r(χ).

By Remark 4.4, one may assume that, if r = q , then C1
q(χ) = C2

q(χ) = Bq(χ), where Bq(χ)

is given by (3.17). Otherwise, C1
r (χ) = C2

r (χ) = B
�
r (χ) defined in (3.19).

Then, after Hölder’s inequality, one has

sup
t≤T

√
t
∥∥∇ci

t

∥∥
L∞(R2) ≤ C

(‖∇c0‖L2(R2) + Bq(χ)
)
.

To get uniqueness it suffices to show that for an r > 1

sup
t≤T

t1− 1
r
∥∥ρ1

t − ρ2
t

∥∥
Lr(R2) = 0.

Let us fix an r such that 1
r

+ 1
q

> 1. As q ∈ (2,4), one has r ∈ (1,2). Denote

f (T ) := sup
t≤T

t1− 1
r
∥∥ρ1

t − ρ2
t

∥∥
Lr(R2).

From Definition 2.4, one has

t1− 1
r
∥∥ρ1

t − ρ2
t

∥∥
Lr(R2)

≤ t1− 1
r χ

2∑
i=1

∫ t

0
‖∇igt−s ∗ (∇ic

1(s, ·)(ρ1(s, ·) − ρ2(s, ·))‖Lr(R2) ds

+ t1− 1
r χ

2∑
i=1

∫ t

0
‖∇igt−s ∗ (ρ2(s, ·)(∇ic

1(s, ·) − ∇ic
2(s, ·))‖Lr(R2) ds

=: I + II.

(5.1)

Apply the above estimate on ∇c1
s , then Convolution inequality (3.4), equation (3.1) and

Lemma 3.3. It becomes

I ≤ Cχ
(‖∇c0‖L2(R2) + Bq(χ)

)
f (T )t1− 1

r

∫ t

0

‖∇igt−s‖L1(R)

s3/2−1/r
ds

≤ Cχ
(‖∇c0‖L2(R2) + Bq(χ)

)
f (T ).

Then, apply successively Convolution inequality (3.4) and Hölder’s inequality for q and its
conjugate q ′ to get

II ≤ t1− 1
r χ

(5.2)

×
2∑

i=1

∫ t

0
‖∇igt−s‖Lr(R2)

∥∥ρ2(s, ·)∥∥Lq(R2)

∥∥(∇ic
1(s, ·) − ∇ic

2(s, ·))∥∥
Lq′

(R2)
ds.

Now, let x be such that 1 + 1
q ′ − 1

r
= 1

x
. Remark that 1 < x < 2, as we supposed 1

q
+ 1

r
> 1.

In view of convolution inequality (3.4), equation (3.1) and Lemma 3.3, one has∥∥∇ic
1(t, ·) − ∇ic

2(t, ·)∥∥
Lq′

(R)
≤

∫ t

0
‖Kt−s‖Lx(R2)

∥∥ρ1
s − ρ2

s

∥∥
Lr(R2) ds

≤ f (T )

∫ t

0

C

(t − s)
3
2 − 1

x s1− 1
r

ds = Cf (T )

t
1
2 − 1

q′
.
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In view of (3.1) and the preceding estimate in (5.2), one has

II ≤ t1− 1
r χCf (T )Bq(χ)

∫ s

0

1

(t − s)
3
2 − 1

r s
1− 1

q s
1
2 −(1− 1

q
)
ds = χCf (T )Bq(χ).

Use the estimates on I and II in (5.1) and then take the supremum over [0, T ]. It becomes

f (T ) ≤ C0χ
(‖∇c0‖L2(R2) + Bq(χ)

)
f (T ).

Thus, if C0χ(‖∇c0‖L2(R2) + Bq(χ)) < 1, one has the desired result. It remains to notice that
χBq(χ) → 0 as χ → 0. Thus, the conditions (2.5) and (2.10) are compatible.

5.2. Proof of Theorem 2.7. The goal of this section is to prove Theorem 2.7. Let us fix
χ > 0 that satisfies conditions (2.5) and (2.10).

Theorem 2.6 tells us that time marginal densities of a solution to (MP) uniquely solve the
mild equation (2.8). Let us denote these uniquely determined time marginals with (ρs)s≥0.
Then, the standard argument to get uniqueness of a solution to (MP) is to show that unique-
ness holds for the linearised version of (MP).

We define the linearised process

(5.3)

⎧⎨
⎩dX̃t = b0(t, X̃t ) dt + χ

∫ t

0
(Kt−s ∗ ρs)(X̃t ) ds dt + dWt,

X̃0 ∼ ρ0,

where b0 is as in (2.2). We will denote in this section

b(t, x) := b0(t, x) dt + χ

∫ t

0
Kt−s ∗ ρs(x) ds.

Having in mind the properties of (ρs)s≥0, one has

(5.4) ∀r ∈ [2,∞] ∃Cr : sup
t≤T

t
1
2 − 1

r
∥∥b(t, ·)∥∥Lr(R2) ≤ Cr.

As the drift of (5.3) is neither uniformly bounded in time and space, nor is it in the frame-
work of Krylov and Röckner, there is no immediate result that gives us the uniqueness in law
for (5.3).

To get this uniqueness result we will use the so-called transfer of uniqueness from a (linear)
Fokker–Planck equation to the corresponding martingale problem (see [22] and the references
therein).

Thus, we define the (linear) martingale problem related to (5.3) starting from any time
0 ≤ s < T with initial probability density function on R2 that we denote by qs .

DEFINITION 5.1. Let T > 0, χ > 0 and 0 ≤ s < T . Consider the canonical space
C([s, T ];R2) equipped with its canonical filtration. Let Q be a probability measure on this
canonical space and denote by Qt its one-dimensional time marginals. Q solves the linear
martingale problem (LMP) if:

(i) Qs admits a probability density qs .
(ii) For any t ∈ (s, T ], Qt have densities qt w.r.t. Lebesgue measure on R. In addition,

they satisfy

∀r ∈ (1,∞) ∃Cr(χ) > 0 : sup
t∈(0,T )

(t − s)1− 1
r ‖qt‖Lr(R2) ≤ Cr(χ).
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(iii) For any f ∈ C2
K(R2) the process (Mt)s≤t≤T , defined as

Mt := f (wt) − f (ws) −
∫ t

s

[
1

2
�f (wu) + ∇f (wu) · b(u,wu)

]
du

is a Q-martingale where (wt ) is the canonical process.

It is clear that any solution to (MP) is a solution to (LMP) with s = 0 and q0 = ρ0.
To prove the uniqueness of solution to (LMP) with s = 0 and q0 = ρ0, the goal is to use

Lemma 2.12 in [22] in the sense (i) implies (ii) for s = 0. This result is stated in the sequel
once all the objects appearing in it are introduced.

First, one derives in the usual way the following mild equation satisfied by the laws (p̃t )t≤T

in the sense of the distributions:

(5.5) p̃t = gt ∗ ρ0 −
2∑

i=1

∫ t

0
∇igt−s ∗ (

b(s, ·)p̃s

)
ds.

Now, we define the space R[0,T ] as follows

R[0,T ] :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(νt )t≤T :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1.ν0 = ρ0;
2.νt is a density function;

3.∀1 < q < ∞,∀0 < t ≤ T : t1− 1
q ‖νt‖Lq(R2) < ∞;

4.∀0 < t ≤ T : νt satisfies (5.5)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

Repeating the same arguments as in the proof of Theorem 2.6, one has the following lemma.

LEMMA 5.2. Let the assumptions of Theorem 2.6 hold. Then, equation (5.5) admits a
unique solution in the space R[0,T ].

Now, note that for 0 < s ≤ t ≤ T one has

p̃t = gt−s ∗ (gs ∗ ρ0) −
2∑

i=1

∫ s

0
gt−s ∗ (∇igs−u ∗ (

b(u, ·)p̃u

))
du

−
2∑

i=1

∫ t

s
∇igt−u ∗ (

b(u, ·)p̃u

)
du.

Therefore

(5.6) p̃t = gt−s ∗ p̃s −
2∑

i=1

∫ t

s
∇igt−u ∗ (

b(u, ·)p̃u

)
du.

From here, for a ν ∈R[0,s] we define

(5.7) pν
s,t = gt−s ∗ νs −

2∑
i=1

∫ t

s
∇igt−u ∗ (

b(u, ·)pν
s,u

)
du.

Now we define for any 0 ≤ s < T the space

R[s,T ] :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
pν

s,t

)
s≤t≤T :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1.ν ∈ R[0,s];
2.∀0 ≤ t ≤ T : pν

s,t is a density function;

3.∀1 < q < ∞,∀s ≤ t ≤ T : (t − s)
1− 1

q
∥∥pν

s,t

∥∥
Lq(R2) < ∞;

4.∀s ≤ t ≤ T : pν
s,t satisfies (5.7)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.
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In order to prove that two solutions to a martingale problem coincide, the idea in [22] is to
prove by induction that their finite dimensional marginals coincide. As, a priori, in [22] one
does not have the Markov’s property for a solution of a martingale problem, the following
properties of the family (R[s,T ])0≤s≤T are needed to pass from k-dimensional marginals to
k + 1-dimensional marginals in the inductive procedure:

LEMMA 5.3. For any 0 ≤ s ≤ T , the following two properties are satisfied.
Property 1. Let (pν

s,t )s≤t≤T ∈ R[s,T ] and let (qν
s,t )s≤t≤T be a family of probability mea-

sures that satisfies (5.7) and is such that qν
s,t ≤ Cpν

s,t for t ∈ [s, T ]. Then, (qν
s,t )s≤t≤T ∈

R[s,T ].
Property 2. Let r ≤ s and (qν

r,t )r≤t≤T ∈ R[r,T ]. Then, the restriction(qν
r,t )s≤t≤T belongs to

R[s,T ].

PROOF.
Property 1. Let s ∈ [0, T ], (pν

s,t )s≤t≤T ∈ R[s,T ] and let(qν
s,t )s≤t≤T be a family of probabil-

ity measures that satisfies (5.7) and is such that qν
s,t ≤ Cpν

s,t for t ∈ [s, T ]. We should prove
that (qν

s,t )s≤t≤T ∈ R[s,T ]. As for t ∈ [s, T ], we have qν
s,t ≤ Cpν

s,t then for a test function
f ∈ CK(R2) one has ∣∣∣∣

∫
f (x)qν

s,t (dx)

∣∣∣∣ ≤ C

∣∣∣∣
∫

f (x)pν
s,t (x) dx

∣∣∣∣.
Let q > 1 and q ′ > 1 such that 1

q
+ 1

q ′ = 1. As (pν
s,t )s≤t≤T ∈ R[s,T ], one has∣∣∣∣

∫
f (x)qν

s,t (dx)

∣∣∣∣ ≤ C‖f ‖
Lq′

(R2)

∥∥pν
s,t

∥∥
Lq(R2) ≤ C

(t − s)
1− 1

q

‖f ‖
Lq′

(R2)
.

By Riesz representation theorem, qν
s,t is absolutely continuous with respect to Lebesgue’s

measure. We still denote its probability density by qν
s,t and conclude

∥∥qν
s,t

∥∥
Lq(R2) ≤ C

(t − s)
1− 1

q

.

Therefore, (qν
s,t )s≤t≤T ∈ R[s,T ].

Property 2. Let r ≤ s and (qν
r,t )r≤t≤T ∈ R[r,T ]. We should prove that the restriction

(qν
r,t )s≤t≤T belongs to R[s,T ]. Let t ≥ s. Notice that

qν
r,t = gt−s ∗ (gs−r ∗ νr) −

2∑
i=1

gt−s ∗
∫ s

r
∇igs−u ∗ (

b(u, ·)qν
r,t

)
du

−
2∑

i=1

∫ t

s
∇igt−u ∗ (

b(u, ·)qν
r,t

)
du.

Therefore, for t ∈ [s, T ] one has

qν
r,t = gt−s ∗ qν

r,s −
2∑

i=1

∫ t

s
∇igt−u ∗ (

b(u, ·)qν
r,t

)
du.

In addition, for t ∈ [s, T ] and r ≤ s, one has

(t − s)1− 1
m

∥∥qν
r,t

∥∥
Lm(R2) ≤ (t − r)1− 1

m
∥∥qν

r,t

∥∥
Lm(R2) ≤ C.

Thus the restriction (qν
r,t )s≤t≤T belongs to R[s,T ]. �

We are ready to state the result [22], Lemma 2.12, in our framework:
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LEMMA 5.4. As R := (R[s,T ])0≤s≤T satisfies the properties in Lemma 5.3, the following
conditions are equivalent:

(i) for every s ∈ [0, T ] and ν̄ ∈ R[0,s], there exists at most one ν ∈R[s,T ] with νs = ν̄s .
(ii) for every s ∈ [0, T ], if Q1 and Q2 to solutions to (LMP) starting from s with Q1

s =
Q2

s , then Q1 = Q2.

To apply the preceding lemma in the sense (i) implies (ii) for s = 0, it remains to check
that for a fixed ν ∈ R[0,s] the equation (5.7) admits a unique solution in R[s,T ]. In order to
do so, repeat the same as in the proof of Lemma 5.2 to get the uniqueness of (5.7). As the
constants do not depend on t, T , one gets the same condition on χ for the uniqueness. We,
thus, conclude the uniqueness of solutions to (LMP) starting in s = 0 from ρ0.

Then, as explained in the beginning of this section, we deduce the uniqueness of solutions
to (MP).

APPENDIX

Let T > 0. On a filtered probability space (�,F,P, (Ft )) equipped with a d-dimensional
Brownian motion (W) and an F0-measurable random variable X0, we study the stochastic
equation

(A.1)

⎧⎪⎨
⎪⎩

dXt = dWt +
{∫ t

0

∫
Rd

L(t − s,Xt − y)Qs(dy) ds

}
dt, t ≤ T ,

Qs := L(Xs), X0 ∼ q0,

where L maps [0, T ] × Rd to Rd . In this section we show how to adapt the Proof of Theo-
rem 1.1 in [19] in the framework of the additional time interaction in (A.1).

First, the assumption about the regularity of the interaction kernel in [19] needs to be
replaced by the following hypothesis on the interaction L.

HYPOTHESIS H0. The function L : [0, T ] ×Rd →Rd satisfies

∀(t, x) ∈ (0, T ) ×Rd,
∣∣L(t, x)

∣∣ ≤ h1(t),

∀(t, x, y) ∈ (0, T ) ×Rd ×Rd,
∣∣L(t, x) − L(t, y)

∣∣ ≤ h2(t)|x − y|,
where hi : (0, T ) → R+ is such that there exists DT > 0 such that for any t ≤ T , one has∫ t

0 hi(s) ds ≤ DT .

Note that the time interaction induces a slight change in (H0) with respect to what is
assumed on the interaction kernel in [19]. We still assume the kernel is bounded and Lipshitz
in space, but in order to treat the additional integral in time, we introduce the functions h1
and h2.

Let C := C((0, T );Rd) be a set of continuous Rd -valued functions defined on (0, T ) and
PT be the set of probability measures on C. For a Q ∈ PT and (t, x) ∈ (0, T ) ×Rd denote by

b
(
t, x; (Qs)s≤t

) :=
∫ t

0

∫
Rd

L(t − s, x − y)Qs(dy) ds.

In view of Hypothesis (H0), for a given Q ∈ PT and any (t, x, y) ∈ (0, T )×Rd ×Rd one has
that

(A.2)

{∣∣b(
t, x; (Qs)s≤t

)∣∣ ≤ DT ,∣∣b(
t, x; (Qs)s≤t

) − b
(
t, y; (Qs)s≤t

)∣∣ ≤ DT |x − y|.
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THEOREM A.1. Under the hypothesis (H0), equation (A.1) admits a unique strong so-
lution.

Let us show how the calculations in [19] change in this setting. We adopt the definition of
the Wasserstein distance given in [19], (1.4), page 173.

PROOF OF THEOREM A.1. To prove the claim, one should search for a fixed point of the
map � : PT → PT that to a given m ∈ PT associates the law of the solution to the following
SDE: {

dXt = dWt + b
(
t,Xt ; (ms)s≤t

)
dt,

X0 ∼ p0.

Notice that this equation is well defined in a strong sense thanks to (A.2) (see, e.g., [12],
Theorem 5.2.9). To exhibit the fixed point, the following contraction inequality should be
shown for m1,m2 ∈ PT :

(A.3) D1,t

(
�(m1),�(m2)

) ≤ CT

∫ t

0
D1,u(m1,m2) du.

To prove the latter, follow the steps in [19]. Always use (H0) when dealing with the time
interaction. Denote by X1 and X2 the processes whose laws are �(m1) and �(m2).

Then, taking π to be any coupling of m1 and m2, it becomes

E
[
sup
s≤t

∣∣X1
s − X2

s

∣∣] ≤
∫ t

0

∫ u

0

∫
C×C

∣∣L(
u − α,X1

u − w1
α

)
− L

(
u − α,X2

u − w2
α

)∣∣dπ
(
w1,w2)

dα du.

In view of (H0), one has∣∣L(
u − α,X1

u − w1
α

) − L
(
u − α,X2

u − w2
α

)∣∣
≤ (

2h1(u − α) + h2(u − α)
)∣∣X1

u − w1
α − X2

u + w2
α

∣∣ ∧ 1.

Use that |X1
u − X2

u| ≤ supr≤u |X1
r − X2

r | and |w1
α − w2

α| ≤ supr≤u |w1
r − w2

r | and apply
Fubini’s theorem in combination with integrability properties of h1 and h2. It becomes

E
[
sup
s≤t

∣∣X1
s − X2

s

∣∣] ≤ CT

[∫ t

0
E

[
sup
r≤u

∣∣X1
r − X2

r

∣∣ ∧ 1
]
du

+
∫ t

0

∫
C×C

sup
r≤u

∣∣w1
r − w2

r

∣∣ ∧ 1dπ
(
w1,w2)

du

]
.

Now, take an infimum over all couplings π of m1 and m2. Afterwards, apply Gronwall’s
lemma. As X1 and X2 have laws �(m1) and �(m2), respectively, a standard property of the
Waserstein distance together with the preceding relation lead to the contraction inequality
(A.3). Once (A.3) is obtained one repeats the arguments in [19] to finish the proof. �
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[20] TALAY, D. and TOMAŠEVIĆ, M. (2020). A new McKean–Vlasov stochastic interpretation of the parabolic-
parabolic Keller–Segel model: The one-dimensional case. Bernoulli 26 1323–1353. MR4058369
https://doi.org/10.3150/19-BEJ1158
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