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OPTIMAL CORRECTOR ESTIMATES ON PERCOLATION CLUSTER

BY PAUL DARIO

School of Mathematical Sciences, Tel Aviv University, pauldario@mail.tau.ac.il

We prove optimal quantitative estimates on the first-order correctors on
supercritical percolation clusters: we show that they are bounded in dimen-
sion larger than 3 and have logarithmic growth in dimension 2 in the sense
of stretched exponential moments. The main ingredients are a renormaliza-
tion scheme of the supercritical percolation cluster, following the works of
Pisztora (Probab. Theory Related Fields 104 (1996) 427–466); large-scale
regularity estimates developed by Armstrong and the author in (Comm. Pure
Appl. Math. 71 (2018) 1717–1849); and a nonlinear concentration inequal-
ity of the Efron–Stein type which is used to transfer quantitative information
from the environment to the correctors.
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1. Introduction.

1.1. Motivation and informal summary of results. We consider the random conductance
model on the supercritical percolation cluster defined as follows. We let Zd be the standard
hypercubic lattice and Bd be the set of bonds of Zd . We fix a parameter λ ∈ (0,1) and we are
given a function

(1) a : Bd →{0} ∪ [λ,1],
the value a(e) is called the conductance of the bond e and we assume that the collec-
tion (a(e))e∈Bd

is an i.i.d family of random variables. We assume that the probability
p := P(a(e) �= 0) > pc(d), where pc(d) is the bond percolation threshold for the lattice Z

d .
It follows that, almost surely, there exists a unique maximal connected component of bonds
with nonzero conductance which we denote by C∞ = C∞(a). One then wishes to study the
continuous time random walk Xt in the random environment a defined as follows. We select
an environment a such that 0 belongs to the infinite cluster C∞ and start a random walker at
the origin, X(0) = 0. Each edge e is equipped with a random clock and rings after exponen-
tial waiting time with expectation a(e)−1. When X(t) = x, the random walker waits until a
clock of an edge adjacent to x rings and then moves instantly across that edge. Note that the
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random walker is confined to the infinite cluster C∞. This random walk is a Markov process
and a common strategy to study it is to consider its generator, which is given by the random
discrete elliptic PDE

−∇ · a∇u,

where the operator −∇ · a∇u is defined on functions u : C∞ →R by, for each point x ∈ C∞,

∇ · a∇u(x) = ∑
y∼x

a
({x, y})(

u(y)− u(x)
)
.

In this article, we wish to study this random elliptic PDE by studying the (random) set of
harmonic functions for this operator. In [19], it was proved, in the case when a takes only the
two values 0 and 1, that every harmonic function h with prescribed linear growth is close to
a linear function: the random vector space of harmonic functions with growth at most linear
is finite dimensional; its dimension is equal to (d + 1) almost surely. Moreover, for each
harmonic function in this space, there exists a unique vector p ∈ R

d such that the difference
χp(x) := h(x) − p · x grows sublinearly as x tends to infinity. This result was quantified
and extended to the generality presented in this introduction by Armstrong and the author
in [7], where it is shown that the corrector is o(|x|1−δ) for some small but strictly positive
exponent δ.

The map χp is called the corrector and is the central object of this article: our goal is to
prove optimal bounds in terms of spatial scaling (and suboptimal with respect to stochastic
integrability) on the first-order correctors. We show, in the sense of stretched exponential
moments, that the correctors are bounded in dimensions d ≥ 3, and have increments which
grow like the square root of the logarithm of the distance in dimension 2. This result is
summarized in the following theorem.

THEOREM 1.1 (Optimal L∞ estimates for first-order correctors). There exist an expo-
nent s := s(d,p, λ) > 0 and a constant C := C(d,p, λ) < ∞ such that for each x, y ∈ Z

d

and each p ∈R
d ,

(2)
∣∣χp(x) − χp(y)

∣∣1{x,y∈C∞} ≤
{
Os

(
C|p| log

1
2 |x − y|) if d = 2,

Os

(
C|p|) if d ≥ 3,

where, for a random variable X, we write X ≤Os(K), to mean

E

[
exp

((
X

K

)s)]
≤ 2.

Obtaining information on the corrector is important and has proved to be useful. For in-
stance, qualitative sublinarity of the corrector can be used to prove invariance principles for
the random walker Xt following the general principle described below: if one denotes by
χ := (χ1, . . . , χd) the vector-valued corrector, where χi is the corrector such that ei ·x+χi(x)

is harmonic, then the process

Xt + χ(Xt) is a martingale, almost surely with respect to the environment.

The strategy is to apply a standard martingale convergence theorem and then to derive a
quenched invariance principle for the rescaled process εXt/ε2 + εχ(Xt/ε2). Using the sub-
linearity of the corrector allows to prove an invariance principle for the diffusion process X

itself. This approach was carried out on the infinite supercritical cluster (in the case when
a takes only the values 0 and 1) first by Sidoravicius and Sznitman in [51] in dimension
larger than 4, and a few years later by Mathieu, Piatnitski [42] and Berger, Biskup [20] in
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all dimensions d ≥ 2. Prior to these results, the generator of the random walk was studied
by Barlow in [16] and by Mathieu, Remy in [43], who proved heat-kernel bounds for the
transition probability.

In the more general setting of i.i.d random conductances, when a can a priori take values
in [0,∞), a quenched functional central limit theorem was established by Andres, Barlow,
Deuschel and Hambly in [1], provided that there exists an infinite cluster of nonzero con-
ductances, based on the previous works of Mathieu [41], Biskup and Prescott [21], Barlow
and Deuschel [17]. More general models of random walks on percolation clusters with long
range correlation, including random interlacements and level sets of the Gaussian free field,
are studied by Procaccia, Rosenthal and Sapozhnikov in [50].

Tight bounds on the corrector are useful to derive invariance principles but they are also the
crucial ingredient for the derivation of optimal error and two-scale expansion estimates for
the homogenization of general boundary value problems. They can be used to obtain a Berry–
Essen theorem, in the spirit of Mourrat [45] in the uniformly elliptic setting (see also Andres
and Neukamm [5] for an extension of these results to degenerate and correlated environments)
and are also important to obtain precise information on the Green’s function for the Laplacian
on the infinite cluster as well as on the transition probability for the random walk, as is
explained in [10], Chapters 8 and 9. They can also inform the performance of numerical
algorithms for the computation of the homogenized diffusivity [46] and of solutions to the
heterogeneous equation [8].

The tools developed in this article come from the theory of stochastic homogenization
which studies the solutions of the elliptic equation

−∇ · a∇u = 0 in R
d,

where the environment a is a random map from R
d to the set of symmetric matrices, sat-

isfying some assumptions of ellipticity, stationarity and ergodicity. There have been recent
developments in the quantitative homogenization of uniformly elliptic divergence-form equa-
tions, which started with the work of Gloria and Otto [36]. In this article, they were able to
obtain moments bounds on the corrector with an optimal spatial scaling, by using a spec-
tral gap inequality, which was first introduced into stochastic homogenization by Naddaf and
Spencer in [47], to quantify the ergodicity of the coefficient field. This program was then
continued by Gloria and Otto in [37–39] and by Neukamm, Gloria and Otto in [33–35] and
has implications to random walks as explained in [30].

Another approach was later initiated by Armstrong and Smart in [13], who extended the
techniques of Avellaneda and Lin [14, 15] and the ones of Dal Maso and Modica [24, 25], and
were able to obtain a large scale C0,1-regularity theory under an assumption of finite range
dependence on the environment. These results were then generalized by Armstrong, Kuusi
and Mourrat to general mixing conditions and to other types of equations [12] and improved
to obtain optimal rates of convergence [9, 10].

The theory is now well-understood in the uniformly elliptic setting. Going beyond this set-
ting has been the subject of much research recently in different directions. In [40], Lamacz,
Neukamm and Otto were able to extend these results to a model of Bernoulli bond percola-
tion, where the standard model is modified such that all the bonds in a fixed unit direction are
always open. Another way of removing the ellipticity assumption can be the following: we
define some (scalar) random variables 0 < λ ≤ μ < ∞ according to the formulas

λ := inf
ξ∈Rd\{0}

ξ · aξ

|ξ |2 and μ := sup
ξ∈Rd\{0}

ξ · aξ

|ξ |2 ,

and add an assumption on the integrability of λ and μ: there exist p,q ∈ [1,∞] such that

(3) E
[
λ−p] +E

[
μq]

< ∞.
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This setting was first considered by Andres, Deuschel, Slowik in [3] (see also [4]), and then
by Chiarini and Deuschel in [23]. They are able to obtain a quenched invariance principle
for the diffusion process under the assumption 1/p + 1/q < 2/d , which allowed them to
perform a Moser iteration. In [18], Bella, Fehrman and Otto, still working under the assump-
tion 1/p + 1/q < 2/d , were able to obtain a first-order Liouville theorem and a large scale
C1,α-estimate for a-harmonic functions. An extension of these results to the case of time-
dependent coefficients has been carried out by [2]. The condition (3) requires the value of
the conductances to be nonzero almost surely, an extension of this model in a case when
the conductance is allowed to be zero and to be small (under some moments condition) was
investigated by Deuschel, Nguyen and Slowik in [29].

The setting considered in this article is different from the models satisfying condition (3):
we are working with the i.i.d. random conductance model, and we assume the value of the
conductances to be either 0 or larger than some deterministic constant λ > 0 (see (1)), with the
property that P(a(e) �= 0) > pc(d). Despite this difference, the main challenge is essentially
the same: adapting the various tools and proofs, available in the uniformly elliptic setting,
to the degenerate elliptic environment. To this end, we follow the strategy initiated in the
previous paper [7] and appeal to a renormalization structure for the supercritical percolation
cluster. The construction is recalled in Section 2, where Zd is partitioned into triadic cubes of
different random sizes, well-connected in the sense of Penrose an Pisztora [48]. This partition
allows to distinguish regions of Zd where the infinite cluster is well-behaved, its geometry is
similar to the one of the lattice Zd , from regions where the infinite cluster is badly-behaved. In
the first case, it is rather straightforward to adapt the theory developed in the uniformly elliptic
setting; problems arise where the infinite cluster is badly-behaved. In this situation the theory
cannot be adapted. Fortunately, there are few regions were the cluster is badly-behaved, and
the theory of stochastic homogenization in the uniformly elliptic setting is robust enough to
be adapted to the supercritical cluster.

Our strategy to prove the optimal scaling estimates for the corrector relies on a concen-
tration inequality (cf. Proposition 8), which gives a convenient way to transfer quantitative
information from the coefficient field to the correctors. This idea originates in an unpublished
paper from Naddaf and Spencer [47], and was then developed by Gloria and Otto [36, 37] and
Gloria, Neukamm and Otto [34] (see also Mourrat [44]) to study stochastic homogenization.
More precisely, thanks to this inequality we are able to obtain quantitative estimates on the
spatial average of the gradient of the corrector.

We then use the the multiscale Poincaré inequality stated in Proposition 9 to deduce the
estimates on the oscillation of the correctors stated in Theorem 1.1 from the bounds on the
spatial average of its gradient.

We conclude this introduction by noting that in Theorem 1.1, the spatial scaling is optimal
while the stochastic integrability is suboptimal: we only obtain a small exponent s > 0 of
stochastic integrability. This is due to the degenerate structure of the percolation problem and
while our method can provide an explicit value for the exponent s, we do not expect it can be
used to derive the optimal exponent. We nevertheless provide a conjecture.

CONJECTURE 1. In dimension d = 2, fix s < 2, then there exists a constant C :=
C(s,p, λ) < ∞ such that for each x, y ∈ Z

d and each p ∈R
d ,

(4)
∣∣χp(x) − χp(y)

∣∣1{x,y∈C∞} ≤O s(d−1)
d

(
C|p| log

1
2 |x − y|).

In dimension 3, there exists a constant C := C(d, s,p, λ) < ∞ such that for each x, y ∈ Z
d

and each p ∈R
d , ∣∣χp(x) − χp(y)

∣∣1{x,y∈C∞} ≤O s(d−1)
d

(
C|p|).
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The reason behind this conjecture is the following: in the uniformly elliptic setting, it is
known that the optimal stochastic integrability is the one provided in the statement of the
conjecture without the term (d − 1)/d , see [10], Theorem 4.1. The additional term (d − 1)/d

is a surface order large deviation effect which can be heuristically explained by the following
argument: in the uniformly elliptic setting and in a given ball, to design a bad environment for
which one does not have a good control on the growth of the corrector, it is necessary to have
a number of ill-behaved edges of order of the volume of the ball. In the percolation setting,
the situation is different and one only needs a number of ill-behaved edges of the order of the
surface of the ball to design a bad environment: to illustrate this fact, one can note that, if we
let R be the radius of the ball, then it is possible to disconnect the ball into two half-balls with
only cRd−1 closed edges. This phenomenon should result in a deterioration of the stochastic
integrability by a factor (d − 1)/d .

1.2. Notation and assumptions.

1.2.1. General notation for the probabilistic model. We denote by Z
d the standard d-

dimensional hypercubic lattice. The set of bonds of Z
d , that is the set of unoriented pairs

of nearest neighbors, is denoted by Bd := {{x, y} : x, y ∈ Z
d, |x − y|1 = 1}. More specif-

ically, given a subset U ⊆ Z
d , we denote by Bd(U) the set of the bonds of U , that

is, Bd(U) := {{x, y} : x, y ∈ U, |x − y|1 = 1}. The canonical basis of R
d is denoted by

e1, . . . , ed . For x, y ∈ Z
d , we write x ∼ y if {x, y} ∈ Bd . For some fixed ellipticity parameter

λ ∈ (0,1], we define the probability space � := ({0}∪ [λ,1])Bd and we equip this probability
space with the Borel σ -algebra F := B({0} ∪ [λ,1])⊗Bd . Given an edge e ∈ Bd , we denote
by a(e) the projection

a(e) :
{
� →{0} ∪ [λ,1],
(ωe′)e′∈Bd

�→ ωe.

We denote by a the collection (a(e))e∈Bd
and we refer to this mapping as the environment.

For every set U ⊆ Z
d , we denote by F(U) ⊆ F the σ -algebra generated by the mappings

(a(e))e∈Bd (U).
We fix a probability measure P0 supported in {0} ∪ [λ,1] satisfying the property

(5) p := P0
([λ,1]) > pc(d),

where pc(d) is the bond percolation threshold for the lattice Zd . We then equip the measurable
space (�,F) with the i.i.d. probability measure P= P

⊗Bd

0 , so that the sequence (a(e))e∈Bd

is an i.i.d. collection of random variables of law P0. The expectation with respect to the
probability measure P is denoted by E.

Given an environment a, we say that a bond e ∈ Bd is open if a(e) > 0 and closed if
a(e) = 0. Given two vertices x, y ∈ Z

d , we say that there is a path connecting x and y if
there exists a sequence of open edges of the form {x, z1}, . . . , {zn, zn+1}, . . . , {zN, y}. The
two vertices x and y are then said to be connected, which we denote by x ↔a y, if there
exists a path connecting x and y. A cluster is a connected subset C ⊆ Z

d . Thanks to the
assumption (5), we know that, P–almost surely, there exists a unique maximal infinite cluster
(see [22]). This cluster is denoted by C∞ := C∞(a).

We also denote by Ed := {(x, y) : x, y ∈ Z
d, x ∼ y} the set of oriented edges. More gener-

ally, we define, for a subset U ⊆ Z
d , Ed(U) := {(x, y) : x, y ∈ U,x ∼ y}.

For x ∈ Z
d , we define the translation τx on � to be the map

τx :
{
� → �,

(ωe)e∈Bd
�→ (ωe+x)e∈Bd

.
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Note that the measure P is stationary with respect to the Z
d -translations: for each x ∈ Z

d ,

(6) (τx)∗P= P,

where (τx)∗P is the pushforward measure defined by the formula, for each set A ∈ F ,
(τx)∗P(A) = P(τ−1

x (A)).

1.2.2. Notation for functions. For each vector p ∈R
d , we denote by lp the affine function

of slope p, that is, lp(x) = p · x. Given a function u defined on a discrete set U ⊆ Z
d , we

define its oscillation by the formula

osc
U

u := sup
U

u − inf
U

u.

We define a vector field to be a function G : Ed → R satisfying the antisymmetry property:
for each (x, y) ∈ Ed ,

G(x,y) =−G(y,x).

For a given a function u : Zd →R, we define its gradient ∇u to be the vector field

(∇u)(x, y) := u(x)− u(y).

For a random function defined on a cluster C , u : C →R, we define ∇u to be the vector field
defined on the edges of Zd by the formula

(7) (∇u)(x, y) :=
{
u(x)− u(y) if x, y ∈ C and a

({x, y}) �= 0,

0 otherwise,

and a∇u to be the vector field defined by

(a∇u)(x, y) := a
({x, y})(∇u)(x, y).

The cluster C will frequently be the infinite cluster C∞. We may also think of the gradient as
a vector-valued operator, as it is commonly the case for continuous functions: we denote by,
for any point x ∈ C and any function u : C →R,

(8) ∇u(x) :=
⎛⎜⎝∇u(x + e1, x)

...

∇u(x + ed, x)

⎞⎟⎠ .

For p ∈R
d , we denote by p the constant vector field, defined according to the formula

p(x, y) := p · (x − y).

With these conventions, we have ∇lp = p. For a given vector field G and a point x ∈ Z
d , we

define

(9) |G|(x) :=
( ∑

y:(x,y)∈Ed

∣∣G(x,y)
∣∣2) 1

2
.

For a given a subset U ⊆ Z
d , we equip the space of vector fields with a scalar product 〈·, ·〉,

defined by

〈F,G〉U := ∑
(x,y)∈Ed(U)

F (x, y)G(x, y).

We will also frequently make use of the following notation, given a vector field G, we define

〈G〉U = ∑
(x,y)∈Ed(U)

G(x, y)(x − y).
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The value 〈G〉U belongs to the space Rd . Given an environment a, two functions u, v : Zd →
R, and a subset U ⊆ Z

d , the Dirichlet form can be written with the previous notation as

〈∇u,a∇v〉U = ∑
(x,y)∈Ed(U)

(
u(x)− u(y)

)
a

({x, y})(
v(x) − v(y)

)
.

We define the elliptic operator −∇ · a∇ by, for each function u : Zd → R and each point
x ∈ Z

d ,

(−∇ · a∇u)(x) := ∑
x∼y

a
({x, y})(

u(x)− u(y)
)
.

For a given a subset U ⊆ Z
d , we define the random set of a-harmonic functions in U by

A(U) := {
u : U →R : (−∇ · a∇u)(x) = 0, x ∈ intaU

}
,

where intaU is the interior of U with respect to the environment a, defined according to the
formula

intaU := {
x ∈ U : ∀y ∈ Z

d,
(
y ∼ x and a

({x, y}) �= 0
) =⇒ y ∈ U

}
.

If U is a finite set, we denote its cardinality by |U |.
For vectors of R

d , we denote by | · | the standard infinite norm given by |x| =
maxi=1,...,d |xi |. We define a pseudometric on the subsets of Zd by the formula dist(U,V ) =
infx∈U,y∈V |x − y|.

We also use the notation BR(x) or B(x,R) to denote the ball centered at x ∈ Z
d with

radius R > 0 with respect to the infinite norm. The ball BR(0) is simply denoted by BR .

1.2.3. Notation for cubes. A cube is a subset of Zd of the form

� := (
z + (−N,N)d

) ∩Z
d, N ∈N, z ∈ Z

d .

We define the center and the size of the cube � to be the point z ∈ Z
d and the integer 2N −1.

We denote its size by size(�). In particular, with this convention, we have |�| = (size(�))d .
For a nonnegative real number r > 0 and a cube �, of center z ∈ Z

d and size (2N − 1) ∈ N,
we denote by r� the cube

r� := (
z + (−rN, rN)d

) ∩Z
d .

This notation is nonstandard; the multiplication by r only affects the size of the cube but the
center of the cube remains unchanged. We introduce a specific category of cubes, namely the
triadic cubes. A triadic cube is a cube of the form

(10) �n(z) :=
(
z +

(
−1

2
3n,

1

2
3n

)d)
∩Z

d, n ∈N, z ∈ 3n
Z

d .

To simplify the notation, we write �n = �n(0). This collection of cubes enjoys a number
of convenient properties. First, any two triadic cubes (of possibly different sizes) are either
disjoint or else one is included in the other. Moreover, for every m,n ∈ N with n ≤ m, the
triadic cube �m can be uniquely partitioned into 3d(m−n) disjoint triadic cubes of size 3n.
We denote by T the collection of triadic cubes and by Tn the collection of triadic cubes of
size 3n.

For each integer n ∈ N and each cube � ∈ Tn, we define the predecessor of �, to be the
unique triadic cube �̃ ∈ Tn+1 such that �⊆ �̃. If �̃ is the predecessor of �, then we say that
� is a successor �̃. In particular, a cube of the set T0 does not have any successor, while a
cube of the set T \ T0 has exactly 3d successors.
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1.2.4. The Os notation. We introduce a series of notation and properties which will be
useful to measure the stochastic integrability and sizes of random variables. Given two pa-
rameters s, θ > 0 and a nonnegative random variable X, we denote by

X ≤Os(θ) if and only if E

[
exp

((
X

θ

)s)]
≤ 2.

Note that, by Markov’s inequality, the tail of a random variable X satisfying the inequality
X ≤Os(θ) decreases stretched exponentially fast: for every t > 0,

P[X ≥ θt] ≤ 2 exp
(−t s

)
.

For a given sequence (Yi)i∈N of nonnegative random variables and a sequence (θi)i∈N of
nonnegative real numbers, we write

X ≤ ∑
i∈N

YiOs(θi),

to mean that there exists a sequence of nonnegative random variables (Zi)i∈N such that for
each integer i ∈N, Zi ≤Os(θi) and

X ≤ ∑
i∈N

YiZi.

We now record some properties pertaining to this notation. All these properties are proved
in [10], Appendix A. The notation is compatible with the addition, meaning that, for any
stochastic integrability exponent s > 0, there exists a constant C depending only on s, which
may be chosen to be 1 if s ≥ 1, such that

(11) X1 ≤Os(θ1) and X2 ≤Os(θ2) =⇒ X1 +X2 ≤Os

(
C(θ1 + θ2)

)
.

More generally, for any s > 0, there exists a constant C(s) < ∞ such that, for every mea-
sure space (X,F,μ), every jointly measurable family {X(x)}x∈E of nonnegative random
variables and every measurable function θ : E →R+, we have

(12) ∀x ∈ E, X(x) ≤Os

(
θ(x)

) =⇒
ˆ

E

X(x)dμ(x) ≤Os

(
C

ˆ
E

θ(x) dμ(x)

)
.

The constant can be chosen to be

(13)

⎧⎪⎨⎪⎩C(s) =
(

1

s ln 2

) 1
s

if s < 1,

C(s) = 1 if s ≥ 1.

From the definition, we have, for each λ ∈R+,

X ≤Os(θ) =⇒ λX ≤Os(λθ).

This notation is also compatible with the multiplication in the sense that

(14) |X1| ≤Os1(θ1) and |X2| ≤Os2(θ2) =⇒ |XY | ≤O s1s2
s1+s2

(θ1θ2).

It is easy to check from (14) that one can reduce the integrability exponent s, that is, for each
0 < s′ < s, there exists a constant C := C(s ′) < ∞ such that

(15) X ≤Os(θ1) =⇒ X ≤Os′(Cθ1).
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1.2.5. Convention for constants and exponents. In this article, the symbols c and C de-
note positive constants which may vary from line to line. These constants depend mainly on
three parameters which are fixed through the proofs: the dimension of the space d , the ellip-
ticity λ and the probability p = P[a(e) �= 0]. Usually, we use C for large constants (whose
value is expected to belong to the interval [1,∞)) and c for small constants (whose value is
expected to be in the interval (0,1]).

For the stochastic integrability, we use the letter s and will typically have inequalities of
the form X ≤ Os(C). This exponent s depends on the parameters d,λ and p. Its value can
also vary from line to line and is expected to be small.

In Sections 4 and 5, another parameter will be involved in the dependence of the constants
and exponents: the spatial integrability q ∈ (2,∞) (see Theorem 1.2 below). The dependence
in this additional parameter will be displayed thanks to the following convention: we write
C := C(d,λ,p) < ∞ (resp. C := C(d,λ,p, q) < ∞) to mean that the constant C depends
only on the parameters d,λ,p (resp. d,λ,p, q) and that its value is expected to be large.
For small constants or exponents we use the notation c := c(d,λ,p) > 0, s := s(d, λ,p) > 0
(resp. c := c(d,λ,p, q) > 0, s := s(d, λ,p, q) > 0).

1.3. Outline of the paper. The rest of the paper is organized as follows. In Section 2,
we recall (mostly without proof) some properties of the infinite cluster which were stated
and proved in [7] (and based on [48]) to develop a quantitative homogenization theory on
the infinite percolation cluster. In Sections 2.5 and 2.6, we state the concentration inequal-
ity and the multiscale Poincaré inequality, which are the two key ingredients in the proof
of Theorem 1.2. In Section 3, we use the concentration inequality and the properties of the
infinite cluster recorded in Section 2 to obtain an estimate on the spatial averages of the cor-
rector. In Section 4, we use the result established in Section 3 combined with the multiscale
Poincaré inequality to prove the optimal Lq -bound on the gradient of the corrector, stated in
the following theorem.

THEOREM 1.2 (Optimal Lq estimates for first-order corrector). For each q ≥ 2, there
exist an exponent s := s(d,p, λ) > 0 and a constant C(d,p, λ, q) < ∞ such that for each
radius R ≥ 1 and each p ∈R

d ,

(16)
(
R−d

∑
x∈C∞∩BR

∣∣χp(x) − (χp)C∞∩BR

∣∣q) 1
q ≤

{
Os

(
C|p| log

1
2 R

)
if d = 2,

Os

(
C|p|) if d ≥ 3.

This theorem is strictly weaker than Theorem 1.1; in Section 5 we upgrade the previous
Lq bound into the L∞ bound stated in Theorem 1.1. In Appendix A, we give a proof of the
multiscale Poincaré inequality stated in Section 2.6. In Appendix C, we give the proof of a
technical lemma used in Section 3.

2. Preliminaries. In this section we record some properties about the infinite percolation
cluster in the supercritical regime. Most of these properties were established in [7].

2.1. The corrector: Existence and first properties. Denote by A1 the (random) vector
space of a-harmonic functions with at most linear growth, that is,

A1 :=
{
u : C∞ →R : ∇ · (a∇u) = 0 in C∞ and lim

R→∞
1

R2 ‖u‖L2(C∞∩BR) = 0
}
.

By [19], we know that, P-almost surely, the space A1 has dimension (d + 1) and that
every function u ∈ A1 is close to an affine function. More precisely, the space A1 can be
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characterized as follows: there exist a collection of sublinear functions {χp}p∈Rd defined on
the infinite cluster and valued in R such that

A1 := {
lp + χp + c : p ∈R

d, c ∈R
}
.

The functions {χp}p∈Rd are called the correctors. They are defined up to a constant and
are unique. To work with these quantities, one has to be careful to only consider quantities
which are invariant by adding a constant, such as the oscillation, the gradient, the difference
χp(x) − χp(y), etcetera. For later use, we record that the map p �→ ∇χp is linear.

The sublinear growth of the corrector is an important property which was proved qual-
itatively in [27] and quantitatively in [7]; by [7], (1.22), there exist two exponents δ :=
δ(d,p, λ) > 0, s := s(d,p, λ) > 0 and a constant C := C(d,p, λ) such that, for each radius
R ≥ 1,

(17) osc
C∞∩BR

χp ≤Os

(
C|p|R1−δ)

.

We may reformulate this property in terms of a minimal scale: by [7], (1.18), there exists a
nonnegative random variable X satisfying X ≤Os(C), such that for each vector p ∈R

d and
each radius R ≥X ,

(18)
∥∥χp − (χp)C∞∩BR

∥∥
L2(C∞∩BR) ≤ C|p|R1−δ.

Moreover, the corrector satisfies the following stationarity property: for each x, y ∈ Z
d , each

p ∈R
d and each z ∈ Z

d ,

(19)
(
χp(x) − χp(y)

)
1{x,y∈C∞}(a) = (

χp(x + z)− χp(y + z)
)
1{z+x,z+y∈C∞}(τza).

2.2. Triadic partitions of good cubes. This section shows how to use the tools developed
by Penrose and Pisztora [48] to obtain a renormalization structure of the infinite cluster of
supercritical percolation.

2.2.1. A general scheme for partition of good cubes. The construction of the partition
is accomplished by a stopping time argument reminiscent of a Calderón–Zygmund–type de-
composition. We are given a notion of “good cube” represented by an F -measurable function
which maps � into the set of all subsets of T . In order words, for each environment a ∈ �,
we are given a subcollection G(a) ⊆ T of triadic cubes. We think of � ∈ T as being a good
cube if � ∈ G(a). We frequently drop the dependence in a and write G instead of G(a).

PROPOSITION 1 (Partition of good cubes, Proposition 2.1 of [7]). Let G ⊆ T be a ran-
dom collection of triadic cubes, as above. Suppose that there exist constants K,s > 0 such
that

sup
z∈3nZd

P[z +�n /∈ G] ≤ K exp
(−K−13ns)

.

Then, P–almost surely, there exists a partition S ⊆ T of Zd into triadic cubes with the fol-
lowing properties:

(i) All predecessors of elements of S are good: for every �,�′ ∈ T ,

�′ ⊆� and �′ ∈ S =⇒ � ∈ G.

(ii) Neighboring elements of S have comparable sizes: for every �,�′ ∈ S such that
dist(�,�′) ≤ 1, we have

1

3
≤ size(�′)

size(�)
≤ 3.
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(iii) Estimate for the coarseness of S : if we denote by �S(x) the unique element of S
containing a point x ∈ Z

d , then there exists C(s,K,d) < ∞ such that

size
(
�S(x)

) ≤Os(C).

In addition, if one has the following independence property, for every cube �= z +�n ∈ T ,

(20) the event {� /∈ G} is F(z +�n+1)-measurable,

then one has the following minimal scale property:

(iv) Minimal scale for S . For each t ∈ [1,∞), there exists C := C(t, s,K,d) < ∞, an
N-valued random variable Mt (S) and exponent r := r(t, s,K,d) > 0 such that

Mt (S) ≤Or (C)

and for each integer m ∈N satisfying 3m ≥Mt (S),

1

|�m|
∑

x∈�m

size
(
�S(x)

)t ≤ C and sup
x∈�m

size
(
�S(x)

) ≤ 3
dm
d+t .

2.2.2. The partition P of well-connected cubes. We apply the construction of the previ-
ous subsection to obtain a random partition P of Zd which simplifies the geometry of the
percolation cluster. This partition plays an important role in the rest of the paper. To obtain
bounds on the “good event” which allows us to construct the partition, we use the results
of Pisztora [49], Penrose and Pisztora [48] and Antal and Pisztora [6]. We first recall some
definitions introduced in those works.

DEFINITION 1 (Crossability and crossing cluster). We say that a cube � is crossable
(with respect to an environment a ∈ �) if each of the d pairs of opposite (d − 1)-dimensional
faces of the cube � is joined by an open path in �. We say that a cluster C ⊆� is a crossing
cluster for � if C intersects each of the (d − 1)-dimensional faces of �.

DEFINITION 2 (Good cube). We say that a triadic cube � ∈ T is well-connected if there
exists a crossing cluster C for the cube � such that:

(i) Each cube �′ with size(�′) ∈ [ 1
10 size(�), 1

2 size(�)] and �′ ∩ 3
4� �=∅ is crossable.

(ii) Every path γ ⊆�′ with diam(γ ) ≥ 1
10 size(�) is connected to C within �′.

We say that � ∈ T is a good cube if size(�) ≥ 3, � is well-connected and each of the 3d

successors of the cube � are well-connected. We say that � ∈ T is a bad cube if it is not a
good cube (see Figure 1).

The following estimate on the probability of the cube �n being good is a consequence [49],
Theorem 3.2, and [48], Theorem 5, as recalled in [6], (2.24).

LEMMA 2.1 ([6], (2.24)). For each probability p ∈ (pc,1], there exists a constant
C(d,p) < ∞ such that, for every integer n ∈N,

(21) P[�n is good] ≥ 1 −C exp
(−C−13n)

.

It follows from Definition 2 that, for every good cube �, there exists a unique maximal
crossing cluster for � which is contained in �. We denote this cluster by C∗(�). In the next
lemma, we record the observation that adjacent triadic cubes which have similar sizes and
are both good have connected clusters.
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FIG. 1. A good cube �. The cluster C∗(�) is drawn in green. Simulation by C. Gu.

LEMMA 2.2 (Lemma 2.8 of [7]). Let n,n′ ∈ N with |n − n′| ≤ 1 and z, z′ ∈ 3n
Z

d such
that

dist
(
�n(z),�n′

(
z′

)) ≤ 1.

Suppose also that �n(z) and �n′(z′) are good cubes. Then there exists a cluster C such that

C∗
(
�n(z)

) ∪ C∗
(
�n′

(
z′

)) ⊆ C ⊆�n(z) ∪�n′
(
z′

)
.

We next define the partition P of good cubes.

DEFINITION 3. We let P ⊆ T be the partition S of Zd obtained by applying Proposi-
tion 1 to the collection

G := {� ∈ T :� is good}.
More generally, for each point y ∈ Z

d , we let Py ⊆ T be the partition S of Zd obtained by
applying Proposition 1 to the collection

G := {y +� :� ∈ T and y +� is good}.
From the construction of P and Py , we also have

Py = y +P(τ−ya) = {
y +� :� ∈ P(τ−ya)

}
.

We refer to Figure 2 for an illustration of the random partition P .

The (random) partition P plays an important role throughout the rest of the paper. We
denote by P∗ the collection of triadic cubes which contains some elements of P , that is

P∗ := {
� :� is a triadic cube and �⊇�′ for some �′ ∈ P

}
.
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FIG. 2. A realization of the partition P in a cube �. The cluster C∗(�) is drawn in green; the clusters in yellow
are the small isolated clusters. Simulation by C. Gu.

Notice that every element of P∗ can be written in a unique way as a disjoint union of elements
of P . According to Proposition 1(i), every triadic cube containing an element of P is good.
By Proposition 1(iii) and Lemma 2.1, there exists C(d,p) < ∞ such that, for every x ∈ Z

d ,

(22) size
(
�P(x)

) ≤O1(C).

By the properties of the partition P given in Proposition 1(i) and (ii) and Lemma 2.2, the
maximal crossing cluster C∗(�) of an element � ∈ P∗ must satisfy C∗(�) ⊆ C∞, since
the union of all crossing clusters of the elements of P is unbounded and connected. Notice
also that, although we may not have C∗(�) = C∞ ∩�, by definition of the partition P and
Property (ii) of Definition 2, we have that, for every cube � ∈ P , there exists a cluster C such
that

(23) C∞ ∩�⊆ C ⊆ ⋃
�′∈P,dist(�,�′)≤1

�′.

In other words, for any cube � ∈ P and every pair of points x, y ∈ C∞ ∩�, there exists a
path connecting x to y which lies in the cube � and in its neighbors.

It is also interesting to note that, for m ∈ N such that 3m ≥ M2d(P), the sets C∗(�m),
C∞ ∩ �m and �m have comparable sizes: there exists a constant C := C(d,p) < ∞ such
that

(24) C−1|�m| ≤ ∣∣C∗(�m)
∣∣ ≤ |C∞ ∩�m| ≤ |�m|.

This result is a consequence of the Cauchy–Schwarz inequality and the three identities, under
the assumption 3m ≥M2d(P) (which implies in particular that the cube �m is good),∑

�∈P,�⊆�m

1 ≤ C∗(�m),
∑

�∈P,�⊆�m

size(�P)d = |�m|



390 P. DARIO

and ∑
�∈P,�⊆�m

size(�P)2d ≤ C|�m|.

The first inequality comes from the fact that each cube of the partition P contained in the cube
�m must have nonempty intersection with the cluster C∗(�m), the second one is the preser-
vation of the volume and the third one is a consequence of the assumption 3m ≥M2d(P).

Given a cube � ∈P , we let z(�) denote the element of the cluster C∗(�) which is closest
to the point z; if this point is not unique, we break ties by using the lexicographical order.

DEFINITION 4. Given a function u : C∞ → R, we define the coarsened function with
respect to the partition P to be

[u]P :
{
Z

d →R,

x �→ u
(
z
(
�P(x)

))
.

The reason we use the coarsened function is that it is defined on the entire lattice Z
d

and not on the infinite cluster. This allows to make use of the simpler and more favorable
geometric structure of Zd . The price to pay is the difference between u and [u]P ; it depends
on the coarseness of the partition P and the control one has on the gradient of the function u

in a way that is made precise in the following proposition. The dependence on the coarseness
of P is present via the size of the cubes of the partition. We recall the notation |F |(x) for a
vector field F introduced in (9).

PROPOSITION 2 (Lemma 3.2 of [7]). For each triadic cube � ∈ P∗, each exponent 1 ≤
s < ∞ and each function w : C∞ →R,

(25)
∑

x∈C∗(�)

∣∣w(x) − [w]P(x)
∣∣s ≤ Cs

∑
x∈C∗(�)

size
(
�P(x)

)sd |∇w|s(x).

More generally, for any family of disjoint cubes {�i}i∈I ∈ (P∗)I , we have

(26)
∑

x∈C∗(
⋃

i∈I �i )

∣∣w(x) − [w]P(x)
∣∣s ≤ Cs

∑
x∈C∗(

⋃
i∈I �i )

size
(
�P(x)

)sd |∇w|s(x),

where C∗(
⋃

i∈I �i) denotes the union of the maximal clusters of each connected component
of the set

⋃
i∈I �i .

REMARK 1. We do not have the identity C∗(
⋃

i∈I �i ) = ⋃
i∈I C∗(�i ). The problem is

the same as the one of (23) and thus (26) can not be directly obtained from (25). Nevertheless,
we do have the inclusion

(27) C∞ ∩�⊆ C

( ⋃
�′∈P,dist(�,�′)≤1

�′
)
.

Moreover we can control the Ls -norm of the vector field ∇[w]P by the Ls -norm of the
map ∇w and the coarseness of the partition P thanks to the following proposition.

PROPOSITION 3 (Lemma 3.3 of [7]). For each triadic cube � ∈ P∗, each exponent
1 ≤ s < ∞ and each function w : C∞ →R,

(28)
∑

x∈C∗(�)

∣∣∇[w]P
∣∣s(x) ≤ Cs

∑
x∈C∗(�)

size
(
�P(x)

)sd−1|∇w|s(x).

More generally, for any family of disjoint cubes {�i}i∈I ∈ (P∗)I , we have

(29)
∑

x∈C∗(
⋃

i∈I �i )

∣∣∇[w]P
∣∣s(x) ≤ Cs

∑
x∈C∗(

⋃
i∈I �i )

size
(
�P(x)

)sd−1|∇w|s(x).
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2.3. Solving the Poisson equation with divergence form source term. In this section we
study the existence and uniqueness of the solution of the equation −∇ · a∇u =−∇ · ξ on the
infinite cluster C∞. We denote by

∑
e⊆C∞ the sum over all the edges of the infinite cluster.

PROPOSITION 4 (Gradient of Green’s function). Given an environment a ∈ �, we select
an edge e = (x, y) ∈ Ed such that the points x and y belong to the infinite cluster C∞. There
exist a constant C := C(d,λ) < ∞ and a function ∇G(e, ·) : C∞ →R, whose gradient with
respect to the second variable, denoted by ∇∇G, satisfies

(30)
〈∇∇G(e, ·),∇∇G(e, ·)〉C∞ ≤ C,

and is a solution to the equation

−∇ · a∇(∇G(e, ·)) = δx − δy in C∞.

Moreover, we have, for each pair of edges e, e′ of the infinite cluster,

(31) ∇∇G
(
e, e′

) =∇∇G
(
e′, e

)
.

Proposition 4 can be used to solve the equation −∇ · a∇wξ =−∇ · ξ . This is the objective
of the following proposition.

PROPOSITION 5. Let ξ : Ed →R be a vector field satisfying

(32) ξ(x, y) = 0 if a(x, y) = 0 or x, y /∈ C∞.

If ξ satisfies 〈ξ, ξ〉C∞ < ∞ then there exists a unique (a.s in the environment and up to a
constant) solution wξ of the equation

−∇ · a∇wξ =−∇ · ξ in C∞.

Moreover, we have the following representation

(33) ∇wξ(·) =
∑

e⊆C∞
ξ(e)∇∇G(e, ·).

REMARK 2. We extend the definition of Proposition 5 to vector-valued fields ξ : Ed →
R

k . In that case, we will write

wξ :=
{
C∞ →R

k

z �→ (
wξ1(z), . . . ,wξ1(z)

)
,

where ξ1, . . . , ξk denote the components of the vector ξ ; the formula (33) applies in this
framework.

PROOF OF PROPOSITIONS 4 AND 5. Let ξ be a vector field satisfying (32) and the
inequality 〈ξ, ξ〉C∞ < ∞. We denote by Ḣ 1 the space of functions defined on the infinite
cluster whose gradient is in the space L2(C∞), that is, Ḣ 1 := {u : C∞ →R : 〈∇u,∇u〉C∞ <

∞}, and consider the minimization problem

inf
u∈Ḣ 1

1

2
〈∇u,a∇u〉C∞ − 〈ξ,∇u〉C∞ .

By the standard techniques of the calculus of variations, there exists a unique solution (up to
a constant) to this problem denoted by wξ . In particular, when ξ is the indicator of an edge e,
we obtain the function ∇G(e, ·). To prove the identity (31), we note that

∇∇G
(
e′, e

) = 〈∇∇G(e, ·),a∇∇G
(
e′, e

)〉
C∞ =∇∇G

(
e, e′

)
.

The representation formula (33) follows from standard arguments. �
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2.4. Regularity theory. In this subsection, we record a result from the regularity theory
established in [7] giving a Lipschitz bound for the gradient of a-harmonic functions.

PROPOSITION 6 (Regularity theory on C∞, Theorem 2 of [7]). There exist a constant
C < ∞, an exponent s > 0 and a random variable X satisfying

(34) X ≤Os(C),

such that for each solution u : C∞ →R of the equation

(35) −∇ · a∇u = 0 in C∞
and each pair of radii R, r such that R ≥ r ≥X , we have

‖∇u‖L2(C∞∩Br)
≤ C

R

∥∥u− (u)C∞∩BR

∥∥
L2(C∞∩BR).

We introduce the notation, for each point x ∈ Z
d ,

X (x) :=X ◦ τx.

This proposition is weaker than Theorem 2 of [7]; it is indeed a consequence of the Cac-
cioppoli inequality and Theorem 2 (iii) of [7] for k = 0. As a consequence, we obtain the
following Lipschitz bound on the corrector.

PROPOSITION 7 (Lipschitz bound on the corrector). There exists a constant C < ∞ and
an exponent s > 0 such that, for each edge e = (x, y) ∈ Ed and each vector p ∈R

d ,

(36)
∣∣∇χp(e)

∣∣1{e∈C∞} ≤ C|p|X d/2(x),

which implies, by (34),

(37)
∣∣∇χp(e)

∣∣1{e∈C∞} ≤Os

(
C|p|)

for some smaller exponent s (cf. Section 1.2.5). The same estimate holds for the coarsened
corrector

(38)
∣∣∇[χp]P(e)

∣∣ ≤Os

(
C|p|).

REMARK 3. The same estimate as (36) would hold with the random variable X d/2(y)

instead of X d/2(x) in the right-hand side.

PROOF. By the stationarity of the law of the corrector, we can assume that the edge e

touches 0, that is, that x = 0. First note that, for each radius r ≥ 1,∣∣∇χp(e)
∣∣1{e∈C∞} ≤ rd‖∇χp‖L2(C∞∩Br)

.

By applying Proposition 6 with r =X , and taking the limit R →∞, we obtain

‖p +∇χp‖L2(C∞∩BX ) ≤ CX d/2 lim inf
R→∞

1

R

∥∥lp + χp − (lp + χp)C∞∩BR(x′)
∥∥
L2(C∞∩BR(x′))

≤ CX d/2|p|.
A combination of the two previous displays with the integrability estimate (34) yields (37).
To prove (38), we combine (37) with Proposition 3 and use the integrability estimate
size(�P(x)) ≤Os(C), valid for each point x ∈ Z

d . This is performed in the following com-
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putation: for each edge e = (x, y) ∈R
d , we have∣∣∇[χp]P(e)

∣∣ ≤ ∑
x′∈C∗(�P (x)∪�P (y))

∣∣∇[χp]P
∣∣(x′)

≤ C
∑

x′∈C∞∩B(x,C size(�P (x)))

size
(
�P

(
x′))d−1|∇χp|(x′)

≤ C
∑

x′∈Zd

1{x′∈C∞∩B(x,C size(�P (x)))} size
(
�P

(
x′))d−1|∇χp|(x′).

(39)

Using the estimate, for each point x ∈ Z
d , size(�P(x)) ≤Os(C), we obtain

(40) 1{x′∈B(x,C size(�P (x)))} ≤ C
size(�P(x))d+1

|x − x′|d+1 ∨ 1
≤ Os(C)

|x − x′|d+1 ∨ 1
,

where we used the notation a ∨ b := max(a, b). Using the summability of the map x �→
(|x| ∨ 1)−d−1, the properties (12) and (14) on the Os notation and the Lipschitz bounds (37)
on the corrector, we obtain the result. �

We now present the two main tools to prove Theorem 1.2. The first one is a concentra-
tion inequality, thanks to which we obtain quantitative control on the spatial averages of the
gradient at scale R (see Proposition 10). We then deduce Theorem 1.2 from Proposition 10
thanks to the multiscale Poincaré inequality (Proposition 9).

2.5. Concentration inequality for stretched exponential moments. The following con-
centration inequality is a key ingredient in the proof of Proposition 10 in the next section; its
proof can be found in [11], Proposition 2.2.

PROPOSITION 8 (Proposition 2.2 of [11]). Fix β ∈ (0,2). Let X be a random variable
on (�,F,P) and set for each bond e ∈ Bd(Zd),

X′
e = E

[
X|F(

Bd \ {e})]
and V[X] = ∑

e∈Bd

(
X −X′

e

)2
,

then there exists a constant C := C(d,β) < ∞ such that

E
[
exp

(∣∣X −E[X]∣∣β)] ≤ CE
[
exp

((
CV[X]) β

2−β
)] 2−β

β .

2.6. Multiscale Poincaré inequality. The next proposition is a version of the multiscale
Poincaré inequality. It controls the oscillations of a function in the Lq -norm (left-hand side
of (42)) by the spatial average of the gradient of the function (right-hand side of (42)). We
first introduce the discrete heat kernel.

DEFINITION 5 (Discrete heat-kernel). Let � : [0,∞) × Z
d → R be the discrete heat

kernel on the lattice Z
d , that is, the solution of the parabolic equation{

∂t�− �� = 0 in (0,∞)×Z
d,

�(0, ·) = δ0 in Z
d,

where � denotes the discrete Laplacian on Z
d . We introduce the notation, for each radius

r > 0, �r2 := �(r2, ·). It satisfies the estimate, for some constant C := C(d) < ∞,

(41)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�(t, x) ≤ C

t
d
2

exp
(
−|x|2

Ct

)
if t ≥ |x| (Gaussian regime),

�(t, x) ≤ C exp
(
−|x|

C

(
1 + ln

|x|
t

))
if t ≤ |x| (Poisson regime).

We refer to [28] and [26] for a proof of these inequalities.
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PROPOSITION 9 (Multiscale Poincaré inequality, heat kernel version).
For each exponent q ≥ 1, there exists a constant C := C(d, q) < ∞ such that for each

function u : Zd →R and each radius R > 0,

(42)
∥∥u− (u)BR

∥∥
Lq(BR) ≤ C

( ∑
x∈Zd

R−de−
|x|
2R

(ˆ 2R

0
r
∣∣�r2 ∗ ∇u(x)

∣∣2 dr

) q
2

) 1
q

,

where the operator ∗ is the standard discrete convolution on Z
d between the heat kernel �r2

and the vector valued function ∇u (see the definition (8)). Moreover the dependence in the
variable q of the constant C can be quantified as follows, for each exponent q ≥ 2,

C(d, q) ≤ Aq
3
2

for some constant A := A(d) < ∞.

The proof of this proposition relies on [10], Proposition D.1 and Remark D.6, and is pre-
sented in Appendix A.

3. Estimates of the spatial averages of the first-order correctors. We now have col-
lected all the necessary tools to prove the optimal Lq bounds of the corrector, stated in The-
orem 1.2. The strategy is to first prove Proposition 10 thanks to the concentration inequality
(Proposition 8). We then deduce the bound on the coarsened corrector thanks to the multi-
scale Poincaré inequality (Proposition 9) and remove the coarsening thanks to Proposition 2.
This eventually yields Theorem 1.2. In this section, we use the notation introduced in (8) and
think of the gradient of the coarsened corrector as a vector-valued function.

PROPOSITION 10. For each R ≥ 1, and each x ∈R
d , the quantity (�r2 ∗∇[χp]P)(x) is

well defined and there exist an exponent s > 0 and a constant C < ∞ such that it satisfies

(43)
∣∣(�r2 ∗ ∇[χp]P)

(x)
∣∣ ≤Os

(
C|p|r− d

2
)
.

By the stationarity of the gradient of the corrector, it is enough to prove the result when
x = 0. By linearity of the mapping p �→ ∇χp , we may assume |p| = 1. We denote by X =
(�r2 ∗ ∇[χp]P)(0) and prove

|X| ≤Os

(
Cr−

d
2

)
.

The strategy of the proof is to apply Proposition 8 to the random variable X. We decompose
the argument into two lemmas. The first one focuses on the expectation of X.

LEMMA 3.1. There exists a constant C < ∞ such that∣∣E[X]∣∣ ≤ Cr−
d
2 .

The second one estimates the quantity V[X].

LEMMA 3.2. There exist a constant C < ∞ and an exponent s > 0, such that

V[X] ≤Os

(
Cr−d)

.

These lemmas are proved in the following two sections.
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3.1. Estimating the expectation of the spatial averages. The main objective of this sec-
tion is to show Lemma 3.1.

PROOF OF LEMMA 3.1. The strategy of the proof is to use the stationarity and the sublin-
earity of the corrector to prove that the expectation of its gradient is equal to 0. The technical
difficulty which arises is that the partition P is not stationary. This implies that the random
variable ∇[χp]P(0) is not stationary. To fix this issue we introduce a partition Pstat which is
stationary and equal to P on a set of large probability. We finally show that the error we make
by considering the partition Pstat instead of P is small.

For each triplet x, y, z ∈ Z
d with x ∼ y, denote by τza the translated environment defined

by

τza
({x, y}) = a

({x − z, y − z}).
For k ∈ N, we construct the partition Pk

stat by applying Proposition 1 to the collection of
triadic cubes

Gk
stat := G ∪

( ∞⋃
n=k

Tn

)
.

Note that this collection is not a set of good cubes in the sense of Definition 2 but it is
3k
Z

d -translation invariant. A straightforward consequence is that the partition Pk
stat is 3k

Z
d -

stationary: for every environment a, every point x ∈ Z
d and z ∈ 3k

Z
d , one has

(44) size
(
�Pk

stat
(x + z)

)
(τza) = size

(
�Pk

stat
(x)

)
(a).

With a proof similar to the one of [7], Proposition 2.1 (iv), we obtain

(45) P
[∃x ∈�k,�P(x) �=�Pk

stat
(x)

] ≤ C exp
(−C−13k)

.

For a function u : C∞ → R, we define the coarsened function [u]Pk
stat

with respect to the

partition Pk
stat by the formula

[u]Pk
stat

:= u
(
zstat

(
�Pk

stat
(x)

))
with the notation, for � ∈ T ,

(46) zstat(�) :=
⎧⎨⎩z(�) if z(�) ∈ C∞ and � is a good cube,

argmin
z∈C∞

dist(z,�) otherwise.

If there is more than one choice in the argument of the minima, we select the one which
is minimal for the lexicographical order. By the stationarity of the gradient of the corrector
and (44), we have

(47) ∇[χp]Pk
stat

is 3k
Z

d -stationnary.

We let k ∈ Z
d be the the integer such that 3k ≤ r

1
2 ≤ 3k+1 and split the proof of Lemma 3.1

into three steps:

(i) In Step 1, we prove

E
[∣∣(�r2 ∗ ∇[χp]P)

(0) − (
�r2 ∗ ∇[χp]Pk

stat

)
(0)

∣∣] ≤ Cr−
d
2 .

(ii) In Step 2, we prove

E

[ ∑
x∈�k

∇[χp]Pk
stat

(x)

]
= 0.
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(iii) In Step 3, we use the result obtained in Step 2 to show∣∣E[(
�r2 ∗ ∇[χp]Pk

stat

)
(0)

]∣∣ ≤ Cr−
d
2 .

Lemma 3.1 is then a consequence of the main results of Steps 1 and 3.
Step 1. The main result of this step is a consequence of the following computation, by (7)

and Proposition 3,

E
[∣∣(�r2 ∗ ∇[χp]P)

(0) − (
�r2 ∗ ∇[χp]Pk

stat

)
(0)

∣∣]
≤ E

[ ∑
x∈B

r2

∣∣∇[χp]P(x) −∇[χp]Pk
stat

(x)
∣∣�r2(x)1{∃x∈B

r2 :�Pk
stat

(x) �=�P (x)}
]

+E

[∣∣∣∣ ∑
x∈Zd\B

r2

(∇[χp]P(x) −∇[χp]Pk
stat

(x)
)
�r2(x)

∣∣∣∣].

(48)

The first term on the right-hand side can be estimated (crudely) the following way. We denote
by U0 the set

U0 := ⋃
x∈B

r2

�P(x),

we then enlarge this set by adding two additional layers of cubes and define

U1 := ⋃
�∈P,dist(�,U0)≤1

� and U := ⋃
�∈P,dist(�,U1)≤1

�.

Note that, by the properties of the partition P and (12), we have the inequality

(49) |U | = C|U1| ≤ C|U0| ≤ C
∑

x∈B
r2

size
(
�P(x)

)d ≤Os

(
Cr2d)

.

Also with these definitions, we have, for each point x ∈ Br2 ,∣∣∇[χp]Pk
stat

(x)
∣∣ ≤ ∑

y∈C∞∩U

|∇χp|(y).

Similarly, for each point x ∈ Br2 ,∣∣∇[χp]P(x)
∣∣ ≤ ∑

y∈C∞∩U

|∇χp|(y).

This leads to the estimate∣∣∣∣ ∑
x∈B

r2

(∇[χp]P(x) −∇[χp]Pk
stat

(x)
)
�r2(x)

∣∣∣∣
≤ C

( ∑
y∈C∞∩U

|∇χp|(y)

)( ∑
x∈B

r2

�r2(x)

)

≤ C
∑

y∈C∞∩U

|∇χp|(y).

(50)

Using Proposition 37, the estimate on the volume of U given in (49) and a computation
similar to the one performed in (39), we obtain∑

y∈C∞∩U

|∇χp|(y) ≤Os

(
Cr2d)

.
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Then by (45), we also have

P
[∃x ∈ Br2 :�Pk

stat
(x) �=�P(x)

] ≤ ∑
z∈3kZd∩B

r2

P
[∃x ∈ z +�k :�Pk

stat
(x) �=�P(x)

]

≤ r2d

3dk
P

[∃x ∈�k :�Pk
stat

(x) �=�P(x)
]

≤ Cr2d

3dk
exp

(−C−13k)
.

In particular, since k has been chosen such that 3k ≤ r
1
2 < 3k+1, for each exponent q > 0,

there exist a constant C := C(d,p, λ, q) < ∞ and an exponent s := s(d,p, λ, q) > 0 such
that

1{∃x∈B
r2 :�Pk

stat
(x) �=�P (x)} ≤Os

(
Cr−q)

.

Combining the three previous displays with q chosen large enough, the Cauchy–Schwarz
inequality and (14), we obtain∣∣∣∣ ∑

x∈B
r2

(∇[χp]P(x) −∇[χp]Pk
stat

(x)
)
�r2(x)

∣∣∣∣1{∃x∈B
r2 :�Pk

stat
(x) �=�P (x)} ≤Os

(
Cr−

d
2

)
,

which yields in particular

E

[∣∣∣∣ ∑
x∈B

r2

(∇[χp]P(x) −∇[χp]Pk
stat

(x)
)
�r2(x)

∣∣∣∣1{∃x∈B
r2 :�Pk

stat
(x) �=�P (x)}

]
≤ Cr−

d
2 .

We now focus on estimating the second term on the right-hand side of (48). With the same
computation as the one we just wrote, one obtains∑

x∈B
r2

∣∣∇[χp]P(x) −∇[χp]Pk
stat

(x)
∣∣ ≤Os

(
Cr4d)

.

The proof is identical, we only need to replace the term
∑

x∈B
r2

�r2(x) by Cr2d in (50).
Since this result is valid for any radius r ≥ 1, we obtain, for each integer n ∈N,∑

x∈C∞∩(�n+1\�n)

∣∣∇[χp]P(x) −∇[χp]Pk
stat

(x)
∣∣ ≤ ∑

x∈C∞∩B3n

∣∣∇[χp]P(x) −∇[χp]Pk
stat

(x)
∣∣

≤Os

(
C34dn)

.

We then use the estimate (41) on the discrete heat kernel and write

E

[ ∑
x∈Zd\B

r2

∣∣∇[χp]P(x) −∇[χp]Pk
stat

(x)
∣∣�r2(x)

]

≤
+∞∑

n=�2 log3(r)�
E

[
exp

(
−3n

r

)
r−d

∑
xx∈C∞∩(�n+1\�n)

∣∣∇[χp]P(x) −∇[χp]Pk
stat

(x)
∣∣]

≤
+∞∑

n=2 log3(r)

exp
(
−3n

r

)
r−d34dn

≤ C exp
(−C−1r

)
.

Combining the estimates of the first and the second terms of the right-hand side completes
the proof of Step 1.



398 P. DARIO

REMARK 4. Most of the estimates of this proof are crude; precise results are not needed.
The same argument shows the following (stronger) result: for each exponent q > 0, there
exists a constant C := C(d,p, λ, q) < ∞ such that for each radius r ≥ 1 and each integer

k ∈N satisfying 3k ≤ r
1
2 < 3k+1,

E
[∣∣�r2 ∗ ∇[χp]P −�r2 ∗ ∇[χp]Pk

stat

∣∣] ≤ Cr−q.

The proof of Lemma 3.1 only requires the result with the value q = d
2 .

Step 2. We prove the main result of this step by combining the stationarity property (47)
with the sublinear growth of the corrector. First notice that by (17), we have, for each radius
r > 1,

osc
C∞∩Br

χp ≤Os

(
Cr1−δ)

.

By the Stokes formula, we have, for each integer n ∈N,∣∣∣∣ ∑
x∈�nk

∇[χp]Pk
stat

(x)

∣∣∣∣ = ∣∣∣∣ ∑
x∈∂�nk

[χp]Pk
stat

(x)n(x)

∣∣∣∣ ≤ C3kn(d−1) osc
C∞∩�nk

χp

≤Os

(
C3kn(d−δ)),

where the map x �→ n(x) is the discrete outer normal to the cube �nk . This yields∣∣∣∣E[ ∑
x∈�nk

∇[χp]Pk
stat

(x)

]∣∣∣∣ ≤ C3kn(d−δ).

We also have, by the stationarity property (47),

E

[ ∑
x∈�nk

∇[χp]Pk
stat

(x)

]
= ∑

z∈(3kZd∩�kn)

E

[ ∑
x∈z+�k

∇[χp]Pk
stat

(x)

]

= 3dkn

3dk
E

[ ∑
x∈�k

∇[χp]Pk
stat

(x)

]
.

Combining the two previous results shows∣∣∣∣E[ ∑
x∈�k

∇[χp]Pk
stat

(x)

]∣∣∣∣ ≤ C3dk3−knδ.

Sending n →∞ shows ∣∣∣∣E[ ∑
x∈�k

∇[χp]Pk
stat

(x)

]∣∣∣∣ = 0.

Step 3. First notice that

E
[(

�r2 ∗ ∇[χp]Pk
stat

)
(0)

] = (
�r2 ∗E[∇[χp]Pk

stat

])
(0).

By (47), the function

f :=
{
Z

d →R
d

x �→ E
[∇[χp]Pk

stat
(x)

]
is 3k

Z
d -periodic. Consequently, there exist complex coefficients (an)n∈�k

such that

f (x) = ∑
n∈�k

an exp
(

2iπn · x
3k

)
.
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Using that � is the solution of the discrete heat equation, which implies that the coefficients
of its discrete Fourier transform can be explicitly computed, we obtain the identity

(
�r2 ∗E[∇[χp]Pstat

])
(0) = ∑

n∈�k

an exp

(
−r2

d∑
i=1

2
(

1 − cos
(

2πni

k

)))
.

Notice that the main result of Step 2 is equivalent to the following equality

a0 = 0.

Using this identity, the Cauchy–Schwarz inequality and the lower bound 1 − cosa ≥ a2

C
for

a ∈ [−π,π ] and a universal constant C, we obtain

(51)
∣∣(�r2 ∗E[∇[χp]Pk

stat

])
(0)

∣∣2 ≤ C

( ∑
n∈�k\{0}

|an|2
)( ∑

n∈�k\{0}
exp

(
−r2|n|2

C32k

))
.

Since the integer k was chosen such that 3k ≤ r
1
2 < 3k+1, we have

(52)
∑

n∈�k\{0}
exp

(
−r2|n|2

C32k

)
≤ C exp

(−C−1r
)
.

Moreover, we have ∑
n∈�k

|an|2 ≤ E

[ ∑
x∈�k

∣∣∇[χp]Pk
stat

(x)
∣∣2]

.

With the same computation as the one performed in Step 1, we obtain∑
x∈�k

∣∣∇[χp]Pk
stat

(x)
∣∣2 ≤Os

(
C|p|234kd)

.

Taking the expectation yields ∑
n∈�k

|an|2 ≤ C34kd .

Combining this inequality with (51) and (52), we obtain∣∣(�r2 ∗E[∇[χp]Pk
stat

])
(0)

∣∣2 ≤ Cr2d exp
(−C−1r

) ≤ C exp
(−C−1r

)
,

where we increased the value of the constant C in the second inequality to absorb the alge-
braic growth of the term r2d . This implies in particular the main result of Step 3 and completes
the proof of Lemma 3.1. �

3.2. Estimating the resampling of the spatial averages. In this section, we prove
Lemma 3.2 which is recalled below.

LEMMA 3.2. There exist a constant C < ∞ and an exponent s > 0, such that

V[X] ≤Os

(
Cr−d)

.

PROOF. We recall Proposition 8 and the notation X = (�r2 ∗ ∇[χp]P)(0). Given an
environment a ∈ � and a bond e = {x, y} ∈ Bd , we want to estimate the term (X − X′

e)
2. To

this end, one needs to understand how changing the conductance of the bond e can affect the
infinite cluster C∞ and the partition P . This is studied in the following lemma.
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LEMMA 3.3. There exist two constants C0 := C0(d) < ∞ and C := C(d) < ∞ such
that for each bond e = {x, y} ∈ Bd , each pair of environments a, ã ∈ � which are equal on
the set Bd \ {e} and each point z ∈ B(x,C0 size(�P(x))), one has the estimate

size
(
�P (̃a)(z)

) ≤ C size
(
�P(a)(x)

)
.

Moreover, for each point z ∈ Z
d \ B(x,C0 size(�P(x))), one has the identity

size
(
�P (̃a)(z)

) = size
(
�P(a)(z)

)
.

PROOF. The main ingredients of the proof are listed below:

1. If a good cube � ∈ P∗ is such that 3� ∩ {x, y} = ∅ then � is a good cube under the
environment ã.

2. By the properties of the partition P , every cube � ∈ P which does not contain the
points x and y is crossable under the environment ã. The predecessors of �P(x) and �P(y)

are also crossable under the environment ã.
3. By resampling the conductance of one bond, we cannot create an isolated cluster of size

larger than C size(�P(x)), for some constant C0 := C0(d) < ∞. In particular, there exists a
constant C := C(d) < ∞ such that every good cube of size larger than C size(�P(x)) under
the environment a satisfies Property (ii) of Definition 2 under the environment ã.

4. There exists a constant C := C(d) < ∞ such that every cube of size larger than
C size(�P(x)) intersecting the cube �P(x) is crossable by a cluster which does not inter-
sect the cube �P(x).

5. If, for a point y ∈ B(x,C0 size(�P(x))), the size of the cube �P(y) is larger than
C size(�P(x)), then the point x belongs to �P(y) or one of its neighbors and thus
size(�P(y)) ≤ C size(�P(x)).

Combining these properties shows that every good cube � under the environment a satisfying
the estimate size(�) ≥ C size(�P(x)) is a good cube under the environment ã. It is then
straightforward to see from the previous remarks and the construction of the partition P in
the proof of Proposition 1 that the conclusion of the lemma is valid. �

To estimate the random variable (X − X′
e)

2, we introduce an extended probability space
by doubling the variables (�′,F ′,P′) = (� × �,F ⊗ F,P ⊗ P). Given an environment
(a(e′), ã(e′))e′∈Bd

∈ �′, we denote by pr1 (resp. pr2) the first (resp. second) projection, that
is, pr1((a(e′), ã(e′))e′∈Bd

) = (a(e′))e′∈Bd
(resp. pr2((a(e′), ã(e′))e′∈Bd

) = (̃a(e′))e′∈Bd
). Any

random variable Z defined on the space (�,F,P) can be seen as a random variable defined
on the extended space (�′,F ′,P′) by the formula Z = Z ◦ pr1, that is,

Z
((

a
(
e′

)
, ã

(
e′

))
e′∈Bd

) = Z
((

a
(
e′

))
e′∈Bd

)
.

Given an enlarged environment (a(e′), ã(e′))e′∈Bd
, we denote by a the environment

(a(e′))e′∈Bd
and by ae the environment ((a(e′))e′∈Bd\{e}, ã(e)). Similarly, given a random

variable Z defined on the space � and a bond e ∈ Bd , we denote by Ze the random variable
defined on the space (�′,F ′,P′) by the formula

(53) Ze((
a

(
e′

)
, ã

(
e′

))
e′∈Bd

) := Z
(
ae)

.

We denote by Pe and C e∞ the partition of good cubes and the infinite cluster under the en-
vironment ae. It follows from the previous definitions that, for almost every environment
a ∈ �,

X(a) − X′
e(a) =

ˆ
�

(
�r2 ∗ (∇[χp]P(a, ã)−∇[

χe
p

]
Pe (a, ã)

))
(0)dP(̃a).
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All the random variables in the proof of this section are considered as random variables on
the enlarged probability space (�′,F ′,P′) unless explicitly stated.

We denote by E
′ the expectation with respect to the measure P

′. Given a constant C > 0,
an exponent s > 0 and a nonnegative random variable Z : �′ �→R, we write

Z ≤O′
s(C) if and only if E

′
[
exp

((
Z

C

)s)]
≤ 2.

Any random variable Z defined on the space (�,F,P) satisfying Z ≤Os(C) satisfies, as a
random variable defined on the extended space (�′,F ′,P′), the inequality Z ≤O′

s(C). From
the definition (53), we see that, for each bond e ∈ Bd ,

(54) Z ≤Os(C) =⇒ Ze ≤O′
s(C).

The estimate (54) is frequently used when the random variable Z is equal to the size of
a cube of the partition P (Proposition 1), the minimal scale X above which the regularity
theory applies (Proposition 6), or the minimal scale Mt (P) associated to the partition P
(Proposition 1): we have, for each point x ∈ Z

d and each bond e ∈ Bd ,⎧⎪⎪⎨⎪⎪⎩
size

(
�Pe (x)

) = (
size

(
�P(x)

))e ≤O′
s(C),

X e ≤O′
s(C),

Mt

(
Pe) = (

Mt (P)
)e ≤O′

s(C).

To prove Lemma 3.2, we prove the estimate

(55)
∑
e∈Bd

∣∣(�r2 ∗ (∇[χp]P −∇[
χe

p

]
Pe

))
(0)

∣∣2 ≤O′
s

(
Cr−d)

.

The inequality (55) is sufficient to prove Result 2; indeed with the same argument as in [10],
Lemma 2.3, we have

E

[
exp

((∑
e∈Bd

(X − X′
e)

2

Cr−d

)s)]

=
ˆ

�

exp
((∑

e∈Bd
|´

�
(�r2 ∗ (∇[χp]P −∇[χe

p]Pe ))(0)dP(̃a)|2
Cr−d

)s)
dP(a)

≤
ˆ

�

exp
((ˆ

�

∑
e∈Bd

|(�r2 ∗ (∇[χp]P −∇[χe
p]Pe ))(0)|2

Cr−d
dP(̃a)

)s)
dP(a)

≤ C

ˆ
�

ˆ
�

exp
((∑

e∈Bd
|(�r2 ∗ (∇[χp]P −∇[χe

p]Pe ))(0)|2
Cr−d

)s)
dP(a)dP(̃a)

≤ CE
′
[
exp

((∑
e∈Bd

|(�r2 ∗ (∇[χp]P −∇[χe
p]Pe ))(0)|2

Cr−d

)s)]
≤ 2C.

This yields, after redefinition of the constant C,∑
e∈Bd

(
X − X′

e

)2 ≤O′
s

(
Cr−d)

.

Before starting the proof of (55), we select one of the correctors χe
p arbitrarily (we recall that

they are defined up to a constant). As we are interested in the gradient of the corrector, the
value of the constant is not important. We want to give a meaning to the function [χe

p]P as a
random variable defined on the extended probability space �′.
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Since we do not necessarily have the identity C∞ = C e∞, we cannot simply write
[χe

p]P(z) = χe
p(z(�P(z))). Nevertheless, since the two environments (a(e′))e′∈Bd

and
((a(e′))e′∈Bd\{e}, ã(e)) only differ by one bond, we have either C∞ ⊆ C e∞ or C e∞ ⊆ C∞.
In the former case, we can define [χe

p]P(z) = χe
p(z(�P(z))). In the latter case, the cluster

C∞ \ C e∞ is connected to C∞ by the bond e. Without loss of generality, we denote it by
e = {x, y} and assume that x ∈ C e∞. One can then check that the function

(56) w :=
{
C∞ →R

z �→ χe
p(z)1{z∈C e∞} + (

p · (z − x)+ χe
p(z)

)
1{z/∈C e∞}

is a solution of the equation

−∇ · a∇(p · x +w) = 0 in C∞

and more precisely that the map x �→ p ·x+w(x) belongs to the space A1(C∞). In particular,
this gives the identity w = χp . We thus define[

χe
p

]
P = [w]P .

To prove the estimate (55), we use the random variable [χe
p]P and split the sum into two

terms

(57)

∣∣(�r2 ∗ (∇[χp]P −∇[
χe

p

]
Pe

))
(0)

∣∣2
≤ 2

∣∣(�r2 ∗ (∇[
χe

p

]
P −∇[

χe
p

]
Pe

)
(0)

)∣∣2︸ ︷︷ ︸
(57)(i)

+2
∣∣(�r2 ∗ (∇[χp]P −∇[

χe
p

]
P

))
(0)

∣∣2︸ ︷︷ ︸
(57)(ii)

.

We estimate the two terms in the right side in the two steps below.
Step 1. Estimate of the term (57)(i). We use Lemma 3.3 and Proposition 2 with the exponent

s = 1 to write∣∣(�r2 ∗ (∇[
χe

p

]
P −∇[

χe
p

]
Pe

))
(0)

∣∣2
≤

( ∑
z∈Zd∩B(x,C size(�P (x)))

∣∣∇[
χe

p

]
P(z)

∣∣ + ∣∣∇[
χe

p

]
Pe (z)

∣∣)2

× sup
z∈B(x,C size(�P (x)))

�2
r2(z)

≤ C

( ∑
z∈C e∞∩B(x,C size(�P (x)))

size
(
�P(x)

)d−1(∣∣∇χe
p

∣∣(z) + 1
))2

× sup
z∈B(x,C size(�P (x)))

�2
r2(z).

The term “+1” on the right-hand side comes from the assumption |p| = 1 combined with the
definition of the map w stated in (56) (in the case C e∞ ⊆ C∞). We deduce that∣∣(�r2 ∗ (∇[

χe
p

]
P −∇[

χe
p

]
Pe

))
(0)

∣∣2(58)

≤ C size
(
�P(x)

)3d−2 sup
z∈C e∞∩B(x,C size(�P (x)))

(∣∣∇χe
p

∣∣2(z) + 1
)

× sup
z∈B(x,C size(�P (x)))

�2
r2(z).
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By the heat kernel bound (41) stated in Definition 5, there exists a constant C(d) < ∞ such
that, for each point z ∈ Z

d ,

(59) �r2 ≤ C

rd

(( |z|
r

)− d+1
2 ∧ 1

)
.

We denote by ζ(z) := (|z|− d+1
2 ∧ 1) and by ζr(z) := 1

rd ζ( z
r
). We use the function ζ instead

of the heat kernel �r2 to complete the estimate of the term (57)-(i) because it satisfies the
inequality

sup
z∈B(x,C size(�P (x)))

ζ 2
r (z) ≤ C size

(
�P(x)

)d+1 inf
z∈B(x,C size(�P (x)))

ζ 2
r (z).

In particular, the estimate (58) can be rewritten∣∣(�r2 ∗ (∇[
χe

p

]
P −∇[

χe
p

]
Pe

))
(0)

∣∣2
≤ C size

(
�P(x)

)4d−1 ∑
z∈C e∞∩B(x,C size(�P (x)))

ζr (z)
2(∣∣∇χe

p

∣∣2(z) + 1
)
.

Summing over all the bonds e ∈ Bd gives∑
e∈Bd

∣∣(�r2 ∗ (∇[
χe

p

]
P −∇[

χe
p

]
Pe

))
(0)

∣∣2
≤ C

∑
x∈Zd

size
(
�P(x)

)4d−1

×
( ∑

z∈C e∞∩B(x,C size(�P (x)))

ζr (z)
2(∣∣∇χe

p

∣∣2(z) + 1
))

≤ C
∑

z∈C e∞
ζr(z)

2(∣∣∇χe
p

∣∣2(z) + 1
)

×
( ∑

x∈Zd

size
(
�P(x)

)4d−1
1{z∈B(x,C size(�P (x)))}

)
.

(60)

Using the estimate size(�P(x)) ≤O′
s(C), valid for any point x ∈ Z

d , we obtain

1{z∈B(x,C size(�P (x)))} ≤ C
size(�P(x))d+1

(|x − z| ∨ 1)d+1 ≤ O′
s(C)

(|x − z| ∨ 1)d+1 .

Since the map z �→ (|z| ∨ 1)−d−1 is summable on Z
d , we use the inequality (12) to obtain

(61)
∑

x∈Zd

size
(
�P(x)

)4d−1
1{z∈B(x,C size(�P (x)))} ≤O′

s(C).

By Proposition 37 and the implication (54), we have the Lipschitz bound on the corrector

(62)
∣∣∇χe

p(y)
∣∣1{y∈C e∞} ≤O′

s(C),

which implies ∑
e∈Bd

∣∣(�r2 ∗ (∇[
χe

p

]
P −∇[

χe
p

]
Pe

))
(0)

∣∣2 ≤ C
∑

y∈Zd

ζr(y)2O′
s(C).

We use the estimate (12) and the inequality
∑

y∈Zd ζr (y)2 ≤ Cr−d to obtain∑
e∈Bd

∣∣(�r2 ∗ (∇[
χe

p

]
P −∇[

χe
p

]
Pe

))
(0)

∣∣2 ≤O′
s

(
C

rd

)
.

This completes the proof of the estimate of the first term on the right-hand side of (57).
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Step 2. Estimate of the term (57)(ii). In this step, we prove the inequality∣∣(�r2 ∗ (∇[χp]P −∇[
χe

p

]
P

))
(0)

∣∣2 ≤O′
s

(
C

rd

)
.

To prove this estimate, we distinguish three cases. We recall the two endpoints of the bond e

are x and y; they are fixed through the proof.
Case 1. (x /∈ C∞ and y /∈ C∞) or a = ae. In that case, one has the identities C∞ = C e∞ and

∇χp =∇χe
p . They imply ∣∣(�r2 ∗ (∇[χp]P −∇[

χe
p

]
P

))
(0)

∣∣2 = 0.

Case 2. C∞ �= C e∞. In that case, we have [χp]P = [χe
p]P by definition of the latter quantity.

It implies ∣∣(�r2 ∗ (∇[χp]P −∇[
χe

p

]
P

))
(0)

∣∣2 = 0.

Case 3. x, y ∈ C∞ and C∞ = C e∞ and a �= ae. By definitions of the correctors χp and χe
p ,

we have the identity

(63) −∇ ·(a∇(
χp −χe

p

)) = (
a−ae)({x, y})(

p ·(x−y)+χe
p(x)−χe

p(y)
)
(δx −δy) in C∞.

We solve (63) by using Proposition 4 and recall the notation ∇G(e, ·) introduced there. Note
that the function

χp − χe
p − (

a − ae)
(x, y)

(
p · (x − y) + χe

p(x) − χe
p(y)

)∇G(e, ·) is a-harmonic.

By the sublinear growth of the corrector stated in (18), the L2(C∞)-bound stated in (30) on
the gradient of the function ∇G(e, ·) and a version of the Poincaré inequality on the percola-
tion cluster (see for instance the proof of Proposition 6), one can show that the function

χp − χe
p − (

a − ae)
(x, y)

(
p · (x − y) + χe

p(x) − χe
p(y)

)∇G(e, ·) has a sublinear growth.

This implies that this function is constant. In particular, it proves the identity

(64) ∇χp −∇χe
p = (

a − ae)
(x, y)

(
p · (x − y)+ χe

p(x) − χe
p(y)

)∇∇G(e, ·).
We now estimate the right side of (64) thanks to the Lipschitz bound on the corrector stated
in Proposition 37 and (62). We distinguish two cases depending on the value of the conduc-
tance ae(e):

• If ae(e) = ã(e) �= 0, then (62) implies the estimate

(65)
∣∣χe

p(x) − χe
p(y)

∣∣1{y∈C e∞ ,̃a(e) �=0} ≤
∣∣∇χe

p(y)
∣∣1{y∈C e∞} ≤ C

(
X e(x)

)d/2
.

• If ae(e) = ã(e) = 0, then there exists a path going from x to y which stays in the cube
�Pe (x) and its neighbors (its neighbors because we may not have �Pe (x) =�Pe (y) or we
may have x, y ∈ C∞ \ C∗(�Pe (x))). Combining this remark with Lemma 3.3, we obtain∣∣χe

p(x) − χe
p(y)

∣∣ ≤ C
∑

z∈C e∞∩B(x,C size(�P (x)))

∣∣∇χe
p

∣∣(z)
≤ C size

(
�P(x)

)d∥∥∇χe
p

∥∥
L2(C e∞∩B(x,C size(�P (x)))).

Using the Lipschitz bounds on the corrector, we deduce that

(66)
∣∣χe

p(x) − χe
p(y)

∣∣1{x,y∈C e∞ ,̃a(e)=0} ≤ size
(
�P(x)

)d(
X e(x)

)d/2
.



OPTIMAL CORRECTOR ESTIMATES ON PERCOLATION CLUSTER 405

Combining the estimates (65) and (66), we obtain the inequality

(67)

∣∣∇(
�r2 ∗ ([χp]P − [

χe
p

]
P

))
(0)

∣∣2
≤ ∣∣∇(

�r2 ∗ ([∇G(e, ·)]P))
(0)

∣∣2 size
(
�P(x)

)2d(
X e(x)

)d
.

In the next step of the proof, we treat the coarsening in the right-hand side of (67). To this
end, we prove that there exist a constant C := C(d) < ∞ and a (random) vector field γr :
Ed →R

d satisfying the estimate, for each edge e′ = (x′, y′) ∈ Ed ,∣∣γr

(
e′

)∣∣ ≤ C size
(
�P

(
x′))2d

ζr

(
x′)

such that for each function u : C∞ �→R satisfying 〈∇u,∇u〉C∞ < ∞,

(68)
(
�r2 ∗ ∇[u]P)

(0) = 〈γr,∇u〉C∞ .

We first write (
�r2 ∗ ∇[u]P)

(0) = ∑
z∈Zd

�r2(z)∇[u]P(z).

Given two neighboring points z, z′ ∈ Z
d , note that the values [u]P(z) and [u]P(z′) are only

different if the points z and z′ belong to two different cubes of the partition P . In that case,
we have

[u]P(z) − [u]P(
z′

) = u
(
z
(
�P(z)

)) − u
(
z
(
�P

(
z′

)))
.

Recall that there exists a path between z(�P(z)) and z(�P(z′)) which lies entirely in the set
�P(z)∪�P(z′). We denote this path by pz,z′ ⊆ Ed . Summing over the edges along this path,
we find that

u
(
z
(
�P(z)

)) − u
(
z
(
�P

(
z′

))) = ∑
e′∈pz,z′

∇u
(
e′

) = ∑
e′∈Ed

∇u
(
e′

)
1{e′∈pz,z′ }.

If the points z and z′ belong to the same cube of the partition P , we keep the same notation
with the convention pz,z′ = ∅. Consequently, we have for each pair of neighboring points
z, z′ ∈ Z

d ,

[u]P(z) − [u]P(
z′

) = ∑
e′∈Ed

∇u
(
e′

)
1{e′∈pz,z′ }.

Using this formula, we can rewrite(
�r2 ∗ ∇[u]P)

(0) = 〈γr,∇u〉C∞,

where γr is the vector-valued random field defined by the formula, for each edge e′ ∈ Ed ,

γr

(
e′

) =
⎛⎜⎜⎜⎜⎜⎜⎝

∑
z∈Zd

�r2(z)1{e′∈pz,z+e1 }

...∑
z∈Zd

�r2(z)1{e′∈pz,z+ed
}

⎞⎟⎟⎟⎟⎟⎟⎠ .

For each pair of neighboring points z, z′ ∈ Z
d such that �P(z) �=�P(z′), the path between

the points z(�P(z)) and z(�P(z′)) lies in the set �P(z) ∪ �P(z′). In particular an edge
e′ = (x′, y′) belongs to the path pz,z′ only if dist(z, ∂�P(x′)) ≤ 1. This argument implies the
inequality

(69)
∣∣γr

(
e′

)∣∣ ≤ C
∑

z:dist(z,∂�P (x′))≤1

�r2(z).
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We use the inequality (59) on the discrete heat kernel and note that function ζ satisfies the
estimate, for each triadic cube � ∈ T ,

sup
�

ζr ≤ C size(�)
d+1

2 inf
�

ζr .

As a consequence of the two previous displays, we can rewrite the estimate (69)∣∣γr

(
e′

)∣∣ ≤ ∑
z:dist(z,∂�P (x′))≤1

�r2(z)

≤ C size
(
�P

(
x′))d−1 sup

z:dist(z,∂�P (x′))≤1
ζr

≤ C size
(
�P

(
x′))2d

ζr

(
x′),

(70)

which is the desired inequality. The proof of (68) is complete.
Applying the property (68) to the function u =∇G(e, ·), the inequality (67) becomes∣∣(�r2 ∗ (∇[χp]P −∇[

χe
p

]
P

))
(0)

∣∣2 ≤ ∣∣〈γr,∇∇G(e, ·)〉C∞
∣∣2 size

(
�P(x)

)2d(
X e(x)

)d
.

We apply Proposition 5 and denote by wγr : C∞ →R
d the solution of the equation

−∇ · a∇wγr =−∇ · γr in C∞,

so that, for each edge e′ in the infinite cluster,

∇wγr

(
e′

) = ∑
e′′⊆C∞

γr

(
e′′

)∇∇G
(
e′′, e′

) = ∑
e′′⊆C∞

γr

(
e′′

)∇∇G
(
e′, e′′

)
= 〈

γr,∇∇G
(
e′, ·)〉

C∞ .

This implies the identity ∣∣wγr (x) − wγr (y)
∣∣ = ∣∣〈γr,∇∇G(e, ·)〉C∞

∣∣,
and consequently∣∣(�r2 ∗ (∇[χp]P −∇[

χe
p

]
P

))
(0)

∣∣2 ≤ ∣∣wγr (x) − wγr (y)
∣∣2 size

(
�P(x)

)2d(
X e(x)

)d
.

We now combine Cases 1, 2 and 3 to obtain the estimate∑
e∈Bd

∣∣(�r2 ∗ (∇[χp]P − [
χe

p

]
P

))
(0)

∣∣2
≤ C

∑
x,y∈C∞,|x−y|1=1

∣∣wγr (x) −wγr (y)
∣∣2 size

(
�P(x)

)2d
∑
e∈Bx

d

(
X e(x)

)d
,

where we used the notation Bx
d := {{x, y} : y ∈ Z

d, y ∼ x} to denote the set of bonds connect-
ing the point x to another vertex of Zd .

Using that for each pair of points x, y ∈ C∞ with |x − y|1 = 1, there exists a path which
is contained in the infinite cluster C∞, the cube �P(x) and its neighbors (the path is simply
(x, y) if a({x, y}) �= 0), we obtain

(71)

∑
e∈Bd

∣∣(�r2 ∗ (∇[χp]P −∇[
χe

p

]
P

))
(0)

∣∣2
≤ C

∑
z∈C∞

|∇wγr |2(z) size
(
�P(z)

)3d
( ∑

x∈Zd ,dist(�P (x),�P (z))≤1,e∈Bx
d

(
X e(x)

)d)
.
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To estimate the term on the right-hand side, we first note that, by definition of the function
wγr and the inequality (12),∑

z∈C∞
|∇wγr |2(z) ≤ C

∑
z∈C∞

∣∣γr(z)
∣∣2 ≤ C

∑
z∈Zd

C size
(
�P(z)

)4d
ζr(z)

2 ≤O′
s

(
Cr−d)

.

To complete the proof, we use the two lemmas stated below; their proofs are postponed to
Appendices B and C.

PROPOSITION 11 (Meyers estimate). There exist a constant C := C(d,λ,p) < ∞, two
exponents s := s(d, λ,p) > 0 and ε := ε(d,λ,p) > 0 and a random variable MMeyers ≤
Os(C) such that for each integer m ∈N satisfying 3m ≥MMeyers, each vector field ξ : Ed →
R satisfying

ξ(x, y) = 0 if a(x, y) = 0 or x, y /∈ C∞,

and each function v : C∞ �→R solution of the equation

−∇ · (a∇v) =−∇ · ξ in C∞,

one has the estimate

(72)

(
1

|�m|
∑

x∈�m∩C∞
|∇v|2+ε(x)

) 1
2+ε

≤ C

(
1

|4
3�m|

∑
x∈ 4

3�m∩C∞

|∇v|2(x)

) 1
2 +C

(
1

|4
3�m|

∑
x∈ 4

3�m∩C∞

|ξ |2+ε(x)

) 1
2+ε

.

LEMMA 3.4 (Minimal scale). There exist a constant C := C(d,p, λ) < ∞, an exponent
s := s(d,p, λ) > 0 and a random variable M1 ≤ O′

s(C) such that for each integer m ∈ N

satisfying 3m ≥M1,

(73) 3−dm
∑

z∈�m

size
(
�P(z)

) 3d(2+ε)
ε

( ∑
x∈Zd ,dist(�P (x),�P (z))≤1,e∈Bx

d

(
X e(x)

)d) 2+ε
ε ≤ C,

where ε := ε(d,p, λ) > 0 is the exponent which appears in Proposition 11.

DEFINITION 6 (The partition U ). We define the following family of “good cubes”

G := {� ∈ T : (72) and (73) hold}
in which a deterministic Meyers estimate and a minimal scale inequality hold. By Lemma 3.4
and Proposition 11, this collection satisfies the assumption of Proposition 1 (but not the as-
sumption (20)). We denote by U the partition thus obtained. By the Property (iii) of Proposi-
tion 1, one has the inequality

size
(
�U (x)

) ≤Os(C)

for some exponent s := s(d,p, λ) > 0 and some constant C := C(d,p, λ) < ∞.
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Using the properties of the partition U and Hölder inequality, one obtains∑
z∈C∞

|∇wγr |2(z) size
(
�P(z)

)3d
( ∑

x∈Zd ,dist(�P (x),�P (z))≤1,e∈Bx
d

(
1 +X e(x)

)d)

= ∑
�∈U

∑
z∈�∩C∞

|∇wγr |2(z)

× size
(
�P(z)

)3d
( ∑

x∈Zd ,dist(�P (x),�P (z))≤1,e∈Bx
d

(
1 +X e(x)

)d)

≤ ∑
�∈U

|�|
(

1

|�|
∑

z∈�∩C∞
|∇wγr |2+ε(z)

) 2
2+ε

×
(

1

|�|
∑
z∈�

(
size

(
�P(z)

)) 3d(2+ε)
ε

( ∑
x∈Zd ,dist(�P (x),�P (z))≤1,e∈Bx

d

(
1 +X e(x)

)d) 2+ε
ε

) ε
2+ε

≤ C
∑
�∈U

( ∑
x∈ 4

3�∩C∞

|∇wγr |2(x) + |�|
(

1

|4
3�|

∑
4
3�∩C∞

|γr |2+ε(x)

) 2
2+ε

)
.

To estimate the term on the right-hand side, we note that the cube 4
3� is included in the set⋃

�′∈U,dist(�′,�)≤1 �′ and the cardinality of the set {�′ ∈ U : dist(�′,�) ≤ 1} is bounded by
a constant depending only on the dimension d . This leads to the upper bound∑

�∈U

∑
x∈ 4

3�∩C∞

|∇wγr |2(x) ≤ C
∑

x∈C∞
|∇wγr |2(x) ≤O′

s

(
C

rd

)
.

To estimate the second term on the right-hand side, we recall the discrete l1 − lt -estimate: for
any finite sequence of nonnegative real numbers (bi)0≤i≤n ∈ R

n+1+ and any exponent t ≥ 1,∑n
i=0 bt

i ≤ (
∑n

i=0 bi)
t . Using this inequality, we obtain

∑
�∈U

|�|
(

1

|4
3�|

∑
x∈ 4

3�∩C∞

|γr |2+ε(x)

) 2
2+ε

≤ C
∑
�∈U

|�|1− 2
2+ε

∑
x∈ 4

3�∩C∞

γ 2
r (x)

≤ C
∑

x∈C∞
|γr |2(x) size

(
�U (x)

)d(1− 2
2+ε

)

≤ C
∑

x∈Zd

ζr (x)2 size
(
�P(x)

)4d size
(
�U (x)

)d(1− 2
2+ε

)
.

Using the inequalities size(�U (x)) ≤O′
s(C), size(�P(x)) ≤O′

s(C) and (12), we obtain

∑
�∈U

|�|
(

1

|4
3�|

∑
x∈ 4

3�∩C∞

|γr |2+ε(x)

) 2
2+ε ≤O′

s

(
C

rd

)
.

The proof of Result 2, and thus of Proposition 10, is complete. �
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4. Optimal Lq estimates for first order corrector. In this section, we show how to
obtain Lq optimal scaling estimates on the corrector (Theorem 1.2) from Proposition 10. We
first restate the result.

THEOREM 1.2 (Optimal Lq estimates for first order corrector). There exist two exponents
s := s(d,p, λ) > 0, k := k(d,p, λ) < ∞ and a constant C(d,p, λ) < ∞ such that for each
radius R ≥ 1, each exponent q ≥ 1 and each p ∈R

d ,

(74)
(
R−d

∑
x∈C∞∩BR

∣∣χp(x) − (χp)C∞∩BR

∣∣q) 1
q ≤

{
Os

(
C|p|qk log

1
2 R

)
if d = 2,

Os

(
C|p|qk)

if d ≥ 3.

Before starting the proof, we mention that, in this section, we need to keep track of the
dependence on the parameter q of the constants as it will be useful in the next section to
obtain the L∞ bounds on the corrector.

PROOF OF THEOREM 1.2. As in the proof of Proposition 10, we assume that |p| = 1
to ease the notation. Additionally, note that, by the Jensen inequality, it is enough to prove
Theorem 1.2 in the case q ≥ 2. We consequently make this assumption for the rest of the
proof. The proof of this theorem is split into two steps.

• In Step 1, we use Proposition 10 and the multiscale Poincaré inequality (Proposition 9) to
show, for each radius R ≥ 1,(

R−d
∑

x∈BR

∣∣[χp]P(x) − ([χp]P)
BR

∣∣q) 1
q ≤

{
Os

(
Cqk log

1
2 R

)
if d = 2,

Os

(
Cqk)

if d ≥ 3,

where the parameters C,k and s depend only on s,p, λ.
• In Step 2, we remove the coarsening, thanks to Proposition 2, to obtain(

R−d
∑

x∈C∞∩BR

∣∣χp(x) − (χp)C∞∩BR

∣∣q) 1
q ≤

{
Os

(
Cqk log

1
2 R

)
if d = 2,

Os

(
Cqk)

if d ≥ 3.

Step 1. We apply Proposition 9 to the function u = [χp]P and obtain, for each R ≥ 1,

∥∥[χp]P − ([χp]P)
BR

∥∥
Lq(BR) ≤ C

( ∑
x∈Zd

e−
|x|
2R

(ˆ 2R

0
r
∣∣�r2 ∗ ∇[χp]P(x)

∣∣2 dr

) q
2

) 1
q

.

To study the term on the right-hand side, we split the integral into two terms
ˆ 2R

0
r
∣∣�r2 ∗ ∇[χp]P(x)

∣∣2 dr =
ˆ 1

0
r
∣∣�r2 ∗ ∇[χp]P(x)

∣∣2 dr

+
ˆ 2R

1
r
∣∣�r2 ∗ ∇[χp]P(x)

∣∣2 dr.

(75)

By Proposition 10, we know that for each radius r ≥ 1 and each point x ∈R
d ,∣∣�r2 ∗ ∇[χp]P(x)

∣∣ ≤Os

(
Cr−

d
2

)
.

This implies ∣∣�r2 ∗ ∇[χp]P(x)
∣∣2 ≤Os

(
Cr−d)

.
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The second term on the right-hand side can be estimated by using Proposition 10 and the
inequality (12). We obtain

ˆ 2R

1
r
∣∣�r2 ∗ ∇[χp]P(x)

∣∣2 dr ≤
{
Os(C logR) if d = 2,

Os(C) if d ≥ 3.

To estimate the first term on the right-hand side of (75), we use Proposition 7 which reads,
for each point x ∈R

d ,

(76)
∣∣∇[χp]P(x)

∣∣ ≤Os(C).

Combining the inequality (76) with (12), we obtain

ˆ 1

0
r
∣∣�r2 ∗ ∇[χp]P(x)

∣∣2 dr ≤Os(C).

Combining the previous displays shows

ˆ 2R

0
r
∣∣�r2 ∗ ∇[χp]P(x)

∣∣2 dr ≤
{
Os(C logR) if d = 2,

Os(C) if d ≥ 3.

We obtain

(ˆ 2R

0
r
∣∣�r2 ∗ ∇[χp]P(x)

∣∣2 dr

) q
2 ≤

⎧⎨⎩O 2s
q

(
C

q
2 (logR)

q
2

)
if d = 2,

O 2s
q

(
C

q
2

)
if d ≥ 3.

We apply (12) and keep track of the dependence of the constants in the exponent q thanks
to (13). We obtain

∑
x∈Zd

R−de−
|x|
2R

(ˆ 2R

0
r
∣∣�r2 ∗ ∇[χp]P(x)

∣∣2 dr

) q
2

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O 2s

q

((
q

s ln(2)

) q
s

C
q
2 (logR)

q
2

)
if d = 2,

O 2s
q

((
q

s ln(2)

) q
s

C
q
2

)
if d ≥ 3.

This eventually yields

( ∑
x∈Zd

R−de−
|x|
2R

(ˆ 2R

0
r
∣∣�r2 ∗ ∇[χp]P(x)

∣∣2 dr

) q
2

) 1
q ≤

⎧⎨⎩Os

(
q

1
s C(logR)

1
2
)

if d = 2,

Os

(
q

1
s C

)
if d ≥ 3.

We now set k := 1
s
+ 3

2 ; this exponent depends only on the parameters d,p, λ. By applying
Proposition 9, we obtain

(77)
(
R−d

∑
x∈Zd

∣∣[χp]P(x) − ([χp]P)
BR

∣∣q) 1
q ≤

{
Os

(
Cqk log

1
2 R

)
if d = 2,

Os

(
Cqk)

if d ≥ 3.

The proof of Step 1 is complete.
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Step 2. In this step, we remove the coarsening from (77) thanks to Proposition 2. We write(
3−dm

∑
x∈C∞∩�m

∣∣χp(x) − (χp)C∞∩�m

∣∣q) 1
q

≤ 2 inf
a∈R

(
3−dm

∑
x∈C∞∩�m

∣∣χp(x) − a
∣∣q) 1

q

≤ 2
(

3−dm
∑

x∈C∞∩�m

∣∣χp(x) − ([χp]P)
�m

∣∣q) 1
q

≤ 2
(

3−dm
∑

x∈C∞∩�m

∣∣χp(x) − [χp]P(x)
∣∣q) 1

q

+ 2
(

3−dm
∑

x∈C∞∩�m

∣∣[χp]P(x) − ([χp]P)
�m

∣∣q) 1
q

.

(78)

To estimate the first term on the right-hand side, we first use the inclusion (23) and Proposi-
tion 2 to obtain∑

x∈C∞∩�m

∣∣χp(x) − [χp]P(x)
∣∣q ≤ ∑

x∈C∗(�m+1)

∣∣χp(x) − [χp]P(x)
∣∣q

≤ C
∑

x∈C∗(�m+1)

size
(
�P(x)

)qd |∇χp|q(x)

≤ C
∑

x∈C∗(�m+1)

size
(
�P(x)

)qd |∇χp|q(x).

By the Lipschitz bounds on the gradient of the corrector and the property of the partition P ,
we have, for each point x ∈ Z

d ,

size
(
�P(x)

)qd |∇χp|q(x)1{x∈C∞} ≤O s
q

(
Cq)

.

Additionally, for each point x ∈ Z
d \�m+1,

1{x∈C∗(�m+1)} ≤
size(�P(x))d+1

|x|d+1 ∨ 1
≤Os

(
C

(|x| ∨ 1)d+1

)
.

We then use the inequalities (12) and (13) to obtain∑
x∈C∗(�m+1)

size
(
�P(x)

)qd |∇χp|q(x) = ∑
x∈Zd

size
(
�P(x)

)qd |∇χp|q(x)1{x∈C∗(�m+1)}

≤O s
q

(
3dm

(
q

s ln(2)

) q
s

Cq

)
≤O s

q

(
3dmq

q
s Cq)

.

By (24), we obtain

(79)
(

3−dm
∑

x∈C∞∩�m

∣∣χp(x) − [χp]P(x)
∣∣q) 1

q ≤Os

(
q

1
s C

)
.
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To estimate the second term on the right-hand side of (78), we note that(
3−dm

∑
x∈C∞∩�m

∣∣[χp]P(x) − ([χp]P)
�m

∣∣q) 1
q

≤
(

3−dm
∑

x∈�m

∣∣[χp]P(x) − ([χp]P)
�m

∣∣q) 1
q

.

(80)

We combine (79), (80) and apply (77) to obtain(
3−dm

∑
x∈C∞∩�m

∣∣χp(x) − (χp)C∞∩�m

∣∣q) 1
q ≤

{
Os

(
qkCm

1
2
)

if d = 2,

Os

(
qkC

)
if d ≥ 3,

for some exponents k := k(d,p, λ), s := s(d,p, λ) > 0 and some constant C := C(d,p, λ) <

∞. The result of Theorem 1.2 requires to prove the previous inequality for a general ball BR

and not a triadic cube. This result is obtained by selecting, for each radius R ≥ 1, the integer
m such that 3m < R ≤ 3m+1 and by performing a similar analysis. �

5. Optimal L∞ estimates for the first order corrector. In this section, we prove the
L∞ bound on the corrector, Theorem 1.1.

THEOREM 1.1 (Optimal L∞ estimates for first order correctors). There exist an exponent
s := s(d,p, λ) > 0 and a constant C := C(d,p, λ) < ∞ such that for each x, y ∈ Z

d and
each p ∈R

d ,

∣∣χp(x) − χp(y)
∣∣1{x,y∈C∞} ≤

{
Os

(
C|p| log

1
2 |x − y|) if d = 2,

Os

(
C|p|) if d ≥ 3.

PROOF. First by the stationarity of the gradient of the corrector, we can assume that
y = 0. Without loss of generality, we can also assume |p| = 1. We want to prove, for each
point x ∈ Z

d ,

∣∣χp(x) − χp(0)
∣∣1{0,x∈C∞} ≤

{
Os

(
C log

1
2 |x|) if d = 2,

Os(C) if d ≥ 3.

We record that, for every exponent q > 0 and every point x ∈R+

exp(x) ≥ xq

qq exp(−q)
.

This implies, for each triplet s, q, θ > 0,

(81) X ≤Os(θ) =⇒ E
[
Xq] ≤ 2θq

(
q

s

) q
s

exp
(

q

s

)
.

We split the proof into six steps.

• In Step 1, we prove that for each exponent q ≥ 1 and each integer m ∈N,

E

[∣∣∣∣[χp]P(0) − 3−2dm
∑

y∈�m

∑
z∈y+�m

[χp]P(z)

∣∣∣∣q]
≤

{
Cqqqkm

q
2 if d = 2,

Cqqqk if d ≥ 3.
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• In Step 2, we use the result of Step 1 to prove that for each exponent q ≥ 1 and each integer
m ∈N,

E

[∣∣∣∣[χp]P(x) − 3−2dm
∑

y∈�m

∑
z∈x+y+�m

[χp]P(z)

∣∣∣∣q]
≤

{
Cqqqkm

q
2 if d = 2,

Cqqqk if d ≥ 3.

Note that this statement is not just a consequence of Step 1 and the stationarity of the
corrector since the partition P is not stationary.

• In Step 3, we prove that for each q ≥ 1 and m ∈N, chosen such that 3m ≤ |x| < 3m+1,

E

[∣∣∣∣[χp]P(0) − 3−2dm
∑

y∈�m

∑
z∈x+y+�m

[χp]P(z)

∣∣∣∣q]
≤

{
Cqqqkm

q
2 if d = 2,

Cqqqk if d ≥ 3.

• In Step 4, we combine Steps 2 and 3 to obtain, for each exponent q ≥ 1,

(82) E
[∣∣[χp]P(x) − [χp]P(0)

∣∣q] ≤ {
Cqqqkm

q
2 if d = 2,

Cqqqk if d ≥ 3.

• In Step 5, we prove that there exist an exponent s := s(d,p, λ) > 0 and a constant C :=
C(d,p, λ) < ∞ such that

(83)
∣∣[χp]P(x) − [χp]P(0)

∣∣ ≤ {
Os

(
C log

1
2 |x|) if d = 2,

Os(C) if d ≥ 3.

• In Step 6, we remove the coarsening and show that

∣∣χp(x) − χp(0)
∣∣1{0,x∈C∞} ≤

{
Os

(
C log

1
2 |x|) if d = 2,

Os(C) if d ≥ 3.

Step 1. The main tool of this step is the following inequality which was proved in Step 1
of the proof of Theorem 1.2, for each m ∈N, and each q ≥ 1,

(84)
(

3−dm
∑

y∈�m

∣∣[χp]P(y) − ([χp]P)
�m

∣∣q) 1
q ≤

{
Os

(
Cqk

√
m

)
if d = 2,

Os

(
Cqk)

if d ≥ 3.

Note that this implies, by (81),

(85) E

[
3−dm

∑
y∈�m

∣∣[χp]P(y) − ([χp]P)
�m

∣∣q]
≤

{
Cqqqkm

q
2 if d = 2,

Cqqqk if d ≥ 3.

For some fixed point y ∈ Z
d , the stationarity of the corrector stated in (19) implies the iden-

tity, for almost every environment a ∈ �,([χp]P(−y) − ([χp]P)
�m

)
(a) = ([χp]Py (0) − ([χp]Py

)
y+�m

)
(τya),

where we recall the notation Py = y + P(τ−ya). Using the stationarity property (6), we
obtain, for each exponent q ≥ 1,

E
[∣∣[χp]Py (0) − ([χp]Py

)
y+�m

∣∣q] = E
[∣∣[χp]P(−y)− ([χp]P)

�m

∣∣q]
.

Since this result applies for each point y ∈ Z
d , we can sum over all the points in the cube �m.

We obtain

3−dm
∑

y∈�m

E
[∣∣[χp]Py (0) − ([χp]Py

)
y+�m

∣∣q]
= 3−dm

∑
y∈�m

E
[∣∣[χp]P(−y)− ([χp]P)

�m

∣∣q]
.
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Thus, by (85),

(86) E

[
3−dm

∑
y∈�m

∣∣[χp]Py (0) − ([χp]Py

)
y+�m

∣∣q]
≤

{
Cqqqkm

q
2 if d = 2,

Cqqqk if d ≥ 3.

We now remove the translation of the partition and prove, for each point z ∈ Z
d

(87)
∣∣[χp]Py (z) − [χp]P(z)

∣∣ ≤Os(C).

To prove this inequality, note that, by definition of the coarsening (4), we have

[χp]Py (z) − [χp]P(z) = χp

(
z
(
�Py (z)

)) − χp

(
z
(
�P(z)

))
,

and by definition of the two partitions P and Py , there exists a path connecting the cubes
�Py (z) and �P(z) which lies in the ball B(z,C max(size(�Py (z)), size(�P(z)))). To sim-
plify the notation, let us denote R′ = C max(size(�Py (z)), size(�P(z))). We have the esti-
mate ∣∣[χp]Py (z) − [χp]P(z)

∣∣ ≤ ∑
x∈C∞∩BR′ (z)

|∇χp|(x).

By Proposition 6, the bounds R′ ≤ Os(C) and X (z) ≤ Os(C) and the assumption |p| = 1,
we have ∑

y∈C∞∩B ′
R(z)

|∇χp|(y) ≤Os(C).

Combining the previous displays completes the proof of (87). To remove the parameter y

in (86), we compute

(88)

E

[
3−dm

∑
y∈�m

∣∣[χp]P(0) − ([χp]P)
y+�m

∣∣q]

≤ 2q
E

[
3−dm

∑
y∈�m

∣∣[χp]Py (0) − ([χp]Py

)
y+�m

∣∣q]

+ 2q
E

[
3−dm

∑
y∈�m

∣∣[χp]Py (0) − ([χp]Py

)
y+�m

− [χp]P(0) − ([χp]P)
y+�m

∣∣q]
.

By (87) and (12) we have, for each point y ∈�m,∣∣[χp]Py (0) − ([χp]Py

)
y+�m

− [χp]P(0) − ([χp]P)
y+�m

∣∣ ≤Os(C),

and thus

E
[∣∣[χp]Py (0) − ([χp]Py

)
y+�m

− [χp]P(0) − ([χp]P)
y+�m

∣∣q] ≤ Cqqqk.

Summing over the points y ∈�m yields

E

[
3−dm

∑
y∈�m

∣∣[χp]Py (0) − ([χp]Py

)
y+�m

− [χp]P(0) − ([χp]P)
y+�m

∣∣q]
≤ Cqqqk.

By the previous display and (86), we have

E

[
3−dm

∑
y∈�m

∣∣[χp]P(0) − ([χp]P)
y+�m

∣∣q]
≤

{
Cqqqkm

q
2 if d = 2,

Cqqqk if d ≥ 3.
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By the Jensen inequality, we obtain

E

[∣∣∣∣3−dm
∑

y∈�m

[χp]P(0) − ([χp]P)
y+�m

∣∣∣∣q]
≤

{
Cqqqkm

q
2 if d = 2,

Cqqqk if d ≥ 3.

Notice that

3−dm
∑

y∈�m

[χp]P(0) − ([χp]P)
y+�m

= [χp]P(0) − 3−2dm
∑

y∈�m

∑
z∈y+�m

[χp]P(z).

Combining the two previous displays completes the proof of Step 1.
Step 2. By the stationarity of the corrector (19), for almost every environment a ∈ �, every

pair of points y, z ∈ Z
d ,

[χp]P(z)(a) = [χp]Py (z + y)(τya).

Using this property, we have

E

[∣∣∣∣[χp]Px (x) − 3−2dm
∑

y∈�m

∑
z∈x+y+�m

[χp]Px (z)

∣∣∣∣q]

= E

[∣∣∣∣[χp]P(0) − 3−2dm
∑

y∈�m

∑
z∈y+�m

[χp]P(z)

∣∣∣∣q]

≤
{
Cqqqkm

q
2 if d = 2,

Cqqqk if d ≥ 3.

Performing the same computation as in (88), we can replace the partition Px by P in the
previous display. This yields

E

[∣∣∣∣[χp]P(x) − 3−2dm
∑

y∈�m

∑
z∈x+y+�m

[χp]P(z)

∣∣∣∣q]
≤

{
Cqqqkm

q
2 if d = 2,

Cqqqk if d ≥ 3.

This completes the proof of Step 2.
Step 3. This step is similar to Step 1; the main ingredient is slightly different and presented

below. The objective is to prove the following inequality: for m ∈ N such that 3m ≤ |x| <

3m+1, and for each q ≥ 1,(
3−dm

∑
y∈�m

∣∣[χp]P(y) − ([χp]P)
x+�m

∣∣q) 1
q ≤

{
Os

(
Cqk

√
m

)
if d = 2,

Os

(
Cqk)

if d ≥ 3.

To prove this result, we note that x +�m ⊆�m+2 and compute

(89)

(
3−dm

∑
y∈�m

∣∣[χp]P(y) − ([χp]P)
x+�m

∣∣q) 1
q

≤
(

3−dm
∑

y∈�m+2

∣∣[χp]P(y) − ([χp]P)
�m+2

∣∣q) 1
q + ∣∣([χp]P)

�m+2
− ([χp]P)

x+�m

∣∣.
The first term is estimated by (85) (replacing the cube �m by �m+2). We estimate the second
term on the right side of (89) as follows:∣∣([χp]P)

�m+2
− ([χp]P)

x+�m

∣∣ ≤ 3−dm
∑

y∈x+�m

∣∣[χp]P(y) − ([χp]P)
�m+2

∣∣
≤ C

(
3−dm

∑
y∈�m+2

∣∣[χp]P(y) − ([χp]P)
�m+2

∣∣q) 1
q

.
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Combining the two previous displays with the inequality (84) shows(
3−dm

∑
y∈�m

∣∣[χp]P(y) − ([χp]P)
x+�m

∣∣q) 1
q ≤

{
Os

(
Cqk

√
m

)
if d = 2,

Os

(
Cqk)

if d ≥ 3.

With the same proof as in Step 1, we obtain, for each q ≥ 1

E

[∣∣∣∣3−dm
∑

y∈�m

[χp]P(0) − ([χp]P)
y+x+�m

∣∣∣∣q]
≤

{
Cqqqkm

q
2 if d = 2,

Cqqqk if d ≥ 3.

But note that

[χp]P(0) − 3−2dm
∑

y∈�m

∑
z∈x+y+�m

[χp]P(z) = 3−dm
∑

y∈�m

[χp]P(0) − ([χp]P)
y+x+�m

.

Combining the two previous displays completes the proof of Step 3.
Step 4. In this step, we first split the integral,

E
[∣∣[χp]P(x) − [χp]P(0)

∣∣q] ≤ 2q
E

[∣∣∣∣[χp]P(0) − 3−2dm
∑

y∈�m

∑
z∈x+y+�m

[χp]P(z)

∣∣∣∣q]

+ 2q
E

[∣∣∣∣[χp]P(x) − 3−2dm
∑

y∈�m

∑
z∈x+y+�m

[χp]P(z)

∣∣∣∣q]
.

Combining the results of Step 2 and Step 3, we have, for m ∈N chosen such that 3m ≤ |x| ≤
3m+1 and for each q ≥ 1,

E
[∣∣[χp]P(x) − [χp]P(0)

∣∣q] ≤ {
Cqqqkm

q
2 if d = 2,

Cqqqk if d ≥ 3.

Since m ≤ log |x|
log 3 , the proof of Step 3 is complete.

Step 5. First we extend the result of Step 4 to the case 0 < q < 1. By the Jensen inequality,
we have, for each 0 < q ≤ 1,

E
[∣∣[χp]P(x) − [χp]P(0)

∣∣q] ≤ E
[∣∣[χp]P(x) − [χp]P(0)

∣∣2] q
2 ≤

{
Cq log

q
2 |x| if d = 2,

Cq if d ≥ 3.

We now prove the main result of this step. We first deal with the case d = 2. Select an
exponent s > 0 depending only on d,p, λ such that s < 1

k
, where k is the exponent (depending

only on d,p, λ) which appears in (82). We then compute by the Stirling formula. We now set
σ := min(

log 2

log(
∑� 1

s �
l=0

Csl

l! +∑∞
l= 1

s "
Csl (sl)skl

l! )

,1) > 0. Note that σ depends only on d,p, λ. With this

value of σ , we have

E

[
exp

(
σ

( |[χp]P(x) − [χp]P(0)|
log

1
2 |x|

)s)]
≤ 2.

From this computation, we obtain∣∣[χp]P(x) − [χp]P(0)
∣∣ ≤Os

(
σ− 1

s log
1
2 |x|).

Setting C := σ− 1
s , we obtain (83). The proof in dimension d ≥ 3 follows the same lines and

is even simpler since we do not have the square root of the logarithm.
Step 6. In this step, we remove the coarsening. To this end, we prove, for each point y ∈ Z

d ,∣∣χp(y) − [χp]P(y)
∣∣1{y∈C∞} ≤Os(C).
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Note that if a point y belongs to the infinite cluster then there exists a path connecting y to
z(�P(y)) which lies in the cube �P(y) and its neighbors. Consequently we have the estimate∣∣χp(y) − [χp]P(y)

∣∣1{y∈C∞} ≤
∑

x∈C∞∩B(y,C size(�P (y)))

|∇χp|(x).

Applying Proposition 6 gives

(90)
∣∣χp(y) − [χp]P(y)

∣∣1{y∈C∞} ≤Os(C).

We deduce that∣∣χp(x) − χp(0)
∣∣1{0,x∈C∞}

≤ ∣∣χp(0) − [χp]P(0)
∣∣1{0∈C∞} +

∣∣χp(x) − [χp]P(x)
∣∣1{x∈C∞} +

∣∣[χp]P(x) − [χp]P(0)
∣∣.

Combining the result of Step 5 with the inequality (90) shows

∣∣χp(x) − χp(0)
∣∣1{0,x∈C∞} ≤

{
Os

(
C log

1
2 |x|) if d = 2,

Os(C) if d ≥ 3.

The proof of Step 6 is complete. �

APPENDIX A: PROOF OF THE MULTISCALE POINCARÉ INEQUALITY

In this appendix, we prove the Lq multiscale Poincaré inequality stated in Proposition 9.
Contrary to the rest of the article, we prove the result in the continuous setting. This choice
is motivated by the two reasons listed below:

1. The argument relies on the statement of Proposition D.1 and Remark D.6 of [10], which
are stated in the continuous setting;

2. We need to rescale equations and use results of elliptic regularity; it is thus easier to
work in the continuous setting.

The discrete version of the inequality stated in Proposition 9 can be deduced from the con-
tinuous one by standard arguments.

We first introduce a few definitions pertaining to the continuous setting. We denote by
C∞

c (Rd,R) (resp. C∞(Rd,R)) the set of smooth compactly supported (resp. smooth) func-
tions in R

d , by S(Rd) the Schwartz space, that is,

S
(
R

d) := {
f ∈ C∞(

R
d,R

) : ∀(k,α1, . . . , αd) ∈N
d+1, sup

x∈Rd

|x|k∣∣∂α1
1 · · · ∂αd

d f (x)
∣∣ < ∞

}
and by S ′(Rd) its topological dual, the space of tempered distribution. Given a domain U ⊆
R

d , we denote by C∞
c (U,R) (resp. C∞(U,R)) the set of smooth compactly supported (resp.

smooth) functions in U .
For q ∈ [1,∞), we denote the Lq(U) and normalized Lq(U) norms by For k ∈ N, we

denote by Wk,q(U) the Sobolev space, by W
k,q
0 (U) the closure of C∞

c (U,R) in Wk,q(U),

and by W
k,q
loc (U) the space of local Sobolev functions. For k ∈ Z with k < 0, we denote by

Wk,q(U) the topological dual of W
−k,p
0 (U), with p = q

q−1 .

PROPOSITION 12 (Multiscale Poincaré inequality, heat kernel version). For each radius
r > 0, we define the continuous heat kernel

(91) �̃r2 :
⎧⎪⎨⎪⎩
R

d →R

x �→ r−d exp
(
−|x|2

r2

)
.



418 P. DARIO

For each exponent q ≥ 2, there exists a constant C := C(d, q) < ∞ such that for each tem-
pered distribution u ∈ W

1,q
loc (Rd)∩ S ′(Rd) and each radius R > 0,

(92)
∥∥u− (u)BR

∥∥
Lq(BR) ≤ C

(ˆ
Rd

R−de−
|x|
R

(ˆ R

0
r
∣∣�̃r2 ∗ ∇u(x)

∣∣2 dr

) q
2

) 1
q

.

Moreover the dependence on the q variable of the constant C can be estimated as follows,
for each q ≥ 2,

C(d, q) ≤ Aq
3
2

for some constant A := A(d) < ∞.

Before starting the proof, we need to state the following proposition from [10], Proposi-
tion D.1 and Remark D.6, and to record a result from the elliptic regularity theory.

PROPOSITION 13 (Proposition D.1 and Remark D.6 of [10]). For each q ≥ 2, there exists
a constant C := C(d, q) < ∞ such that for every tempered distribution w ∈ S ′(Rd),

(93) ‖w‖W−1,q (B1)
≤ C

(ˆ
Rd

e−|x|
(ˆ 1

0
r
∣∣�̃r2 ∗w(x)

∣∣2 dr

) q
2

) 1
q

.

Moreover the constant C satisfies, for each exponent q ≥ 2, C(d, q) ≤ A
√

q , for some con-
stant A := A(d) < ∞.

REMARK 5. The statement of [10], Proposition D.1 and Remark D.6, is not identical
to the statement of Proposition 13; one needs to perform the change of variables r2 := t to
obtain the estimate (93) from the one of [10].

REMARK 6. The dependence on the q variable of the constant C is not explicit in [10].
It can be recovered from the proof.

We then record a result from the theory of elliptic regularity, it can be found in [31],
Lemma 7.12 and Proposition 9.9.

PROPOSITION 14 (Lemma 7.12 and Proposition 9.9 of [31]). Let V ⊆R
d be a bounded

domain of Rd . Let f ∈ Lp(V ), 1 < p < ∞, and let w be the Newtonian potential of f , that
is,

w(x) :=
ˆ

V

�(x − y)f (y) dy,

where � is the fundamental solution of the Laplace equation, that is,

�(x) :=

⎧⎪⎪⎨⎪⎪⎩
1

2π
log |x| if d = 2,

1

d(2 − d)ωd

|x|2−d if d ≥ 3,

where ωd is the volume of the unit sphere in R
d . Then w ∈ W 2,p(V ),�w = f a.e. and∥∥∇2w

∥∥
Lp(V ) ≤ C0‖f ‖Lp(V )

and

‖w‖Lp(V ) + ‖∇w‖Lp(V ) ≤ C1‖f ‖Lp(V )
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for some constants C1 := C1(d,V ) < ∞ and C0 := C0(d,p,V ) < ∞. Moreover, the depen-
dence on p of the constant C0 can be explicited:

C0(d,p,V ) ≤ Ap if p ≥ 2 and C0(d,p,V ) ≤ A
1

p − 1
if 1 < p ≤ 2

for some A := A(d,V ) < ∞.

Before starting the proof, we mention that the dependence on the p variable is not explicit
in [31], Proposition 9.9; it can be recovered by keeping track of the constant p in the appli-
cation of the Marcinkiewicz interpolation theorem. Let us also mention that the case of the
logarithmic potential is not considered in [31], Lemma 7.12, (it is useful to obtain the esti-
mate of the Lp norm of w in dimension 2). Nevertheless their proof is general enough to be
applied in this setting.

PROOF OF PROPOSITION 9. Let ψ ∈ C∞
c (B 1

4
,R) and 2 ≤ q < ∞. We denote by p the

conjugate exponent of q , that is, p := q
q−1 ∈ (1,2]. We split the proof into 5 steps.

• In Step 1, we show that there exists a constant C := C(d,ψ) < ∞ such that, for each
function u ∈ W 1,q(B1),

(94) ‖u−ψ ∗ u‖W−1,q (B 3
4
) ≤ C‖∇u‖W−1,q (B1)

.

• In Step 2, we prove that there exists a constant C := C(d,ψ) < ∞ such that, for each
function u ∈ W 1,q(B1),

(95)
∥∥u −ψ ∗ u(0)

∥∥
W−1,q (B 3

4
) ≤ C‖∇u‖W−1,q (B1)

.

• In Step 3, we prove that there exists a constant C := C(d, q,ψ) < ∞ such that, for each
function u ∈ W 1,q(B1),

‖u‖Lq(B 1
2
) ≤ C‖∇u‖W−1,q (B 3

4
) + C‖u‖W−1,q (B 3

4
)

and that the constant C satisfies C(d,ψ,q) ≤ Aq for some A := A(d,ψ) < ∞.
• In Step 4, we show that there exists a constant C := C(d, q,ψ) < ∞ such that, for each

function u ∈ W 1,q(B1), ∥∥u− (u)B 1
2

∥∥
Lq(B 1

2
) ≤ C‖∇u‖W−1,q (B1)

and that the constant C satisfies C(d,ψ,q) ≤ Aq for some constant A := A(d,ψ) < ∞.
• In Step 5, we show that for each tempered distribution u ∈ W

1,q
loc (Rd) ∩ S ′(Rd) and each

radius R > 0,

∥∥u− (u)BR

∥∥
Lq(BR) ≤ C

(ˆ
Rd

R−de−
|x|
2R

(ˆ 2R

0
r
∣∣�̃r2 ∗ ∇u(x)

∣∣2 dr

) q
2

) 1
q

and that the constant C satisfies C(d, q) ≤ Aq
3
2 for some A := A(d) < ∞.

Step 1. We prove that there exists a constant C := C(d) < ∞ such that

‖u− u ∗ψ‖W−1,q (B 3
4
) ≤ C‖∇u‖W−1,q (B1)

.

Define, for each integer n ∈N,

ψn := 2−dnψ
(
2n·).
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Since ψn ∗ u → u in Lq(B 3
4
), we can use the triangle inequality to bound

(96) ‖u−ψ ∗ u‖W−1,q (B 3
4
) ≤

∞∑
n=0

‖ψn+1 ∗ u−ψn ∗ u‖W−1,q (B 3
4
).

Since the function ψ1 −ψ0 is compactly supported in B 1
4

and of mean 0, we can apply [10],

Lemma 5.7, to show that there exists a function � ∈ C∞
c (B 1

4
,Rd) satisfying

∇ ·� = ψ1 −ψ0.

For each integer n ∈N, we denote

�n := 2−dn�
(
2n·),

by scaling invariance we also have

2−n∇ ·�n = ψn+1 −ψn.

For each function g ∈ W
1,p
0 (B 3

4
), we have

ˆ
(B 3

4
)

(ψn+1 −ψn) ∗ u(x)g(x) dx = 2−n

ˆ
Rd

ˆ
Rd

∇ · �n(x − y)u(y)g(x) dx dy

= 2−n

ˆ
Rd

∇u(y) ·
(ˆ

Rd

�n(x − y)g(x) dx

)
dy.

By construction, the function y → (
´
Rd �n(x − y)g(x) dx) is supported in B1, we can thus

estimate∣∣∣∣ˆ
B 3

4

(ψn+1 −ψn) ∗ u(x)g(x) dx

∣∣∣∣ ≤ 2−n

∥∥∥∥ˆ
Rd

�n(x − ·)g(x) dx

∥∥∥∥
W

1,p
0 (B1)

‖∇u‖W−1,q (B1)
.

Moreover, one can check that there exists a constant C := C(d,ψ) < ∞ such that∥∥∥∥ˆ
Rd

�n(x − ·)g(x) dx

∥∥∥∥
W

1,p
0 (B1)

≤ C‖g‖
W

1,p
0 (B1)

= C‖g‖
W

1,p
0 (B 3

4
)
.

Taking the supremum over the functions g ∈ W
1,p
0 (B 3

4
) of norm less than 1 and combining

this result with (96), we obtain

‖u−ψ ∗ u‖W−1,q (B 3
4
) ≤ C‖∇u‖W−1,q (B1)

for some constant C := C(d) < ∞. The proof of Step 1 is complete.
Step 2. We split the norm

(97)
∥∥u− ψ ∗ u(0)

∥∥
W−1,q (B 3

4
) ≤ ‖u −ψ ∗ u‖W−1,q (B 3

4
) +

∥∥ψ ∗ u− ψ ∗ u(0)
∥∥
W−1,q (B 3

4
).

But note that, for each point x ∈ B 3
4
,

(98)
∣∣ψ ∗ u(x)−ψ ∗ u(0)

∣∣ ≤ C‖∇u‖W−1,q (B1)
.

The proof of this estimate is similar to the previous step. By [10], Lemma 5.7, we represent
ψ(· − x) −ψ in the form

∇ ·�x = ψ(· − x)− ψ,
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where �x ∈ C∞
c (B1,R) is bounded in W

1,p
0 (B1) uniformly in the point x ∈ B 3

4
. We then

prove (98) thanks to an integration by parts. From this argument, we deduce that∥∥ψ ∗ u−ψ ∗ u(0)
∥∥
W−1,q (B 3

4
) ≤ C‖∇u‖W−1,q (B1)

.

Combining this estimate with (97) and the estimate (94) completes the proof of Step 2.
Step 3. Let η ∈ C∞

c (B1) be a cutoff function satisfying

1B 1
2
≤ η ≤ 1B 3

4
and

∣∣∇2η
∣∣ + |∇η| ≤ C.

For any function f ∈ Lp(B1), we denote by wf the Newtonian potential of f introduced in
Proposition 14 with the open set V = B1. We then computeˆ

B1

η(x)u(x)f (x) dx

=
ˆ

B1

η(x)u(x)�wf (x) dx

=
ˆ

B1

∇η(x)u(x)∇wf (x) + η(x)∇u(x)∇wf (x) dx

≤ ‖u‖W−1,q (B 3
4
)‖∇η∇wf ‖W

1,p
0 (B 3

4
)
+ ‖∇u‖W−1,q (B 3

4
)‖η∇wf ‖W

1,p
0 (B 3

4
)
.

By the properties of the function η and by Proposition 14, we have

‖∇η∇wf ‖W
1,p
0 (B 3

4
)
+ ‖η∇wf ‖W

1,p
0 (B 3

4
)
= ‖∇η∇wf ‖W

1,p
0 (B1)

+ ‖η∇wf ‖W
1,p
0 (B1)

≤ C‖f ‖Lp(B1)

for some constant C := C(d,p,η) < ∞ satisfying

C(d,p,η) ≤ A

p − 1
,

with A := A(d,η) < ∞. Consequently

‖u‖Lq(B 1
2
) ≤ ‖ηu‖Lq(B1) = sup

f∈Lp(B1),‖f ‖Lp(B1)=1

ˆ
B1

η(x)u(x)f (x) dx

≤ C
(‖u‖W−1,q (B 3

4
) + ‖∇u‖W−1,q (B 3

4
)

)
.

The proof of Step 3 is complete.
Step 4. Applying the main result of Step 3 to the function u−ψ ∗ u(0), we have∥∥u−ψ ∗ u(0)

∥∥
Lq(B 1

2
) ≤ C

(∥∥u−ψ ∗ u(0)
∥∥
W−1,q (B 3

4
) + ‖∇u‖W−1,q (B1)

)
.

Then by Step 2, we obtain∥∥u−ψ ∗ u(0)
∥∥
Lq(B 1

2
) ≤ C‖∇u‖W−1,q (B1)

.

But we have, for each a ∈R∥∥u− (u)B 1
2

∥∥
Lq(B 1

2
) ≤ 2‖u− a‖Lq(B 1

2
).

Thus ∥∥u− (u)B 1
2

∥∥
Lq(B 1

2
) ≤ 2 inf

a∈R‖u− a‖Lq(B 1
2
) ≤ 2

∥∥u−ψ ∗ u(0)
∥∥
Lq(B 1

2
).

Combining the previous displays completes the proof of Step 4.
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Step 5. Applying the result of Step 4 and Proposition 13, we obtain, for each q ≥ 2 and
each u ∈ S ′(Rd)∩ W

1,q
loc (Rd),

∥∥u− (u)B 1
2

∥∥
Lq(B 1

2
) ≤ C

(ˆ
Rd

e−|x|
(ˆ 1

0
r
∣∣�̃r2 ∗ ∇u(x)

∣∣2 dr

) q
2

) 1
q

for some constant C := C(d, q) satisfying C(d, q) ≤ Aq
3
2 . Rescaling the previous estimates

eventually shows

∥∥u− (u)BR

∥∥
Lq(BR) ≤ C

(ˆ
Rd

R−de−
|x|
2R

(ˆ 2R

0
r
∣∣�̃r2 ∗ ∇u(x)

∣∣2 dr

) q
2

) 1
q

,

and the proof of Proposition 9 is complete. �

APPENDIX B: ELLIPTIC INEQUALITIES ON THE SUPERCRITICAL
PERCOLATION CLUSTER

In this section, we record some simple elliptic inequalities, the Caccioppoli inequality and
the Meyers estimate. These inequalities were written in [7] for harmonic functions. In our
context, we need to apply these results when the right-hand term is not 0 but the divergence
of a vector field.

PROPOSITION 15 (Caccioppoli inequality). Assume that we are given a function u :
C∞ →R and a vector field ξ : Ed →R satisfying the following condition:

(99) ξ(x, y) = 0 if a(x, y) = 0 or x, y /∈ C∞.

In particular, gradients of functions defined on the infinite cluster satisfy this condition by (7).
Assume that u is solution of the equation,

−∇ · a∇u =−∇ · ξ in C∞.

Select two bounded sets U,V ⊆ Z
d such that V ⊆ U and dist(V , ∂U) ≥ r ≥ 1. Then there

exists a constant C(λ) < ∞ such that

(100)
ˆ

C∞∩V

|∇u|2(x) dx ≤ C

r2

ˆ
C∞∩(U\V )

∣∣u(x)
∣∣2 dx +C

ˆ
C∞∩U

|ξ |2(x) dx.

PROOF. The strategy of the proof follows the standard technique to prove the Cacciop-
poli inequality, we select a cutoff function η : Zd →R satisfying

1V ≤ η ≤ 1, η ≡ 0 on R
d \ U, and

∀x, y ∈ Z
d with x ∼ y,

∣∣η(x)− η(y)
∣∣2 ≤ C(η(x)+ η(y))

r2 ,
(101)

test the equation satisfied by u with the function ηu and perform standard computations. �

The second elliptic estimate needed in this article is the Meyers estimate. This estimate
was also proved in [7] in the case of a-harmonic functions.

PROPOSITION 11 (Meyers estimate). There exist a constant C := C(d,λ,p) < ∞, two
exponents s := s(d, λ,p) > 0 and ε := ε(d,λ,p) > 0 and a random variable MMeyers ≤
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Os(C) such that for each m ∈N with 3m ≥MMeyers, and each function v : C∞ →R satisfy-
ing

−∇ · a∇v =−∇ · ξ in C∞
for some vector field ξ : Ed →R satisfying (99), the following estimate holds:

(102)

(
1

|�m|
ˆ
�m∩C∞

|∇v|2+ε(x) dx

) 1
2+ε

≤ C

(
1

|4
3�m|

ˆ
4
3�m∩C∞

|∇v|2(x) dx

) 1
2 +C

(
1

|4
3�m|

ˆ
4
3�m∩C∞

|ξ |2+ε(x) dx

) 1
2+ε

.

PROOF. The results of Proposition 3.8 and Definition 3.9 of [7] can be adapted in our
context to prove (102). The Meyers estimate is a consequence of the three following ingre-
dients: the Caccioppoli inequality, the Sobolev inequality and the Gehring’s lemma. Proposi-
tion 15 provides a version of the Caccioppoli inequality well-suited to deal with a divergence
from the right-hand side. The Sobolev inequality is valid for any functions. The usual version
of the Gehring’s Lemma (see for instance Theorem 6.6 and Corollary 6.1 of [32]), is general
enough to be applied in this context. �

APPENDIX C: TECHNICAL LEMMA

The objective of this appendix is to prove Lemma 3.4 which is restated below.

LEMMA 3.4 (Minimal scale). There exist a constant C := C(d,p, λ) < ∞, an exponent
s := s(d,p, λ) > 0 and a random variable M1 ≤ O′

s(C) such that for each integer m ∈ N

satisfying 3m ≥M1,

3−dm
∑

z∈�m

size
(
�P(z)

) 3d(2+ε)
ε

( ∑
x∈Zd ,dist(�P (x),�P (z))≤1,e∈Bx

d

(
1 +X e(x)

)d) 2+ε
ε ≤ C,

where ε := ε(d,p, λ) > 0 is the exponent which appears in Proposition 11.

PROOF. First, notice that one can rewrite

3−dm
∑

z∈�m

size
(
�P(z)

) 3d(2+ε)
ε

( ∑
x∈Zd ,dist(�P (x),�P (z))≤1,e∈Bx

d

(
1 +X e(x)

)d) 2+ε
ε

≤ C3−dm
∑

z∈�m

size
(
�P(z)

) 3d(2+ε)+2
ε

∑
x∈Zd ,dist(�P (x),�P (z))≤1,e∈Bx

d

(
1 +X e(x)

)d 2+ε
ε

≤ C3−dm
∑

x∈Zd ,dist(�P (x),�m)≤1,e∈Bx
d

size
(
�P(x)

) 3d(2+ε)+2
ε

(
1 +X e(x)

)d 2+ε
ε .

By Property (iv) of Proposition 1 applied with the exponent t = 6d(2+ε)+4
ε

, it is clear that for
each integer m ∈N satisfying 3m ≥Mt (P), we have:

1. The inequality supx∈�m+1
size(�P(x)) ≤ 3

dm
d+t , which implies{

x ∈ Z
d,dist

(
�P(x),�m

) ≤ 1
} ⊆�m+1.
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2. The estimate (
3−dm

∑
x∈Zd ,dist(�P (x),�m)≤1

size
(
�P(x)

) 6d(2+ε)+4
ε

) 1
2

≤ C

(
3−d(m+1)

∑
x∈�m+1

size
(
�P(x)

) 6d(2+ε)+4
ε

) 1
2

≤ C.

Thus by the Cauchy-Schwarz inequality, it is enough to prove that there exists a random
variable M satisfying M≤O′

s(C), such that for each integer m ∈N satisfying 3m ≥M,

(103) 3−dm
∑

x∈�m,e∈Bx
d

(
X e(x)

) d(4+2ε)
ε ≤ C.

Unfortunately, we cannot prove this exact statement; we will prove a slightly weaker estimate,
Lemma C.1, which is still strong enough to deduce Proposition 10. Define, for each constant
C > 0, the random variable

XC := inf
{
r ∈ [1,∞) : ∀r ′,R′ ∈ [r,∞),with r ′ ≤ R′,∀u ∈A(C∞ ∩BR′)

‖∇u‖L2(C∞∩Br′ ) ≤ C
r ′

R′ ‖∇u‖L2(C∞∩BR′ )

}
,

and, for each point x ∈ Z
d ,

XC(x) :=XC ◦ τx.

Denote by C0 := C0(d,p, λ) < ∞ the constant appearing in Proposition 6. By definition we
have

XC0 =X .

Note also that the map C �→XC is nonincreasing. We have the following lemma.

LEMMA C.1. For every integrability parameter t > 0, there exist a constant
C(d,p, λ, t) < ∞, an exponent s(d,p, λ, t) > 0 and a random variable MX

t satisfying

MX
t ≤O′

s(C)

such that for every integer m ∈N satisfying 3m ≥MX
t , one has the inequality

3−dm
∑

x∈�m,e∈Bx
d

∣∣X e

C2
0
(x)

∣∣t ≤ C.

REMARK 7.

1. This statement is weaker than (103) since, for each x ∈ Z
d and e ∈ Bx

d ,

X e

C2
0
(x) ≤X e

C0
(x) =X e(x).

Nevertheless it is enough to prove Result 2, since we only need to replace C0 by C2
0 in

every computation involving the estimates on the random variables χe
p(x); the result remains

unchanged.
2. Applying this result with t = d(4+2ε)

ε
completes the proof of Lemma 3.4. �
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There remains to prove Lemma C.1. Before starting the proof, we introduce a few ingre-
dients and preliminary results. First define, for each radius R > 0, and each constant C > 0,

(104)

XR,C := inf
{
r ∈ [1,R] : ∀r ′,R′ ∈ [r,R],with r ′ ≤ R′,∀u ∈A

(
Cmax(BR) ∩BR′

)
‖∇u‖L2(Cmax(BR)∩Br′ ) ≤ C

r ′

R′ ‖∇u‖L2(Cmax(BR)∩BR′ )

}
,

where Cmax(BR) denotes the largest cluster contained in BR ; if there is more than one can-
didate, we break ties using a deterministic procedure. Similarly we define, for each point
x ∈ Z

d ,

XC(x) :=XC ◦ τx.

This random variable is defined on the enlarged probability space �×� and is measurable
with respect to the σ -algebra F(x+BR)⊗{∅,�} (it depends on the edges in the ball x+BR

of the first variable and does not depend on the edges of the second variable). Consequently
the random variables XR,C(x) and XR,C(y) are independent if |x − y| > 2R.

Note also that XR,C is decreasing in the C variable and, for R ≥Mt (P), it is increasing
in the R variable. We thus denote by, for each C ≥ 1

XC := lim
R→∞XR,C = lim sup

R≥1
XR,C ∈ [1,∞].

By Proposition 6, we know that there exists a constant C0 := C0(d,p, λ) < ∞ such that

(105) XC0 =X ≤O′
s(C),

thus, for each radius R ≥ 1,

XR,C01{R≥Mt (P)} ≤XC0 ≤O′
s(C).

Moreover, for each radius R ≥ 1, we have

XR,C01{R∈[1,Mt (P)]} ≤Mt (P) ≤O′
s(C).

Combining the two previous displays yields, for each R ≥ 1,

XR,C0 ≤O′
s(C).

We now prove the following inequality, for each R,C > 1,

(106) XC2 ≤XR,C +R1{R≤Mt (P)} +XC1{XC>R}.

We split the proof of this inequality into two cases.
Case 1. If XC > R, then since C ≥ 1 and the map C �→ XC is decreasing, the inequality

(106) is a consequence of the estimate

XC2 ≤XC ≤XR,C +R1{R≤Mt (P)} +XC1{XC>R}.

Case 2. If XC ≤ R and R ≤Mt (P), then

XC2 ≤≤XCR1{R≤Mt (P)} ≤XR,C +R1{R≤Mt (P)} +XC1{XC>R}.

Case 3. If XC ≤ R and R ≥ Mt (P) then Cmax(BR) is equal to the maximal connected
component of C∞ ∩BR and we have, for each pair of radii r,R′ > R satisfying R′ ≥ r

‖∇u‖L2(C∞∩Br)
≤ C

r

R′ ‖∇u‖L2(C∞∩BR′ ).
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Moreover, for each pair of radii r,R′ ∈ [XR,C,R] with R′ ≥ r , we have

‖∇u‖L2(C∞∩Br)
≤ C

r

R′ ‖∇u‖L2(C∞∩BR′ ).

Combining the two previous displays and using C2 ≥ C yields for each pair of radii r,R′ ≥
XR,C with R′ ≥ r ,

‖∇u‖L2(C∞∩Br)
≤ C2 r

R′ ‖∇u‖L2(C∞∩BR′ )

and thus by definition of the random variable XC2 ,

XC2 ≤XR,C

and the proof of the inequality (106) is complete.
For x ∈ Z

d, e = {x, y} ∈ Bd,C,R ∈ [1,∞), denote by X e
R,C(x) the translated and resam-

pled random variable

X e
R,C(x) := inf

{
r ∈ [1,R] : ∀1 ≤ r ′ ≤ R′ ≤ R,u ∈Ae(

C e
max

(
BR(x)

) ∩BR′(x)
)

‖∇u‖L2(C e
max(BR)∩Br′ (x)) ≤ C

r ′

R′ ‖∇u‖L2(C e
max(BR(x))∩BR′ (x))

}
.

We also define, for each point x ∈ Z
d

X e
C(x) := lim

R→∞X e
R,C(x) = lim sup

R≥1
X e

R,C(x) ∈ [1,∞].

The second ingredient in the proof of Lemma C.1 is the following minimal scale lemma.
It is an adaptation of [7], Lemma 2.3, and will be used in the proof of Lemma C.1.

LEMMA C.2. Fix K ≥ 1, s > 0 and β > 0 and suppose that {Xn}n∈N is a sequence of
random variables satisfying, for every n ∈N,

Xn ≤ K +Os

(
K3−nβ)

.

Then there exists C(s,β,K) < ∞ such that the random scale

M := sup
{
3n ∈N : Xn ≥ K + 1

}
satisfies the estimate

M ≤Osβ(C).

PROOF. This result can be deduced by applying [7], Lemma 2.3, to the sequence of
random variables X′

n = max(Xn −K,0). �

We now turn to the proof of Lemma C.1.

PROOF OF LEMMA C.1. Fix an exponent t ∈ (0,∞) and m,n ∈ N with m > n. Using
the inequality (106), we have

3−dm
∑

x∈�m,e∈Bx
d

∣∣X e

C2
0
(x)

∣∣t
≤ C3−dm

∑
x∈�m,e∈Bx

d

∣∣X e
3n,C0

(x)
∣∣t +C3−dm

∑
x∈�m,e∈Bx

d

∣∣X e
C0

(x)
∣∣t1{X e

C0
(x)>3n}

+C3−dm
∑

x∈�m

3tn1{3n≤Mt (Pe)} ◦ τx.

(107)
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Since X e
C0

(x) ≤O′
s(C), for every t, t ′ > 0, there exist an exponent s′(d,p, λ, t, t ′) > 0 and a

constant C′(d,p, λ, t, t ′) < ∞ such that

3−dm
∑

x∈�m,e∈Bx
d

∣∣X e
C0

(x)
∣∣t1{X e

C0
(x)>3n} ≤O′

s′
(
C′3−nt ′)

and

3−dm
∑

x∈�m,e∈Bx
d

3nt1{3n≥Mt (P)} ◦ τx ≤O′
s′

(
C′3−nt ′).

Combining the previous displays yields

3−dm
∑

x∈�m,e∈Bx
d

∣∣X e

C2
0
(x)

∣∣t ≤ C3−dm
∑

x∈�m,e∈Bx
d

∣∣X e
3n,C0

(x)
∣∣t +O′

s′
(
C′3−nt ′).

Moreover, notice that by definition of the localized random variable X e
3n,C0

(x), we have for

each x ∈ Z
d ∑

e∈Bx
d

∣∣X e
3n,C0

(x)
∣∣t ≤ 2d × 3nt .

The proof of the lemma is then the same as the proof of Steps 1 and 2 of [7], Proposition 2.1,
with the random variable 3−dm ∑

x∈�m,e∈Bx
d
|X e

C2
0
(x)|t instead of �t(z+�m,S) and the ran-

dom variable 3−dm ∑
x∈z+�n,e∈Bx

d
|X e

3n,C2
0
(x)|t instead of �t(z

′ +�n,Sloc(z
′)). We rewrite it

for completeness.
We denote by

Z := 3−dm
∑

x∈�m,e∈Bx
d

∣∣X e
3n,C0

(x)
∣∣t = |�n|

|�m|
∑

z∈3nZd∩�m

3−dm
∑

x∈z+�n,e∈Bx
d

∣∣X e
3n,C0

(x)
∣∣t .

We first prove that there exists a constant C := C(d,p, λ, t) < ∞ such that

(108) Z ≤ C +O′
1
(
3nt−d(m−n)).

To this end, choose an enumeration {zj : 1 ≤ j ≤ 3d(m−n−2)} of the elements of the set
3n+2

Z
d ∩ �m. For each 1 ≤ j ≤ 3d(m−n−2), we let {zi,j : 1 ≤ i ≤ 32d} be an enumeration

of the elements of the set 3n
Z

d ∩ (zj + �n+2), such that, for every 1 ≤ j, j ′ ≤ 3d(m−n−2)

and 1 ≤ i ≤ 32d , zj − zj ′ = zi,j − zi,j ′
. The point of this is that, for every 1 ≤ i ≤ 32d

and 1 ≤ j < j ′ ≤ 3d(m−n−2), we have dist(zi,j + �n, z
i,j ′ + �n) ≥ 3n+1 and therefore,

3−dm ∑
x∈zi,j+�n,e∈Bx

d
|X e

3n,C2
0
(x)|t and 3−dm ∑

x∈zi,j ′+�n,e∈Bx
d
|X e

3n,C2
0
(x)|t are independent.

Now fix h > 0 and compute, using the Hölder inequality and the independence,

logE
[
exp

(
h3−ntZ

)]
= logE

[32d∏
i=1

3d(m−n−2)∏
j=1

exp
(
h3−nt−d(m−n)3−dm

∑
x∈zi,j+�n,e∈Bx

d

∣∣X e

3n,C2
0
(x)

∣∣t)]

≤ 3−2d
32d∑
i=1

logE

[3d(m−n−2)∏
j=1

exp
(
h3−nt−d(m−n−2)3−dm

∑
x∈zi,j+�n,e∈Bx

d

∣∣X e

3n,C2
0
(x)

∣∣t)]

≤ 3−2d
32d∑
i=1

3d(m−n−2)∑
j=1

logE
[
exp

(
h3−nt−d(m−n−2)3−dm

∑
x∈zi,j+�n,e∈Bx

d

∣∣X e

3n,C2
0
(x)

∣∣t)]
.
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This inequality can be rewritten

logE
[
exp

(
h3−ntZ

)]
≤ 3−2d

∑
z′∈3nZd∩(z+�m)

logE
[
exp

(
h3−nt−d(m−n−2)−dm

∑
x∈z′+�n,e∈Bx

d

∣∣X e

3n,C2
0
(x)

∣∣t)]
.

We use the inequality

∀y ∈ [0,1], exp(y) ≤ 1 + 2y

to obtain, for every h ∈ [0, (2d)−t3d(m−n−2)],
exp

(
h3−nt−d(m−n−2)

∑
x∈z′+�n,e∈Bx

d

∣∣X e

3n,C2
0
(x)

∣∣t)

≤ 1 + 2h3−nt−d(m−n−2)
∑

x∈z′+�n,e∈Bx
d

∣∣X e

3n,C2
0
(x)

∣∣t .
Taking the expectation in the previous display and using the elementary inequality

∀y ≥ 0, log(1 + y) ≤ y,

we obtain

logE
[
exp

(
h3−ntZ

)]
≤ 3d(m−n) log

(
1 + 2h3−nt−d(m−n−1)

E

[ ∑
x∈z′+�n,e∈Bx

d

∣∣X e

3n,C2
0
(x)

∣∣t])

≤ 2h3−nt+d
E

[ ∑
x∈z′+�n,e∈Bx

d

∣∣X e

3n,C2
0
(x)

∣∣t]

≤ Ch3−nt .

Taking h := (2d)−t3d(m−n−2) yields

E
[
exp

(
(2d)−t3d(m−n−2)−ntZ

)] ≤ exp
(
C3d(m−n)−nt ).

From this and Chebyshev’s inequality, we obtain a constant C such that

P[Z ≥ C + h] ≤ exp
(−hC−13d(m−n)−nt ).

This implies (108).
Step 2. We complete the proof by applying a union bound. Combining (107) and (108)

yields ∑
x∈�m,e∈Bx

d

∣∣X e
3n,C0

(x)
∣∣t ≤ C +O1

(
C3nt−d(m−n)) +Os′

(
C3−nt ′).

We set

n :=
⌈

dm

d + t + 1

⌉
and t ′ = 1

so that the previous line becomes∑
x∈�m,e∈Bx

d

∣∣X e
3n,C0

(x)
∣∣t ≤ C +O′

1
(
C3− d

d+t+1 m) +O′
s′

(
C3− d

d+t+1 m)
.
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Thus, by (15) and (11), we obtain the existence of two exponents s := s(d,p, λ, t) > 0, β :=
β(d,p, λ, t) > 0 and of a constant C0 := C0(d,p, λ, t) < ∞ such that∑

x∈�m, e∈Bx
d

∣∣X e
3n,C0

(x)
∣∣t ≤ C0 +O′

s

(
C03−βm)

.

Define

MX
t := sup

{
3m : ∑

x∈�m,e∈Bx
d

∣∣X e
3n,C0

(x)
∣∣t ≥ C0 + 1

}
.

We apply Lemma C.2 with Xn = ∑
x∈�m,e∈Bx

d
|X e

3n,C0
(x)|t and K = C0 to obtain the inequal-

ity

MX
t ≤Osβ(C).

The proof is complete. �
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