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We consider uniform random domino tilings of the restricted Aztec dia-
mond which is obtained by cutting off an upper triangular part of the Aztec
diamond by a horizontal line. The restriction line asymptotically touches the
arctic circle that is the limit shape of the north polar region in the unrestricted
model. We prove that the rescaled boundary of the north polar region in the
restricted domain converges to the Airy2 process conditioned to stay below
a parabola with explicit continuous statistics and the finite dimensional dis-
tribution kernels. The limit is the hard-edge tacnode process which was first
discovered in the framework of nonintersecting Brownian bridges. The proof
relies on a random walk representation of the correlation kernel of the nonin-
tersecting line ensemble which corresponds to a random tiling.

1. Introduction and main results. The Aztec diamond is one of the best studied random
tiling models. It has been introduced in [15] and has been analyzed in great detail since then
using different techniques. A disordered region is located in the center of the Aztec diamond
and there are four ordered ones at the corners where the tiling follows a completely regular
pattern. The law of large number for the boundary of the disordered region, also known as
arctic circle theorem, was shown in [21], while the limiting density of dominoes with a given
orientation in the disordered region was obtained in [8, 9]. Using the inverse Kasteleyn matrix
approach [27], one can analyze the analogue of the arctic circle also for more general domains
and tiling models [30] as well as local statistics of the local field [7, 20, 28, 29]. The Aztec
diamond model is known to be equivalent to the six-vertex model with domain wall boundary
conditions at the free fermion point [1, 2, 10, 17, 38]. Furthermore, the Aztec diamond can
be generated by the shuffling algorithm [15] and a Markov chain of a system of interlaced
particles system [5, 33] and the boundary of the north polar region evolves as the discrete
time TASEP with step initial condition. This property was used to obtain the limit shape [21]
and it provides the link to the KPZ universality class of growth models.

The boundary of the disordered region can be studied by using a nonintersecting line en-
semble, for which the top line is exactly at the border of the disordered region; see Figure 2.
By the Lindström–Gessel–Viennot method, a discrete version of the Karlin–McGregor for-
mula [26], the lines form determinantal point process (see the book chapter [3]). In particular,
the joint distributions of the top line at different times are given by a Fredholm determinant.
Using this technique [24], it was shown in [25] that the top line converges to the Airy2 pro-
cess [35]. The line ensemble for the Aztec diamond fits into the class of Schur processes [34]
and it can be dynamically generated [5] as a consequence of the shuffling algorithm [15].

In this paper we consider uniform tilings of the Aztec diamond in a restricted domain, see
Figure 1, which can be generated by a generalized shuffling algorithm [36]. More precisely,
we cut off the top part of the Aztec diamond at a level which is in the natural fluctuation scale
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FIG. 1. One random realization of the Aztec diamond of size n = 100 with restricted domain with parameter
R = 2 in (1.1). Code courtesy of Sunil Chhita.

of the top line. Equivalently, we can think of conditioning the random tiling to be ordered
above the line of restriction, or in terms of the corresponding nonintersecting line ensemble,
it is equivalent for the lines to stay below a fixed threshold. Our main result is the convergence
of the top line to the so-called hard-edge tacnode process T , which has been identified as the
limit of nonintersecting Brownian bridges in [19].

The hard-edge tacnode process in the context of nonintersecting lines was first de-
scribed in [13]: nonintersecting squared Bessel processes were investigated and the one-point
marginal distributions of their scaling limit at the hard-edge tacnode were identified in terms
of the solution of a 4 × 4 Riemann–Hilbert problem. Fredholm determinant formulas with
explicit kernels were obtained later in [14] for the multi-time distribution of the same process
provided that the dimension of the Bessel paths is an even integer. It does not include the
case of nonintersecting Brownian bridges which were studied in [19]. Shortly afterwards, the
finite dimensional distributions of nonintersecting Brownian bridges in the limit close to the

FIG. 2. Lines associated with the Aztec diamond of Figure 1. Code courtesy of Sunil Chhita.
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hard-edge tacnode were described in [31] in a different formulation involving special func-
tions related to the Painlevé II equation. In addition, it was proved in [31] that the hard-edge
tacnode kernel of [19] is the odd part of the soft-edge tacnode kernel of [18].

As a byproduct along the proof of our main results in this paper, we derive a Fredholm
determinant formula in Theorem 1.6 for the continuum statistics of the Airy2 process A2 in
terms of the hitting time and position of Brownian motion in the spirit of [37]. Analogous
formulas coming from a different approach can be found in the KPZ fixed point paper [32]
(see Propositions 3.6, 3.8 and 4.4 therein).

The Aztec diamond model. We follow the notation of [25]. The Aztec diamond is a domain
An in R2 that consists of the union of squares of the form [k, k + 1] × [l, l + 1] which lie
inside {|x|+ |y| ≤ n+1}. In the original problem, one of all possible tilings of An by vertical
or horizontal 2 × 1 dominos is chosen uniformly at random.

Let us introduce a coloring of the squares in the Aztec diamond in a checkerboard fashion
in a way that in the top half of An, the leftmost square of each row is white. We call a
horizontal domino a north domino if its leftmost square is white, otherwise call it a south
domino. Similarly, a vertical domino is a west domino if its upper square is white and it is
an east domino otherwise. The north polar region is the connected component of all north
dominoes adjacent to the boundary of An. Similarly, south, west and east polar regions can
be defined.

In order to study the fluctuations of the boundary of the north polar region around its
asymptotic shape, in [23] each tiling configuration of the Aztec diamond was mapped into
a system of nonintersecting lines as follows; see Figure 2. On each south domino which has
corners at (0,0) and at (2,1), a line is drawn from (0,1/2) to (2,1/2), on north dominoes no
lines are drawn. On each west domino which has corners at (0,0) and at (1,2), a line from
(0,1/2) to (1,3/2) is drawn, similarly a line from (0,3/2) to (1,1/2) is drawn on each east
domino. Let Xn(t) denote the top curve of the line ensemble from (−n,−1/2) to (n,−1/2),
which follows the boundary of the north polar region.

The main results. In [25] it is shown that the boundary of the north polar region of the
Aztec diamond has Airy2 fluctuations on the n1/3 scale with respect to the limit shape. Thus,
to obtain a nontrivial interaction on the fluctuations scale with the limiting Airy2 process on
the boundary of the north polar region, we consider a uniform tiling of the Aztec diamond
An restricted to y ≤ r where the horizontal line y = r is set to be on the n1/3 scale around the
top of the limit shape. We prove that the boundary of the north polar region in the restricted
model converges to the hard-edge tacnode process in terms of continuum statistics and finite
dimensional distributions; see Theorems 1.1 and 1.2.

The hard-edge tacnode process was described first in [19] as the n → ∞ limit of n non-
intersecting Brownian bridges conditioned to stay below a fixed threshold. The limiting cor-
relation kernel of the restricted Brownian bridges as well as the probability that it lies below
a given function has been obtained in [19]. The hard-edge tacnode T can also be described
as the u �→ A2(u) − u2 process conditioned to stay below a given threshold, thus it is a
one-parameter family process.

In this paper, we cut off a triangle at the top corner of the Aztec diamond at height

(1.1) r = n/
√

2 + 2−5/6Rn1/3

for a given fixed R ∈ R. Denote by XR
n the top line of the corresponding nonintersecting line

ensemble in this case and introduce its rescaled position as

(1.2) XR,resc
n (t) = XR

n (2−1/6tn2/3) − n/
√

2

2−5/6n1/3 .
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Since the height of the threshold is scaled as the top line in the unrestricted model, the con-
ditioning is relevant in the limit. To state the results, we first introduce the limiting kernel.

For any parameter s ∈ R, let

(1.3) Ai(s)(x) = e2s3/3+xs Ai
(
s2 + x

)
.

Then we define the functions

(1.4)
�

ξ
t (u) = Ai(t)(R + ξ + u) − Ai(t)(R + ξ − u),

�
ζ
t (u) = Ai(−t)(R + ζ + u) − Ai(−t)(R + ζ − u),

and the shifted GOE kernel

(1.5) K0(ξ, ζ ) = 2−1/3 Ai
(
2−1/3(2R + ξ + ζ )

)
.

For a given function g :R→R, let us define the following transition density

(1.6) T
g
t1,t2

(ξ, ζ ) = ∂

∂ζ
Pb(t1)=ξ

(
b(t) ≤ g(t) − t2, t ∈ [t1, t2], b(t2) ≤ ζ

)
,

where b(t) is a Brownian motion with diffusion coefficient 2. Then the limiting kernel is
given by

Kext(t1, u1; t2, u2)

= −1t1<t2T
0
t1,t2

(u1, u2) +
∫
R+

dξ

∫
R+

dζ�
ξ
t1
(u1)(1 − K0)

−1(ξ, ζ )�
ζ
t2
(u2),

(1.7)

where t1, t2 ∈ R and u1, u2 ≤ 0. We remark that above and in the rest of the paper we use the
same notation for an integral operator and for its kernel.

Let us state the main results of the paper about the limiting distribution of the rescaled top
line in a random tiling of the Aztec diamond on a restricted domain.

THEOREM 1.1. For t1 < t2, let g :R →R be a function with g(t) = R+ t2 for t /∈ [t1, t2]
and g(t) ≤ R + t2 on [t1, t2]. Suppose that g is differentiable on [t1, t2] except for countably
many points where it may be discontinuous and assume that its derivative is square integrable
on the intervals on which g is differentiable. Then

(1.8)
lim

n→∞ P
(
XR,resc

n (t) ≤ g(t) − t2, t ∈ [t1, t2])= P(A2(t) ≤ g(t) for all t ∈ R)

P(A2(t) ≤ R + t2 for all t ∈R)

= det
(
1 − Kt1,t1 + T

g−R
t1,t2

Kt2,t1

)
L2(R−),

where Kt2,t1(u, v) = Kext(t2, u, t1, v) given in (1.7) and the right-hand side above is the same
as the right-hand side of (2.41) in [19].

THEOREM 1.2. For arbitrary t1, . . . , tk and u1, . . . , uk ≤ R, we have

(1.9) lim
n→∞ P

(
k⋂

�=1

{
XR,resc

n (t�) ≤ u�

})= det
(
1 − Kext)

L2(E)

with the set E = {(t1, [u1 − R,0]) × · · · × (tk, [uk − R,0])}.



288 P. L. FERRARI AND B. VETŐ

The method. To obtain our results, we consider the probabilities on the left-hand side (1.8)
and (1.9) as conditional probabilities. Then we determine the limit of the probability that
Xn(t) remains below a given function (see Theorem 1.3) for which the probability of the
condition is just the function g(τ) = R + τ 2.

The first step is to map the boundary curve of the north polar region for the Aztec diamond
Xn(t) into the top curve of the nonintersecting lines Yn(t) from Yn(0) = 0 to Yn(2n) = 0
following [25]. The possible steps of the lines in the ensemble alternate for odd and even
steps. The lines can stay or increase by one in odd steps, in particular Yn(2j +1) can be equal
to either Yn(2j) or Yn(2j) + 1 for j = 0,1, . . . , n − 1. The lines can stay or decrease by any
positive integer in even steps, in particular Yn(2j + 2) ≤ Yn(2j + 1) for j = 0,1, . . . , n − 1.
This line ensemble representation forms a Schur process.

The bijection which maps the line Xn into Yn is described in [25] in detail and it has the
property that if (t, x − 1/2) is a point on the curve Xn where t ∈ [−n,n] and x ∈ [0, n] are
integers, then the point (t + x + n,x) is on the curve Yn. By neglecting the integer parts we
could conclude that the event {Xn(t) ≤ x} and {Yn(t + x + n) ≤ x} are equal. As suggested
by the rescaling (1.2), we choose t = 2−1/6τn2/3 and x = n/

√
2 + 2−5/6ξn1/3 as parameters

of the events above. We introduce the time scaling and the rescaled version of any function
g :R →R as

(1.10) bn(τ ) = n

(
1 + 1√

2

)
+ 2−1/6τn2/3, gn(τ ) = n√

2
+ 2−5/6(g(τ) − τ 2)n1/3.

Considering the event {Yn(t + x + n) ≤ x}, by the above scaling, the argument of the process
Yn is equal to t + x + n = bn(τ ) + 2−5/6ξn1/3. The term 2−5/6ξn1/3 is negligible in the
n → ∞ limit compared to bn(τ ). For this reason we consider events of the form {Yn(bn(τ )) ≤
gn(τ ), τ ∈ [t1, t2]} which is asymptotically the same as the probability on the left-hand side of
(1.8). In particular, the condition that Xn stays below a given threshold maps to the condition
that Yn stays below the same threshold.

Theorem 1.3 about the convergence of probabilities above carries the most important input
for the proof of Theorems 1.1 and 1.2 on the top curve of the original ensemble. In order to
state it, let H 1

ext(R) be the class of functions g for which there is a finite or infinite collection
of intervals [a, b] with a ≤ b so that g is differentiable on [a, b] with derivative in L2([a, b])
and g = ∞ outside this collection of intervals.

THEOREM 1.3. Let g ∈ H 1
ext(R). Then

(1.11) P
(
Yn

(
bn(τ )

)≤ gn(τ ) for τ ∈ R
)→ P

(
A2(τ ) ≤ g(τ) for τ ∈R

)
as n → ∞ where gn is given by (1.10) and A2 is the Airy2 process.

In the rest of this section we provide the basic ingredients for the proof of Theorem 1.3.
The finite dimensional distributions of the curve Yn(t) which appears on the left-hand side of
(1.11) is expressed in terms of Fredholm determinants in [25] as follows. Let

(1.12) T (x, y) =

⎧⎪⎪⎨⎪⎪⎩
2 if y ≤ x,

1 if y = x + 1,

0 if y > x + 1,

be the transition function of the nonintersecting line ensemble for even times. It will be suf-
ficient for our purposes to consider even times only. Define the correlation kernel

(1.13) Kn(2r, x;2s, y) = −1r<sT
s−r (x, y) + K̃n(2r, x;2s, y)
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with

(1.14) K̃n(2r, x;2s, y) = −1

(2πi)2

∮

1

dz

z

∮

0

dw

w

wy(1 − w)n−s(1 + 1/w)s

zx(1 − z)n−r (1 + 1/z)r

z

z − w
,

where, for a set J , the integration contour 
J is a simple counter-clockwise loop including
only the poles at J . Thus 
0 goes around 0 and 
1 around 1 without intersecting. Note that
in [25], the contour 
1 was a vertical line in the kernel (1.14), but it can be deformed to a
circle around 1 as long as the integrand has no singularity at infinity, that is, x ≥ −n+ r . The
latter condition physically means that we choose a space–time location corresponding to the
Aztec diamond.

By writing z/(z − w) =∑j≥0(w/z)j , the kernel becomes

(1.15) K̃n(2r, x;2s, y) =∑
j≥0

p(n)
r (x + j)q(n)

s (y + j),

where the functions

p(n)
r (x) = −1

2πi

∮

1

dz

z

1

zx(1 − z)n−r (1 + 1/z)r
,(1.16)

q(n)
s (y) = 1

2πi

∮

0

dw

w
wy(1 − w)n−s(1 + 1/w)s(1.17)

are related to Krawtchouk polynomials. The distribution of the nonintersecting line ensemble
is characterized as follows.

PROPOSITION 1.4 (See (2.22) of [25]). Let 2t0 < 2t1 < · · · < 2tk be even integers in
{2, . . . ,2n − 2} and x0, x1, . . . , xk be integers. Let Ei = {(2ti , yi) : yi ∈ Z, yi > xi} for i =
0,1, . . . , k and E =⋃k

i=0 Ei . Then

(1.18) P

(
k⋂

i=0

{
Yn(2ti) ≤ xi

})= det(1 − Kn)�2(E),

where Kn is the correlation kernel of the point process and it is given by (1.13).

As part of the proof of Theorem 1.3 the right-hand side of (1.11) with τ ∈ R replaced by a
finite interval τ ∈ [L,M] can be written as a Fredholm determinant using Theorem 2 of [12]
which we state below. The theorem was stated in [12] only for function g ∈ H 1([L,M]),
that is, with derivative in L2([L,M]), but the proof in [12] applies for H 1

ext([L,M]); see also
subsequent works [32, 37]. We denote by

(1.19) KAi(x, y) =
∫ ∞

0
dλAi(x + λ)Ai(y + λ)

the Airy kernel and by H = −∂2
x + x the Airy Hamiltonian.

THEOREM 1.5 (Theorem 2 and 3 of [12]). Let L < M be fixed and g ∈ H 1
ext([L,M]).

Then

(1.20) P
(
A2(τ ) ≤ g(τ) for τ ∈ [L,M])= det

(
1 − (e(L−M)H − �

g
L,M

)
e(M−L)HKAi

)
L2(R),
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where one can write1(
e(L−M)H − �

g
L,M

)
(u, v)

= eLu−Mv−L3/3+M3/3 e
− (u−L2−v+M2)2

4(M−L)√
4π(M − L)

× (1 − Pb(L)=u−L2,b(M)=v−M2
(
b(τ) ≤ g(τ) − τ 2 for τ ∈ [L,M])),

(1.21)

with b(τ) being a Brownian bridge from u − L2 to v − M2 with diffusion coefficient 2.

Finally we state an alternative Fredholm determinant expression for the probability that
the Airy2 process stays below a given function on a fixed interval. The kernel involves the
hitting time and position of a Brownian motion and it serves as an important ingredient for
the proof of Theorem 1.1. On the other hand, Theorem 1.6 is of independent interest.

Let us consider α ∈ [L,M]. The Brownian bridge b that appears on the right-hand side
of (1.21) can be thought of as the concatenation of a bridge b(L) = u − L2 to b(α) = ξ and
another one from b(α) = ξ to b(M) = v − M2 where ξ is an arbitrary value. Equivalently,
given b(α) = ξ , one can think of the first bridge starting from b(α) = ξ and going backwards
in time until b(L) = u − L2.

Let us introduce the following hitting times and positions

T
ξ,α
+ = inf

{
t > α|b(t) � g(t) − t2 with b(α) = ξ

}
, X

ξ,α
+ = b

(
T

ξ,α
+
)
,(1.22)

T
ξ,α
− = sup

{
t < α|b(t) � g(t) − t2 with b(α) = ξ

}
, X

ξ,α
− = b

(
T

ξ,α
−
)
.(1.23)

Recall the definition of Ai(s) given in (1.3) and let

(1.24)

Mα−(x, ξ) =
∫ α

L

∫
R

P
(
T

ξ,α
− ∈ dt,X

ξ,α
− ∈ dζ

)
Ai(t)(ζ + x),

Mα+(ξ, y) =
∫ M

α

∫
R

P
(
T

ξ,α
+ ∈ dt,X

ξ,α
+ ∈ dζ

)
Ai(−t)(ζ + y).

Remark that if ξ ≥ g(α) − α2, then P(T
ξ,α
+ ∈ dt,X

ξ,α
+ ∈ dζ ) = δα(t)δξ (ζ ), from which

Mα+(ξ, y) = Ai(−α)(ξ + y) and similarly Mα−(x, ξ) = Ai(α)(ξ + x).

THEOREM 1.6. Let g ∈ H 1
ext([L,M]). We have

(1.25) P
(
A2(r) ≤ g(r), r ∈ [L,M])= det(1 − K)L2(R+)

with kernel given by

K(x,y) =
∫
R

dξMα−(x, ξ)Ai(−α)(ξ + y)

+
∫
R

dξ Ai(α)(ξ + x)Mα+(ξ, y) −
∫
R

dξMα−(x, ξ)Mα+(ξ, y),

(1.26)

where α ∈ [L,M] is arbitrary.

REMARK 1.7. The idea of the decomposition goes back to [37]. However the formula
stated there holds true only when the hitting position of the Brownian bridge is on the graph
of the function g(t) − t2. As in [32], the present formulas include the possibility that the

1We have corrected a typo in Theorem 3 of [12] in the Gaussian prefactor on the r.h.s. of (1.21).
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Brownian motion hits at a position t strictly greater than g(t) − t2, which can happen if g is
not continuous.

For finite L,M , the kernel is well defined if g is bounded from below, while in the L →
−∞ and/or M → ∞, it should be enough to consider g(t) ≥ c+εt2 for some ε > 0, as in this
case the probability that the Airy2 process stays below g at all times remains strictly positive.
In the representation of [37], it is shown to hold at least whenever g(t) ≥ c + εt2 for some
ε > 1/4.

Theorem 1.6 is used in the proof of our main result in the special case when α = L is the
left endpoint of the interval. Then the kernel in (1.26) is even simpler; see Theorem 4.1 below
for the explicit expression and for its discrete counterpart. On the other hand, the choice of
the left endpoint avoids certain difficulties with the backward part of the random walk in the
asymptotic analysis.

Outline. The rest of the paper is organized as follows. In Section 2, we provide a random
walk representation of probabilities that appear on the left-hand side of (1.11) in the finite
time case as a discrete analogue of Theorem 1.5. We prove Theorem 1.6 about the continuum
statistics for the Airy2 process in terms of hitting times and positions in Section 3. The setup
is specialized for the case when we start the Brownian motion at the left endpoint of the
interval in Section 4 where also the analogous Fredholm determinant formulas are given in the
discrete case for the hitting times and positions of the corresponding random walk. Section 5
contains the asymptotic statements of the paper in the n → ∞ limit which together lead to
Theorem 5.1 that is the finite interval version of Theorem 1.3. Section 6 extends Theorem 5.1
to the full line statement and proves Theorem 1.3. The main results of the paper, Theorems 1.1
and 1.2 are derived from Theorem 1.3 in Section 7. The proofs of the asymptotic statements
are postponed to Section 8.

2. Random walk representation. The joint distribution of the top curve Yn of nonin-
tersecting lines at different times is characterized with the extended correlation kernel Kn in
Proposition 1.4. The main contribution of this section towards the proof of Theorem 1.5 is
that we rewrite (1.18) in a Fredholm determinant form where the kernel is a discrete ana-
logue of (1.21), that is, it involves a probability that a certain random walk remains below
given values at various steps; see Proposition 2.2 below. A random walk representation of
similar spirit also appears in [32].

Let

(2.1) T1(x, y) =
{

1 if y ∈ {x, x + 1},
0 otherwise,

and T2(x, y) =
{

1 if y ≤ x,

0 otherwise,

be two transition operators. Then T1 and T2 commute and by the construction of [25], the
operator T given in (1.12) appears as T = T1T2.

PROPOSITION 2.1. Let X1 and X2 be two independent random variables with the dis-
tributions

(2.2)
P(X1 = 0) =

√
2 − 1√

2
, P(X1 = 1) = 1√

2
,

P(X2 = −k) = √
2(

√
2 − 1)k+1, k = 0,1,2, . . .

and let X = X1 + X2. Then E(X) = 0, Var(X) = √
2, and

(2.3) T (x, y) = (
√

2 + 1)2−y+xP(X = y − x).
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Equivalently, for any function f ∈ �1(Z),

(2.4) (Tf )(x) = (
√

2 + 1)2E
(
(
√

2 + 1)−Xf (x + X)
)
.

PROOF OF PROPOSITION 2.1. Slightly more generally, let

(2.5)
P(X1 = 0) = p

p + 1
, P(X1 = 1) = 1

p + 1
,

P(X2 = −k) = (1 − p)pk, k = 0,1,2, . . .

for some p ∈ (0,1). Then

E
((

1

p

)−X1

f (x + X1)

)
= p

p + 1
f (x) + 1

p + 1

(
1

p

)−1
f (x + 1)

= p

p + 1
(T1f )(x),

(2.6)

E
((

1

p

)−X2

f (x + X2)

)
=

∞∑
k=0

(1 − p)pk

(
1

p

)k

f (x − k)

= (1 − p)(T2f )(x).

(2.7)

Hence using X = X1 + X2 and T = T1T2 we get

(2.8) E
((

1

p

)−X

f (x + X)

)
= p(1 − p)

p + 1
(Tf )(x).

Simple computations yield

(2.9)
E(X1) = 1

p + 1
, Var(X1) = 1

p + 1
− 1

(p + 1)2 ,

E(X2) = − p

1 − p
, Var(X2) = p

(1 − p)2 .

The condition E(X) = 0 is satisfied if p = √
2 − 1. In this case, Var(X) = √

2 and (2.8)
reduces to (2.4). �

For the rest of the paper, we introduce the notation

(2.10) Sm = X(1) + X(2) + · · · + X(m), m = 1,2, . . .

for the random walk with step distribution given by the operator T where the sequence
X(1),X(2), . . . of steps are independent and distributed as the random variable X defined
in Proposition 2.1. Next we write the probability on the the left-hand side of (1.18) as a Fred-
holm determinant of a path integral kernel based on [4] and we also rewrite the path integral
kernel in terms of the random walk Sm given in (2.10). This provides a discrete analogue of
Theorem 1.5.

PROPOSITION 2.2. Let 0 < 2t0 < 2t1 < · · · < 2tk < 2n be even integers and x0, x1, . . . ,

xk be integers. Then

P

(
k⋂

i=0

{
Yn(2ti) ≤ xi

})
(2.11)

= det
(
1 − K̃n(2t0, ·;2t0, ·) + P x0T

t1−t0P x1 · · ·T tk−tk−1P xk
K̃n(2tk, ·;2t0, ·))�2(Z)
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holds where the projections are given by P af (x) = 1x≤af (x). Furthermore, we have

P x0T
t1−t0P x1 · · ·T tk−tk−1P xk

(x, y)

= (
√

2 + 1)2(tk−t0)+x−yP(Stk−t0 = y − x)

× PS0=0,Stk−t0=y−x(x + Sti−t0 ≤ xi for i = 0, . . . , k),

(2.12)

where Sj is the random walk defined in (2.10).

PROOF OF PROPOSITION 2.2. We apply Theorem 3.3 of [4] on the space X = Z with
the operators Qxi

= P xi
, Wti ,tj = T tj−ti and with the kernel Kti = K̃n(2ti , ·;2ti , ·). What

one needs to check is that

(2.13) Wti ,tj Ktj = KtiWti ,tj = K̃n(2ti , ·;2tj , ·).
This can be seen from the representation (2.14) in [25] of the kernel K̃n, it follows directly
from the semigroup property of the transitions. The assumptions on finite trace class norm
of certain operators that appear hold due to the fact that K̃n is the kernel for a line ensemble
confined to a finite region, hence the kernel is supported on a finite set of space time points.
This proves (2.11).

To show (2.12), we apply Proposition 2.1 inductively for the kernel on the left-hand side
and we obtain that for any f ∈ �1(Z)

(2.14)

P x0T
t1−t0P x1 . . . T tk−tk−1P xk

f (x)

= (
√

2 + 1)2(tk−t0)E

(
(
√

2 + 1)−Stk−t0 f (x + Stk−t0)

k∏
i=0

1x+Sti−t0≤xi

)

= (
√

2 + 1)2(tk−t0)
∑
y∈Z

P(Stk−t0 = y − x)(
√

2 + 1)−y+xf (y)

× PS0=0,Stk−t0=y−x(x + Sti−t0 ≤ xi for i = 0, . . . , k),

where we computed the expectation with respect to the endpoint of the random walk Stk−t0

in the second equation. �

Next we prove large deviation bounds for the random walk Sm defined in (2.10). We intro-
duce the rate function

I (x) = (2 − x) log(
√

2 + 1) + (1 − x) log
(

1 − x

1 +√1 + (1 − x)2

)

+ log
(

x +√1 + (1 − x)2

2 − x +√1 + (1 − x)2

)(2.15)

for any x < 1.

PROPOSITION 2.3. Consider the random walk Sm in (2.10). Then for any m > 0 integer
and x ∈ [0,1),

(2.16) P
(

sup
0≤k≤m

Sk ≥ xm
)

≤ e−mI (x)

holds with the rate function I (x) is given in (2.15). In particular,

(2.17) P(Sm ≥ xm) ≤ e−mI (x).



294 P. L. FERRARI AND B. VETŐ

Furthermore, there is an ε > 0 for which

(2.18) I (x) ≥ εx2

for any x ≥ 0. As a consequence, the upper bounds on the right-hand sides of (2.16) and
(2.17) can be replaced by e−εmx2

if x ≥ 0.

PROOF OF PROPOSITION 2.3. Let u > 0 be arbitrary. Then the function x �→ eux is
increasing and convex, hence the process euSm is a nonnegative submartingale. As a conse-
quence we have

(2.19) P
(

sup
0≤k≤m

Sk ≥ xm
)

= P
(

sup
0≤k≤m

euSk ≥ euxm
)

≤ E(euSm)

euxm
,

where we used the submartingale inequality in the last step.
The rest of the proof of (2.16) is a standard large deviation argument. The expectation

on the right-hand side of (2.19) is the moment generating function of the random walk. The
moment generating function of the two types of steps given in (2.5) are

(2.20) E
(
euX1

)= √
2 − 1 + eu

√
2

, E
(
euX2

)= 2 − √
2

1 − (
√

2 − 1)e−u

for any u > log(
√

2 − 1). Since (2.19) holds for any u > 0, to optimize in u, one computes
the Legendre transform of the logarithmic moment generating function of one double step
with the restriction u > 0. Hence (2.16) holds with

(2.21) I (x) = sup
u>0

(
ux − log

(
E
(
euX1

)
E
(
euX2

)))
.

The optimal u without the positivity restriction is given by u = log((
√

2 − 1)(1 +√
1 + (1 − x)2)/(1 − x)) which turns out to be positive for all x > 0. Then (2.15) for I (x)

follows by computation.
To show the lower bound (2.18), one observes that Taylor expansion of I (x) yields a

quadratic lower bound in a small neighbourhood of 0. Since I (x) is convex as a large devi-
ation rate function, the lower bound can be extended to (0,1] by choosing the coefficient of
the quadratic term small enough. Since I (x) = ∞ for x > 1, (2.18) follows for any x ≥ 0.

�

3. Reformulation with hitting times. We prove Theorem 1.6 in this section and we give
a few examples where it can directly be used. Let

(3.1) φt(x, y) = 1√
4πt

e− (x−y)2

4t ,

be the Brownian transition kernel of diffusion coefficient 2 which we use in the proof below.

PROOF OF THEOREM 1.6. Let us define

R(u, v) = (e−(M−L)H )(u, v)

× Pb(L)=u−L2,b(M)=v−M2
(∃t ∈ [L,M] s.t. b(t) > g(t) − t2).(3.2)

With the notation A(x, y) = Ai(x + y) and P0(x) = 1x≥0 we have KAi = AP0A. Inserting
these definitions and using the identity det(1−AB) = det(1−BA), we get that the left-hand
side of (1.20) is equal to

(3.3) det
(
1 − KAi + �

g
L,Me(M−L)HKAi

)
L2(R) = det

(
1 − ARe(M−L)HA

)
L2(R+),

where the P0 is absorbed in the definition of the space (from L2(R) to L2(R+)).
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Then we have obtained (1.25) with the kernel on the right-hand side given by the conju-
gated kernel

(3.4) K(x,y) = eLx

eLy

(
ARe(M−L)HA

)
(x, y).

We are left with identifying the kernel to be equal to (1.26). The kernel in (3.4) is given
explicitly by

(3.5) K(x,y) = eLx

eLy

∫
R

du

∫
R

dv Ai(x + u)R(u, v)Ai(y + v)e−(M−L)y.

It remains to find a good expression for K from which the L → −∞ and M → ∞ limit are
easily taken; see also Remark 1.7. We can write

R(u, v)
(3.6)

= e−(M−L)H (u, v)Pb(L)=u−L2(∃τ ∈ [L,M] s.t. b(τ) > g(τ) − τ 2, b(M) = v − M2)

φM−L(u − L2, v − M2)

with the notation (3.1). The last term is the probability density that the Brownian bridge
starting from b(L) = u−L2 reaches b(M) = v −M2 and crosses curve g(t)− t2 somewhere
in between. An explicit computation gives (c.f. g = −∞ in Theorem 1.5)

(3.7)
e−(M−L)H (u, v)

φM−L(u − L2, v − M2)
= e(M3−L3)/3+Lu−Mv.

Next we decompose the probability of crossing depending on whether the inequality is not
satisfied to the left and/or right of the origin. Let us define

(3.8)
mα−
(
u − L2, ξ

)= Pb(L)=u−L2
(∃τ ∈ [L,α] s.t. b(τ) > g(τ) − τ 2, b(α) = ξ

)
,

mα+
(
ξ, v − M2)= Pb(α)=ξ

(∃τ ∈ [α,M] s.t. b(τ) > g(τ) − τ 2, b(M) = v − M2).
By inclusion–exclusion, we have

(3.9)

Pb(−L)=u−L2
(∃τ ∈ [L,M] s.t. b(τ) > g(τ) − τ 2, b(M) = v − M2)

=
∫
R

dξmα−
(
u − L2, ξ

)
φM−α

(
ξ, v − M2)

+
∫
R

dξφα−L

(
u − L2, ξ

)
mα+
(
ξ, v − M2)

−
∫
R

dξmα−
(
u − L2, ξ

)
mα+
(
ξ, v − M2).

Plugging in (3.6), (3.7) and (3.9) into (3.5) and by doing the change of variables u → u + L2

and v → v + M2 we obtain

K(x,y) =
∫
R

du

∫
R

dv Ai(L)(x + u)Ai(−M)(y + v)

×
(∫

dξmα−(u, ξ)φM−α(ξ, v)

+
∫

dξφα−L(u, ξ)mα+(ξ, v)

−
∫

dξmα−(u, ξ)mα+(ξ, v)

)
.

(3.10)



296 P. L. FERRARI AND B. VETŐ

We can express now mα−(u, ξ) and mα+(ξ, v) by integrating over the hitting times and their
positions as follows:

(3.11)

mα−(u, ξ) =
∫ α

L

∫
R

P
(
T

ξ,α
− ∈ dt,X

ξ,α
− ∈ dζ

)
φt−L(u, ζ ),

mα+(ξ, v) =
∫ M

α

∫
R

P
(
T

ξ,α
+ ∈ dt,X

ξ,α
+ ∈ dζ

)
φM−t (ζ, v).

Noting that when P(T
ξ,α
+ ∈ dt,X

ξ,α
+ ∈ dζ ) is a Dirac distribution at t = α, ζ = ξ , one recovers

mα+(ξ, v) = φM−α(ξ, v). Thus we can compute first the last term in (3.10), while the first two
cases are recovered as special cases. Using Lemma 3.1 below, we get the identities∫

R
duAi(L)(x + u)φt−L(u, ζ ) = Ai(t)(x + ζ ),∫

R
dv Ai(−M)(y + v)φM−t (ζ, v) = Ai(−t)(y + ζ ).

(3.12)

Integrating over u and v in (3.10) using (3.12) we get the claimed formula. �

LEMMA 3.1. With the notation (3.1),

(3.13)
∫
R

duAi(s)(x + u)φt−s(u, y) = Ai(t)(x + y).

PROOF. The identity is obtained by first expressing the Airy function as complex integral

(3.14) Ai(t)(x) = Ai
(
t2 + x

)
e2t3/3+tx = 1

2πi

∫
〈

dwew3/3+tw2−xw

and by computing the Gaussian integration in u. �

Examples. The L = α = 0 case. Consider the special case L = α = 0. Then Mα−(x, ξ) =
Ai(ξ + x)1ξ>g(0) and we are left with

(3.15) K(x,y) =
∫ g(0)

−∞
dξ Ai(ξ + x)Mα+(ξ, y) +

∫ ∞
g(0)

dξ Ai(ξ + x)Ai(ξ + y).

One-point barrier. Let L = α = 0 and t0 > 0. Consider g(t0) = a ∈ R and g(t) = ∞ for
t �= t0. Then

(3.16) K(x,y) =
∫
R

dξ Ai(ξ + x)

∫ ∞
a−t2

0

dζφt0(ξ, ζ )Ai(−t0)(ζ + y).

Using Lemma 3.1 we get

K(x,y) =
∫ ∞
a−t2

0

dζ Ai(t0)(x + ζ )Ai(−t0)(y + ζ )

= et0(x−y)
∫ ∞
a

dζ Ai(x + ζ )Ai(y + ζ ).

(3.17)

This gives

(3.18) det(1 − K)L2(R+) = det(1 − KAi)L2(a,∞) = FGUE(a).

Flat cut-off. The flat cut-off in the original system corresponds to the choice g(t) = R + t2

for some fixed cut-off value R. In this case it is possible to take L → −∞ and M → ∞
without problems; see also Remark 1.7. We get

(3.19) Mα+(ξ, y) = Ai(−α)(ξ + y)1ξ≥R +
∫ ∞
α

P
(
T

ξ
+ ∈ dt

)
Ai(−t)(R + y)1ξ<R.
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The reflection principle gives, for ξ < R and t > α,

(3.20) P
(
T

ξ
+ ∈ dt

)= (R − ξ)
e−(R−ξ)2/(4(t−α))√

4π(t − α)3
dt.

Using the integral representation Ai(−t)(x) = Ai(t2 +x)e−2t3/3−tx = ∫〈 dw
2πi

ew3/3−tw2−xw we
can first integrate explicitly over t with the result

(3.21)
Mα+(ξ, y) = Ai(−α)(ξ + y)1ξ≥R + Ai(−α)(2R + y − ξ)1ξ<R,

Mα−(x, ξ) = Ai(α)(ξ + x)1ξ≥R + Ai(α)(2R + x − ξ)1ξ<R.

Plugging in the formula of the kernel after some simple cancellations one obtains

K(x,y) =
∫
R

dξ Ai(α)(R + x − ξ)Ai(−α)(R + y + ξ)

= 2−1/3 Ai
(
2−1/3(2R + x + y)

)
,

(3.22)

where the last identity is slightly tricky (use the integral representation with vertical contours,
once with one ordering so that the integral over ξ ∈ R+ is convergent, once with the other
order so that the integral over ξ ∈ R− is convergent. Their sum can be computed then with
the residue theorem leading to the identity). Thus we have the well-known identity [12, 16,
22]

(3.23) P
(
A2(t) − t2 ≤ R for all t ∈ R

)= det(1 − K)L2(R+) = FGOE
(
22/3R

)
.

4. Left endpoint approach. As already noticed in [12], but clearly pointed out in [37],
the representation in (1.20) is not adequate for taking L → −∞ and/or M → ∞ as some
of the terms taken individually do not have a limit. In [37] they introduced a decomposition
with respect to the position taken by the Brownian bridge at an intermediate time (e.g., at
time 0) and the kernel was rewritten in terms of hitting times. This approach allowed to take
the desired limits relatively directly.

In this paper we first show the convergence of probabilities about the top line of a discrete
line ensemble to that of the Airy2 process on the interval [L,M] for fixed L and M . Then
we prove that when L → −∞ and M → ∞ we recover the problem for the full-line case.
One possibility would be to apply some probabilistic bounds in the spirit of [11] or [6], by
using the correspondence with the discrete time TASEP with parallel update. However, in
this paper we extend the convergence to the Airy2 process to infinite intervals using the path
integral formulation; see Section 6. Surprisingly, it turns out that using the strategy of [37]
with two hitting times generates issues in the asymptotic analysis of the backward part of the
random walk, therefore it is more suitable for our purposes to introduce hitting times of the
random walks starting from the left endpoint of the interval only.

The second statement (4.6) of Theorem 4.1 below is a direct consequence of Theorem 1.6.
We mention that a discrete analogue of Theorem 1.6 could be derived for the probability
on the left-hand side of (4.5) in terms of hitting times for a random walk in two directions.
It is however used only in the case when the starting point of the random walks is the left
endpoint of the interval when the formulas simplify. For this reason we directly prove (4.5)
using a random walk which starts at the left endpoint.

Define the hitting time and position when the random walk is above the curve gn by

(4.1) T̂
u,m
+ = min

{
l ≥ m : Sl > gn

(
b−1
n (2l)

)
with Sm = u

}
, X̂

u,m
+ = ST̂

u,m
+ .

Then let the discrete kernel be

(4.2) KL,M
n (i, j) = ∑

u∈Z

bn(M)/2∑
l=bn(L)/2

∑
v∈Z

P
(
T̂

u,
bn(L)

2+ = l, X̂
u,m
+ = v

)
ku,l,v
n (i, j),
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where

(4.3) ku,l,v
n (i, j) = (

√
2 + 1)i−j−bn(L)+2l+u−vq

(n)
bn(L)/2(u + i)p

(n)
l (v + j).

Let the continuous kernel be

(4.4) KL,M(x, y) =
∫
R

dξ Ai(L)(x + ξ)

∫ M

L

∫
R

P
(
T

ξ,L
+ ∈ dt,X

ξ,L
+ ∈ dζ

)
Ai(−t)(ζ + y).

THEOREM 4.1. Fix L < M . Then

(4.5) P
(
Yn

(
bn(τ )

)≤ gn(τ ) for τ ∈ [L,M])= det
(
1 − KL,M

n

)
�2(Z+)

with the kernel KL,M
n defined in (4.2). Furthermore,

(4.6) P
(
A2(τ ) ≤ g(τ) for τ ∈ [L,M])= det

(
1 − KL,M)

L2(R+)

with the kernel KL,M given by (4.4).

For the proof of Theorem 4.1 we will use the following properties as well.

LEMMA 4.2. It holds (
Tp(n)

r

)
(x) = p

(n)
r−1(x),(4.7) (

q(n)
s T

)
(y) = q

(n)
s+1(y).(4.8)

PROOF OF LEMMA 4.2. By (2.4) and definition (1.16),

(4.9)
(
Tp(n)

r

)
(x) = (

√
2 + 1)2E

( −1

2πi

∮

1

dz

z

1

((
√

2 + 1)z)x+X(1 − z)n−r (1 + 1/z)r

)
holds. The order of the integration and the expectation can be exchanged, because the in-
tegrand is absolutely integrable with respect to the product measure which can be seen by
noting that X ≤ 1. By taking the expectation of the integrand above, one encounters the gen-
erating function of X. For the random variable X = X1 + X2 given by (2.2), the generating
function is given by

(4.10) E
(
sX)= (

√
2 − 1)

s(s + √
2 − 1)

s − (
√

2 − 1)

for any |s| > √
2 − 1. After substituting s = 1/((

√
2 + 1)z), we get

(4.11) E
(

1

((
√

2 + 1)z)X

)
= (

√
2 + 1)−2 1 + 1/z

1 − z
,

which proves (4.7). The proof of (4.8) is similar after observing that (2.3) can be used to write(
q(n)
s T

)
(y) = ∑

x∈Z
q(n)
s (x)(

√
2 + 1)2−y+xP(X = y − x)

(4.12)
= (

√
2 + 1)2E

(
(
√

2 + 1)−Xq(n)
s (y − X)

)
. �
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PROOF OF THEOREM 4.1. First we rephrase the condition on the left-hand side of (4.5)
in a way that the top line Yn remains below the given curve gn after each double step:

(4.13)

P
(
Yn

(
bn(τ )

)≤ gn(τ ) for τ ∈ [L,M])
= P

( bn(M)/2⋂
l=bn(L)/2

{
Yn(l) ≤ gn

(
b−1
n (2l)

)})

= det
(
1 − K̃n

(
bn(L), ·;bn(L), ·)

+ P xbn(L)/2T P xbn(L)/2+1 · · ·T P xbn(M)/2K̃n

(
bn(M), ·;bn(L), ·))�2(Z)

= det
(
1 − RnT

− bn(M)−bn(L)
2 K̃n

(
bn(L), ·;bn(L), ·))�2(Z),

where xl = gn(b
−1
n (2l)) for l = bn(L)/2, bn(L)/2 + 1, . . . , bn(M)/2 and

Rn(i, j) = T
bn(M)−bn(L)

2 (i, j)

× PS bn(L)
2

=i,S bn(M)
2

=j

(
∃l ∈ {1

2bn(L), 1
2bn(L) + 1, . . . , 1

2bn(M)
} : Sl > gn

(
b−1
n (2l)

))
(4.14)

is the kernel on the right-hand side. In the last two equalities in (4.13), we used Proposi-
tion 2.2.

By (1.15), we can write K̃n(bn(L), x;bn(L), y) = (πL
n P0ρ

L
n )(x, y) where

(4.15) πL
n (x, j) = p

(n)
bn(L)

2
(x + j), ρL

n (j, y) = q
(n)
bn(L)

2
(y + j).

Using this and the determinant identity det(1 + AB) = det(1 + BA), we obtain

det
(
1 − RnT

− bn(M)−bn(L)
2 K̃n

(
bn(L), ·;bn(L), ·))�2(Z)

= det
(
1 − ρL

n RnT
− bn(M)−bn(L)

2 πL
n

)
�2(Z+).

(4.16)

Next we rewrite (4.14) using (2.3) and by decomposing the crossing event according to the

first hitting time T̂
i,

bn(L)
2+ :

Rn(i, j)

= (
√

2 + 1)bn(M)−bn(L)−j+i

× PS bn(L)
2

=i

({
∃l ∈ {1

2bn(L), . . . , 1
2bn(M)

} : Sl > gn

(
b−1
n (2l)

)}∩ {Sbn(M)
2

= j}
)

(4.17)

= (
√

2 + 1)bn(M)−bn(L)−j+i
bn(M)/2∑

l=bn(L)/2

P
(
T̂

i,
bn(L)

2+ = l, X̂
i,

bn(L)
2+ = v

)
PSl=v

(
Sbn(M)

2
= j

)
= (

√
2 + 1)bn(M)−bn(L)−j+i

×
bn(M)/2∑

l=bn(L)/2

P
(
T̂

i,
bn(L)

2+ = l, X̂
i,

bn(L)
2+ = v

)
(
√

2 + 1)−bn(M)+2l−v+jT
bn(M)

2 −l(v, j).

By applying (4.7) to πL
n given in (4.15), one gets that the conjugated kernel

(4.18) (
√

2 + 1)i−jρL
n RnT

− bn(M)−bn(L)
2 πL

n (i, j) = KL,M
n (i, j).

Putting together (4.13), (4.16) and (4.18) we obtain (4.5).
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For proving (4.6), we specialize Theorem 1.6 for the case when α = L. In that case by
(1.24),

(4.19) ML−(x, ξ) = Ai(L)(x + ξ)1ξ>g(L)−L2

and ML+(ξ, y) = Ai(−L)(ξ +y) if ξ > g(L)−L2. Therefore, the first and third integral on the
right-hand side of (1.26) cancel out and the second term is equal to the kernel KL,M defined
in (4.4) which completes the proof. �

5. Asymptotic statements. In this section, we consider the asymptotics when the size
of the Aztec diamond n → ∞ and prove the finite interval version of Theorem 1.3.

THEOREM 5.1. For any L < M fixed and any function g with the assumptions of Theo-
rem 1.1,

(5.1) P
(
Yn

(
bn(τ )

)≤ gn(τ ) for τ ∈ [L,M])→ P
(
A2(τ ) ≤ g(τ) for τ ∈ [L,M])

as n → ∞ where gn is given by (1.10) and A2 is the Airy2 process.

For the proof, we use the representations given in Theorem 4.1 by the left endpoint ap-
proach. In particular, we show that the Fredholm determinant of KL,M

n on the right-hand side
of (4.5) in Theorem 4.1 converges to that of KL,M (4.6). The convergence of Fredholm de-
terminants is based on the following series of propositions which we prove in Section 8. To
simplify the notation, define

(5.2)
P

(n)
l (v + j) = 2−5/6n1/32n/2(

√
2 + 1)−j−2−5/6ζn1/3+2−1/6tn2/3

p
(n)
l (v + j),

Q
(n)
L (u + i) = 2−5/6n1/32−n/2(

√
2 + 1)i+2−5/6ξn1/3−2−1/6 Ln2/3

q
(n)
bn(L)

2
(u + i).

PROPOSITION 5.2. Under the scaling

(5.3)

l = n

(
1

2
+ 1

2
√

2

)
+ 2−7/6tn2/3, i = 2−5/6xn1/3, j = 2−5/6yn1/3,

u = n√
2

+ 2−5/6ξn1/3, v = n√
2

+ 2−5/6ζn1/3,

the two convergence statements

P
(n)
l (v + j) → Ai(−t)(ζ + y),(5.4)

Q
(n)
L (u + i) → Ai(L)(x + ξ)(5.5)

hold uniformly on compact intervals in ζ + y and in x + ξ respectively as n → ∞.

PROPOSITION 5.3. Let L < M be fixed and consider the scaling (5.3) of the variables.
Then there are c > 0 and C ∈ R such that for all n large enough the bound

(5.6)
∣∣P (n)

l (v + j)
∣∣≤ Ce−c(y+ζ )

holds for all y ≥ 0 and ζ bounded from below uniformly in l ∈ [bn(L)/2, bn(M)/2].
PROPOSITION 5.4. Let L < M be fixed and consider the scaling (5.3). There are c > 0

and C ∈ R so that for all n large enough

(5.7)
∣∣Q(n)

L (u + i)
∣∣≤ Ce−c(x+ξ)

with x ≥ 0 and ξ ∈ R.
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PROPOSITION 5.5. Under the scaling (5.3) of the variables, for any c > 0 there is a
constant C ∈R such that for all n large enough

(5.8)
∣∣P (n)

l (v + j)
∣∣≤ Ce−c(t+y+ζ )

holds for all t ≥ 0, y ≥ 0 and ζ bounded from below.

PROPOSITION 5.6. Suppose that g : R → R is a function as in Theorem 1.1. Under the
scaling (5.3), the rescaled hitting time and hitting position of the random walk given in (4.1)
converge jointly weakly

(5.9)
(
27/6n−2/3T̂

u,
bn(L)

2+ ,25/6n−1/3X̂
u,

bn(L)
2+
)⇒ (

T
ξ,L
+ ,X

ξ,L
+
)

holds as n → ∞ where the limit is given in (1.22).

LEMMA 5.7. Let L ∈ R be fixed. There are c > 0 and C ∈ R such that for any T > L

(5.10)
∑
u∈Z

bn(T +1)
2∑

l= bn(T )
2

∑
v∈Z

∣∣2−5/6n1/3P
(
T̂

u,
bn(L)

2+ = l, X̂
u,m
+ = v

)
ku,l,v
n (i, j)

∣∣≤ Ce−c(x+y+T )

holds for any x, y ≥ 0 uniformly for all n large enough. Further, for any T > L∫
R

dξ

∫ T +1

T

∫
R

P
(
T

ξ,L
+ ∈ dt,X

ξ,L
+ ∈ dζ

)∣∣Ai(L)(x + ξ)Ai(−t)(ζ + y)
∣∣

≤ Ce−c(x+y+T )

(5.11)

holds for any x, y ≥ 0.

PROOF OF THEOREM 5.1. First we use Theorem 4.1 to represent both sides of (5.1) as
Fredholm determinants. We introduce the rescaled discrete kernel

(5.12) KL,M,resc
n (x, y) = 2−5/6n1/3KL,M

n

(
2−5/6n1/3x,2−5/6n1/3y

)
.

Next we show that for any x, y ≥ 0

(5.13) KL,M,resc
n (x, y) → KL,M(x, y)

as n → ∞ and that there are c > 0 and C ∈R such that

(5.14)
∣∣KL,M,resc

n (x, y)
∣∣≤ Ce−c(x+y)

holds for any x, y ≥ 0. Then the convergence of Fredholm determinant follows from (5.13)
and (5.14) by dominated convergence.

Proposition 5.2 yields that under the scaling (5.3)

(5.15) 2−5/3n2/3ku,l,v
n (i, j) → Ai(L)(x + ξ)Ai(−t)(ζ + y)

holds as n → ∞. By the weak convergence in Proposition 5.6 and by (5.10) in Lemma 5.7
dominated convergence implies (5.13) and (5.14) for the L = T and M = T + 1 case with
the right-hand side of (5.14) replaced by Ce−c(x+y+T ). The general L < M case follows
immediately which proves the theorem. �
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6. Extension of conditioning. In this section, we prove that the conditioning for the top
path of the Aztec diamond ensemble and that of the Airy process can be extended to the
whole R, that is, we prove Theorem 1.3 from its finite interval counterpart Theorem 5.1.

Let us define

aL,M
n = P

(
Yn

(
bn(τ )

)≤ gn(τ ) for τ ∈ [L,M]),(6.1)

aL,M = P
(
A2(τ ) ≤ g(τ) for τ ∈ [L,M]),(6.2)

where the cases L = −∞ and M = ∞ are also allowed. For L,M ∈ R,

(6.3) aL,M
n = det

(
1 − KL,M

n

)
�2(Z+), aL,M = det

(
1 − KL,M)

L2(R+)

holds by Theorem 4.1 where the kernels are given by (4.2) and (4.4). In the rest of this
section, we prove that (6.3) can be extended for M = ∞ with fixed L ∈ R and the kernels
in the Fredholm determinant formulas make sense for these values. We mention however
that the kernel inside the Fredholm determinant formulas in (6.3) are not well defined for
L = −∞.

PROPOSITION 6.1. Let L ∈ R be fixed. Then

(6.4) det
(
1 − KL,M

n

)
�2(Z+) → det

(
1 − KL,∞

n

)
�2(Z+)

uniformly in n as M → ∞ where the kernel KL,∞
n is obtained from KL,M

n defined in (4.2) by
the formal substitution M = ∞. As a consequence, for any positive integer n,

(6.5) P
(
Yn

(
bn(τ )

)≤ gn(τ ) for τ ∈ [L,∞)
) = det

(
1 − KL,∞

n

)
�2(Z+).

PROOF OF PROPOSITION 6.1. First note that by change of variables the scaling identity

(6.6) det
(
1 − KL,M

n

)
�2(Z+) = det

(
1 − KL,M,resc

n

)
L2(R+)

holds where the rescaled kernel is given by (5.12). The identity (6.6)–(5.12) also holds when
M is replaced by ∞. To show the uniform convergence in (6.4), we use the general bound on
the difference of Fredholm determinants for our case∣∣det

(
1 − KL,M,resc

n

)
L2(R+) − det

(
1 − KL,∞,resc

n

)
L2(R+)

∣∣
≤ ∥∥KL,M,resc

n − KL,∞,resc
n

∥∥
1 exp

(∥∥KL,M,resc
n

∥∥
1 + ∥∥KL,∞,resc

n

∥∥
1 + 1

)
.

(6.7)

As a direct consequence of (4.2) and (5.10) in Lemma 5.7, we get that

(6.8)
∣∣KL,M,resc

n (x, y) − KL,∞,resc
n (x, y)

∣∣≤ Ce−c(x+y+M).

For bounding the 1-norm of the kernels on the right-hand side of (6.7), let us define the kernel
B(x, y) = δx,ye

−cx/2. Then using the fact that the 1 norm of a product of kernels can be upper
bounded by the product of the 2-norms of the factors, we can write

(6.9)

∥∥KL,M,resc
n − KL,∞,resc

n

∥∥2
1 ≤ ‖B‖2

2 · ∥∥B−1(KL,M,resc
n − KL,∞,resc

n

)∥∥2
2

≤
(∫ ∞

0
dxe−cx

)
Ce−2cM

∫ ∞
0

dx

∫ ∞
0

dye−2(cx/2+cy)

≤ C′e−2cM,

which holds uniformly in n proving uniform convergence in (6.4).
Next we let M → ∞ in the first equation of (6.3) for fixed L. For fixed L and n, the events

{Yn(bn(τ )) ≤ gn(τ ) for τ ∈ [L,M]} form a decreasing family in M , hence by the continuity
of measure, their probabilities converge, that is, limM→∞ aL,M

n = aL,∞
n for any L and n.

Therefore by (6.4), we see that aL,∞
n = det(1 − KL,∞

n )�2(Z+) which proves (6.5). �
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PROPOSITION 6.2. For any fixed L ∈ R, it holds

(6.10) lim
n→∞aL,∞

n = aL,∞.

PROOF OF PROPOSITION 6.2. By the triangle inequality, one can write for any L,M

and n

(6.11)
∣∣aL,∞

n − aL,∞∣∣≤ ∣∣aL,∞
n − aL,M

n

∣∣+ ∣∣aL,M
n − aL,M

∣∣+ ∣∣aL,M − aL,∞∣∣.
By the uniform convergence in Proposition 6.1 the first term on the right-hand side of (6.11)
goes to 0 uniformly in n as M → ∞. Hence we can choose M large enough so that the first
and also the third term on the right-hand side of (6.11) are arbitrarily small. With this M , we
can use Theorem 5.1 on the interval [L,M] to get that the second term on the right-hand side
of (6.11) is small if n is large enough, from which we conclude (6.10). �

In the next proposition, we bound the probability that the top curve in the tiling of the
Aztec diamond hits gn in the interval [L,∞) uniformly in n.

PROPOSITION 6.3. There are c > 0 and C ∈ R such that for any L > 0

(6.12) 1 − aL,∞
n ≤ Ce−cL

holds uniformly in n. Similarly there are c > 0 and C ∈R so that for any L > 0

(6.13) 1 − aL,∞ ≤ Ce−cL.

PROOF OF PROPOSITION 6.3. By using the rescaled kernels introduced in (5.12), we
have

(6.14) aL,∞
n = det

(
1 − KL,∞,resc

n

)
L2(R+)

for which kernel

(6.15)
∣∣KL,∞,resc

n (x, y)
∣∣≤ Ce−c(x+y+L)

holds with some c > 0 and C ∈ R by (5.10) in Lemma 5.7. By (6.14), the probability to be
bounded is written as

(6.16)

1 − det
(
1 − KL,∞,resc

n

)
�2(Z+)

=
∞∑

k=1

1

k!
∫
R+

dx1 . . .

∫
R+

dxk det
(
KL,∞,resc

n (xl, xm)
)k
l,m=1

≤
∞∑

k=1

1

k!
∫
R+

dx1 . . .

∫
R+

dxkC
ke−2c(x1+···+xk)−ckLkk/2

=
∞∑

k=1

kk/2

k! e−ckL

(
C

2c

)k

≤ C′e−cL,

where we used the Fredholm expansion first, then (6.15) and Hadamard’s inequality. Now the
uniform bound (6.12) follows. The proof of (6.13) is similar based on the decay bound

(6.17)
∣∣KL,∞(x, y)

∣∣≤ Ce−c(x+y+L)

that can be deduced from the form of the kernel in (4.4) and from (5.11) in Lemma 5.7. �
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PROOF OF THEOREM 1.3. With the notation (6.1)–(6.2), the statement of the theorem is
equivalent to

(6.18) 1 − a−∞,∞
n → 1 − a−∞,∞

as n → ∞. We give upper and lower bounds on the left-hand side of (6.18) as follows. Since
1 − a−∞,∞

n is the probability that Y(bn(τ )) hits gn(τ ) for some τ ∈ R, we obtain an upper
bound for any L > 0 by writing this event as the union of the events when hitting happens for
τ ∈ (−∞,−L], τ ∈ [−L,L] or τ ∈ [L,∞) and by using union bound:

(6.19) 1 − a−∞,∞
n ≤ (1 − a−∞,−L

n

)+ (1 − a−L,L
n

)+ (1 − aL,∞
n

)
.

By (6.12), the third and by symmetry the first term on the right-hand side of (6.19) are uni-
formly small in n if L is large enough. For any fixed L > 0, by taking n large, the second
term on the right-hand side of (6.19) is close to 1 − a−L,L. If L was large enough, 1 − a−L,L

is close enough to 1 − a−∞,∞ by (6.13).
A lower bound is obtained by the monotonicity of the events involved, that is,

(6.20) 1 − a−∞,∞
n ≥ 1 − a−L,L

n

for any L > 0. As n → ∞, the lower bound converges to 1 − a−L,L which is close to 1 −
a∞,∞ if L was chosen to be large enough. The matching upper and lower bounds complete
the proof of (6.18) and that of the theorem. �

7. Identification of the hard-edge tacnode kernel. This section is devoted to the proof
of Theorems 1.1 and 1.2. Suppose that a function g is given as in Theorem 1.1. Let us define
the kernel

(7.1)

Kg(x, y)

=
∫
R

dξ

∫
R

dζ Ai(t1)(R + x + ξ)
(
φt2−t1(ξ, ζ ) − T

g−R
t1,t2

(ξ, ζ )
)

Ai(−t2)(R + y + ζ )

+
∫
R−

dξ

∫
R−

dζ Ai(t1)(R + x + ξ)T
g−R
t1,t2

(ξ, ζ )Ai(−t2)(R + y − ζ )

+
∫
R−

dξ

∫
R−

dζ Ai(t1)(R + x − ξ)T
g−R
t1,t2

(ξ, ζ )Ai(−t2)(R + y + ζ )

−
∫
R−

dξ

∫
R−

dζ Ai(t1)(R + x − ξ)T
g−R
t1,t2

(ξ, ζ )Ai(−t2)(R + y − ζ )

with the notation (1.6) and (3.1). We remark that the kernel Kg can formally be defined by

(7.2) Kg(x, y) = 1(x, y) −
∫
R−

du

∫
R−

dv�x
t1
(u)T

g−R
t1,t2

(u, v)�
y
t2
(v),

which involves the difference of two operators that are not trace class.

PROPOSITION 7.1. For any function g as in Theorem 1.1, we have

(7.3) P
(
A2(t) ≤ g(t) for all t ∈ R

)= det(1 − Kg)L2(R+).

LEMMA 7.2. Let t1 < t2. Then it holds

(7.4) M
t1+(ξ, y) = Ai(−t1)(ξ + y) −

∫
R

dζT
g
t1,t2

(ξ, ζ )Ai(−t2)(ζ + y) + (T g
t1,t2

M
t2+
)
(ξ, y).
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PROOF. Using (3.13) we get

(7.5)

M
t1+(ξ, y) =

∫ t2

t1

∫ R

−∞
P
(
T

ξ,t1+ ∈ dt,X
ξ,T1+ ∈ dζ

) ∫
R

dvφt2−t1(ζ, v)Ai(−t2)(v + y)

+
∫ ∞
t2

∫ R

−∞
P
(
T

ξ,t1+ ∈ dt,X
ξ,t1+ ∈ dζ

)
Ai(−t)(v + y).

The first term can be written as

(7.6)

∫
R

dvPb(t1)=ξ

(
T

ξ,t1+ ∈ [t1, t2], b(t2) ∈ dv
)

Ai(−t2)(v + y)

=
∫
R

dvφt2−t1(ξ, v)Ai(−t2)(v + y) −
∫
R

dvT
g
t1,t2

(ξ, v)Ai(−t2)(v + y)

= Ai(−t1)(ξ + y) −
∫ R

−∞
dvT

g
t1,t2

(ξ, v)Ai(−t2)(v + y).

The second one can be written, by decomposing with respect to the value of the Brownian
bridge at time t2, as∫

dvT
g
t1,t2

(ξ, v)

∫ ∞
t2

∫
R

P
(
T

v,t2+ ∈ dt,X
v,t2+ ∈ dζ

)
Ai(−t)(ζ + y)

=
∫ R

−∞
dvT

g
t1,t2

(ξ, v)M
t2+(v, y).

(7.7)

�

PROPOSITION 7.3. For any t1 < t2 and u, v ∈ R−, the following compatibility relations
are satisfied: ∫

R−
du�

ξ
t1
(u)T 0

t1,t2
(u, v) = �

ξ
t2
(v),(7.8) ∫

R−
dvT 0

t1,t2
(u, v)�

ζ
t2
(v) = �

ζ
t1
(u),(7.9)

where transition operator T 0
t1,t2

is the special case of (1.6) for the g ≡ 0 function.

PROOF OF PROPOSITION 7.3. By the reflection principle

(7.10) T 0
t1,t2

(x, y) = φt2−t1(y − x) − φt2−t1(y + x)

with the notation (3.1). Hence the left-hand side of (7.8) is equal to the sum of four integrals
over R− after plugging in the definition of �

ξ
t1
(u). With a change of variables u → −u one

turns two of them into integrals over R+ which can be combined with the remaining two to
get two integrals over R. Then Lemma 3.1 applies and proves (7.8). The identity (7.9) is seen
similarly. �

PROOF OF PROPOSITION 7.1. We first rewrite the statement of Lemma 7.2. Note that
since g = R on [t2,∞), M

t2+(ξ, y) = Ai(−t2)(2R + y − ξ) for ξ < R by (3.21). Hence by
using Lemma 3.1, we can write (7.4) as

M
t1+(ξ, y) =

∫ R

−∞
dζ
(
φt2−t1(ξ, ζ ) − T

g
t1,t2

(ξ, ζ )
)

Ai(−t2)(ζ + y)

+
∫ R

−∞
dζT

g
t1,t2

(ξ, ζ )Ai(−t2)(2R + y − ζ ).

(7.11)
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By (3.21) again, we also have

(7.12) M
t1−(x, ξ) = Ai(t1)(2R + x − ξ)1ξ<R + Ai(t1)(x + ξ)1ξ≥R.

Then by Theorem 1.6 with the choice α = t1, L = −∞ and M = ∞ and by using (7.12)

(7.13)

Kh(x, y) =
∫ R

−∞
dξ Ai(t1)(2R + x − ξ)Ai(−t1)(ξ + y)

+
∫ ∞
R

dξ Ai(t1)(ξ + x)Ai(−t1)(2R + y − ξ)

+
∫ R

−∞
dξ
(
Ai(t1)(ξ + x) − Ai(t1)(2R + x − ξ)

)
M

t1+(ξ, y).

Direct computations yield (7.1) which involve the use of (7.11), Lemma 3.1 and the shift of
variables ξ → ξ − R and ζ → ζ − R. �

Now we are ready to prove the two main theorems.

PROOF OF THEOREM 1.1. By Proposition 7.1, we need to prove the identity

(7.14)
det(1 − Kg)L2(R+)

det(1 − KR)L2(R+)

= det
(
1 − Kt1,t1 + T

g−R
t1,t2

Kt2,t1

)
L2(R−).

We essentially follow the steps of the proof of Theorem 2.4 in [19]. Consider a function g

that satisfies the conditions of Theorem 1.1. Observe that by (7.1), the difference of kernels
can be written as

(7.15) Kg(x, y) − KR(x, y) =
∫
R−

du

∫
R−

dv�x
t1
(u)
(
T 0

t1,t2
(u, v) − T

g−R
t1,t2

(u, v)
)
�

y
t2
(v),

where KR is the kernel corresponding to g = R.
Let us recall that with Pa we mean the projection on [a,∞) and with P a the one on

(−∞, a). The ratio of Fredholm determinants on the left-hand side of (7.14) can be written
as

(7.16)

det(1 − Kg)L2(R+)

det(1 − KR)L2(R+)

= det
(
1 − P0(Kg − KR)P0(1 − KR)−1P0

)
L2(R)

= det
(
1 − P0�t1P 0

(
T 0

t1,t2
− T

g−R
t1,t2

)
P 0�t2P0(1 − KR)−1P0

)
L2(R)

= det
(
1 − (T 0

t1,t2
− T

g−R
t1,t2

)
P 0�t2P0(1 − KR)−1P0�t1

)
L2(R−),

where we used (7.15) in the second equality above and the cyclic property of the determinant
in the third. By noting that on the right-hand side of (7.16) the kernel �t2(1 − KR)−1�t1 =
Kt2,t1 and by the compatibility relation (7.9), the result (7.14) follows. �

PROOF OF THEOREM 1.2. We apply Theorem 1.1 for the function

(7.17) g(t) =
{
ul + t2 if t = tl, l ∈ {1, . . . , k},
R + t2 if t �= {t1, . . . , tk}.

Without loss of generality we may assume that t1 < t2 < · · · < tk . Theorem 1.1 implies that

(7.18) lim
n→∞ P

(
k⋂

�=1

{
XR,resc

n (t�) ≤ u�

})= det
(
1 − Kt1,t1 + T

g−R
t1,tk

Ktk,t1

)
L2(R−)
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with the function given in (7.17) on the right-hand side above. Note that the special form of
g implies that the transition operator on the right-hand side of (7.18) can be written as

(7.19) T
g−R
t1,tk

= P u1−RT 0
t1,t2

P u2−RT 0
t2,t3

. . . T 0
tk−1,tk

P uk−R.

Then the Fredholm determinant on the right-hand side of (7.18) with T
g−R
t1,tk

replaced by the
path integral kernel on the right-hand side of (7.19) is equal to the right-hand side of (1.9)
using Theorem 3.3 of [4]. To check the condition of the theorem, one sets X =R− with oper-
ators Qti = P ti , Wti ,tj = T 0

ti ,tj
and kernel Kti = Kti,ti . The compatibility assumptions follow

from the form of the kernel Kti,tj = Kext(ti , ·; tj , ·) given in (1.7) and from Proposition 7.3.
Boundedness and trace class property of certain operators are proved by observing that Qti

is a projection to a finite interval. However Kti itself is not in trace class. �

8. Proofs of asymptotics. As a preparation for the proof of Propositions 5.2, 5.3, 5.4
and 5.5, we rewrite the rescaled functions p(n) and q(n) using their definitions (1.16)–(1.17)
and the scaling (5.3) as

(8.1)

P
(n)
l (v + j) = 2−5/6n1/3 −1

2πi

∮

1

dz

z
e−ng0(z,0,0)+n2/3tg1(z)−n1/3(y+ζ )g2(z),

Q
(n)
L (u + i) = 2−5/6n1/3 1

2πi

∮

0

dw

w
eng0(w,0,0)−n2/3Lg1(w)+n1/3(ξ+x)g2(w),

where

g0(z, s, r) =
(

1

2
√

2
− 1

2
− s + r

)
log z +

(
1

2
− 1

2
√

2
− s

)
log(1 − z)

+
(

1

2
+ 1

2
√

2
+ s

)
log(1 + z) + (r − 2s) log(

√
2 + 1) − log 2

2

(8.2)

and

g1(z) = 2−7/6 log
(

z(1 − z)

1 + z

)
+ 2−1/6 log(

√
2 + 1),(8.3)

g2(z) = 2−5/6 log z + 2−5/6 log(
√

2 + 1).(8.4)

The integral formulas on the right-hand side of (8.1) are useful when the rescaled variables
t , y, ξ + x remain bounded. In order to understand the decay properties of p(n) and q(n), one
has to bound them also when the above rescaled parameters are macroscopic which corre-
sponds to choosing the arguments s and r of g0(z, s, r) to be nonzero, since the asymptotics of
the integrals in (8.1) are mainly determined by the behaviour of the function g0(z, s, r) along
their integration contours. First we keep the rescaled parameter t bounded and consider the
critical points of the corresponding function g0(z,0, r) which are

(8.5) z±
r =

√
2 ±

√
8
√

2r + 16r2

2 + √
2 + 4r

.

z±
r are two complex conjugate numbers for r ∈ (−1/

√
2,0) and real otherwise. We will pass

through these critical points after the contours γ and 
 have been deformed.

LEMMA 8.1. Fix r ∈R. For θ ∈ [0, π], the function Re(g0(w,0, r)) decreases along the
contour w = w(θ) = ρeiθ as long as

(8.6) cos θ <
1 + ρ2

2
√

2ρ

holds and it increases if (8.6) does not hold. For θ ∈ [π,2π ], the opposite statement is true.
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For φ ∈ [0, π], the function −Re(g0(z,0, r)) decreases along the contour z = z(φ) =
1 − Re−iφ as long as Q > 0 holds with

(8.7) Q = 6
√

2 − 4 + (3
√

2 + 2)R2 + 16r + 4R2r − 8
√

2R(1 + √
2r) cosφ

and it increases if Q < 0 holds. For φ ∈ [π,2π ], the opposite statement is true.

PROOF OF LEMMA 8.1. By using the identity Re(log z) = 1
2 log |z|2 for any complex

number z, one gets for the contour w = ρeiθ that

(8.8)

Re
(
g0
(
ρeiθ ,0, r

))
=
(

1

2
√

2
− 1

2
+ r

)
logρ +

(
1

2
− 1

2
√

2

)
1

2
log
(
1 + ρ2 − 2ρ cos θ

)
+
(

1

2
+ 1

2
√

2

)
1

2
log
(
1 + ρ2 + 2ρ cos θ

)+ r log(
√

2 + 1) − log 2

2
.

Its derivative simplifies to

(8.9)
d

dθ
Re
(
g0
(
ρeiθ ,0, r

))= −ρ sin θ(
√

2(1 + ρ2) − 4ρ cos θ)

2|1 − w|2|1 + w|2 .

For θ ∈ [0, π], as long as
√

2(1 + ρ2) − 4ρ cos θ > 0, that is, if (8.6) holds, then
Re(g0(ρeiθ ,0, r)) decreases, otherwise Re(g0(ρeiθ ,0, r)) increases.

For the contour z = 1 − Re−iφ , similar to (8.8), one has

(8.10)

−Re
(
g0
(
1 − Re−iφ,0, r

))
= −

(
1

2
√

2
− 1

2
+ r

)
1

2
log
(
1 + R2 − 2R cosφ

)− (1

2
− 1

2
√

2

)
logR

−
(

1

2
+ 1

2
√

2

)
1

2
log
(
4 + R2 − 4R cosφ

)+ r log(
√

2 + 1) − log 2

2
.

Its derivative can be calculated to be

(8.11) − d

dφ
Re
(
g0
(
1 − Re−iφ,0, r

))= − RQ sinφ

4|z|2|1 + z|2
with Q given in (8.7). For θ ∈ [0, π], if Q > 0, then −Re(g0(1 − Re−iφ,0, r)) decreases,
otherwise −Re(g0(1 − Re−iφ,0, r)) increases. �

PROOF OF PROPOSITION 5.2. We choose the integration contours first. Since r = 0 in
(8.1), the (double) critical point for g0(z,0,0) is at z±

0 = √
2 − 1 by (8.5). By the first part

of Lemma 8.1, the function Re(g0(w,0,0)) is steep descent for the contour w = ρeiθ if
ρ ∈ (0,

√
2 − 1]. By the steep descent property, we mean that the function decreases along

both arcs of the contour away from the critical point until the antipodal point. The reason
for the steep descent property of Re(g0(w,0,0)) is that the right-hand side of (8.6) is a
decreasing function of ρ and it is equal to 1 for ρ = √

2 − 1. On the other hand, the function
−Re(g0(z,0, r)) is steep descent for the contour z = 1 − Re−iφ for R ∈ (0,2 − √

2]. This is
because 6

√
2 − 4 + (3

√
2 + 2)R2 ≥ 8

√
2R for R ∈ (0,2 − √

2], hence Q ≥ 0 for all values
of φ.

By Taylor expansion around
√

2 − 1, we obtain

(8.12)

g0(z,0,0) = −1

3
· 2−5/2(

√
2 + 1)3(z − (

√
2 − 1)

)3 +O
((

z − (
√

2 − 1)
)4)

,

g1(z) = −2−5/3(
√

2 + 1)2(z − (
√

2 − 1)
)2 +O

((
z − (

√
2 − 1)

)3)
,

g2(z) = 2−5/6(
√

2 + 1)
(
z − (

√
2 − 1)

)+O
(
z − (

√
2 − 1)2).
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The deformed integration contours are the following. In a small neighbourhood of the critical
point, we follow the direction of steepest descent, that is, we use

(8.13) 
δ,± = {e±iπ/3t : t ∈ [0, δ]}, γ δ,± = {e±2iπ/3t : t ∈ [0, δ]}.
Let δ > 0 be small. We deform the contour 
1 to 
δ,± completed by a circle around 1 with
radius slightly smaller than 2 − √

2. The function −Re(g0(w,0,0)) is steep descent along
the 
δ,± part of the contour by the Taylor expansion (8.12) and by a previous observation in
this proof along the circular part. Similarly, 
0 can be replaced γ δ,± completed by a circle
around 0 with a radius slightly smaller than

√
2 − 1. Then the function Re(g0(w,0,0)) is

steep descent along the γ δ,± by the Taylor expansion (8.12) and by a previous observation
along the circular part. By the Taylor expansion (8.12) again, the circular parts of the contours
can be omitted by making an error of order e−cδ3n.

By plugging the Taylor expansions (8.12) into (8.1) and after the change of variables Z =
2−5/6(

√
2 + 1)(z − (

√
2 − 1))n1/3 and W = 2−5/6(

√
2 + 1)(w − (

√
2 − 1))n1/3, we get

(8.14)
P

(n)
l (v + j) = 1

2πi

∫ eiπ/3δn1/3

e−iπ/3δn1/3
dZeZ3/3−tZ2−(y+ζ )Z

+ 1

2πi

∫ eiπ/3δn1/3

e−iπ/3δn1/3
dZeZ3/3−tZ2−(y+ζ )Z(en−1/3O(Z4+Z2) − 1

)
,

and

(8.15)
Q

(n)
L (u + i) = 1

2πi

∫ e2iπ/3δn1/3

e−2iπ/3δn1/3
dWe−W 3/3+LW 2+(ξ+x)W

+ 1

2πi

∫ e2iπ/3δn1/3

e−2iπ/3δn1/3
dWe−W 3/3+LW 2+(ξ+x)W (en−1/3O(W 4+W 2) − 1

)
.

Using the bound |ex − 1| ≤ |x|e|x|, one can see that the last term on the right-hand side of
(8.14) can be bounded as∣∣∣∣ 1

2πi

∫ eiπ/3δn1/3

e−iπ/3δn1/3
dZeZ3/3−tZ2−(y+ζ )Z(en−1/3O(Z4+Z2) − 1

)∣∣∣∣
≤
∣∣∣∣n−1/3

2πi

∫ eiπ/3δn1/3

e−iπ/3δn1/3
dZO

(
Z4 + Z2)eZ3/3−tZ2−(y+ζ )Z+n−1/3O(Z4+Z2)

∣∣∣∣,
(8.16)

which is integrable and goes to 0 as n−1/3. The last error term in (8.15) can be bounded
similarly. One can extend the integration path to infinity in the first term on the right-hand
side of (8.14) and (8.15) by making an error of order e−cδ3n. Computing the respective Airy
integrals yield (5.4) and (5.5). The bound on the error terms above are uniform on compact
intervals of ζ + y and x + ξ , hence the uniformity of the convergence follows. �

PROOF OF PROPOSITION 5.3. Assume first that y + ζ > 0 and let y + ζ = 25/6rn2/3

where r > 0 is a macroscopic parameter for which j + 2−5/6ζn1/3 = rn. Then instead of the
first equation in (8.1), we write

(8.17) P
(n)
l (v + j) = 2−5/6n1/3 −1

2πi

∮

1

dz

z
e−ng0(z,0,r)+n2/3tg1(z).

The function g0(z,0, r) has two critical points given in (8.5) which are O(r1/2) away from√
2 − 1 for small r > 0. We pass by the one above

√
2 − 1 where −Re(g0(z,0, r)) is smaller.
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For a small ε > 0, we choose

(8.18) α =
{√

2 − 1 + r1/2 if r ≤ ε,√
2 − 1 + ε1/2 if r > ε.

Next we show that the function −Re(g0(z,0, r)) is steep descent along the contour z(φ) =
1 − (1 − α)e−iφ for any r > 0 if ε is small enough, that is, it attains its maximum at α and
it decreases along both arcs until the point 2 − α. To this end, we have to show that the
quantity Q defined in (8.7) is positive along the contour. First note that φ �→ Q is increasing
for φ ∈ [0, π], hence it is enough to prove positivity for φ = 0. Further, Q(φ = 0) is a linear
function of r , that is,

(8.19) Q(φ = 0) = 6
√

2 − 4 − 8
√

2R + (3
√

2 + 2)R2 + 4(R − 2)2r.

The constant term 6
√

2 − 4 − 8
√

2R + (3
√

2 + 2)R2 is positive for any R < 2 − √
2, hence

it is positive for R = 1 − α with α defined in (8.18). This proves that Q(φ = 0) > 0 for any
r > 0 and that the quantity Q > 0 along the contour z(φ) = 1 − (1 −α)e−iφ , that is, the steep
descent property holds.

By the steep descent property, we can localize the integral
(8.20)∣∣P (n)

l (v + j)
∣∣= 2−5/6n1/3eRe(−ng0(α,0,r)+n2/3tg1(α))

×
(∣∣∣∣ 1

2πi

∫ δ

−δ
dφ(1 − α)en(−g0(z(φ),0,r)+g0(α,0,r))+n2/3t (g1(z(φ))−g1(α))

∣∣∣∣+O
(
e−c̃n))

with a constant c̃ > 0 independent of n where z(φ) = 1 − (1 − α)e−iφ . Series expansion
yields

(8.21) −Re
(
g0
(
z(φ),0, r

)− g0(α,0, r)
)= −γφ2 +O

(
φ3)

with

γ = (1 − α)

(
4 + 2

√
2

(1 + α)2 − 2 − √
2

α2

)
= (4 + 2

√
2)
(
α − (

√
2 − 1)

)+O
((

α − (
√

2 − 1)
)2)

,

(8.22)

where the second equality is the expansion of γ for α close to
√

2 − 1. In particular γ > 0
if α is slightly larger than

√
2 − 1. In addition, Re(g1(z(φ)) − g1(α)) is also quadratic in φ.

Hence ∣∣∣∣ 1

2πi

∫ δ

−δ
dφen(−g0(z(φ),0,r)+g0(α,0,r))+n2/3t (g1(z(φ))−g1(α))

∣∣∣∣
= 1

2π

∫ δ

−δ
dφe−γφ2n(1+O(φ))(1+O(n−1/3)) ≤ 1

2π

∫ δ

−δ
dφe− γφ2n

2 ≤ 1√
2πnγ

(8.23)

for n large enough and δ small enough. The last inequality above follows by computing the
Gaussian integral over R. Note that one can write

(8.24)
n1/3

√
2πnγ

= 1√
2π

{
n−1/6r−1/4 if r ≤ ε,

n−1/6ε−1/4 if r > ε,

where n−1/6r−1/4 = (y + ζ )−1/4, hence (8.24) is bounded if y + ζ is at least a positive
constant. By putting together (8.20), (8.23) and (8.24), one can conclude that for n large
enough

(8.25)
∣∣P (n)

l (v + j)
∣∣≤ 2−5/6n1/3CeRe(−ng0(α,0,r)+n2/3tg1(α))

uniformly if y + ζ is at least a positive constant.
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By Taylor expansion,

g0(z,0, r) =
(
−2−5/2

3
(
√

2 + 1)3(z − (
√

2 − 1)
)3 + (

√
2 + 1)r

(
z − (

√
2 − 1)

))
(8.26)

× (1 +O
(
z − (

√
2 − 1)

))
.

If r ≤ ε, then α − (
√

2 − 1) = r1/2 and by (8.25) and using (8.12) and (8.26),

(8.27)

∣∣P (n)
l (v + j)

∣∣≤ Ce(− 14+17
√

2
24 nr3/2−2−5/3(

√
2+1)2tn2/3r)(1+O(

√
ε))

= Ce(− 14+17
√

2
24 (y+ζ )3/2−2−5/3(

√
2+1)2t (y+ζ ))(1+O(

√
ε)),

where −14+17
√

2
24 = 1

3 · 2−5/2(
√

2 + 1)3 − (
√

2 + 1). The first term in the exponent on the
right-hand side of (8.27) dominates, hence for any c > 0, one can choose C′ large enough
so that Ce−c(y+ζ ) upper bounds the right-hand side of (8.27) if y + ζ is at least a positive
constant.

If r > ε, then

(8.28)
∣∣P (n)

l (v + j)
∣∣≤ Ce(n

√
ε( 1

3 ·2−5/2(
√

2+1)3ε−r)−2−5/3(
√

2+1)2tn2/3ε)(1+O(
√

ε)),

where 1
3 · 2−5/2(

√
2 + 1)3ε − r ≤ − 1

10r if ε is not too large. Hence the first term in the
exponent on the right-hand side of (8.28) can be upper bounded by − 1

10

√
εn1/3(y + ζ ) and

the second term can simply be neglected since it is negative. That is, for given ε > 0, n can
be chosen so large that

(8.29)
∣∣P (n)

l (v + j)
∣∣≤ Ce− 1

20
√

εn1/3(y+ζ ).

This finishes the proof for the case when y + ζ is bounded from below by a positive constant.
By the uniform convergence in Proposition 5.2, (5.6) can be extended for the case when y +ζ

is bounded from below by any constant. �

PROOF OF PROPOSITION 5.4. First we prove (5.7) for x + ξ > 0. In the case when
x + ξ = 25/6rn2/3 is macroscopic with some r > 0, we can write

(8.30) Q
(n)
L (u + i) = 2−5/6n1/3 1

2πi

∮

0

dw

w
eng0(w,0,r)−n2/3Lg1(w)

similar to (8.17). By contour deformation, we pass by the critical point below
√

2 − 1, that
is, for a fixed ε > 0 small enough, we choose

(8.31) α̂ =
{√

2 − 1 − r1/2 if r ≤ ε,√
2 − 1 − ε1/2 if r > ε.

Since the right-hand side of (8.6) is larger than 1 for any ρ ∈ (0,
√

2 − 1), the function
Re(g0(w,0, r)) is steep descent along the contour w(θ) = α̂eiθ for any r > 0, that is, it
attains its maximum at α̂ and it decreases along both arcs until the point −α̂. Hence one can
localize the integration contour to a small δ > 0 neighbourhood of α̂ in the same way as in
(8.20).

By series expansion,

(8.32) Re
(
g0
(
α̂eiθ ,0, r

)− g0(α̂,0, r)
)= −γ̂ θ2 +O

(
θ3)

with

(8.33) γ̂ =
√

2α̂(α̂2 − 2
√

2α̂ + 1)

4(1 − α̂2)
= −2 + √

2

8

(
α̂ − (

√
2 − 1)

)+O
((

α̂ − (
√

2 − 1)
)2)

,
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where the second equality above is the expansion of γ̂ for α̂ close to
√

2 − 1. In particular,
γ̂ > 0 if α̂ ∈ (0,

√
2−1). Further Re(g1(α̂eiθ )−g1(α̂)) is also quadratic in θ for small θ . The

rest of the proof of the bound (5.7) for x +ξ > 0 on the rescaled q(n) can be done analogously
to the one for p(n), in particular

(8.34)
∣∣Q(n)

L (u + i)
∣∣≤ Cn1/3eRe(ng0(α̂,0,r)+n2/3g2(α̂))

√
2πnγ̂

can be shown. The asymptotics of the first factor on the right-hand side of (8.34) is the same
as (8.24) and the exponential factor can be bounded as in (8.27)–(8.29). This yields the bound
(5.7) for x + ξ > 0.

Next we consider the remaining cases, that is, when x + ξ < 0. Let x + ξ = 25/6rn2/3

again where r < 0 for the rest of this proof. We show

(8.35)
∣∣Q(n)

L (u + i)
∣∣≤ C

when r ∈ (−1/
√

2,−ε) for some small ε > 0 which is a stronger bound than (5.7) in this
regime. For any r ∈ (−1/

√
2,0), the function g0(w,0, r) has exactly two complex conjugate

critical points given by (8.5). Let us choose the integration contours to be the unique circle of
the form w = w(θ) = ρeiθ which passes through the critical point z±

r , that is, ρ = |z±
r |. By

Lemma 8.1, along the contour w = ρeiθ , the function Re(g0(w,0, r)) attains its maximum
for θ ∈ [0, π] exactly at the critical point for the unique θ for which equality holds in (8.6).

Then by (8.30)∣∣Q(n)
L (u + i)

∣∣≤ 2−5/6n1/3enRe(g0(z
+
r ,0,r))

×
∫ 2π

0

dθ

2π
ρenRe(g0(ρeiθ ,0,r)−g0(z

+
r ,0,r))+n2/3LRe(g1(ρeiθ )).

(8.36)

By the maximum property of Re(g0(w,0, r)) along the contour w = ρeiθ , the leading term
in the exponent of the integrand above satisfies

(8.37) Re
(
g0
(
ρeiθ ,0, r

)− g0
(
z+
r ,0, r

))≤ 0.

Therefore, the integrand on the right-hand side of (8.36) can grow at most as the exponential
of n2/3 times the maximum of |LRe(g1)| along the contour. The latter maximum is uniformly
bounded except for the case when the contour passes by a singularity of g1 at ±1 or 0. In
these cases the circular contour can locally be modified to have a uniformly positive distance
from the singularities and also to keep the maximum property of Re(g0(w,0, r)). In this way,
the exponent of the integrand on the right-hand side of (8.36) is at least constant times n2/3

which together with the n1/3 prefactor are dominated by the exponential prefactor provided
that Re(g0(z

+
r ,0, r)) < 0 for r ∈ (−1/

√
2,0). This yields boundedness in (8.35) for r ∈

(−1/
√

2,−ε).
To show the negativity of Re(g0(z

+
r ,0, r)), we first observe that Re(g0(z

+
0 ,0,0)) = 0 and

that d
dr

Re(g0(z
+
r ,0, r)) = 0. The rest of the proof is showing that Re(g0(z

+
r ,0, r)) is a con-

cave function of r in [−1/
√

2,0]. By substituting the general formula (8.5) for z+
r into (8.2),

one observes that the second derivative does not contain any logarithm and it simplifies to

(8.38)
d2

dr2 g0
(
z+
r ,0, r

)= − 2i√
−r(

√
2 + 2r)(

√
2 + 4r + 4i

√
−r(

√
2 + 2r))

.

Since the quantities under the square root are nonnegative for r ∈ [−1/
√

2,0], one readily
gets the real part of the two sides of (8.38) to be

(8.39)
d2

dr2 Re
(
g0
(
z+
r ,0, r

))= − 4

1 − 4
√

2r − 8r2
.
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This proves concavity because 1 − 4
√

2r − 8r2 > 0 for r ∈ [−1/
√

2,0], hence the bound
(8.35) follows for r ∈ (−1/

√
2,−ε).

For r ≤ −1/
√

2, we choose the contour w = ρeiθ with ρ = √
2 + 1 for which the func-

tion Re(g0(w,0, r)) is steep descent, since the right-hand side of (8.6) is equal to 1. After a
similar bound as (8.36) in the previous regime and by the same argument, it is enough to see
that Re(g0(

√
2 + 1,0, r)) < 0 for r ≤ −1/

√
2. The negativity holds for r = −1/

√
2 and by

definition (8.2), we have

(8.40) g0(
√

2 + 1,0, r) = g0(
√

2 + 1,0,−1/
√

2) + 2(r + 1/
√

2) log(
√

2 + 1),

which proves the negativity of Re(g0(
√

2 + 1,0, r)) for r ≤ −1/
√

2 and the boundedness in
(8.35) in this regime.

Finally, let us consider the case when r ∈ (−ε,0). We show in what follows that there are
c > 0 and C ∈R such that

(8.41)
∣∣Q(n)

L (u + i)
∣∣≤ C

|rn2/3|1/4 e−2nr2+cn2/3|r|

holds. It is enough to conclude the proof of Proposition 5.4 for the following reason. If |r| >
cn−1/3, that is, x + ξ < −cn1/3 with the c from (8.41), then the −2nr2 term dominates in
the exponent on the right-hand side of (8.41), hence the right-hand side can be bounded by a
constant. If |r| < n−2/3, that is, x + ξ is of constant order, then the convergence (5.5) can be
used instead to conclude that (5.7) holds. In the intermediate case, we neglect the first term
in the exponent on the right-hand side of (8.41) and the second term gives a −c(x + ξ) in the
exponent which together with the C/|x + ξ |1/4 prefactor yield (5.7).

To prove (8.41), we replace the integration contour γ in (8.17) by the union of the local
paths

(8.42) γ ±
loc = {z±

r + e±i3π/4x, x ∈ [− Im
(
z+
r

)√
2, δ
]}

for a small δ > 0 and the circular arc around the origin that connects the endpoints of γ ±
loc.

The paths γ ±
loc intersect at x = − Im(z+

r )
√

2 on the real axis. By the Taylor expansion also
explained below in (8.43)–(8.45), the function Re(g0(w,0, r)) attains its two maxima along
γ ±

loc at z±
r . The value of Re(g0(w,0, r)) further decreases along the circular part of the con-

tour by Lemma 8.1 for the following reason. Let θ+
r = arg z+

r . Then Re(g0(|z+
r |eiθ ,0, r))

decreases for θ ∈ [θ+
r , π], in particular (8.6) holds for θ ∈ [θ+

r , π]. The radius of the circular
part of the new contour is smaller than |z±

r |, hence (8.6) and the decreasing property remain
valid.

Next one localizes the integral to γ ±
loc by making an additive error of order

enRe(g0(z
+
r ,0,r))+O(nδ3). To bound the integral on γ +

loc (and similarly for γ −
loc), we use Tay-

lor expansion around the critical point z+
r

g0(w,0, r) = g0
(
z+
r ,0, r

)+ 1

2
g′′

0
(
z+
r ,0, r

)(
w − z+

r

)2
+ 1

6
g′′′

0
(
z+
r ,0, r

)(
w − z+

r

)3 +O
((

w − z+
r

)4)
,

(8.43)

where primes mean derivatives in the first variable. For w ∈ γ +
loc, w−z+

r has an angle ±ei3π/4,
furthermore,

g′′
0
(
z+
r ,0, r

)= −i2−1/4(
√

2 + 1)2√|r| +O
(|r|),

g′′′
0
(
z+
r ,0, r

)= −2−3/2(
√

2 + 1)3 +O
(√|r|)(8.44)
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as r ↑ 0, hence with w = z+
r + ei3π/4x,

(8.45)

Re
(

1

2
g′′

0
(
z+
r ,0, r

)(
w − z+

r

)2)= −1

2

∣∣g′′
0
(
z+
r ,0, r

)∣∣x2(1 +O(
√

ε0)
)
,

Re
(

1

6
g′′′

0
(
z+
r ,0, r

)(
w − z+

r

)3)= − 1

6
√

2

∣∣g′′′
0
(
z+
r ,0, r

)∣∣x3(1 +O(
√

ε0)
)
.

The contribution that comes from the integral over γ +
loc is bounded by∣∣∣∣∫

γ +
loc

dw

w
eng0(w,0,r)+n2/3Lg1(w)

∣∣∣∣
≤ Ce

Re(ng0(z
+
r ,0,r))+n2/3L supw∈γloc

Re(g1(w))

×
∫ δ

− Im(z+
r )

√
2

dxe
− n

2 |g′′
0 (z+

r ,0,r)|x2− n

6
√

2
|g′′′

0 (z+
r ,0,r)|x3+O(nx4)

.

(8.46)

For − Im(z+
r )

√
2 ≤ x ≤ 0, after comparing the numerical values of the derivatives, one

can dominate the cubic term by the quadratic one

(8.47) −n

2

∣∣g′′
0
(
z+
r ,0, r

)∣∣x2 − n

6
√

2

∣∣g′′′
0
(
z+
r ,0, r

)∣∣x3 ≤ −n

4

∣∣g′′
0
(
z+
r ,0, r

)∣∣x2

if n is large enough. By replacing the factor n/4 by n/6, the quartic error term O(nx4) can
also be dominated if ε0 is small enough. On the other hand, for 0 ≤ x ≤ δ, the cubic term is
negative and it dominates the error term, that is, for δ small enough,

(8.48) − n

6
√

2

∣∣g′′′
0
(
z+
r ,0, r

)∣∣x3 +O
(
nx4)≤ − n

12
√

2

∣∣g′′′
0
(
z+
r ,0, r

)∣∣x3 ≤ 0

holds.
By combining the previous bounds, the integral on the right-hand side of (8.46) can be

bounded by∫ δ

− Im(z+
r )

√
2

dxe
− n

2 |g′′
0 (z+

r ,0,r)|x2− n

6
√

2
|g′′′

0 (z+
r ,0,r)|x3+O(nx4)

≤
∫ δ

− Im(z+
r )

√
2

dxe− n
6 |g′′

0 (z+
r ,0,r)|x2 ≤

√
6π

n|g′′
0 (z+

r ,0, r)| = C

|r|1/4
√

n
,

(8.49)

where we extended the integral to R and computed the Gaussian integral in the second in-
equality, where we used the asymptotics (8.44) as well. Since

(8.50) Re
(
g1
(
z+
r

))= −25/6r +O
(
r2), Re

(
g′

1
(
z+
r

))= −(90 + 58
√

2)1/3r +O
(
r2),

also the supremum supw∈γloc
Re(g1(w)) =O(|r|). On the other hand,

(8.51) Re
(
g0
(
z+
r ,0, r

))= −2r2 +O
(|r|3).

Putting together (8.46) and (8.49) with (8.50) and (8.51), the bound (8.41) follows. �

PROOF OF PROPOSITION 5.5. Suppose that the parameters t = 27/6sn1/3 and y + ζ =
25/6rn2/3 are macroscopic where s, r > 0. With this setting of parameters, one has the repre-
sentation

(8.52) P
(n)
l (v + j) = 2−5/6n1/3 −1

2πi

∮

1

dz

z
e−ng0(z,s,r),
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which can be checked by comparing (8.1) with (8.2)–(8.4). Note that if s ≥ 1
2 − 1

2
√

2
, then

the integrand on the right-hand side of (8.52) has no singularity at 1 and hence inside 
1 and
then the whole integral is zero. Therefore it is enough to consider s ∈ (0, 1

2 − 1
2
√

2
) in the rest

of the proof.
Let us deform the integration contour 
1 in (8.52) first. For r = 0, the function g0(z, s,0)

has critical points at z1 = √
2 − 1 and at z2 =

√
2+4s+4

√
2s

2+√
2−4s

. For s ∈ (0, 1
2 − 1

2
√

2
), one has

z2 ∈ (
√

2 − 1,1) and let the integration contour be the circle around 1 which passes through
z2, that is, with radius R = 1−z2. Then one can write −Re(g0(1−Re−iφ, s,0)) analogously
to (8.10) and by taking its derivative one arrives to

(8.53) − d

dφ
Re
(
g0
(
1 − Re−iφ, s,0

))= − RQ̃ sinφ

4|z|2|1 + z|2 ,

where z = 1 − Re−iφ and Q̃ = 6
√

2 − 4 + (3
√

2 + 2)R2 − 8s + 4R2s − 8
√

2R cosφ. Since
the function φ �→ Q̃ is increasing, it is enough to show that it is positive for φ = 0 in order
to verify the steep descent property of the function −Re(g0(z, s,0)) along the contour 1 −
Re−iφ as in Lemma 8.1. The quantity Q̃ with φ = 0 and with R = 1 − z2 = 1 −

√
2+4s+4

√
2s

2+√
2−4s

is equal to

(8.54) Q̃

(
φ = 0,R = 1 −

√
2 + 4s + 4

√
2s

2 + √
2 − 4s

)
= 32(

√
2 + 1)s(1 + 8s + 8s2)

(2 + √
2 − 4s)2

,

which is positive for s ∈ (0, 1
2 − 1

2
√

2
). For general r > 0, let us write

(8.55) g0(z, s, r) = g0(z, s,0) + r log
(
(
√

2 + 1)z
)

and observe that −Re(r log((
√

2 + 1)z)) is steep descent for the contour 1 − Re−iφ , hence
also −Re(g0(z, s, r)) is steep descent along the same contour.

By localizing the integral (8.52), we can write

(8.56)

∣∣P (n)
l (v + j)

∣∣= 2−5/6n1/3eRe(−ng0(1−R,s,r))

×
(∣∣∣∣ 1

2πi

∫ δ

−δ
dφRen(−g0(1−Re−iφ,s,r)+g0(1−R,s,r))

∣∣∣∣+O
(
e−c̃n)).

By the fact that the difference of −Re(g0(z, s, r)) + Re(g0(z, s,0)) was previously shown to
be steep descent along the integration contour and by Taylor expansion,

(8.57)

Re
(−g0

(
1 − Re−iφ, s, r

)+ g0(1 − R, s, r)
)

≤ Re
(−g0

(
1 − Re−iφ, s,0

)+ g0(1 − R, s,0)
)

= −γ̃ φ2 +O
(
φ4),

where γ̃ = 1
2
√

2
s(1−8s+8s2)

1+8s+8s2 . Then the integral in absolute value on the right-hand side of

(8.56) can be bounded in the same way as in (8.23) by C/
√

nγ̃ . This bound is the largest when
s is small in which case together with the n1/3 prefactor it is of order 1/

√
n1/3s = C/

√
t .

If s < ε, then Taylor expansion yields

(8.58)
−nRe

(
g0(1 − R, s,0)

)= −n
32

√
2

3
s3(1 +O(ε)

)= −4

3
t3(1 +O(ε)

)
,

−nRe
(
r log

(
(
√

2 + 1)(1 − R)
))= −8nrs

(
1 +O(ε)

)= −2(y + ζ )t
(
1 +O(ε)

)
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from which it follows

(8.59)
∣∣P (n)

l (v + j)
∣∣≤ C√

t
e− 4

3 t3−2(y+ζ )t .

For s ∈ (ε, 1
2 − 1

2
√

2
), there is a δ = δ(ε) > 0 such that

(8.60) −Re
(
g0(1 − R, s,0)

)≤ −27/6δs, −Re
(
r log

(
(
√

2 + 1)(1 − R)
))≤ −δrs.

To prove the first inequality in (8.60), first remark that g0(1 − R(s = 0),0,0) = 0, d
ds

g0(1 −
R(s), s,0)|s=0 = 0, and

(8.61)
d2

ds2 g0
(
1 − R(s), s,0

)= 128√
2

s

1 − 48s2 + 64s4 ,

which is positive for s ∈ (0, 1
2 − 1

2
√

2
), hence Re(g0(1 − R, s,0)) is a convex function of s.

For the second bound in (8.60), it is enough to take the first derivative. Then using (8.56) and
(8.60), one gets a bound

(8.62)
∣∣P (n)

l (v + j)
∣∣≤ Ce−n27/6δs−nδrs = Ce−δn2/3t−4δ(y+ζ )t .

To finish the proof of (5.8), let K be a large fixed constant. If t ≤ K , then let us
use Proposition 5.3 to see that the integral on the left-hand side of (5.8) is at most
Ce−c(y+ζ ) = C′e−c(K+y+ζ ) ≤ C′e−c(t+y+ζ ). If t > K , then both (8.59) and (8.62) give a
bound Ce−ct−c(y+ζ )t ≤ Ce−ct−cK(y+ζ ) proving (5.8). �

PROOF OF PROPOSITION 5.6. Suppose first that the function g is continuous on [L,M]
with square integrable derivative. In this case, the hitting position is a function of the hitting
time and g by the continuity hence it is enough to prove the convergence of the hitting times.

It follows from Donsker’s invariance principle that the rescaled random walk trajectories
(25/6n−1/3Sbn(t)/2)t∈[L,M] converge weakly on the space of continuous functions on [L,M]
with the uniform topology to the trajectory of the Brownian motion (b(t))t∈[L,M] with dif-
fusion coefficient 2. By the Portmanteau theorem the weak convergence implies that for any
s ∈ [L,M]
(8.63) P

(
25/6n−1/3Sbn(t)

2
≤ g(t) − t2 for t ∈ [L, s])→ P

(
b(t) ≤ g(t) − t2 for t ∈ [L, s])

as n → ∞ provided that the event Es = {b(t) ≤ g(t) − t2 for t ∈ [L, s]} on the right-hand
side of (8.63) is a continuity set for the Brownian motion measure, that is, for its boundary
P(∂Es) = 0. If it is the case, then the weak convergence of hitting times (5.9) follows because
(8.63) is equivalent to the convergence of the tail probabilities

(8.64) P
(
27/6n−2/3T̂

u,
bn(L)

2+ > s
)→ P

(
T

ξ,L
+ > s

)
.

What remains to prove is that P(∂Es) = 0 for any s ∈ [L,M]. Since the derivative of
g(t)− t2 is square integrable on [L,M], it satisfies Novikov’s condition and by the Cameron–
Martin theorem b(t) − g(t) + t2 is a Brownian motion on t ∈ [L,M] under an equivalent
measure, hence P(supt∈[L,s](b(t) − g(t) + t2) = 0) = 0.

Suppose that g(t) − t2 has a jump downwards at s1. To prove the joint convergence in
(5.9), we have to see that the boundary of the event Es1 ∩ {b(s1) ∈ I } for any interval I has
0 measure under the law of the Brownian motion. The boundary under the topology induced
by the uniform distance is a subset of the union of ∂Es1 and the event that b(s1) is equal to
one of the endpoints of I which both have 0 measure. If g(t) − t2 has finitely many jumps
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and finitely many intervals where its derivative is square integrable, then the combination of
the above arguments and induction leads to the proof. �

PROOF OF LEMMA 5.7. In order to prove (5.10), we use Propositions 5.4 and 5.5 to
bound the q and p factors in (4.3) respectively. We separate two regimes where the hitting
time probability is bounded differently. Let g = minτ∈[L,M](g(τ ) − τ 2). Note that the hitting
position is lower bounded by n√

2
+ 2−5/6gn1/3, hence after rescaling, ζ ≥ g holds. In the first

regime where the starting position u of the random walk is at least n√
2

+ 2−5/6gn1/3 which
corresponds to ξ ≥ g, we simply use that

(8.65)

bn(T +1)
2∑

l= bn(T )
2

∑
v∈Z

P
(
T̂

u,
bn(L)

2+ = l, X̂
u,m
+ = v

)≤ 1.

Then by using (5.7), (5.8) with e−cζ ≤ e−cg on the right-hand side replaced by a constant and
(8.65), we get

(8.66)

∑
u≥ n√

2
+2−5/6gn1/3

bn(T +1)
2∑

l= bn(T )
2

∑
v∈Z

∣∣2−5/6n1/3P
(
T̂

u,
bn(L)

2+ = l, X̂
u,m
+ = v

)
ku,l,v
n (i, j)

∣∣

≤ ∑
u≥ n√

2
+2−5/6gn1/3

C2n−1/3e−c(x+ξ+T +y)

bn(T +1)
2∑

l= bn(T )
2

∑
v∈Z

P
(
T̂

u,
bn(L)

2+ = l, X̂
u,m
+ = v

)

= C′
∫
ξ≥g

dξe−c(x+ξ+T +y) = C′e−cg

c
e−c(x+T +y).

The second regime is where the random walk starts below n√
2

+ 2−5/6gn1/3, that is, when
ξ < g. For these values we apply the large deviation bound of Proposition 2.3 as follows.
Let us decompose the probability that the hitting happens between bn(T )/2 and bn(T + 1)/2
according to the value of the random walk at bn(T ) by writing

(8.67)

bn(T +1)
2∑

l= bn(T )
2

∑
v∈Z

P
(
T̂

u,
bn(L)

2+ = l, X̂
u,m
+ = v

)

≤ P
(
S2−7/6(T −L)n2/3 ≥ n√

2
+ 2−5/6gn1/3 − u

)

+
∫ g

ξ
dηP

(
S2−7/6(T −L)n2/3 ≥ n√

2
+ 2−5/6ηn1/3 − u

)

× P
(

sup
0≤k≤2−7/6n2/3

Sk >
n√
2

+ 2−5/6(g − η)n1/3
)

+ P(S2−7/6(T −L)n2/3 < 0)P
(

sup
0≤k≤2−7/6n2/3

Sk >
n√
2

+ 2−5/6gn1/3 − u

)
.
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We bound the first term on the right-hand side of (8.67) using Proposition 2.3 with m =
2−7/6(T − L)n2/3 and x = 21/3 g−ξ

T −L
n−1/3 as

(8.68)
P
(
S2−7/6(T −L)n2/3 ≥ n√

2
+ 2−5/6gn1/3 − u

)
≤ e−ε2−7/6(T −L)n2/3(21/3 g−ξ

T −L
n−1/3)2

= e−ε2−1/2 (g−ξ)2

T −L .

Very similarly by Proposition 2.3 the integral on the right-hand side of (8.67) is upper
bounded by

(8.69)

∫ g

ξ
dηP

(
S2−7/6(T −L)n2/3 ≥ n√

2
+ 2−5/6ηn1/3 − u

)

× P
(

sup
0≤k≤2−7/6n2/3

Sk >
n√
2

+ 2−5/6(g − η)n1/3
)

≤
∫ g

ξ
dηe−ε2−1/2 (η−ξ)2

T −L
−ε2−1/2(g−η)2 ≤

√
π√

ε2−1/2(1 + 1
T −L

)
e−ε2−1/2 (g−ξ)2

1+T −L ,

where the last inequality follows by computing the Gaussian integral in η over R. Note that
the prefactor in front of the exponential on the right-hand side of (8.69) is bounded by a
constant for any T > L. Further, the last term on the right-hand side of (8.67) is at most

1 · e−ε2−1/2(g−ξ)2
. As a conclusion, by comparing the right-hand sides of (8.68) and (8.69),

the sum of hitting probabilities on the left-hand side of (8.67) is at most Ce−ε′(g−ξ)2/(1+T −L)

with some C ∈ R and ε′ > 0.
Hence in the ξ < g regime,

∑
u< n√

2
+2−5/6gn1/3

bn(T +1)
2∑

l= bn(T )
2

∑
v∈Z

∣∣2−5/6n1/3P
(
T̂

u,
bn(L)

2+ = l, X̂
u,m
+ = v

)
ku,l,v
n (i, j)

∣∣

≤ C

∫
ξ<g

dξe−ε′ (g−ξ)2

1+T −L
−c(x+ξ+T +y).

(8.70)

The ξ dependent part of the integral above can be upper bounded by the integral over R which
is a Gaussian integral

(8.71)
∫
R

dξe−ε′ (g−ξ)2

1+T −L
−cξ =

√
π(1 + T − L)

ε′ e
−cg+ c2(1+T −L)

4ε′ .

Since the exponent of t in (5.8) is arbitrary, the part of the sum in (8.70) can still be bounded
by Ce−c(x+y+T ) and (5.10) follows.

The proof of (5.11) is similar, hence we omit the fine details. If T > L and ζ ≥ g, then
there are c > 0 and C ∈ R so that

(8.72)
∣∣Ai(−t)(ζ + y)

∣∣≤ Ce−c(y+T ),
∣∣Ai(L)(x + ξ)

∣∣≤ Ce−c(x+ξ)

for t ∈ [T ,T + 1], x, y ≥ 0 and ξ ∈R. Therefore, one can bound∫
R

dξ

∫ T +1

T

∫
R

P
(
T

ξ,L
+ ∈ dt,X

ξ,L
+ ∈ dζ

)∣∣Ai(L)(x + ξ)Ai(−t)(ζ + y)
∣∣

≤ C2
∫
R

dξe−c(x+ξ+T +y)
∫ T +1

T

∫
R

P
(
T

ξ,L
+ ∈ dt,X

ξ,L
+ ∈ dζ

)
.

(8.73)



ARCTIC CURVE FLUCTUATIONS IN THE RESTRICTED AZTEC DIAMOND 319

The last double integral in t and ζ is equal to the probability P(T
ξ,L
+ ∈ [T ,T + 1]). Then the

same steps apply as in the proof of (5.10): one separates the two regimes ξ ≥ g and ξ < g.
In the first regime, one bounds the probability on the right-hand side of (8.73) by 1 and using
a large deviation bound analogous to Proposition 2.3 in the second. For the latter bound, we
observe that by the reflection principle,

(8.74) P
(

sup
0≤s≤t

B(s) ≥ xt
)

= 2P
(
B(t) ≥ xt

)= 2
(
1 − �(x

√
t)
)
,

which can be bounded by e−tx2/2 and (5.11) can be proved in the same way as (5.10). �
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