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GUE × GUE LIMIT LAW AT HARD SHOCKS IN ASEP

BY PETER NEJJAR

Institute of Applied Mathematics, Bonn University, nejjar@iam.uni-bonn.de

We consider the asymmetric simple exclusion process (ASEP) on Z with
initial data such that in the large time particle density ρ(·) a discontinuity
(shock) at the origin is created. At the shock, the value of ρ jumps from
zero to one, but ρ(−ε),1 − ρ(ε) > 0 for any ε > 0. We are interested in the
rescaled position of a tagged particle which enters the shock with positive
probability. We show that, inside the shock region, the particle position has
the KPZ-typical 1/3 fluctuations, a FGUE × FGUE limit law and a degener-
ated correlation length. Outside the shock region, the particle fluctuates as if
there was no shock. Our arguments are mostly probabilistic, in particular, the
mixing times of countable state space ASEPs are instrumental to study the
fluctuations at shocks.

1. Introduction. We consider the asymmetric simple exclusion process (ASEP) on Z. In
this model, particles move in Z and there is at most one particle per site. Each particle waits
independently of all other particles an exponential time (with parameter 1) to attempt to move
one unit step, which is a step to the right with probability p > 1/2, and a step to the left with
probability q = 1 − p. The attempted jump is successful if the target site is empty (exclusion
constraint). ASEP is a continuous-time Markov process with state space X = {0,1}Z and we
denote by η� ∈ X the particle configuration at time �; see [26] for the rigorous construction
of ASEP. If p = 1 we speak of the totally ASEP (TASEP).

Given an initial data η0 we can assign a label (an integer) to each particle, and we denote
by xM(t) the position at time t of the particle with label M . The particle position xM(t) is
directly related to the height function associated to the ASEP dynamics. As a growth model,
ASEP belong to the Kardar–Parisi–Zhang (KPZ) universality class; see [12] for a review.
The members of this class are believed to share, within a few subclasses, a common large
time fluctuation behavior. In particular, ASEP is expected to have, modulo some special sit-
uations, the same large time fluctuation behavior for all p ∈ (1/2,1]. Since TASEP is more
tractable than ASEP (due to TASEP’s imminent determinantal structure, but also because
certain probabilistic techniques such as couplings with last passage percolation can be used),
many asymptotic results were first obtained for TASEP. In light of the idea of universality, it
is of great interest to generalize results from TASEP to the general ASEP. Another key mo-
tivation to study ASEP is that, by considering a weakly asymmetric scaling, ASEP provides
a bridge to the famous KPZ equation. The (Cole–Hopf) solution of the KPZ equation is the
logarithm of the solution of the stochastic heat equation with multiplicative noise, and the
latter can, for certain initial data, be obtained from ASEP under weak asymmetry [3, 7].

The hydrodynamical behavior of ASEP is well established: For ASEP with a sequence of
initial configurations ηN

0 ∈ X, N ≥ 1, assume that

(1) lim
N→∞

1

N

∑
i∈Z

δ i
N
ηN

0 (i) = ρ0(ξ)dξ,
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where δi/N is the dirac measure at i/N and the convergence is in the sense of vague conver-
gence of measures. Then the large time density of the ASEP is given by

(2) lim
N→∞

1

N

∑
i∈Z

δ i
N
ηN

τN(i) = ρ(ξ, τ )dξ,

where ρ(ξ, τ ) is the unique entropy solution of the Burgers equation with initial data ρ0.
A very important result on KPZ fluctuations for the general ASEP was obtained in [34],

where the authors consider ASEP with step initial data ηstep = 1Z≤0 (in fact, they consider
the initial data η = 1Z≥0 with particles having a drift to the left, which is equivalent). The
limiting particle density (2) then has a region of decreasing density (rarefaction fan), and for
a particle located in this region, the fluctuations around its macroscopic position are of order
t1/3 and given by the Tracy–Widom FGUE distribution ([34], Theorem 3). For TASEP, this
result had been shown earlier in [23], Theorem 1.6. The authors of [34] also obtained the limit
law of the rescaled position of the particle initially at position −M (M fixed); see Theorem 3
below. The results of [34] were later extended to so-called (generalized) step Bernoulli initial
data [2, 35]. For stationary ASEP (where η0(i), i ∈ Z are i.i.d. Bernoulli), [1] showed that the
current fluctuations along the characteristics converge to the Baik–Rains distribution, again
generalizing a result known for TASEP [19] to the general ASEP. Considerable effort has
also been devoted to (half-) flat initial data [30, 31], which again are already understood for
TASEP [9, 10].

In this paper, we consider the general ASEP with a shock (discontinuity) in the particle
density, and our main contribution is to show that KPZ fluctuations arise at this shock. In the
case of random (independent Bernoulli) initial data, shocks in the general ASEP have been
extensively studied; see [27], Chapter 3, for a review. However, for such random initial data,
the initial randomness supersedes the fluctuations of ASEP, leading to a gaussian limit law
under t1/2 scaling, that is, one does not obtain KPZ fluctuations. We thus consider determin-
istic initial data defined in (3), (7) below. Their macroscopic particle density is depicted in
Figure 1: At the origin, two rarefaction fans come together, and ρ(ξ,1) makes a jump from 0
to 1. We call this discontinuity in ρ a hard shock and are interested in the fluctuations of par-
ticles around the macroscopic shock position. We study this question for two different initial
data: For (3), the shock region remains discrete, whereas for (7) it grows as a power of t . Our
main results—Theorem 1 and 2—show that inside the shock, we have the KPZ-typical 1/3
fluctuation exponent, a degenerated 1/3 correlation exponent, as well as a limit law given
by a product of two Tracy–Widom GUE distributions. Such KPZ fluctuation behavior has
previously been only observed at “nonhard” shocks in the totally asymmetric case (see [16]
and (10) below). Theorem 1 and 2 thus give the first example of KPZ fluctuations at shocks
in the general asymmetric case. Specializing our results to TASEP, we show in Corollary 1
that we can smoothly transit between the hard and nonhard shock fluctuations in TASEP. We
obtained the fluctuations of the second class particle at the shock in [29] after the present
work was finished.

The results of [16] (and of the subsequent works [15, 17, 18, 28]) were all obtained by
working in a last passage percolation model, which then is coupled to TASEP. Such a cou-
pling does not exist for ASEP and in this paper, we work directly in the exclusion process.
We thus give a direct understanding of the shock fluctuations without passing through an
auxiliary model. A key difficulty in the general asymmetric case is then to provide lower
bounds for particle positions (see Proposition 1.2). In this paper, we control particle positions
by comparison with countable state space ASEPs, and we control the latter by making use
of their well-studied (see [6, 24]) mixing behavior. Despite their importance and popularity,
mixing times of finite/countable state space ASEPs do not seem to be a commonly used tool
to show KPZ fluctuations. We can formulate the use of mixing times in terms of a general
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FIG. 1. Left: The macroscopic initial particle density ρ0 of the initial configurations (3) and, after rescaling
ξ → ξ/(p − q), (7). Right: The large time particle density ρ for ρ0. At the origin, ρ jumps from 0 to 1, and
ρ(−ε,1),1 − ρ(ε,1) > 0 for any ε > 0.

strategy; we explain this strategy and our methodology in Section 1.3. Let us state our main
results now.

We first consider the case where the shock region remains discrete and the KPZ fluctua-
tions only appear in a double limit. We will consider for C ∈ R the initial data

(3) xn(0) =
{−n − ⌊

(p − q)
(
t − Ct1/2)⌋

for n ≥ 1,

−n for −⌊
(p − q)

(
t − Ct1/2)⌋ ≤ n ≤ 0,

and we denote by (η�)�≥0 the ASEP started from this initial data. In order to emphasize the
dependence on t , C we may write (η�)�≥0 = (η

C,t
� )�≥0. We will consider (η

C,t
� ,0 ≤ � ≤ t)

and let t go to infinity. Then, with the notation of (1), we have N = t so that η
C,t
0 = ηN

0 . In
the following, we will however suppress the t , C from our notation and simply write (η�)�≥0.
The initial particle density ρ0 from (1) is depicted in Figure 1 on the left: The initial data (3)
has two regions where the density is one, namely an infinite region to the left of q − p, and
a finite region in between 0 and p − q . At time t , the particles from the infinite region have
formed a rarefaction fan that ends at the origin. Equally at time t , the particles from the finite
region have formed a rarefaction fan which begins at the origin. So at time t , the two fans
come together and create a shock at the origin; see Figure 1 on the right for an illustration of
the large time density ρ(ξ,1).

We will study the position of particle xM(t), M ≥ 1, in the double limit M → ∞ t → ∞.
A particular choice of the value C is then

(4) C = C(M) = 2

√
M

p − q
, M ∈ Z≥1.

The scaling (4) is precisely so that it is particle xM which at time t is located around the origin:
If all the particles xn,n ≤ 0, were absent from the system, then xM(t) would have M−1/6t1/2

fluctuations around the origin and converge to a single FGUE (see below) distribution as M →
∞ t → ∞. Because of the shock though, xM(t) has very different fluctuation behavior at the
origin; see Theorem 1.

Let us define the Tracy–Widom FGUE distribution function which appears in our main
results: It originates in random matrix theory [33] and is given by

FGUE(s) =
∞∑

n=0

(−1)n

n!
∫ ∞
s

dx1 · · ·
∫ ∞
s

dxn det
(
K2(xi, xj )1≤i,j≤n

)
,

where K2(x, y) is the Airy kernel K2(x, y) = Ai(x)Ai′(y)−Ai(y)Ai′(x)
x−y

, x �= y, defined for x = y

by continuity and Ai is the Airy function.
The following Theorem, proven in Section 7, is our first main result. We get the same

fluctuations also in a single limit; see Theorem 2. Let us emphasize that M ∈ Z≥1 denotes the
label of a particle and that M remains fixed as we send t → ∞.
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THEOREM 1. Consider ASEP with the initial data (3) and C = C(M) as in (4). Then

(5) lim
M→∞ lim

t→∞P
(
xM+λM1/3(t) ≥ −ξM1/3) = FGUE(−λ)FGUE(ξ − λ)

for λ, ξ ∈ R. Furthermore, we have for s ∈R \ {0}
(6) lim

M→∞ lim
t→∞P

(
xM+λM1/3(t) ≥ −s

√
p − qt1/2M−1/6) = FGUE(s − λ)1{s>0}.

A few remarks are in order. It was essential to scale C as in (4), since, for example, for C

fixed, the double limit (5) would be equal to zero.
Note that the limits (5) and (6) are consistent in the sense that there is a continuous transi-

tion

lim
s↘0

FGUE(s − λ)1{s>0} = lim
ξ→+∞FGUE(−λ)FGUE(ξ − λ).

The convergence (6) means that to the left of the shock, xM+λM1/3(t) fluctuates like the
(M + λM1/3)th particle of ASEP with step initial data, that is, xM+λM1/3(t) fluctuates as if
there was no shock.

Inside the shock, the fluctuation behavior of xM+λM1/3(t) changes: the ξM1/3 term in
(5) is the usual KPZ 1/3 fluctuation exponent, whereas the particle number M + λM1/3 in
(5) represents the degenerated correlation length known from shocks in TASEP: one takes
M + λM1/3 rather than M + λM2/3 (2/3 being the typical KPZ correlation exponent), and
xM+λM2/3 no longer converges to FGUE × FGUE. See also the comparison between hard and
nonhard shock fluctuations in Section 1.1.

Next we come to a shock where the convergence to FGUE × FGUE happens in a single
limit: For this, we consider a different initial data, and to highlight this difference, we will
write Xn(t) for the position of the particle with label n at time t , rather than xn(t) as before.
To define this new initial data, let ν ∈ (0,1) and set

(7) Xn(0) =
{−n − ⌊

t − 2tν/2+1/2⌋
for n ≥ 1,

−n for −⌊
t − 2tν/2+1/2⌋ ≤ n ≤ 0.

The initial data (7) creates, upon rescaling time as t/(p − q) and sending t → ∞, the same
macroscopic density profile as the initial data (3) (see Figure 1). However, in the following
Theorem 2, we have a shock region of size O(tν/3), whereas in Theorem 1, the shock region
is of size O(M1/3). The convergence to Tracy–Widom distributions thus happens in a single
t → ∞ limit:

THEOREM 2. Consider ASEP with initial data (7). Let λ, ξ ∈ R, and s ∈ R \ {0}. Then,
for ν ∈ (0,3/7) we have

lim
t→∞P

(
Xtν+λtν/3

(
t/(p − q)

) ≥ −ξ tν/3) = FGUE(−λ)FGUE(ξ − λ),(8)

lim
t→∞P

(
Xtν+λtν/3

(
t/(p − q)

) ≥ −st1/2−ν/6) = FGUE(s − λ)1{s>0}.(9)

The proof of Theorem 2 is given in Section 7 and has the same structure as the proof of
Theorem 1, but some extra care has to be taken because of the parameter ν. The technical
restriction ν < 3/7 comes into play to show that certain ASEPs have enough time to mix
to equilibrium as well as for the convergence (9); see the explanations around (85), (93)
(in Section 6) and (107) (in Section 7) for details. It is however unlikely that the value 3/7
represents a real threshold. In (98) of Section 7, we prove (8) for all ν ∈ (0,1) for TASEP,
and show that FGUE(−λ)FGUE(ξ − λ) is an upper bound in (8) for the general ASEP.
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1.1. Comparison with nonhard shocks in TASEP. In the special case of totally asymmet-
ric exclusion (p = 1), we can transit between the fluctuations at a nonhard shock, and the
hard shock fluctuations of Theorems 1 and 2.

Specifically, consider for TASEP the initial data

(10) x̃n(0) =
{−n − �βt� for n ≥ 1,

−n for −�βt� ≤ n ≤ 0,

where β ∈ (0,1). This is the shock which was studied in Corollary 2.7 of [16] by coupling
TASEP with last passage percolation. For the x̃n, there is a shock at the origin where the
density jumps from (1−β)/2 to (1+β)/2. We show that there is a smooth transition between
the fluctuations at the hard shock in (5) and the shock created by the initial data (10):

COROLLARY 1. Consider TASEP with the initial configurations x̃n, xn with C as in (4).
Then we have

lim
β↗1

lim
t→∞P

(
x̃ (1−β)2

4 t+λ
(1−β)2/3

22/3 t1/3
(t) ≥ −ξ

(1 − β)2/3

22/3 t1/3
)

= lim
M→∞ lim

t→∞P
(
xM+λM1/3(t) ≥ −ξM1/3) = FGUE(−λ)FGUE(ξ − λ).

PROOF. By Corollary 2.7 of [16], we have

lim
t→∞P

(
x̃ (1−β)2

4 t+λt1/3
(t) ≥ −ξ t1/3) = FGUE

(
ξ − λ/ρ1

σ1

)
FGUE

(
ξ − λ/ρ2

σ2

)

with ρ1 = 1−β
2 , ρ2 = 1+β

2 , σ1 = (1+β)2/3

21/3(1−β)1/3 , and σ2 = (1−β)2/3

21/3(1+β)1/3 . By a simple calculation
and the continuity of the FGUE distribution function this gives

lim
β↗1

lim
t→∞P

(
x̃ (1−β)2

4 t+λ
(1−β)2/3

22/3 t1/3
(t) ≥ −ξ

(1 − β)2/3

22/3 t1/3
)

= FGUE(−λ)FGUE(ξ − λ),

finishing the proof by using Theorem 1. �

1.2. Graphical construction and applications. In this section, we recall the graphical
construction of ASEP, the basic coupling, the approximation of infinite ASEPs by finite ones,
and we prove a correlation inequality using a result of Harris [21], which we formulate as
Proposition 1.1. While it is possible that Proposition 1.1 is somewhere in the literature, we
do not know where, hence we provide a full proof.

The graphical construction of particle systems goes back to Harris [22]. We take a collec-
tion (P i,i+1,P i,i−1, i ∈ Z) of independent Poisson processes constructed on some probabil-
ity space (̂,A,P). The processes (P i,i+1, i ∈ Z) have rate p ∈ (1/2,1], and the processes
(P i,i−1, i ∈ Z) have rate q = 1 − p. We denote by P

i,i±1
t the value of the Poisson process at

time t . Due to the independence of the Poisson processes, for almost every ω ∈ ̂ there is a
doubly infinite sequence (in, n ∈ Z) of integers such that

(11) · · · < in−2 < in−1 < in < in+1 < in+2 < · · · ,

and P
in+1,in
t (ω) = P

in,in+1
t (ω) = 0, n ∈ Z.

We construct an ASEP starting from ζ0 ∈ {0,1}Z by the following two rules: When the
Poisson process P i,i+1 makes a jump, and there is a particle at i and a hole at i + 1, then the
particle at i and the hole at i + 1 exchange positions. Similarly, when the Poisson process
P i,i−1 has a jump, and there is a particle at i and a hole at i − 1, the particle at i and the
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hole at i − 1 exchange positions. Note that under these two rules, no particle enters or exists
through the sites in, n ∈ Z, during the time interval [0, t], so it suffices to apply the two rules
inside each of the finite boxes {in, . . . , in+1} to construct the process up to time t . Inside each
of the boxes, there are a.s. finitely many jumps and no two jumps happen at the same time,
so the graphical construction is well defined.

The graphical construction allows us to couple different ASEPs together. Given a sequence
of initial configurations ζK

0 ∈ {0,1}Z, K ∈ Z≥1, we use the same collection of Poisson pro-
cesses (P i,i+1,P i,i−1, i ∈ Z) to graphically construct all ASEPs (ζK

t , t ≥ 0,K ∈ Z≥1). This
coupling is henceforth referred to as the basic coupling. An important consequence of the
basic coupling is that if (ζK

t , ζK ′
t , t ≥ 0) are coupled via the basic coupling, and if for all

j ∈ Z we have ζK
0 (j) ≤ ζK ′

0 (j), it follows that for all t ≥ 0 we have ζK
t (j) ≤ ζK ′

t (j ) for all
j ∈ Z.

Let us now draw some consequences from the graphical construction and the basic cou-
pling.

1.2.1. Approximation by finite ASEPs. Here we note that we may arbitrarily well ap-
proximate the position of a particle in an infinite ASEP by that of a particle in a finite ASEP.
To see this, use the graphical construction with Poisson processes (P i,i+1,P i,i−1, i ∈ Z)

to obtain an ASEP (ζt , t ≥ 0) starting from ζ0. We now graphically construct a finite
ASEP (ζL

t , t ≥ 0) on {0,1}{−L,...,L}, where particles move in {−L, . . . ,L} and start from
ζL

0 (j) := ζ0(j), |j | ≤ L. The graphical construction of the finite ASEP uses a finite subfam-
ily of the Poisson processes used for the construction of (ζt , t ≥ 0), namely the Poisson pro-
cesses (P i,i+1,P i,i−1, |i| ≤ L − 1). All the other Poisson processes (P i,i+1,P i,i−1, |i| ≥ L)

are not in use.
Let now r ∈ {i : ζ0(i) = 1} and choose L > r . Denote by σr(t) the position at time t of

the particle initially at r in the infinite ASEP (ζt , t ≥ 0). Likewise, we denote by σL
r (t) the

position at time t of the particle initially at r in the finite ASEP (ζL
t , t ≥ 0). In the graphical

construction, σr(t) a.s. depends only on what happens in a finite box which contains r . Thus,
in particular, as L → ∞, σL

r (t) and σr(t) coincide: We have that

(12) lim
L→+∞P

(
σL

r (t) = σr(t)
) = 1.

1.2.2. Harris correlation inequality. Intuitively, it is clear that the event that a particle
is to the right of some position s1 should be positively correlated with the event that another
particle is to the right of some position s2. The result that we use to show this goes back
to Harris [21]. The version in which we use Harris’s result is Theorem 2.14 of [26]; see, in
particular, the remarks made directly after Theorem 2.14 of [26] which apply in our case. The
statement is as follows.

PROPOSITION 1.1. Let (ζt , t ≥ 0) be an ASEP with a deterministic initial configuration
that has at least two particles, that is, |{i : ζ0(i) = 1}| ≥ 2. Let r, r ′ ∈ {i : ζ0(i) = 1} and
r �= r ′. We denote by σr(t), σr ′(t) the position at time t of the particles initially at r , r ′. Then
we have for s1, s2 ∈ Z

(13) P
({

σr(t) ≥ s1
} ∩ {

σr ′(t) ≥ s2
}) ≥ P

({
σr(t) ≥ s1

})
P

({
σr ′(t) ≥ s2

})
.

PROOF. We will show the statement for finite ASEPs, and then use the approximation
(12). So let L ∈ Z≥1 with L > r, r ′ and consider the finite ASEP (ζL

t , t ≥ 0) on {0,1}{−L,...,L}
starting from ζL

0 (j) = ζ0(j), |j | ≤ L that was constructed via coupling in Section 1.2.1. We
denote by σL

r (t), σL
r ′ (t) the position at time t of the particles initially at r , r ′ in the ASEP

(ζL
t , t ≥ 0).
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The general statement that we wish to apply is Theorem 2.14 of [26].
For this, we need to define a partial order � on {0,1}{−L,...,L}. The partial order � we use

is

(14) ζ � ζ ′ ⇐⇒
L∑

j=l

ζ(j) ≤
L∑

j=l

ζ ′(j) for all l ∈ {−L, . . . ,L}.

We denote by Pt the distribution of ζL
t on {0,1}{−L,...,L}. We say that f : {0,1}{−L,...,L} →R

is increasing w.r.t. � if ζ � ζ ′ implies f (ζ ) ≤ f (ζ ′). For increasing functions f , g we say that
they are positively correlated under Pt if

(15)
∫

fg dPt ≥
∫

f dPt

∫
g dPt .

Theorem 2.14 of [26] shows that (15) holds for all increasing functions if the following
three conditions are met: (i) increasing functions are positively correlated under P0 (ii) ASEP
is attractive w.r.t. the partial order � and (iii) ASEP can only jump from a state ζ to a state
ζ ′ that satisfies ζ � ζ ′ or ζ ′ � ζ . Condition (i) is trivially true because P0 is a dirac measure.
To check (ii), it suffices to show that if ζ0 � ζ ′

0, then under the basic coupling for all t ≥ 0 we
have ζt � ζ ′

t . Assume to the contrary that T := inf{� : ζ� � ζ ′
� does not hold} < ∞. Then, there

is an l such that

(16)

L∑
j=l

ζT (j) >

L∑
j=l

ζ ′
T (j),

L∑
j=l

ζT −(j) =
L∑

j=l

ζ ′
T −(j),

where ζL
T − := limt↗T ζL

t denotes the state just before T . One of the two possibilities for (16)
to be true is that a particle in the ζ ′-process jumps from l to l −1 at time T , but this jump does
not happen in the ζ -process. This requires ζ ′

T −(l − 1) < ζT −(l − 1) which in turn implies

L∑
j=l−1

ζT −(j) = 1 +
L∑

j=l−1

ζ ′
T −(j),

contradicting ζT − � ζ ′
T − . The other possibility for (16) to be true is that a particle in the ζ−

process jumps from l − 1 to l at time T , but this jump does not happen in the ζ ′-process. But
this requires ζ ′

T −(l) > ζT −(l) which in turn implies

L∑
j=l+1

ζT −(j) = 1 +
L∑

j=l+1

ζ ′
T −(j),

again contradicting ζT − � ζ ′
T − . This shows (ii).

Let us check (iii). Assume τ is a random time point where a particle jumps. We easily see
that we always have

(17) ζL
τ− � ζL

τ or ζL
τ � ζL

τ−,

depending on whether at time τ a particle jumped to the right, in which case ζL
τ− � ζL

τ , or it
jumped to the left, in which case ζL

τ � ζL
τ− . So (iii) holds.

In conclusion, we know that (15) holds, it remains to choose f and g. For this, we define
the integers

(18) R1 =
L∑

j=r

ζ0(j)R2 =
L∑

j=r ′
ζ0(j).
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Define the sets A1 = {ζ : ∑L
j=s1

ζ(j) ≥ R1}, A2 = {ζ : ∑L
j=s2

ζ(j) ≥ R2} and f = 1A1 , g =
1A2 . We may then conclude

(19)
P

({
σL

r (t) ≥ s1
} ∩ {

σL
r ′ (t) ≥ s2

}) =
∫

fg dPt ≥
∫

f dPt

∫
g dPt

= P
({

σL
r (t) ≥ s1

})
P

({
σL

r ′ (t) ≥ s2
})

.

Sending L → +∞ in (19) and using (12) finishes the proof. �

1.3. Method of proof. Here we outline the strategy to prove Theorem 1; the same strategy
is used to prove Theorem 2 as well, but the parameter ν needs to be dealt with. We mostly
use probabilistic tools such as couplings and bounds on mixing times in this paper.

To prove the convergence (5) of Theorem 1, we provide an upper and a lower bound for

lim
t→∞P

(
xM+λM1/3(t) ≥ −ξM1/3)

and show that the two bounds converge, as M → ∞, to

FGUE(−λ)FGUE(ξ − λ).

For the upper bound, we define the initial data

xA
n (0) = −n − ⌊

(p − q)
(
t − Ct1/2)⌋

for n ≥ 1,

xB
n (0) = −n for n ≥ −⌊

(p − q)
(
t − Ct1/2)⌋

,

and denote by (ηA
� )�≥0, (ηB

� )�≥0 the ASEPs started from these initial data. The intuition
behind these two initial data is that the particle xn should behave like xA

n if it does not enter
the shock, and like xB

n if it enters. This intuition is correct for TASEP, but in ASEP this only
provides an upper bound: Defining for n ≥ 1 the minimum

(20) yn(t) = min
{
xA
n (t), xB

n (t)
}
,

then yn and xn are related under the basic coupling as follows.

PROPOSITION 1.2. Let the ASEPs (ηt , η
A
t , ηB

t , t ≥ 0) be coupled through the basic cou-
pling given in Section 1.2. In TASEP, we have for n ≥ 1

(21) yn(t) = xn(t),

whereas for ASEP we have

(22) yn(t) ≥ xn(t).

PROOF. The identity (21) is an application of the coupling provided in Lemma 2.1 of
[32]. Indeed, consider the shifted step initial data ζ l = 1Z≤l , and denote for i ≥ 0 by ζ l(i, t)

the position at time t of the particle initially at position l − i in the TASEP started from ζ l .
Let now the TASEPs started from η0, ζ

l, l ∈ Z, be coupled through the basic coupling. Then
Lemma 2.1 of [32] shows that for TASEP we have

xn(t) = min
N(t)≤i≤n

ζ xi(0)(n − i, t),

where for brevity we defined N(t) := −�(p − q)(t − Ct1/2)�. Then we have xA
n (t) =

ζ x1(0)(n− 1, t) and xB
n (t) = ζ xN(t)(0)(n−N(t), t). From the relation ζ l(i, t) ≥ ζ l+1(i + 1, t),

valid under the basic coupling, it is easy to see that

ζ x1(0)(n − 1, t) = min
1≤i≤n

ζ xi(0)(n − i, t)ζ xN(t)(0)(n − N(t), t
) = min

N(t)≤i≤0
ζ xi(0)(n − i, t),

implying (21).
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To prove the inequality (22), let us first show xA
n (t) ≥ xn(t). Assume to the con-

trary xA
n (t) < xn(t). Since ηt (j) ≥ ηA

t (j), j ∈ Z, this implies that for all n′ ∈ {n,n +
1, . . .}, there is an n′′ > n′ such that xA

n′(t) = xn′′(t). However, since xA
n′(0) = xn′(0) and

limN→+∞ P(xN(0) = xN(t)) = 1, we cannot have xA
n′(t) = xn′′(t) for infinitely many inte-

gers n′ < n′′. Thus, we have xA
n (t) ≥ xn(t). To see that xB

n (t) ≥ xn(t) holds, assume again to
the contrary that xB

n (t) < xn(t). This implies that

∞∑
j=xn(t)

ηt (j) >

∞∑
j=xn(t)

ηB
t (j),

contradicting ηt (j) ≤ ηB
t (j), j ∈ Z. �

That we only have an inequality in (22) in the general asymmetric case is one of the main
reasons why proving Theorems 1 and 2 is harder for ASEP than TASEP.

To get an upper bound in (5), we show in Corollary 2 that xA
n (t), xB

n (t) decouple as
t → ∞, and that (5) holds with xM+λM1/3(t) replaced by yM+λM1/3(t). A key tool we
use is the slow decorrelation method [13, 14], as well as proving that certain particles re-
main in disjoint space-time regions; see Section 4. This gives the desired upper bound for
limt→∞P(xM+λM1/3(t) ≥ −ξM1/3).

For the lower bound, let us describe a general strategy which in this paper is applied in
Proposition 6.1 and Theorem 5. Suppose for some (arbitrary) ASEP particle zN we wish to
prove

lim
N→∞ lim

t→∞P
(
zN(t) ≥ R(N)

) ≥ F,

where R(N) ∈ Z, and F ∈ [0,1], for example, F = FGUE(−λ)FGUE(ξ − λ). The way
we proceed is as follows: For χ > 0 we construct an event Et−tχ which depends only
on what happens in ASEP during [0, t − tχ ]. We assume that P(Et−tχ ) ≥ F(N, t) with
limN→∞ limt→∞ F(N, t) = F and furthermore, we assume to have a relation

(23) Et−tχ ⊆ {
zN(t) ≥ x−

N (t)
}
.

Here, x−
N (t) is a particle in a countable state space ASEP starting at time t − tχ from a deter-

ministic initial configuration; in particular x−
N (t) is independent of Et−tχ . The point is that

for χ > 0 sufficiently large, this ASEP has enough time to come very close to equilibrium,
and the equilibrium is such that this implies

(24) P
(

x−
N (t) ≥ R(N)

) ≥ 1 − ε(N, t),

with ε(N, t) going to zero as N, t → ∞. We can then compute

P
(
zN(t) ≥ R(N)

) ≥ P
(
Et−tχ ∩ {

zN(t) ≥ R(N)
}) ≥ P

({
x−

N (t) ≥ R(N)
} ∩ Et−tχ

)
= P

({
x−

N (t) ≥ R(N)
})
P(Et−tχ ),

and from this we obtain

lim
N→∞ lim

t→∞P
(
zN(t) ≥ R(N)

) ≥ lim
N→∞ lim

t→∞P
({

x−
N (t) ≥ R(N)

})
P(Et−tχ ) ≥ F.

Let us briefly describe how the general strategy is used for the last step of the proof of
Theorem 1. In Section 6 we consider for χ < 1/2 and δ > 0 small the event

(25) Et−tχ = {
x0

(
t − tχ

) ≥ M + (λ − ξ)M1/3} ∩ {
xM+λM1/3

(
t − tχ

)
> −tδ

}
.

Furthermore, the F , R from the general strategy will be given by F = FGUE(−λ)FGUE(ξ −
λ) and R = −ξM1/3. An important part of the work is to show that asymptotically
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limM→∞ limt→∞P(Et−tχ ) ≥ F . For this, we apply the Harris inequality of Proposition 1.1
to (25). Then we again have to employ the general strategy in Proposition 6.1 to show

lim
M→∞ lim

t→∞P
(
x0

(
t − tχ

)
> M + M1/3(λ − ξ)

) ≥ FGUE(ξ − λ).

Finally, various couplings arguments allow us to show

lim
M→∞ lim

t→∞P
(
xM+λM1/3

(
t − tχ

)
> −tδ

) = FGUE(−λ).

This shows limM→∞ limt→∞P(Et−tχ ) ≥ F .
The next step is to start at time t − tχ a countable state space ASEP from

η− (j) = 1{−�tδ�,...,−�tδ�+M+λM1/3−1}(j) + 1{j≥M+(λ−ξ)M1/3}(j), j ∈ Z.

We show the relation (23), specifically, on Et−tχ , zN(t) = xM+λM1/3(t) is bounded from
below by the leftmost particle x−

M+λM1/3 (t) of η−
t . In Proposition 3.3, we give lower bounds

for the position of the leftmost particle in countable state space ASEPs. For this we use
the results on hitting/mixing times of [6], for recent major progress on this topic, see [24].
From Proposition 3.3 we get that ( η−

�)�≥t−tχ has enough time to come very close to its
equilibrium during [t − tχ , t] and that in equilibrium, x−

M+λM1/3 ≥ −ξM1/3 holds with

very high probability. Furthermore, ( η−
�)�≥t−tχ is independent of the event (25), which will

allow us to get the desired lower bound. See Section 6 for the details.

1.4. Outline. In Section 2 we collect convergence results for ASEP with step initial data
that we need as input and prove the convergence to FGUE in a double limit (see Proposi-
tion 2.2). In Section 3, we first bound the position of the leftmost particle in a reversed step
initial data. Then, as key tool, we control the position of particles using bounds on the mix-
ing time (see Proposition 3.3). In Section 4 we employ the slow decorrelation method and
bounds on particle positions to prepare the proof of the decoupling of xA

n (t), xB
n (t) given in

Section 5. In Section 5, an upper bound for the limit (5) is proven using this decoupling, and
(6) is proven also. Section 6 gives the required lower bound for (5). In Section 7 we can then
quickly prove Theorem 1. The proof of Theorem 2 is identical in structure to the proof of
Theorem 1. In Sections 2–6 we only deal with the initial data (3), in Section 7 we explain
how to adapt the results of Sections 2–6 to prove Theorem 2.

2. Convergence results for ASEP with step initial data. Let us start by defining the
distribution functions which will appear throughout this paper.

DEFINITION 2.1 ([20, 34]). Let s ∈ R, M ∈ Z≥1. We define, for p ∈ (1/2,1),

(26) FM,p(s) = 1

2πi

∮ dλ

λ

det(I − λK)∏M−1
k=0 (1 − λ(q/p)k)

,

where K = K̂1(−s,∞) and K̂(z, z′) = p√
2π

e−(p2+q2)(z2+z′2)/4+pqzz′
and the integral is taken

over a counterclockwise oriented contour enclosing the singularities λ = 0, λ = (p/q)k , k =
0, . . . ,M − 1. For p = 1, we define

FM,1(s) = P

(
sup

0=t0<···<tM=1

M−1∑
i=0

[
Bi(ti+1) − Bi(ti)

] ≤ s

)
,

where Bi, i = 0, . . . ,M − 1 are independent standard Brownian motions.
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It follows from [5], Theorem 0.7 that FM,1 equals the distribution function of the largest
eigenvalue of a M ×M GUE matrix. What is important to us here is that FM,p arises as limit
law in ASEP, a result we cite in Theorem 3 below (Theorem 3 also vindicates our common
denomination FM,p for all p ∈ (1/2,1] even though FM,1 looks different from FM,p,p < 1).

For p < 1, the following Theorem was shown in [34], Theorem 2, for TASEP, the result
follows, for example, from [20], Corollary 3.3; see Remark 3.1 of [20] for further references.
An alternative characterization of the limit (27) was given in [11], Proposition 11.1.

THEOREM 3 (Theorem 2 in [34], Corollary 3.3 in [20]). Consider ASEP with step initial
data x

step
n (0) = −n, n ≥ 1. Then for every fixed M ≥ 1 we have that

(27) lim
t→∞P

(
x

step
M (t) ≥ (p − q)

(
t − st1/2)) = FM,p(s).

We need to show that the distribution function FM,p converges to FGUE in the right scaling.
To show this, we do not actually use the explicit formula (26), but rather the alternative
characterization provided in [11], and the following proof is similar to that of Theorem 11.3
of [11].

PROPOSITION 2.2. For any fixed s ∈ R we have

(28) lim
M→∞FM,p

(
2
√

M + sM−1/6

√
p − q

)
= FGUE(s).

PROOF. For TASEP, this follows from [5], Theorem 0.7 which shows that FM,1 equals
the distribution function of the largest eigenvalue of a M × M GUE matrix. For p < 1, we
use the notation and the methods provided in [11]. Define for r ∈ R a Z≥0-valued random
variable ξr via

P(ξr ≥ M) = FM,p

( √
2√

p − q
r

)
, M ∈ Z≥1

(note that by definition P(ξr ≥ 0) = 1 and it follows directly from (27) that P(ξr ≥ M) ≤
P(ξr ≥ M − 1)).

Define, for q ∈ (0,1), ζ ∈ C \ {−q−j , j ≥ 0},
L(q)

ξr
(ζ ) = E

(∏
i≥1

1

1 + ζqξr+i

)
,

and note that L(q)
ξr

characterizes the law of ξr .
A random point process P on Z≥0 is a probability measure on the subsets of Z≥0. We

define the random variable X , which maps each subset X ⊆ Z≥0 to C via

X (X) = ∏
x∈X

1

1 + ζqx
.

Denoting expectation w.r.t. P as E, we define

L
(q)
P (ζ ) = E(X ).

Finally, let DHermite+(r) be (one of the two variants of) the discrete Hermite ensemble, a
determinantal point process on Z≥0 introduced in Section 3.2 of [11]. By Proposition 11.1 of
[11], we have

L(q)
ξr

(ζ ) = L
(q)

DHermite+(r)
(ζ ).
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Let (rn)n≥1 be a sequence in R with rn → +∞. We use the notion of asymptotic equivalence,
as defined in Definition 11.7 of [11]. Now by Corollary 5.7 of [8], the sequence Fn(y) =
L

(q)

DHermite+(rn)
(qy) is asymptotically equivalent to −min DHermite+(rn). On the other hand,

by Example 5.5 of [8], (ξrn)n≥1 is asymptotically equivalent to L(q)
−ξrn

(qy). Since L(q)
−ξrn

=
L

(q)

−DHermite+(r)
and since being asymptotically equivalent is a transitive relation, it follows

that (min DHermite+(rn))n≥1 and (ξrn)n≥1 are asymptotically equivalent. This in particular
implies

lim
M→∞P(ξ√

2M+sM−1/6 ≥ M) = lim
M→∞P

(
min DHermite+(√

2M + sM−1/6) ≥ M
)
.

Now by the duality of the discrete and continuous Hermite ensemble (Theorem 3.7 in [11])
we have

lim
M→∞P

(
min DHermite+(√

2M + sM−1/6) ≥ M
)

= lim
M→∞P

(
CHermite(M) has no particles in

[√
2M + sM−1/6,+∞))

,

where CHermite(M) is the continuous M-particle Hermite ensemble, that is, the determinan-
tal point process on R with correlation kernel

KM(x, y) = e−x2/2e−y2/2
M−1∑
n=0

Ĥn(x)Ĥn(y)

‖Hn‖2

w.r.t. the Lebesgue measure, the (Ĥn)n≥0 being the Hermite polynomials, which are orthog-
onal on L2(R, e−x2

dx) and have leading coefficients 2n, n ≥ 1. The convergence

lim
M→∞P

(
CHermite(M) has no particles in

[√
2M + sM−1/6,+∞)) = FGUE(

√
2s)

is a classical result and is, for example, proved as Theorem 3.14 in great detail in the textbook
[4], see Chapters 3.2 and 3.7 therein; note that the definition of Hermite polynomials differs
slightly in [4]. �

3. Bounds on particle positions using stationary measures. In this Section, we pro-
vide bounds of the leftmost particle of several countable state space ASEPs. A prominent role
will play what we call reversed step initial data: Define for Z ∈ Z the ASEP (η

−step(Z)
� )�≥0

started from the reversed step initial data

η−step(Z)(j) = 1Z≥Z
(j),

for Z = 0 we simply write η−step.
We start by bounding the position of the leftmost particle of η

−step(Z)
� .

PROPOSITION 3.1. Consider ASEP with reversed step initial data x
−step(Z)
−n (0) = n + Z,

n ≥ 0 and let δ > 0. Then there is a t0 such that for t > t0, R ∈ Z≥1 and constants C1, C2
(which depend on p) we have

P
(
x

−step(Z)
0 (t) < Z − R

) ≤ C1e
−C2R,(29)

P
(

inf
0≤�≤t

x
−step(Z)
0 (�) < Z − tδ

)
≤ C1e

−C2t
δ

.(30)
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PROOF. By translation invariance, we may w.l.o.g. set Z = 0. We prove the proposition
by comparing the reversed step initial data η−step = 1Z≥0 with an invariant blocking mea-
sure μ. The measure μ on {0,1}Z is the product measure with marginals

(31) μ
({

η : η(i) = 1
}) = c(p/q)i

1 + c(p/q)i

with c > 0 a free parameter we choose later. It is well known that μ is invariant for ASEP
[25].

Let (ηblock
s )s≥0 be the ASEP started from the initial distribution μ, and denote by xblock

0 (s)

the position of the leftmost particle of ηblock
s . Let (η

−step
s )s≥0 be the ASEP started from the

reversed step initial data η−step. We let (ηblock
s )s≥0, (η

−step
s )s≥0 evolve together under the

basic coupling.
Let us first prove that for any fixed 0 ≤ � ≤ t

(32) P
(
x

−step
0 (�) < −R

) ≤ 1

c(1 − q/p)
+ c

(
q

p

)R 1

1 − q/p
.

To prove (32), consider the partial order on {0,1}Z given by

η ≤ η′ ⇐⇒ η(i) ≤ η′(i) for all i ∈ Z

and use η � η′ as short hand for the statement that η ≤ η′ does not hold. We can now bound

(33)
P

(
x

−step
0 (�) < −R

) ≤ P
({

x
−step
0 (�) < −R

} ∩ {
ηblock

� ≥ η
−step
�

})
+ P

(
ηblock

� � η
−step
�

)
.

Let us bound the two terms on the R.H.S. of (33). By attractivity of ASEP,

(34) P
(
ηblock

� � η
−step
�

) ≤ P
(
ηblock

0 � η
−step
0

)
.

Using the simple estimates log(1 + ε) ≤ ε and exp(−ε) ≥ 1 − ε for ε ≥ 0 we obtain

(35)

P
(
ηblock

0 � η
−step
0

) = 1 − exp

(
−

∞∑
i=0

log
(
1 + (q/p)i/c

))

≤ 1 − exp
(−1/

(
c(1 − q/p)

))
≤ 1

c(1 − q/p)
.

Furthermore, we have

(36)
P

({
x

−step
0 (�) < −R

} ∩ {
ηblock

� ≥ η
−step
�

}) ≤ P
(
xblock

0 (�) < −R
)

= P
(
xblock

0 (0) < −R
)
,

where the identity in (36) follows from the invariance of μ. By a computation very similar to
(35) we obtain

(37) P
(
xblock

0 (0) < −R
) ≤ c

(
q

p

)R 1

1 − q/p
.

This proves (32) by combining the inequalities (33), (36), (34), (35) and (37). If we choose
c = (p/q)R/4 in (32), we obtain (29).

Since (32) does not depend on �, we obtain for R = tδ/2

P
( ⋃

�=1,2,...,�t�

{
x

−step
0 (�) < −tδ/2

}) ≤ t

(
1

c(1 − q/p)
+ c

(
q

p

)tδ/2 1

1 − q/p

)
.
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Note further that for the event

(38)
⋂

�=1,2,...,�t�

{
x

−step
0 (�) ≥ −tδ/2

} ∩
{

inf
0≤�≤t

x
−step
0 (�) < −tδ

}

to hold, x
−step
0 would need to make tδ/2 jumps to the left in a time interval [�, � + 1], � =

0, . . . , t − 1. For any fixed time interval [�, � + 1] the probability that x
−step
0 makes at least

k jumps to the left is bounded by the probability that a rate q Poisson process makes at least
k jumps in a unit time interval. In particular, the probability that x

−step
0 makes tδ/2 jumps to

the left during [�, � + 1] may be bounded by e−tδ/2 for t ≥ t0, and t0 sufficiently large. Since
there are t such intervals, we see that the probability of the event (38) is bounded by te−tδ/2.
So in total we obtain

(39)

P
(

inf
0≤�≤t

x
−step
0 (�) < −tδ

)

≤ P
( ⋃

�=1,2,...,�t�

{
x

−step
0 (�) < −tδ/2

})

+ P
( ⋂

�=1,2,...,�t�

{
x

−step
0 (�) ≥ −tδ/2

} ∩
{

inf
0≤�≤t

x
−step
0 (�) < −tδ

})

≤ t

(
1

c(1 − q/p)
+ c

(
q

p

)tδ/2 1

1 − q/p
+ e−tδ/2

)
.

Choosing c = (p/q)t
δ/4 in (39) we obtain (30) for t sufficiently large. �

The particle configuration η−step(Z) lies in the countable set

Z =
{
η ∈ {0,1}Z :

Z−1∑
j=−∞

η(j) =
∞∑

j=Z

1 − η(j) < ∞
}
,

and an ASEP started from Z remains in Z for all times. Furthermore, an ASEP started
from an element of Z has as unique invariant measure

μZ = μ(·|Z),

with μ the blocking measure (31) (μ depends on the parameter c, but μZ does not). On Z

we define the partial order

(40) η � η′ ⇐⇒
∞∑

j=r

1 − η′(j) ≤
∞∑

j=r

1 − η(j) for all r ∈ Z.

While this order is only partial, all η ∈ Z satisfy

η � η−step(Z) = 1Z≥Z
.

The following Lemma will be used repeatedly to bound the position of the leftmost particle
of ASEPs in Z .

LEMMA 3.2. Let η,η′ ∈ Z and consider the basic coupling of two ASEPs (η�)�≥0,
(η′

�)�≥0 started from η0 = η, η′
0 = η′. For s ≥ 0, denote by x0(s), x′

0(s) the position of the
leftmost particle of ηs , η′

s . Then, if η � η′, we have x0(s) ≤ x′
0(s).
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PROOF. If η � η′, then ηs � η′
s , hence it suffices to prove the lemma for s = 0. As η,η′ ∈

Z , there is an R0 ∈ Z such that
∞∑

j=R0

1 − η′(j) =
∞∑

j=R0

1 − η(j) = 0.

Note x0(0), x′
0(0) ≤ R0. Now imagine x0(0) > x′

0(0). The set {x0(0), . . . ,R0} contains R0 −
Z+1 particles from η. On the other hand, the set {x0(0), . . . ,R0} contains less than R0 −Z+
1 particles from η′ because otherwise x′

0(0) ∈ {x0(0), . . . ,R0}, contradicting x0(0) > x′
0(0).

But this implies

∞∑
j=x0(0)

1 − η′(j) =
R0−1∑

j=x0(0)

1 − η′(j) +
∞∑

j=R0

1 − η′(j)

>

R0−1∑
j=x0(0)

1 − η(j) +
∞∑

j=R0

1 − η(j) =
∞∑

j=x0(0)

1 − η(j),

contradicting η � η′. �

The next result will be very important to prove a lower bound for (5) in Section 6. We
use bounds from [6] on the time it takes an ASEP started from Z to hit the maximal state
η−step(Z). As shown in [6], these bounds on hitting times imply that the mixing time of biased
card shuffling on N cards is O(N). In our context, we will use these bounds to control the
position of the leftmost particle in an ASEP started from a specific initial data.

PROPOSITION 3.3. Let a, b,N ∈ Z and a ≤ b ≤ N . Consider the ASEP (η
a,b,N
� )�≥0 with

initial data

(41) N−b+a � η
a,b,N
0 = 1{a,...,b} + 1Z≥N+1

and denote by x
a,b,N
0 (s) the position of the leftmost particle of ηa,b,N

s . Let M = max{b−a +
1,N − b} and ε > 0. Then there are constants C1, C2 (depending on p) and a constant K

(depending on p, ε) so that for s > KM and R ∈ Z≥1

P
(
x

a,b,N
0 (s) < N − b + a − R

) ≤ ε

M + C1e
−C2R.

PROOF. Consider first the case N − b ≤ b − a + 1. Let x ≥ 0 be such that N − b + x =
b − a + 1 (i.e., x = 2b − a + 1 − N ). Consider an ASEP (I b−a+1

� )�≥0 started from

I b−a+1
0 = 1{a−x,...,b−x} + 1Z≥N+1 .

Clearly I b−a+1
0 � η

a,b,N
0 . Let us denote the position of the leftmost particle of I b−a+1

� by
I0(�). Then with Ib−a+1 defined in (4) of [6] we have

(42) 1 − I b−a+1
0 (j) = Ib−a+1(j + x − b − 1), j ∈ Z.

Consider the hitting time

H
(
I b−a+1) = inf

{
� : I b−a+1

� = η−step(N−b+a)}.
By (42), Theorem 1.9 of [6] directly gives that for every ε > 0 there is a constant K such that

P
(
H

(
I b−a+1) ≥ K(b − a + 1)

) ≤ ε

b − a + 1
.
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Hence we may conclude for s > K(b − a + 1)

P
(
x

a,b,N
0 (s) < N − b + a − R

)
≤ P

(
I0(s) < N − b + a − R,H

(
I b−a+1) ≤ K(b − a + 1)

)
(43)

+ P
(
H

(
I b−a+1)

> K(b − a + 1)
)

≤ P
(
x

−step(N−b+a)
0 (s) < N − b + a − R

) + ε

b − a + 1
(44)

≤ C1e
−C2R + ε

b − a + 1
,(45)

where (43) follows from Lemma 3.2, (45) follows from Proposition 3.1, and for (44) we used
that, when η

−step(N−b+a)
s , I b−a+1

s are coupled via the basic coupling, then for s ≥H(I b−a+1)

we have η
−step(N−b+a)
s = I b−a+1

s (this is so because I b−a+1
s � η

−step(N−b+a)
s for all s ≥ 0,

hence η−step(N−b+a) = I b−a+1
H(I b−a+1)

� η
−step(N−b+a)

H(I b−a+1)
, implying I b−a+1

H(I b−a+1)
= η

−step(N−b+a)

H(I b−a+1)
and

hence η
−step(N−b+a)
s = I b−a+1

s for all s ≥H(I b−a+1)).
If N − b ≥ b − a + 1, we proceed similarly: Let x̃ ≥ 0 so that b − a + 1 + x̃ = N − b and

consider

Ĩ N−b
0 = 1{a,...,b+x̃} + 1Z>N+x̃

.

Then

1 − Ĩ N−b
0 (j) = IN−b(j − N + b − a), j ∈ Z

and we have

P
(
H

(
Ĩ N−b

0

) ≤ K(N − b)
)
> 1 − ε

N − b
.

The remaining part of the proof is identical. �

4. Slow decorrelation and asymptotic independence. Let us recall the two initial data
that were defined in Section 1.3 for C ∈ R:

(46)
xA
n (0) = −n − ⌊

(p − q)
(
t − Ct1/2)⌋

for n ≥ 1,

xB
n (0) = −n for n ≥ −⌊

(p − q)
(
t − Ct1/2)⌋

.

In this section, we consider fixed M ∈ Z≥1, λ ∈ R so that M + λM1/3 ≥ 1 and employ the
slow decorrelation methodology to prepare the proof of the decoupling of xA

M+λM1/3(t) and
xB
M+λM1/3(t) given in Section 5.

We start by recalling the following elementary Lemma. We denote by “⇒” convergence
in distribution.

LEMMA 4.1. Let (Xn)n≥1, (X̃n)n≥1 be sequences of random variables such that Xn ≥
X̃n. Let Xn ⇒ D, X̃n ⇒ D, where D is a probability distribution. Then Xn − X̃n ⇒ 0.

The following is our slow decorrelation statement.

PROPOSITION 4.2. Let κ ∈ (0,1) and ε > 0, λ ∈R. We have

lim
t→∞P

(∣∣xA
M+λM1/3(t) − xA

M+λM1/3

(
t − tκ

) − (p − q)tκ
∣∣ ≥ εt1/2) = 0.
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PROOF. We may assume w.l.o.g. that λ = 0. Consider an ASEP with step initial data
which starts at time t − tκ and has its rightmost particle at position xA

M(t − tκ ): Set η̃t−tκ (i) :=
1{i≤xA

M(t−tκ )}(i) and denote by (η̃t−tκ+s, s ≥ 0) the ASEP which starts at time t − tκ from
η̃t−tκ . Denote by x̃1(t) the position of the rightmost particle of η̃t . Then we have

(47) xA
M(t) ≤ xA

M

(
t − tκ

) + x̃1(t) − xA
M

(
t − tκ

)
.

Now

(48) x̃1(t) − xA
M

(
t − tκ

) − 1 =d x
step
1

(
tκ

)
,

where =d denotes equality in distribution and x
step
1 (tκ) is the position at time tκ of the right-

most particle in ASEP started with step initial data x
step
n (0) = −n, n ≥ 0. Now by Theorem 3

we have in particular that {xstep
1 (tκ) − (p − q)tκ)t−κ/2}t≥0 is tight, which together with (48)

implies

(49) lim
t→∞P

(∣∣x̃1(t) − xA
M

(
t − tκ

) − (p − q)tκ
∣∣t−1/2 ≥ ε/2

) = 0.

Again using Theorem 3, we obtain

xA
M(t − tκ ) + (p − q)tκ

t1/2(p − q)
⇒ FM,p(· + C)

xA
M(t)

t1/2(p − q)
⇒ FM,p(· + C).(50)

So by (49),

xA
M(t − tκ ) + (p − q)tκ

t1/2(p − q)
+ x̃1(t) − xA

M(t − tκ ) − (p − q)tκ

t1/2(p − q)
⇒ FM,p(· + C).

Thus we can apply Lemma 4.1 to (47), which then implies

(51)
xA
M(t − tκ ) + (p − q)tκ − x̃1(t)

t1/2(p − q)
− xA

M(t) − x̃1(t)

t1/2(p − q)
⇒ 0,

using (49), and (51) is the desired statement. �

The next proposition shows that xA
M+λM1/3(t − tκ ), xB

M+λM1/3(t) are asymptotically (i.e.,
in the t → ∞ limit) independent for κ > 1/2. This asymptotic independence does not require
us to send M → ∞, so it holds for arbitrary values of the constant C of (46).

PROPOSITION 4.3. Consider the ASEPs (ηA
� , ηB

� , � ≥ 0) started from (46) for arbitrary
C ∈ R and under the basic coupling. Let κ ∈ (1/2,1), R ∈ Z, C̃, λ ∈ R. Then

lim
t→∞P

(
min

{
xA
M+λM1/3

(
t − tκ

) + (p − q)
(
tκ + C̃t1/2)

, xB
M+λM1/3(t)

} ≥ −R
)

=
{
FM+λM1/3,p(C + C̃) for R ≥ M + λM1/3,

FM+λM1/3,p(C + C̃)FM+λM1/3−R,p(C) for R < M + λM1/3.

PROOF. Again we assume w.l.o.g. λ = 0.
Consider first the case R < M . Define the collection of holes

(52) HB
n (0) = n + ⌊

(p − q)
(
t − Ct1/2)⌋

, n ≥ 1.

Note the HB
n perform an ASEP with (shifted) step initial data, where the holes jump to the

right with probability q < 1/2 and to the left with probability p = 1−q . The relation between
holes and particles is {

HB
M−R(t) < −R

} = {
xB
M(t) ≥ −R

}
.
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The limit law of both HB
M−R(t) and xA

M(t − tκ ) is given by Theorem 3 (recall again the shift
by Ct1/2 in both (46), (52)):

(53)
lim

t→∞P
(
xA
M

(
t − tκ

) + (p − q)
(
tκ + C̃t1/2) ≥ −R

) = FM,p(C + C̃),

lim
t→∞P

(
HB

M−R(t) < −R
) = FM−R,p(C).

The basic idea of the proof is that the trajectories xA
1 (s),0 ≤ s ≤ t − tκ , and HB

1 (s),0 ≤ s ≤ t ,
stay in disjoint space-time regions as t → ∞, and hence xA

n (t − tκ ), n ≥ 1, and HB
n (t), n ≥ 1,

are independent asymptotically.
Define now η̃A

0 := ηA
0 . Let 0 < ε < κ − 1/2. Graphically construct (η̃A

s )s≥0 just like
(ηA

s )s≥0, using the same Poisson processes, with the difference that all jumps in the space-
time region {

(i, s) ∈ Z×R+ : i ≥ −(p − q)tκ/4,0 ≤ s ≤ t − tκ
}

are suppressed. Denote by x̃A
M(t − tκ ) the position of the M th particle (counted from right to

left) of η̃A
t−tκ .

Likewise, define η̃B
0 = ηB

0 . Graphically construct (η̃B
s )s≥0 just like (ηB

s )s≥0, using the same
Poisson processes, with the difference that all jumps in the space-time region{

(i, s) ∈ Z×R+ : i ≤ −t1/2+ε,0 ≤ s ≤ t
}

are suppressed. Denote by H̃B
M−R(t) the position of the (M − R)th hole (counted from left

to right) of η̃B
t .

Then, H̃B
M−R(t), x̃A

M(t − tκ ) are independent random variables. Define the event

Gt = {
H̃B

M−R(t) �= HB
M−R(t)

} ∪ {
x̃A
M

(
t − tκ

) �= xA
M

(
t − tκ

)}
.

We show that

(54) lim
t→∞P(Gt) = 0.

Let us first see how to finish the proof using (54): We have

lim
t→∞P

(
min

{
xA
M

(
t − tκ

) + (p − q)
(
tκ + C̃t1/2)

, xB
M(t)

} ≥ −R
)

= lim
t→∞P

({
x̃A
M

(
t − tκ

) + (p − q)
(
tκ + C̃t1/2) ≥ −R

} ∩ {
H̃B

M−R(t) < −R
} ∩ Gc

t

)
= lim

t→∞P
(
x̃A
M

(
t − tκ

) + (p − q)
(
tκ + C̃t1/2) ≥ −R

)
P

(
H̃B

M−R(t) < −R
)

= FM,p(C + C̃)FM−R,p(C),

where for the last identity we used (53).
Finally, consider the case R ≥ M . Note that then P(xB

M(t) ≥ −R) = 1 and thus

lim
t→∞P

(
min

{
xA
M

(
t − tκ

) + (p − q)
(
tκ + C̃t1/2)

, xB
M(t)

} ≥ −R
)

= lim
t→∞P

(
xA
M

(
t − tκ

) + (p − q)
(
tκ + C̃t1/2) ≥ −R

)
= FM,p(C + C̃).

This finishes the proof, it remains to prove (54). To do this, note{
x̃A
M

(
t − tκ

) �= xA
M

(
t − tκ

)} ⊆
{

sup
0≤�≤t−tκ

xA
1 (�) ≥ −(p − q)tκ/4

}
.
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By Theorem 3,

lim
t→∞P

(
xA

1
(
t − tκ

) ≥ −(p − q)tκ/2
) ≤ lim

s→−∞F1,p(s) = 0,

so that

lim
t→∞P

(
sup

0≤�≤t−tκ
xA

1 (�) ≥ −(p − q)tκ/4
)

= lim
t→∞P

(
sup

0≤�≤t−tκ
xA

1 (�) ≥ −(p − q)tκ/4, xA
1

(
t − tκ

) ≤ −(p − q)tκ/2
)
.

Start at time 0 an ASEP from the initial data

η̂0(i) = 1{i≥−(p−q)tκ/4}(i), i ∈ Z,

which is a shifted reversed step initial data. Denote by x̂0(�) the position of the leftmost
particle of η̂� at time �.

Now on the event {sup0≤�≤t−tκ xA
1 (�) ≥ −(p −q)tκ/4} there is a λ1 ∈ [0, t − tκ ] such that

xA
1 (λ1) ≥ −(p − q)tκ/4. Let us argue that we have

(55) xA
1 (�) ≥ x̂0(�), λ1 ≤ � ≤ t − tκ .

To see this, note that if we start at time λ1 an ASEP from 1Z≥xA
1 (λ1)

, then for all times � ≥ λ1,

the position of the leftmost particle of this ASEP is a lower bound for xA
1 (�). Furthermore,

if we start at time λ1 an ASEP from η̂0 then for all times � ≥ λ1, the position of the leftmost
particle from this ASEP is a lower bound for the position of the leftmost particle of the ASEP
started at time λ1 from 1Z≥xA

1 (λ1)
. Finally, for all times � ≥ λ1, x̂0(�) is lower bound for the

position of the leftmost particle of the ASEP started at time λ1 from η̂0. In particular, for all
times � ≥ λ1, x̂0(�) is a lower bound for xA

1 (�), that is, (55) holds.
In particular, we have thus shown{

sup
0≤�≤t−tκ

xA
1 (�) ≥ −(p − q)tκ/4

}
⊆ {

xA
1

(
t − tκ

) ≥ x̂0
(
t − tκ

)}
.

From this we may bound

lim
t→∞P

(
sup

0≤�≤t−tκ
xA

1 (�) ≥ −(p − q)tκ/4, xA
1

(
t − tκ

) ≤ −(p − q)tκ/2
)

≤ lim
t→∞P

(
x̂0

(
t − tκ

) ≤ −(p − q)tκ/2
)

= lim
t→∞P

(
x

−step
0

(
t − tκ

) ≤ −(p − q)tκ/4
)

= 0,

where in the last step we used Proposition 3.1. In total, we arrive at

lim
t→∞P

(
x̃A
M

(
t − tκ

) �= xA
M

(
t − tκ

)) = 0.

The proof of

lim
t→∞P

(
H̃B

M−R(t) �= HB
M−R(t)

) = 0

is almost identical, one notes{
H̃B

M−R(t) �= HB
M−R(t)

} ⊆
{

inf
0≤�≤t

HB
1 (�) ≤ −t1/2+ε

}
and deduces limt→∞P({inf0≤�≤t H

B
1 (�) ≤ −t1/2+ε}) = 0 from

lim
t→∞P

(
HB

1 (t) ≤ −t1/2+ε/2
) = 0.

So we have shown (54). �
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5. Proof of upper bound. Recall that we had defined in (20) the minimum

(56) yn(t) = min
{
xA
n (t), xB

n (t)
}
,

which under the basic coupling of (ηt , η
A
t , ηB

t , t ≥ 0) satisfies yn(t) ≥ xn(t). The following
theorem gives the discrete t → ∞ limit law for yM+λM1/3(t) inside the shock as well as for
xM+λM1/3(t) to the left of the shock.

THEOREM 4. Let (ηt , η
A
t , ηB

t , t ≥ 0) be coupled via the basic coupling. For fixed C ∈ R,
consider the minimum (56) and the ASEP with initial data (3). Let R ∈ Z, M ≥ 1, λ ∈ R.
Then

(57)

lim
t→∞P

(
yM+λM1/3(t) ≥ −R

)

=
{
FM+λM1/3,p(C) for R ≥ M + λM1/3,

FM+λM1/3,p(C)FM+λM1/3−R,p(C) for R < M + λM1/3.

Furthermore, for s ∈ R \ {0}
(58) lim

t→∞P
(
xM+λM1/3(t) ≥ −(p − q)st1/2) = FM+λM1/3,p(s + C)1{s>0}.

Using Proposition 2.2, we arrive at continuous limit distributions by sending M → ∞:

COROLLARY 2. Consider ASEP with the initial data (3) and C = C(M) as in (4). Then

(59) lim
M→∞ lim

t→∞P
(
yM+λM1/3(t) ≥ −ξM1/3) = FGUE(−λ)FGUE(ξ − λ),

for λ, ξ ∈ R. Furthermore, we have for s ∈R \ {0}
(60) lim

M→∞ lim
t→∞P

(
xM+λM1/3(t) ≥ −s

√
p − qt1/2M−1/6) = FGUE(s − λ)1{s>0}.

PROOF. Note that C is as in (4). Then the result follows from Theorem 4 and Proposi-
tion 2.2 together with a simple change of variable. �

We split the proof of Theorem 4 in two parts.

PROOF OF (57). We assume λ = 0 w.l.o.g. We define the event

At = {∣∣xA
M(t) − xA

M

(
t − tκ

) − (p − q)tκ
∣∣ ≤ εt1/2}

.

We easily see the relations{
yM(t) ≥ −R

} ∩ At

= {
min

{
xA
M(t) − xA

M

(
t − tκ

) − (p − q)tκ + xA
M

(
t − tκ

) + (p − q)tκ , xB
M(t)

} ≥ −R
}

∩ At ⊆ {
min

{
εt1/2 + xA

M

(
t − tκ

) + (p − q)tκ , xB
M(t)

} ≥ −R
}

and likewise{
yM(t) ≥ −R

} ∩ At ⊇ {
min

{−εt1/2 + xA
M

(
t − tκ

) + (p − q)tκ , xB
M(t)

} ≥ −R
} ∩ At .

Thus we have

(61)
lim

t→∞P
(
yM(t) ≥ −R

)
≤ lim

t→∞P
(
min

{
εt1/2 + xA

M

(
t − tκ

) + (p − q)tκ , xB
M(t)

} ≥ −R
) + P

(
Ac

t

)
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and

(62)
lim

t→∞P
(
yM(t) ≥ −R

)
≥ lim

t→∞P
({

min
{−εt1/2 + xA

M

(
t − tκ

) + (p − q)tκ , xB
M(t)

} ≥ −R
}) − P

(
Ac

t

)
.

Applying Propositions 4.2 and 4.3 to the inequalities (61), (62) yields for R < M

FM,p

(
C − ε/(p − q)

)
FM−R,p(C) ≤ lim

t→∞P
(
yM(t) ≥ −R

)
≤ FM,p

(
C + ε/(p − q)

)
FM−R,p(C),

and for R ≥ M

FM,p

(
C − ε/(p − q)

) ≤ lim
t→∞P

(
yM(t) ≥ −R

) ≤ FM,p

(
C + ε/(p − q)

)
finishing the proof since ε > 0 is arbitrary. �

PROOF OF (58). To lighten the notation, we may set w.l.o.g.

λ = 0

in this proof. For s < 0, (58) easily follows from (57) by sending R → −∞.
Let us prove (58) for s > 0. Denote by x

−step
−n (0) = n, n ≥ 0 the reversed step initial data,

and couple (x
−step
−n (�))�≥0,n≥0 with xM(t), xA

M(t), xB
M(t) with the basic coupling. By Theo-

rem 3 and since xM(t) ≤ xA
M(t) we have

FM,p(s + C) = lim
t→∞P

(
xA
M(t) ≥ −(p − q)st1/2, xM(t) < −(p − q)st1/2)

+ lim
t→∞P

(
xA
M(t) ≥ −(p − q)st1/2, xM(t) ≥ −(p − q)st1/2)

= lim
t→∞P

(
xA
M(t) ≥ −(p − q)st1/2, xM(t) < −(p − q)st1/2)

+ lim
t→∞P

(
xM(t) ≥ −(p − q)st1/2)

.

It thus suffices to prove

lim
t→∞P

(
xM(t) < −(p − q)st1/2, xA

M(t) ≥ −(p − q)st1/2) = 0.

The reason why this is true is that in order for xM(t) �= xA
M(t) to hold, xM(t) must have “felt”

the particle x0. But by Proposition 3.1, x0 does not go to the left of −tδ for δ > 0 small, so if
xM(t) has felt the presence of x0, xM(t) < −(p − q)st1/2 cannot hold. To make this precise,
define the stopping times

(63)
τ0 = 0,

τi = inf
{
� : xi(�) �= xA

i (�)
}
, i ≥ 1.

We show

(64)

{
xA
M(t) �= xM(t)

}
⊆ Bt := {

0 = τ0 < τ1 < · · · < τM ≤ t, xi−1(τi) − xi(τi) = 1, i = 1, . . . ,M
}
.

To see (64), note 0 < τM ≤ t on {xM(t) �= xA
M(t)}. Recall further xM(�) ≤ xA

M(�) for all � ≥ 0.
Then we have

xM(τM) �= xA
M(τM), xM

(
τ−
M

) = xA
M

(
τ−
M

)
.
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Now xM(τ−
M) = xA

M(τ−
M) implies xM+1(τ

−
M) = xA

M+1(τ
−
M): Assume to the contrary xM(τ−

M) =
xA
M(τ−

M), xM+1(τ
−
M) �= xA

M+1(τ
−
M) both hold. Since xM+1(τ

−
M) �= xA

M+1(τ
−
M) is equivalent to

xM+1(τ
−
M) < xA

M+1(τ
−
M), we have that xM+1(τ

−
M) �= xA

M+1(τ
−
M) implies

xM+1
(
τ−
M

)
< xA

M+1
(
τ−
M

)
< xA

M

(
τ−
M

) = xM

(
τ−
M

)
.

But this cannot happen since then ηA
τ−
M

(xA
M+1(τ

−
M)) = 1 > ητ−

M
(xA

M+1(τ
−
M)) in contradiction

to ηA
t ≤ ηt for all t .

Now the fact that xM(τ−
M) = xA

M(τ−
M), xM+1(τ

−
M) = xA

M+1(τ
−
M) hold implies that the only

way the discrepancy xM(τM) �= xA
M(τM) can be created is by a jump to the right of xA

M that
xM does not make (the other possibility to create this discrepancy would be by a jump of xM

to the left that xA
M does not make, but since xM+1(τ

−
M) = xA

M+1(τ
−
M), xM and xA

M can only
jump together to the left at time τM ). This shows that at time τM a jump of xM has been
suppressed by the presence of xM−1 and it also shows that xM−1(τM) < xA

M−1(τM), which in
turn implies that

0 < τM−1 < τM.

Repeating the preceding argument, we see that at time τM−1 a jump of xM−1 was suppressed
by the presence of xM−2. Iteratively, we obtain 0 < τ1 < · · · < τM ≤ t and that at time τi , a
jump of xi is suppressed by the presence of xi−1, i = 1, . . . ,M . In particular, (64) holds and
in fact we have

(65) Bt = {τM ≤ t}.
We can bound

(66)

lim
t→∞P

(
xM(t) < −(p − q)st1/2, xA

M(t) ≥ −(p − q)st1/2)
= lim

t→∞P
(
xM(t) < −(p − q)st1/2, xA

M(t) ≥ −(p − q)st1/2, xM(t) �= xA
M(t)

)
≤ lim

t→∞P
({

xM(t) < −(p − q)st1/2} ∩Bt

)
,

and wish to prove that (66) equals zero.
Define the event

Ei =
{

inf
τi≤�≤t

xi(�) ≤ −(i + 1)tδ/2
}

∩Bt .

By (30),

(67) P(E0) ≤ P
(

inf
0≤�≤t

x
−step
0 (�) ≤ −tδ/2

)
≤ C1e

−C2t
δ/2

.

Using P(Ei) = P((Ei ∩ Ei−1) ∪ (Ei ∩ Ec
i−1), we may bound for i ≥ 1

P(Ei) ≤ P(Ei−1)

+ P
({

inf
τi−1≤�≤t

xi−1(�) > −itδ/2
}

∩
{

inf
τi≤�≤t

xi(�) ≤ −(i + 1)tδ/2
}

∩Bt

)(68)

≤ P(Ei−1) + P
({

xi(τi) ≥ −itδ/2} ∩
{

inf
τi≤�≤t

xi(�) ≤ −(i + 1)tδ/2
}

∩Bt

)
,(69)

where we used xi−1(τi) − xi(τi) = 1 on Bt . Start an ASEP at time 0 from the initial data

ηi
0(j) = 1{j≥−itδ/2}(j), j ∈ Z,

and denote by xi
0(s) the position of the leftmost particle of ηi

s at time s. Note{
xi(τi) ≥ −itδ/2} ∩Bt ⊆ {

xi
0(�) ≤ xi(�), τi ≤ � ≤ t

} ∩ Bt .
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Consequently, we may bound

P(Ei) ≤ P(Ei−1) + P
(

inf
0≤�≤t

xi
0(�) ≤ −(i + 1)tδ/2

)
≤ P(Ei−1) + C1e

−C2t
δ/2

,

implying by (67) that we may bound

(70) P(EM) ≤ (M + 1)C1e
−C2t

δ/2

for t sufficiently large. Next we make the observation that since (M + 1)tδ/2 ≤ s(p − q)t1/2

{
xM(t) < −(p − q)st1/2} ∩Bt \ EM = ∅.

This implies

P
({

xM(t) < −(p − q)st1/2} ∩ Bt

) ≤ P(EM) ≤ (M + 1)C1e
−C2t

δ/2
,

finishing the proof of (58) for s > 0. �

6. Proof of lower bound. Here we provide the lower bound for the double limit (5); see
Theorem 5 below. In this Section, to make the needed adaptions to prove Theorem 2 as easy
as possible, we carry around with us the parameter

ν ∈ [0,3/7).

To prove Theorem 1 (in which ν does not appear), we may set ν = 0 wherever it ap-
pears in this Section. As it was already sketched in Section 1.3, we wish to first show that
already at a time point t − tχ < t , the particles x0(t − tχ ) and xM+λM1/3(t − tχ ) have
reached certain positions with a probability that is asymptotically bounded from below by
FGUE(−λ)FGUE(ξ − λ). To show this, we first consider x0(t − tχ ).

PROPOSITION 6.1. Consider ASEP with the initial data (3) and C = C(M) as in (4).
Let δ ∈ (0,1/2 − 7ν/6) and χ ∈ (ν + δ,1/2 − ν/6). Then

(71) lim
M→∞ lim

t→∞P
(
x0

(
t − tχ

)
> M − M1/3ξ

) ≥ FGUE(ξ).

To prove Proposition 6.1, we use the general strategy outlined in Section 1.3, the only
difference is that here we wish to lower bound the position of x0 at time t − tχ , hence we
will construct an event Ẽt−2tχ which depends only on what happens during [0, t − 2tχ ].
The relation (23) from Section 1.3 is (75) here. Also note that by comparing x0(t − tχ ) ≤
xB

0 (t − tχ ) it is easy to see that the inequality (71) holds in the other direction, showing that
(71) is in fact an identity.

PROOF OF PROPOSITION 6.1. We define the initial data

(72) xD
n (0) = −n, −⌊

(p − q)
(
t − C(M)t1/2)⌋ ≤ n ≤ 0

(we have avoided the denomination xC
n here to reserve the letter C for constants). We denote

by ηD
s ,0 ≤ s ≤ t , the ASEP started from (72). It is easy to deduce from ηD

0 (j) ≤ η0(j), j ≤ 0,
and ηD

0 (j) ≥ η0(j), j ≥ 0, that under the basic coupling we have the inequality

xD
0 (s) ≤ x0(s), s ≥ 0.

Thus it suffices to prove (71) for xD
0 (t − tχ ). We now go through the steps of the general

strategy of Section 1.3. We stress that all processes appearing in the proof are coupled via the
basic coupling.
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FIG. 2. From top to bottom: The three particle configurations ηD
t−2tχ , η̂D

t−2tχ , η̄t−2tχ on the event Ẽt−2tχ

defined in (74). Holes/particles are shown as white/black circles. η̂D
t−2tχ is obtained from ηD

t−2tχ by replacing all

holes to the right of HD
Z (t − 2tχ ) by particles. For � ≥ t − 2tχ , the position x̂D

0 (�) of the leftmost particle of η̂D
�

is a lower bound for the position of the leftmost particle xD
0 (�) of ηD

� . Equally, the position x̄0(�) of the leftmost

particle of η̄� is a lower bound for x̂D
0 (�). In particular, on the event Ẽt−2tχ , the particle position xD

0 (t − tχ ) is
bounded from below by x̄0(t − tχ ), and we bound x̄0(t − tχ ) via Proposition 3.3.

1. Step: Establishing the relation (23):
We label the holes of ηD

0 as

HD
n (0) =

{
n + ⌊

(p − q)
(
t − C(M)t1/2)⌋

, n ≥ 1,

n − 1, n ≤ 0.

We define the integer

(73) Z = ⌊
M − ξM1/3 + M1/4⌋

and the deterministic particle configuration η̄t−2tχ (see Figure 2)

η̄t−2tχ (j) := 1{−2M,...,�tδ+ν�−Z−2M}(j) + 1Z≥�tδ+ν �+1
(j)

= η−2M,�tδ+ν�−Z−2M,�tδ+ν�(j), j ∈ Z,

where the notation ηa,b,N , a ≤ b ≤ N , was introduced in (41).
At time t − 2tχ , we start an ASEP from η̄t−2tχ and we denote by x̄0(t − tχ ) the position

of the leftmost particle of η̄t−tχ . Following the general strategy, we define

(74) Ẽt−2tχ = {
xD

0
(
t − 2tχ

) ≥ −2M
} ∩ {

HD
Z

(
t − 2tχ

) ≤ ⌊
tδ+ν⌋}

,

and the relation (23) from the general strategy that we have to prove is

(75) Ẽt−2tχ ⊆ {
x̄0

(
t − tχ

) ≤ xD
0

(
t − tχ

)}
.

To prove (75), we define an auxiliary ASEP which starts at time t − 2tχ from

η̂D
t−2tχ (j) =

{
1 j > HD

Z

(
t − 2tχ

)
,

ηD
t−2tχ (j), j ≤ HD

Z

(
t − 2tχ

);
see Figure 2. Denote by x̂D

0 (t − tχ ) the position of the leftmost particle of η̂D
t−tχ . Again, under

the basic coupling we have

(76) x̂D
0

(
t − tχ

) ≤ xD
0

(
t − tχ

)
.

Recalling the partial order � from (40), let us compute that

(77) Ẽt−2tχ ⊆ {
η̄t−tχ � η̂D

t−tχ
}
.
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Since the partial order � is preserved as time evolves, it suffices to show that on Ẽt−2tχ , we
have η̄t−2tχ � η̂D

t−2tχ . To see this, note that on Ẽt−2tχ , we have that η̂D
t−2tχ (j) = η̄t−2tχ (j)

for j /∈ {−2M, . . . , �tδ+ν�}. Hence, to show (77), it suffices to check that on Ẽt−2tχ , for
j ∈ {−2M, . . . , �tδ+ν�} we have

(78)
∞∑

r=j

1 − η̂D
t−2tχ (r) ≤

∞∑
r=j

1 − η̄t−2tχ (r).

To check (78), note that on the event Ẽt−2tχ we can compute

(79)
∞∑

r=�tδ+ν�−Z−2M+1

1 − η̄t−2tχ (r) = Z + 2M − 1 =
∞∑

r=−2M

1 − η̂D
t−2tχ (r),

establishing (78). Applying Lemma 3.2 to (77), we see that (75) holds.
2. Step: Bounding P(Ẽt−2tχ ):
Following the general strategy, we show next

(80) lim
M→∞ lim

t→∞P(Ẽt−2tχ ) ≥ FGUE(ξ).

Recall the collection of holes HB
n (0) from (52). Define the event

Dt−2tχ = {
HB

Z

(
t − 2tχ

)
< Z − 1

}
.

It follows from Theorem 3 and χ < 1/2 − ν/6 ≤ 1/2 that limt→∞P(Dt−2tχ ) = FZ,p(C(M))

and hence by Proposition 2.2

(81) lim
M→∞ lim

t→∞P(Dt−2tχ ) = FGUE(ξ).

We define (in direct analogy to (63))

τD
Z = inf

{
� : HD

Z (�) �= HB
Z (�)

}
.

Since HD
Z (s) ≥ Z − 1 for all s ≥ 0 we have

(82) Dt−2tχ ⊆ {
τD
Z ≤ t − 2tχ

}
.

Next we note that there are constants C1,C2 > 0 so that for t sufficiently large

(83)
P

({
τD
Z ≤ t − 2tχ

} ∩ {
HD

Z

(
t − 2tχ

)
> tδ+ν})

≤ P
({

τD
Z ≤ t − 2tχ

} ∩ {
HD

Z

(
t − 2tχ

)
> (Z + 1)tδ/2}) ≤ (Z + 1)C1e

−C2t
δ/2

.

The proof of (83) is directly analogue to that of (70), one simply has to replace the role of the
xi by HD

i . From (81) and (83) we deduce

(84) lim
M→∞ lim

t→∞P
(
HD

Z

(
t − 2tχ

) ≤ tδ+ν) ≥ FGUE(ξ).

Furthermore,

lim
t→∞P

(
xD

0
(
t − tχ

)
< −2M

) ≤ lim
t→∞P

(
x

−step
0

(
t − tχ

)
< −2M

) ≤ C1e
−C2M

using (29), which together with (84) proves (80).
3. Step: Proving the relation (24):
As the last step from the general strategy, we need to show (24). Recalling η̄t−2tχ =

η−2M,�tδ+ν�−Z−2M,�tδ+ν�, by Proposition 3.3 (with R = M1/4, M = tδ+ν − Z + 1 < tχ ,
ε = 1), we have

(85) P
({

x̄0
(
t − tχ

) ≥ M − ξM1/3}) ≥ 1 − C1e
−C2M

1/4 − 1/
(
tδ+ν − Z + 1

)
.
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Since x̄0(t − tχ ), Ẽt−2tχ are independent by construction, we may bound as in (24)

P
(
xD

0
(
t − tχ

) ≥ M − ξM1/3) ≥ P
(
x̄0

(
t − tχ

) ≥ M − ξM1/3)
P(Ẽt−2tχ ),

finishing the proof by (85) and (80).
Let us note that one of the reasons why we assumed ν < 3/7 is to obtain the inequality (85).

If we had ν ≥ 1/2 − ν/6 (i.e., ν ≥ 3/7), the ASEP started from η̄t−2tχ could not come close
to equilibrium (specifically, hit the reversed step initial data; see the proof of Proposition 3.3)
during [t − 2tχ , t − tχ ] because χ < 1/2 − ν/6 (and we cannot increase χ to be bigger than
1/2 − ν/6 without destroying the convergence of P(Dt−2tχ )). Without the mixing of η̄t−2tχ

though, we do not get the needed inequality (85). �

Finally, we can now provide the lower bound for the double limit (5). For this, we follow
again the general strategy outlined in Section 1.3.

THEOREM 5. Consider ASEP with the initial data (3) and C = C(M) as in (4). We have

(86) lim
M→∞ lim

t→∞P
(
xM+λM1/3(t) ≥ −ξM1/3) ≥ FGUE(−λ)FGUE(ξ − λ)

for λ, ξ ∈ R.

PROOF. We shall prove

lim
M→∞ lim

t→∞P
(
xM+λM1/3(t) ≥ −ξM1/3 − M1/4) ≥ FGUE(−λ)FGUE(ξ − λ),

which is easily seen to imply (86). Let (as in Proposition 6.1) δ ∈ (0,1/2 − 7ν/6) and χ ∈
(ν + δ,1/2 − ν/6). Define the event

Eν
t−tχ = {

x0
(
t − tχ

) ≥ M + (λ − ξ)M1/3} ∩ {
xM+λM1/3

(
t − tχ

) ≥ −tδ+ν}
,

for ν = 0, we get the event Et−tχ from (25). The application of the Harris inequality of
Proposition 1.1 yields

(87) P
(
Eν

t−tχ
) ≥ P

(
x0

(
t − tχ

) ≥ M + (λ − ξ)M1/3)
P

(
xM+λM1/3

(
t − tχ

) ≥ −tδ+ν)
.

We will treat each of the two factors on the R.H.S. of (87) separately. By Proposition 6.1, we
obtain

(88) lim
M→∞ lim

t→∞P
(
x0

(
t − tχ

) ≥ M + (λ − ξ)M1/3) ≥ FGUE(ξ − λ)

(in fact, this inequality is even an identity). As for the second factor, using Theorem 3, we
have

(89) lim
t→∞P

(
xA
M+λM1/3

(
t − tχ

) ≥ −tδ+ν) = FGUE(−λ)

and the bound (70) implies that

(90) lim
t→∞P

({
xA
M+λM1/3

(
t − tχ

) ≥ −tδ+ν} ∩ {
xM+λM1/3

(
t − tχ

)
< −tδ+ν}) = 0.

Since xA
M+λM1/3(t − tχ ) ≥ xM+λM1/3(t − tχ ) under the basic coupling, we obtain that

(91) lim
t→∞P

(
xM+λM1/3

(
t − tχ

) ≥ −tδ+ν) = FGUE(−λ).

Thus in total we obtain

lim
M→∞ lim

t→∞P
(
Eν

t−tχ
) ≥ FGUE(−λ)FGUE(ξ − λ).
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The next step is to bound xM+λM1/3 from below by a particle in a countable state space
ASEP. We start at time t − tχ an ASEP from

(92) η− ν(j) = 1{−�tν+δ�,...,−�tν+δ�+M+λM1/3−1}(j) + 1{j≥M+(λ−ξ)M1/3}(j), j ∈ Z,

and denote by ( η−
�
ν)�≥t−tχ this ASEP. We denote by x−

M+λM1/3 (s) (suppressing the ν) the
position of the leftmost particle of η−

s
ν . We have the relation, proven in a similar way as the

relation (74),

Eν
t−tχ ⊆ {

x−
M+λM1/3 (s) ≤ xM+λM1/3(s), t − tχ ≤ s ≤ t

}
.

It is now essential that tχ > tν+δ : Because of this, the ASEP started from (92) has enough
time to mix to equilibrium during [t − tχ , t] and hence P( x−

M+λM1/3 (t) ≥ −ξM1/3 −M1/4)

is almost one: Specifically, we apply Proposition 3.3 with R = M1/4, M = �tν+δ�+1, ε = 1,
and note that tχ > KM for a constant K and t large enough. We thus get

(93) P
({

x−
M+λM1/3 (t) ≥ −ξM1/3 − M1/4}) ≥ 1 − C1e

−C2M
1/4 − 1/

(⌊
tν+δ⌋ + 1

)
.

By construction, x−
M+λM1/3 (t) is independent of the event Eν

t−tχ . Thus we may conclude

lim
M→∞ lim

t→∞P
(
xM+λM1/3(t) ≥ −ξM1/3 − M1/4)

≥ lim
M→∞ lim

t→∞P
({

x−
M+λM1/3 (t) ≥ −ξM1/3 − M1/4} ∩ Eν

t−tχ
)

≥ FGUE(−λ)FGUE(ξ − λ). �

7. Proofs of Theorems 1 and 2. While the proof of Theorem 1 is immediate from the
preceding results, the proof of Theorem 2 requires some adaptions, which we give without
repeating all the details given when proving Theorem 1. Let us start by proving Theorem 1.

PROOF OF THEOREM 1. By the inequality yM+λM1/3(t) ≥ xM+λM1/3(t) (see (22)), we
see that Theorem 1 follows from Corollary 2 and Theorem 5. �

Now we come to Theorem 2.

PROOF OF THEOREM 2. The structure of the proof of Theorem 2 is identical to the one
for the proof of Theorem 1. To lighten the notation, we set

M(t) = tν + λtν/3.

To prove (8), we show separately the two inequalities

lim
t→∞P

(
XM(t)

(
t/(p − q)

) ≥ −ξ tν/3) ≤ FGUE(−λ)FGUE(ξ − λ),(94)

lim
t→∞P

(
XM(t)

(
t/(p − q)

) ≥ −ξ tν/3) ≥ FGUE(−λ)FGUE(ξ − λ).(95)

For (94), we define

XA
n (0) = −n − ⌊

t − 2t (ν+1)/2⌋
for n ≥ 1,

XB
n (0) = −n for n ≥ −⌊

t − 2t (ν+1)/2⌋
,(96)

Yn(t) = min
{
XA

n (t),XB
n (t)

}
.(97)

We have Xn(t) ≤ Yn(t) under the basic coupling and thus prove (94) by showing

(98) lim
t→∞P

(
YM(t)

(
t/(p − q)

) ≥ −ξ tν/3) = FGUE(−λ)FGUE(ξ − λ).
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We can in fact prove (98) for all ν ∈ (0,1). We need as input the convergence

(99) lim
t→∞P

(x
step
M(t)(t/(p − q)) − t + 2tν/2+1/2

t1/2−ν/6 ≥ −s

)
= FGUE(s − λ).

As stated, (99) does not seem to exist in the literature. However, Theorem 11.3 in [11] shows
the convergence of the rescaled x

step
σ t for σ bounded away from 0 (see Remark 11.4 in [11]).

Inspecting the proof of Theorem 11.3 of [11] reveals that the convergence to FGUE follows
from the convergence of the position of rightmost particle of the continuous Laguerre orthog-
onal polynomial ensemble to FGUE, which also holds in the scaling of (99).

Analogous to Proposition 4.2 and proven in the same way we get

(100) lim
t→∞P

(∣∣XA
M(t)

(
t/(p−q)

)−XA
M(t)

((
t − tκ

)
/(p−q)

)− tκ +2tκ+ ν−1
2

∣∣ ≥ εt1/2−ν/6) = 0

for κ < 1. For κ ∈ (1/2 + ν/2,1) we can then prove the analogue of Proposition 4.3

(101)
lim

t→∞P
(
min

{
XA

M(t)

((
t − tκ

)
/(p − q)

) + tκ − 2tκ+ ν−1
2 ,XB

M(t)

(
t/(p − q)

)} ≥ −ξ tν/3)
= FGUE(−λ)FGUE(ξ − λ).

To have (101), we needed to assume κ > 1/2 + ν/2 so that for ε > 0 with 1/2 + ν/2 + ε < κ

we have on one hand that the leftmost hole of the initial data (96) enters the space-time region

(102)
{
(i, s) : i < −t1/2+ν/2+ε,0 ≤ s ≤ t/(p − q)

}
with vanishing probability. On the other hand, XA

1 (s/(p − q)),0 ≤ s ≤ t − tκ enters the
space-time region

(103)
{
(i, s) : i > −tκ/4,0 ≤ s ≤ (

t − tν
)
/(p − q)

}
with vanishing probability. Since (102) and (103) are disjoint, this shows the independence of
XA

M(t)((t − tκ )/(p − q)), XB
M(t)(t/(p − q)) once they are restricted to (102), (103), leading

to (101). Finally, deducing (98) from (101) is done exactly as in the proof of (57).
Next, to prove (95), we first prove the analogue of Proposition 6.1, namely the convergence

(104) lim
t→∞P

(
X0

((
t − tχ

)
/(p − q)

) ≥ tν − ξ tν/3) ≥ FGUE(ξ),

with χ as in Proposition 6.1. The proof of (104) is analogous to the one of Proposition 6.1:
one essentially has to replace the term M by tν in the proof of Proposition 6.1, and instead
of the double limit we have a simple limit t → ∞. For example, the parameter Z from (73)
now is

(105) Z = tν − ξ tν/3 + tν/4

and one checks that all steps of the proof go through with this choice. The same applies to
the proof of (95), which uses (104) and is analogous to the proof of Theorem 5.

Finally, the proof of (9) (for s > 0, the case s < 0 follows from (98)) is very similar to the
one of (6), let us however explain how the restriction ν < 3/7 comes into play here as well:
Similar to how (6) was proven, (9) follows from

(106) lim
t→∞P

(
XA

M(t)

(
t/(p − q)

) ≥ −st1/2−ν/6,XM(t)

(
t/(p − q)

)
< −st1/2−ν/6) = 0.

Now one proves directly as (70) that for δ > 0

(107)

P
(
inf

{
� : XA

M(t)

(
�/(p − q)

) �= XM(t)

(
�/(p − q)

)} ≤ t/(p − q),

XM(t)

(
t/(p − q)

) ≤ −(
M(t) + 1

)
tδ/2)

≤ (
M(t) + 1

)
C1e

−C2t
δ/2 →t→∞ 0.

Now (107) implies (106) if (M(t) + 1)tδ/2 < st1/2−ν/6 which we can achieve if ν < 1/2 −
ν/6, that is, ν < 3/7. �
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