
The Annals of Applied Probability
2021, Vol. 31, No. 1, 99–127
https://doi.org/10.1214/20-AAP1584
© Institute of Mathematical Statistics, 2021

THE SLOW BOND RANDOM WALK AND THE SNAPPING OUT
BROWNIAN MOTION

BY DIRK ERHARD*, TERTULIANO FRANCO† AND DIOGO S. DA SILVA‡

Instituto de Matemática e Estatística, Universidade Federal da Bahia, *erharddirk@gmail.com; †tertu@ufba.br;
‡dsdorea@gmail.com

We consider the continuous time symmetric random walk with a slow
bond on Z, which rates are equal to 1/2 for all bonds, except for the bond
of vertices {−1,0}, which associated rate is given by αn−β/2, where α > 0
and β ∈ [0,∞] are the parameters of the model. We prove here a functional
central limit theorem for the random walk with a slow bond: if β ∈ [0,1),
then it converges to the usual Brownian motion. If β ∈ (1,∞], then it con-
verges to the reflected Brownian motion. And at the critical value β = 1,
it converges to the snapping out Brownian motion (SNOB) of parameter
κ = 2α, which is a Brownian type-process recently constructed by A. Lejay
in Ann. Appl. Probab. 26 (2016) 1727–1742. We also provide Berry–Esseen
estimates in the dual bounded Lipschitz metric for the weak convergence of
one-dimensional distributions, which we believe to be sharp.

1. Introduction. Arguably one of the most important results in probability theory and
statistical mechanics is Donsker’s theorem which establishes a link between two key objects
in the field: random walk and Brownian motion. In the literature many Donsker-type theorems
can be found; however, most of the results are concerned with limits of random walks (in ran-
dom environment, in non-Markovian setting, in deterministic nonhomogeneous medium etc.)
towards the usual Brownian motion. A significant smaller set of results are about convergence
towards Brownian motion with boundary conditions; see [1] for an example.

In this paper, we prove a functional central limit theorem for the slow bond random walk
(abbreviated slow bond RW), which is the continuous time nearest neighbour random walk on
Z with jump rates given by α/(2nβ) if the jump is along the edge {−1,0} and 1/2 otherwise.

The jump rates of the slow bond RW are depicted in Figure 1. We remark that this process
was inspired by the exclusion process with a slow bond; see [8–13] among others. The slow
bond RW can be seen simply as the symmetric exclusion process with a slow bond with a
single particle. For the symmetric exclusion process with a slow bond, under certain initial
conditions, [9–11] established a dynamical phase transition in β . Surprisingly the proof of
that transition neither implies or uses a similar transition for the slow bond RW nor does it
give any indication of how to establish such a result. Yet, it would be natural to expect a
dynamical phase transition for the slow bond RW as well. This is exactly the content of this
work.

We show here that the limit for the slow bond RW depends on the range of β . If β ∈ [0,1),
the limit is the usual Brownian motion (BM), meaning that the slow bond has no effect in
the limit; if β ∈ (1,∞] it is the reflected Brownian motion, meaning that the slow bond is
powerful enough to completely split the real line around the origin in the limit. Finally, and
most important, in the critical case β = 1, the limit is given by the snapping out Brownian
motion, which is a stochastic process recently constructed in [18]. This process can be un-
derstood as a Brownian motion with the following boundary behaviour: until the moment
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FIG. 1. Jump rates for the slow bond random walk.

that the local time at zero reaches a value given by an (independent of the BM) exponential
random variable, the process behaves as the reflected BM. At that moment, the process is
then restarted, according to an honest coin, in the positive or in the negative half line (at the
origin). A precise definition is given in Section 2 as well as a brief explanation of why the
snapping out BM is related with the partially reflected BM; see [14] on the latter process.

The partially reflected BM is known to be relevant in many physical situations, including
nuclear magnetic resonance, heterogeneous catalysis and electric transport in electrochem-
istry; see [14, 15] and the same importance is expected for the snapping out BM. Some meth-
ods of simulations for both the snapping out BM and the partially reflected BM have been
described; see [18], Section 6, and [14], Section 1.1.4, and references therein. However, no
rigorous functional central limit theorem has been proved until now. Furthermore, the choice
of an approximating model itself was open. Here we present a very simple discrete model
which rigorously can be shown to converge to the snapping out BM.

A relevant feature of this work is the approach itself: since the slow bond RW cannot be
written as a sum of independent random variables, classical approaches as convergence of
characteristic functions, successive replacements (as in [3], page 42, for instance) or via the
dk distance (see [2], Chapter 2, for instance) do not apply here. To overcome this difficulty, we
deal directly with the convergence of expectation of bounded continuous functions to show
the convergence of the one-dimensional distributions. The problem is then translated into a
convergence of solutions of a semi-discrete scheme by looking at Kolmogorov’s equation for
the generator.

Convergence of semi-discrete schemes with boundary conditions are often technically very
challenging. However, we avoid here standard techniques of convergence for these problems.
Instead, via the Feynman–Kac formula, we are able to establish convergence of the semi-
discrete scheme by means of probabilistic tools. The key observation is that it is possible to
rewrite the problem in terms of a simple random walk and a tilted reflected random walk.
The main tools developed and used involve local times, projection of Markov chains, local
central limit theorems and symmetry arguments.

The convergence of the finite dimensional distributions turn out to follow more or less
directly from the convergence of the one-dimensional distributions. Tightness issues have
been handled through an appropriate application of the Burkholder–Davis–Gundy inequality
to the Dynkin martingale.

En passant, we obtain in Section 3 an explicit formula for the semigroup of the snapping
out BM and characterize it as a solution of a PDE with Robin boundary conditions, which
is a small ingredient in the proof, but of interest by itself. A substantial part of this work is
dedicated to show Berry–Esseen estimates for the one-dimensional distributions in the dual
bounded Lipschitz metric. The convergence rates are indeed slower than in the classical case.
A discussion of why this phenomena occurs is presented in Section 2.

We believe that the approach of this paper could be successful in other situations, in par-
ticular to prove functional central limits of random walks in nonhomogeneous medium. The
philosophy behind our work is that analytical problems inherited from probabilistic problems
are easier solved by probabilistic methods.
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The outline of the paper is the following: In Section 2 we present definitions and state
results. Section 3 is reserved to present the semigroup formula for the snapping out BM.
Section 4 deals with necessary ingredients in the proof of convergence of one-dimensional
distributions and Berry–Esseen estimates, all of them related to local times. Section 5 gives
the proof of Berry–Esseen estimates in the dual Lipschitz bounded norm and convergence of
one-dimensional distributions. Section 6 extends the proof to finite-dimensional distributions
and in Section 7 we prove the tightness of the processes in the J1-Skorohod topology of
D([0,1],R). In the Appendix we review some known results for the sake of completeness.

2. Statement of results. Notation: to avoid an overload of notation, expectations of any
process considered in this article starting from a point x will be denoted by Ex . Throughout
the paper, the symbol � will mean that the quantity standing on the left hand side of it is
smaller than some multiplicative constant times the quantity on the right hand side of it. The
proportionality constant may change from one line to another, but it will never depend on the
scaling parameter n ∈ N.

The slow bond random walk we define here is the Feller process on Z denoted by {Xslow
t :

t ≥ 0} whose generator Ln acts on local functions f : Z →R via

(2.1) Lnf (x) = ξn
x,x+1

[
f (x + 1) − f (x)

] + ξn
x,x−1

[
f (x − 1) − f (x)

]
,

where

ξn
x,x+1 = ξn

x+1,x =
⎧⎨
⎩

α

2nβ
if x = −1,

1/2 otherwise.

The elastic (or plastic or partially reflected) Brownian motion on [0,∞) is a continuous
stochastic process which can be understood as an intermediate process between the absorbed
Brownian motion and the reflected Brownian motion on [0,∞). This elastic Brownian motion
can be described as the reflected Brownian motion killed at a stopping time with exponential
distribution: first, for a given positive parameter κ we toss a random variable Y ∼ exp(κ)

independent of the reflected Brownian motion; once the local time of the reflected Brown-
ian motion at zero reaches Y , it is killed (at the origin). We refer the reader to the survey
[14] for the connection of the elastic Brownian motion (in the d-dimensional setting) and its
connections with mixed boundary value problems and Laplacian transport phenomena.

The snapping out Brownian motion process on G = (−∞,0−] ∪ [0+,∞) with parameter
κ , abbreviated SNOB, is a Feller process recently constructed in [18] by gluing pieces of
the elastic BM of parameter 2κ . Once the 2κ-elastic BM is killed, we decide whether to
restart the process in 0+ or 0− with probability 1/2. An equivalent way of defining it is to
consider the κ-elastic BM, but when the process is killed at 0+ (equiv. 0−), it is restarted on
the opposite side 0− (equiv. 0+).

Let Cb(G) be the set of bounded continuous functions f : G → R, which are naturally
identified with the set of bounded continuous functions f : R\{0} → R with side limits at
zero. Denote by C0(G) ⊂ Cb(G) the set of bounded, continuous functions f : G → R van-
ishing at infinity. Many statements in this paper can easily be extended to far more general
spaces of functions. Nevertheless, since Feller semigroups are defined in terms of C0(G), and
this is enough for our purposes, we will stick to this space.

It has been shown in [18] that the semigroup of the SNOB is given by:
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THEOREM 2.1 ([18]). The semigroup (P snob
t )t≥0 : C0(G) → C0(G) of the SNOB with

parameter κ is given by

P snob
t f (u) = Eu

[(
1 + e−κL(0,t)

2

)
f

(
sgn(u)|Bt |)

]

+Eu

[(
1 − e−κL(0,t)

2

)
f

(− sgn(u)|Bt |)
]

∀u ∈ G,

(2.2)

where {Bt : t ≥ 0} is a standard Brownian motion starting from u 
= 0 and L(0, t) is its local
time at zero.

Above, it is understood that sgn(u) = 1 if u ∈ [0+,∞) and sgn(u) = −1 if u ∈ (−∞,0−].
For the sake of clarity, let us briefly review the notion of local time for the BM. The occupa-
tion measure of {Bt : t ≥ 0} up to time instant t is the (random) measure μt defined by the
equality

μt(A) =
∫ t

0
1A(Bs) ds ∀A ∈ B,

where 1A is the indicator function of the set A, and B are the Borelian sets of R. In [19, 20],
Lévy showed that, for almost all trajectories of the BM, the measure μt has a density L(u, t)

with respect to the Lebesgue measure, that is

μt(A) =
∫
A

L(u, t) du ∀t ≥ 0.

In [24], before the advent of stochastic calculus and based on a profound study of the structure
of zeros of BM, Trotter proved that there exists a modification of the local time L(u, t) which
is continuous on R× [0,∞). With a slight abuse of notation, we denote such a modification
also by L(u, t). It therefore holds with probability one that

L(u, t) = lim
ε↘0

1

2ε

∫ t

0
1(u−ε,u+ε)(Bs) ds ∀(u, t) ∈ R× [0,∞).

An equivalent and elegant definition of Brownian local times by means of Itô-calculus is
provided by Tanaka’s formula

(2.3) L(u, t) = |Bt − u| − |B0 − u| −
∫ t

0
sgn(Bs) dBs,

which holds for any u ∈ R; see, for instance [22], page 239. On the equivalence between
these two notions of local time; see [22], page 224, Corollary 1.6. For some history on the
development of local times and earlier references, see the survey [4], and for a more modern
proof on the existence of the jointly continuous modification of the local time, see [22],
page 225, Theorem 1.7.

We comment that [18] only enunciates that the SNOB is a strong Markov process. But the
fact that the SNOB is a Feller process is a simple consequence of formula (2.2), continuity and
positiveness of L(u, t), which put together imply that P snob

t C0(G) ⊂ C0(G) by the dominated
convergence theorem.

The main result of this paper consists of the following Donsker-type theorem, which sur-
prisingly connects the slow bond random walk with the snapping out Brownian motion.

THEOREM 2.2. Let u ∈ R\{0} and consider the slow bond random walk {n−1Xslow
tn2 : t ∈

[0,1]} starting from the site �un
 ∈ Z. Then, {n−1Xslow
tn2 : t ∈ [0,1]} converges in distribution,

with respect to the J1-topology of Skorohod of D([0,1],R), to a process Y = {Yt : t ∈ [0,1]},
where Y is:
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• for β ∈ [0,1), the Brownian motion B starting from u,
• for β = 1, the snapping out Brownian motion Bsnob of parameter κ = 2α starting from u,
• for β ∈ (1,∞], the reflected Brownian motion Bref starting from u.

Above, it is understood that Bref is the reflected Brownian motion with state space G. The
semigroup of {Bt : t ≥ 0} is

(2.4) Ptf (u) = Eu

[
f (Bt )

] = 1√
2πt

∫
R

e− (u−y)2

2t f (y) dy for any u ∈ R,

while the semigroup of the reflected Brownian motion is given by

P ref
t f (u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
2πt

∫ +∞
0

[
e− (u−y)2

2t + e− (u+y)2

2t
]
f (y) dy for u ∈ [

0+,∞)
,

1√
2πt

∫ +∞
0

[
e− (u−y)2

2t + e− (u+y)2

2t
]
f (−y)dy for u ∈ ( − ∞,0−]

.

The main novelty of this work is the proof of the above result. As already mentioned in the
Introduction, we split the Kolmogorov forward equation into two equations associated to the
odd and even part of the initial condition, respectively. It turns out that the equation associated
to the even part coincides with the Kolmogorov forward equation of simple random walk,
which then can be dealt with by standard results. On the other hand, the equation associated
to the odd part can be analysed in terms of the Kolmogorov forward equation of a tilted
reflected simple random walk. Using the Feynman–Kac formula and a projection technique
(see Proposition 4.3) the problem can then be reduced to the analysis of local times. This is
executed in Section 4.

Next, we connect the SNOB with a partial differential equation with Robin boundary con-
ditions.

PROPOSITION 2.3. Let (P snob
t )t≥0 : C0(G) → C0(G) be the semigroup of the SNOB with

parameter κ . Then, for any f ∈ C0(G), we have that P snob
t f (u) is the solution of the partial

differential equation

(2.5)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tρ(t, u) = 1

2

ρ(t, u), u 
= 0,

∂uρ
(
t,0+) = ∂uρ

(
t,0−) = κ

2

[
ρ

(
t,0+) − ρ

(
t,0−)]

, t > 0,

ρ(0, u) = f (u), u ∈R.

Moreover, the semigroup (P snob
t )t≥0 : C0(G) → C0(G) is given by

P snob
t f (u) = 1√

2πt

{∫
R

e− (u−y)2

2t feven(y) dy

+ eκu
∫ +∞
u

e−κz
∫ +∞

0

[(
z − y + κt

2t

)
e− (z−y)2

2t

+
(

z + y − κt

2t

)
e− (z+y)2

2t

]
fodd(y) dy dz

}
,

for u > 0 and

P snob
t f (u) = 1√

2πt

{∫
R

e− (u−y)2

2t feven(y) dy

− e−κu
∫ +∞
−u

e−κz
∫ +∞

0

[(
z − y + κt

2t

)
e− (z−y)2

2t
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+
(

z + y − κt

2t

)
e− (z+y)2

2t

]
fodd(y) dy dz

}
,

for u < 0, where feven and fodd are the even and odd parts of f , respectively.

In order to state the Berry–Esseen estimates, we review some further concepts of weak
convergence on probability spaces. Given a metric space (S, d), the space of bounded Lips-
chitz functions BL(S) is the set of real functions on S such that

‖f ‖∞ = sup
u∈S

∣∣f (u)
∣∣ < ∞ and(2.6)

‖f ‖L = sup
u,v∈S
u
=v

|f (u) − f (v)|
d(u, v)

< ∞.(2.7)

BL(S) is a normed linear space with the norm ‖f ‖BL = ‖f ‖∞ + ‖f ‖L. This norm is known
as the bounded Lipschitz norm. Let P(S) be the set of probability measures on the measurable
space (S,S), where S are the Borelian sets of S. The dual bounded Lipschitz metric dBL on
P(S) is defined through

dBL(μ, ν) = sup
f ∈BL(S)
‖f ‖BL≤1

∣∣∣∣
∫

f dμ −
∫

f dν

∣∣∣∣.(2.8)

Under the additional condition that (S, d) is separable, dBL becomes a metric for the
weak convergence. That is, given μ,μn ∈ P(S), we have that μn ⇒ μ if, and only if,
dBL(μn,μ) → 0; see [2], page 11, Corollary 2.5, for instance.

In this paper, the metric space S above will be R or G. The metric space G= (−∞,0−]∪
[0+,∞) has two isolated connected components. In such a case, the supremum in (2.7) can
be restricted to the pairs x, y belonging to the same connected component with no prejudice
to the facts above. This will be assumed henceforth. Moreover, the set 1

n
Z can be embedded

into both sets R and G. When embedding 1
n
Z into G, one must only have the caution of

assuming that 0
n

= 0+ and to look at test functions f : R\{0} → R that are continuous from
the right at zero.

THEOREM 2.4 (Berry–Esseen estimates). Fix t > 0 and u 
= 0. Denote by μslow
tn2 the

probability measure on R induced by the slow bond random walk Xslow
tn2 /n starting from �un
.

Denote by μsnob
t and μref

t the probability measures on S = G induced by Bsnob
t and Bref

t ,
respectively, and denote by μt the probability measure on S = R induced by the Brownian
motion Bt . All the previous Brownian motions are assumed to start from u. We have that:

• If β ∈ [0,1), then

dBL
(
μslow

tn2 ,μt

)
� nβ−1.

• If β = 1, then for any δ > 0,

dBL
(
μslow

tn2 ,μsnob
t

)
� n−1/2+δ.

• If β ∈ (1,∞], then

dBL
(
μslow

tn2 ,μref
t

)
� max

{
n−1, n1−β}

.
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We comment that the convergences above are slower than the Berry–Esseen rate of con-
vergence for the symmetric random walk, which is of order n−1 (keep in mind that we are
considering the diffusive time scaling n2). An intuition of why this is so is as follows.

If β ∈ [0,1), the slow bond random walk converges to the usual Brownian motion. How-
ever, the slow bond hinders the passage through the origin, thus making the speed of conver-
gence slower.

If β = 1, as we shall see, an invariance principle for local times of the reflected random
walk plays a protagonist role in the proof of the result above. It is known that invariance
principles for local times of the Brownian motion have speed of convergence1 of order at

most n− 1
2 . This slower rate of convergence for local times is thus inherited by the rate of

convergence for the slow bond random walk.
If β ∈ (1,∞], the convergence of the slow bond random walk is towards the reflected

Brownian motion. In this case, the slow bond random walk may occasionally jump over
the slow bond, being trapped with high probability in the “wrong” half line. This fact is
responsible for a slower rate of convergence. Note that when β ≥ 2, then max{n−1, n1−β} =
n−1 and the slow bond does not interfere in the rate of convergence.

REMARK 2.5. For the case β = 1, in view of [6] it is natural to expect that the sharpest
estimate should be n−1/2 times a logarithmic correction. We expect that it would be possible
with our methods to obtain such a bound upon analysing carefully and improving existing
results on approximations of Brownian local times by random walk local times, for that see
in particular Lemma 4.1, which is a key ingredient.

3. An expression for the SNOB semigroup. Here we prove Proposition 2.3, that is, we
show that the SNOB semigroup is a solution of a heat equation with boundary condition of
third (or Robin) type and, moreover, we provide an explicit formula for it. In spite of the ob-
vious importance of having an explicit formula for the semigroup (concerning applications),
we explain that its deduction, as we will see, is simply a suitable connection of results from
[18] and [10]. Later, this result will be needed in the proof of the central limit theorem for the
slow bond random walk.

Denote by (Gλ)λ>0 the resolvent family of the SNOB, which acts on f ∈ C0(G) via
Gλf (u) = Eu[∫ ∞

0 e−λtf (Bsnob
t ) dt] = ∫ ∞

0 e−λtP snob
t f (u) dt . We recall the following result

from [18].

PROPOSITION 3.1 ([18]). For any f ∈ C0(G), the resolvent family (Gλ)λ>0 of the SNOB
with parameter κ satisfies(

λ − 1

2



)
Gλf (u) = f (u), u ∈G,(3.1)

∂uGλf
(
0+) = ∂uGλf

(
0−) = κ

2

[
Gλf

(
0+) − Gλf

(
0−)]

.(3.2)

The knowledge on the resolvent family permits to characterize the generator of a Feller
process; see [22], Exercise (1.15) page 290, for instance.

Now denote by (P Robin
t )t≥0 : C0(G) → C0(G) the semigroup determined by (2.5). That is,

P Robin
t f (u) denotes the solution of the PDE (2.5) with initial condition f ∈ C0(G). One can

1With respect to the diffusive scaling n2. In the ballistic scaling n, used by many authors as [21], it of course

corresponds to a rate of order n−1/4.
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easily adapt the result [10], Proposition 2.3, to deduce that

P Robin
t f (u) = 1√

2πt

{∫
R

e− (u−y)2

2t feven(y) dy

+ eκu
∫ +∞
u

e−κz
∫ +∞

0

[(
z − y + κt

2t

)
e− (z−y)2

2t

+
(

z + y − κt

2t

)
e− (z+y)2

2t

]
fodd(y) dy dz

}
,

for u > 0 and

P Robin
t f (u) = 1√

2πt

{∫
R

e− (u−y)2

2t feven(y) dy

− e−κu
∫ +∞
−u

e−κz
∫ +∞

0

[(
z − y + κt

2t

)
e− (z−y)2

2t

+
(

z + y − κt

2t

)
e− (z+y)2

2t

]
fodd(y) dy dz

}
,

for u < 0. A brief resume of this adaptation is given in the Appendix for the sake of com-
pleteness.

Thus, in order to conclude the proof of Proposition 2.3, it only remains to guarantee that
P Robin

t = P snob
t . We claim that the resolvent family GRobin

λ f (u) = ∫ ∞
0 e−λtP Robin

t f (u) dt

for (2.5) also satisfies (3.1) and (3.2). This follows indeed from a direct computation: since
P Robin

t is a solution of (2.5), we have that

1

2

GRobin

λ f (u) = 1

2



∫ ∞
0

e−λtP Robin
t f (u) dt =

∫ ∞
0

e−λt 1

2

P Robin

t f (u) dt

=
∫ ∞

0
e−λt∂tP

Robin
t f (u) dt = λ

∫ ∞
0

e−λtP Robin
t f (u) dt − f (u),

which gives (3.1), and (3.2) follows by a similar argument. This claim implies that the semi-
groups P Robin

t and P snob
t have the same infinitesimal generator. Hence they are equal; see for

instance [22], page 291, Exercise 1.18. This finishes the proof of the Proposition 2.3.
Recall the definition of ‖ · ‖L in (2.7). For later use, we present the following corollary of

Proposition 2.3.

COROLLARY 3.2. Let f ∈ C0(G), and consider the SNOB with parameter κ . Then, for
any t > 0, we have that P snob

t f ∈ dBL(G) and

∥∥P snob
t f

∥∥
BL ≤ ‖f ‖∞

[
1 + 2κ + 3

√
2

πt

]
.

PROOF. Proposition 2.3 allows to differentiate P snob
t f (u), which allows to infer by long

but elementary calculations that

∥∥∂uP
snob
t f

∥∥∞ ≤ ‖f ‖∞
[
2κ + 3

√
2

πt

]
,

implying that

∥∥P snob
t f

∥∥
L ≤ ‖f ‖∞

[
2κ + 3

√
2

πt

]
.
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Noting that P snob
t f (u) = Eu[f (Bsnob

t )] is a contraction semigroup with respect to the supre-
mum norm is enough to finish the proof. �

We remark that the well-known Hölder continuity of Brownian local times (see [22],
Corollary 1.8, page 226) and (2.2) may lead to continuity in space of P snob

t . However, it
would not lead to the Lipschitz property above. This is reasonable: more smoothness is ex-
pected when taking averages, which cannot be deduced from pathwise continuity.

4. Local times. In the proof of Theorem 2.2 a joint L1-Invariance Principle for the re-
flected Brownian motion and its local time (at zero) will be required, as well as some extra
results about local times. This is the content of this section.

Recall that the local time of a Brownian motion B at the point u ∈ R at time t ≥ 0 is de-
noted here by L(u, t). Denote by {Xt : t ≥ 0} the continuous-time symmetric simple random
walk on Z starting from zero with jump rates λ(x, y) = 1/2 if |x −y| = 1 and zero otherwise,
and let ξ(x, t) = ∫ t

0 1{x}(Xs) ds be its local time at x ∈ Z.
The following result shows that for essentially all t the pair (Xt , ξ(0, t)) is close with high

probability to the pair (Bt ,L(0, t)).

PROPOSITION 4.1 ([5], Lemma 5.6, and [17], Theorem 3.3.3). There exists a probability
space (�,F,P) such that one can define on it a continuous-time symmetric random walk Xt

on Z and a real valued Brownian motion {Bt : t ≥ 0} such that there are positive constants
C1 = C1(t) and C2 = C2(t) such that for any δ ∈ (0, 1

2), any C > 0 any n ≥ 1 and any
t ≥ n−2 we have the estimate

(4.1) P
[∣∣ξ (

0, tn2) − L
(
0, tn2)∣∣ ≥ 2t

1
4 +δn

1
2 +2δ + C logn

] ≤ C1
(
n

1
2 − δ

2 e−C2n
δ + n1+δ−C)

.

Moreover, for the same coupling there are constants 0 < c,a < ∞ such that, for any δ ∈
(0,1/2] and any pair (t, n) as above,

(4.2) P

[
sup
s≤t

|Xsn2 − Bsn2 | ≥ n
1
2

]
≤ ce−anδ

.

We note that (4.1) was originally stated in [5], Lemma 5.6, for the discrete time random
walk. In order to translate it into the continuous setting one can apply standard large devia-
tions arguments for the number of jumps and holding times of the continuous time random
walk. Using Proposition 4.1 above we deduce the following result.

PROPOSITION 4.2. There exists a probability space (�,F,P) such that one can define
on it a continuous-time symmetric random walk Xt on Z and a Brownian motion {Bt : t ≥ 0}
for which there is a constant C > 0 such that, for any δ > 0, any n ≥ 1 and any t ≥ n−2,

E

[∣∣∣∣ξ(0, tn2)

n
− L(0, tn2)

n

∣∣∣∣
]

≤ Cn−1/2+δ and(4.3)

E

[
1

n
|Xtn2 − Btn2 |

]
≤ Cn−1/2+δ.(4.4)

PROOF. We only prove (4.3) since the proof of (4.4) follows the same lines of reasoning.
We use the abbreviation

An = ξ(0, tn2)

n
− L(0, tn2)

n
.
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Let δ ∈ (0,1/2). We now write

E
[|An|] = E

[|An|1{|An|≤3t
1
4 +δ

n
− 1

2 +2δ}
] +E

[|An|1{|An|>3t
1
4 +δ

n
− 1

2 +2δ}
]
.

The first term on the right hand side of above is bounded by 3t
1
4 +δn− 1

2 +2δ . To bound the
second term we apply the Cauchy–Schwarz inequality to see that

E
[|An|1{|An|>3t

1
4 +δ

n
− 1

2 +2δ}
] ≤ E

[|An|2] 1
2P

[|An| > 3t
1
4 +δn− 1

2 +2δ] 1
2 .

A direct calculation involving the usual local central limit theorem (see for instance [17],
Theorem 2.5.6) shows that the L2-norm of ξ(0, tn2)/n is bounded in n (the interested reader
may easily adapt the proof of Proposition 4.6 to that end).

To assure that the same L2-boundedness holds true for L(0, tn2)/n, it is sufficient to note
that the laws of L(0, tn2)/n and L(0, t) are identical, and then to apply Itô’s isometry. Re-
calling Proposition 4.1 concludes the proof. �

The next step is to adapt the result above to the context of the reflected random walk and
the reflected Brownian motion. For an illustration of the (continuous-time) reflected random
walk {Xref

t : t ≥ 0}, see Figure 2.
We recall below the notion of projection for continuous-time Markov chains, also called

lumping in the literature.

PROPOSITION 4.3 ([8]). Let E be a countable set, and consider a bounded function
ζ : E × E → [0,∞). Let {Zt : t ≥ 0} be the continuous time Markov chain with state space E
and jump rates {ζ(x, y)}x,y∈E . Fix an equivalence relation ∼ on E with equivalence classes
E� = {[x] : x ∈ E} and assume that, for any y ∈ E ,∑

y′∼y

ζ
(
x, y′) = ∑

y′∼y

ζ
(
x′, y′)(4.5)

whenever x ∼ x′. Then, {[Zt ] : t ≥ 0} is a Markov chain with state space E� and jump rates
ζ([x], [y]) = ∑

y′∼y ζ(x, y′).

Consider now the following equivalence relation on Z. We will say that x ∼ y if, and only
if,

x = y or x = −y − 1.

The equivalence classes of Z/∼ are therefore given by {−1,0}, {−2,1}, {−3,2}, . . . . Then,
assuming that Zt is the continuous-time symmetric slow bond random walk Xslow

t on Z,
Proposition 4.3 tell us that the projected Markov chain [Xslow

t ] has the rates of the reflected
random walk Xref

t ; see Figure 3. Therefore, based on the construction above, we deduce that
the local time at zero of the reflected random walk is almost surely equal to local time of the
usual random walk on the set {−1,0} (in this coupling).

FIG. 2. Reflected random walk on {0,1,2, . . .}. All jump rates are equal to one half.
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FIG. 3. Projected Markov chain [Xslow
t ] on the state space � = Z/∼. All jump rates are equal to one half.

REMARK 4.4. Note that the usual symmetric continuous time random walk on Z is a
particular case of Xslow

t taking β = 0 and α = 1.

REMARK 4.5. In the discrete time setting, it is true that the modulus of the symmetric
random walk is the reflected random walk. However, the same does not hold in the continuous
time setting, due to the fact that the waiting time at zero would be doubled when taking the
modulus. This explains the choice of the equivalence relation above, which uses symmetry
around the point −1/2.

The next result is quite intuitive, but not so immediate to prove: the times spent by the
usual random walk at sites −1 and 0 are very close.

PROPOSITION 4.6. Uniformly on x ∈ Z, we have the estimate

(4.6) Ex

[(
ξ(0, tn2)

n
− ξ(−1, tn2)

n

)2]
� 1

n
.

In particular,

(4.7) Ex

[∣∣∣∣ξ(0, tn2)

n
− ξ(−1, tn2)

n

∣∣∣∣
]

� 1√
n
.

PROOF. First of all, observe that the function

f (x) = Ex

[(
ξ(0, tn2)

n
− ξ(−1, tn2)

n

)2]

is such that f (x) ≤ f (0) = f (−1) for any x ∈ Z. The reason is simple: while the random
walk does not reach 0 nor −1, both local times above stay null, which gives the inequality,
while the equality is due to symmetry. Hence, let us assume without loss of generality that
x = 0. Applying the definition of the local time, a change of variables and symmetry, we
obtain that

E0

[(
ξ(0, tn2)

n
− ξ(−1, tn2)

n

)2]

= n2
E0

[(∫ t

0

(
1{Xsn2 = −1} − 1{Xsn2 = 0})ds

)2]

= 2n2
E0

[∫ t

0
ds1

∫ s1

0
ds2

(
1{Xs1n

2 = Xs2n
2 = −1} − 1{Xs1n

2 = 0,Xs2n
2 = −1}

− 1{Xs1n
2 = −1,Xs2n

2 = 0} + 1{Xs1n
2 = Xs2n

2 = 0})].



110 D. ERHARD, T. FRANCO AND D. S. DA SILVA

Interchanging expectation and integrals and applying the Markov property, the above be-
comes

2n2
∫ t

0
ds1

∫ s1

0
ds2

(
P0[Xs1n

2 = Xs2n
2 = −1] − P0[Xs1n

2 = 0,Xs2n
2 = −1]

− P0[Xs1n
2 = −1,Xs2n

2 = 0] + P0[Xs1n
2 = Xs2n

2 = 0])
= 2n2

∫ t

0
ds1

∫ s1

0
ds2

(
P0[Xs2n

2 = −1] · P−1[X(s1−s2)n
2 = −1]

− P0[Xs2n
2 = −1] · P−1[X(s1−s2)n

2 = 0]
− P0[Xs2n

2 = 0] · P0[X(s1−s2)n
2 = −1]

+ P0[Xs2n
2 = 0] · P0[X(s1−s2)n

2 = 0]).

(4.8)

By symmetry and translation invariance of the random walk, the integrand above can be
rewritten simply as(

P0[Xs2n
2 = −1] + P0[Xs2n

2 = 0]) · (
P0[X(s1−s2)n

2 = 0] − P0[X(s1−s2)n
2 = 1])

=: F
(
s2n

2, (s1 − s2)n
2) = F.

(4.9)

We make now some considerations on how to estimate each factor in (4.9). Let

pt(x)
def= P0[Xt = x] and Kt(x)

def= e−x2/2t

√
2πt

.

By the local central limit theorem (see [17], Theorem 2.5.6, page 66), it is known that

pt(x) = Kt(x) exp
{
O

(
1√
t

+ |x|3
t2

)}

in the time range t ≥ 2|x|. In particular,

∣∣pt(x)
∣∣ � 1√

t
for t ≥ 2|x|.(4.10)

Furthermore, adapting [17], Theorem 2.3.6, page 38, to the continuous time setting it also
holds that

(4.11)
∣∣pt(x) − pt(y) − (

Kt(y) − Kt(x)
)∣∣ � |y − x|

t (d+3)/2 = |y − x|
t2 ,

where d = 1 in the current setting. We are going to use (4.11) only for t ≥ 2|y − x| since for
all other values of t this approximation is not useful for our purposes. Noting that

∣∣Kt(0) − Kt(1)
∣∣ ≤ sup

x∈[0,1]
∣∣∂xKt(x)

∣∣ = sup
x∈[0,1]

∣∣∣∣xe−x2/2t

t
√

2πt

∣∣∣∣ � 1

t3/2 ,

we conclude that

(4.12)
∣∣K(s1−s2)n

2(0) − K(s1−s2)n
2(1)

∣∣ � 1

(s1 − s2)3/2n3 .

Since the approximations (4.10) and (4.11) only hold for times t ≥ 2|x|, we must divide the
analysis of (4.8) in cases, which will be made splitting the region of integration in disjoint
sets, as depicted in Figure 4.



THE SLOW BOND RW AND THE SNAPPING OUT BM 111

FIG. 4. Region of integration (in gray) divided into A, B, C and D.

REGION A. Here s2 ≥ 2/n2 and |s1 − s2| ≥ 2/n2. Restricted to this region, both approx-
imations (4.10) and (4.11) are valid. Recalling (4.12), we then get that

|F| � (
P0[Xs2n

2 = −1] + P0[Xs2n
2 = 0])

×
(

1

((s1 − s2)n2)2 + ∣∣K(s1−s2)n
2(0) − K(s1−s2)n

2(1)
∣∣)

� 1√
s2n2

·
(

1

((s1 − s2)n2)2 + 1

(s1 − s2)3/2n3

)

� 1√
s2n2

· 1

(s1 − s2)3/2n3 � 1√
s2

· 1

(s1 − s2)3/2n4 .

Applying this bound and Fubini’s theorem we obtain that

2n2
∫∫

A
ds1 ds2|F| � n2

∫ t−2/n2

2/n2
ds2

∫ t

s2+2/n2
ds1

1√
s2(s1 − s2)3/2n4

= 4

n
√

2

(√
t − 2/n2 − 2/n

) − 2

n2

(
arcsin

(
t − 2/n2

t

)
− arcsin

(
2

tn2

))

� 1

n
.

REGION B. Here s2 < 2/n2 and |s1 −s2| < 2/n2. Restricted to this region, neither (4.10)
nor (4.11) are valid. Nevertheless, since |F| ≤ 2,

2n2
∫∫

B
ds1 ds2|F| ≤ 2n2 · 4

n4 � 1

n2 .

REGION C. Here s2 < 2/n2 and |s1 − s2| ≥ 2/n2, where only the approximation (4.11)
is valid. We then have that

2n2
∫∫

C
ds1 ds2|F| � 2n2

∫ 2/n2

0
ds2

∫ t

s2+2/n2
ds1

2

(s1 − s2)3/2n3

= 4

n

(√
1 − 2/n2 + 4

n
√

2
− 16

n

)
� 1

n
.
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REGION D. Here s2 ≥ 2/n2 and |s1 − s2| < 2/n2, where only the approximation (4.10)
is valid. We then have that

2n2
∫∫

D
ds1 ds2|F| � n2

∫ t

2/n2

ds2√
s2n2

∫ s2+2/n2

s2

ds1 = 4

n

(√
t − 2

n

)
� 1

n
.

Putting together the four estimates above gives us (4.6). Since the L1-norm is bounded
from above by the L2-norm for probability spaces, we obtain (4.7). �

5. CLT for a fixed time and Berry–Esseen estimates. We begin by fixing some nota-
tion on the space of test functions.

DEFINITION 1. For any β ≥ 0 we define the space BL(β) via

(5.1) BL(β) =
{

BL(G) if β ∈ [1,∞],
BL(R) if β ∈ [0,1).

Fix henceforth f ∈ BL(β) and denote 1
n
Z = {. . . ,− 2

n
,− 1

n
, 0

n
, 1

n
, . . .}. Let g : [0,∞) ×

1
n
Z →R be given by

g

(
t,

x

n

)
= gt

(
x

n

)
= Ex

[
f

(
Xslow

tn2

n

)]
.(5.2)

Since the slow bond random walk depends on n, so does the function g, whose dependence on
n has been dropped to not overload notation. Our goal is to prove the CLT directly by studying
the convergence of (5.2) instead of other traditional methods, as convergence of moments,
characteristics functions etcetera. The forward Fokker–Planck equation for the generator in
(2.1) then yields

(5.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tgt

(
x

n

)
= n2

2

[
gt

(
x + 1

n

)
+ gt

(
x − 1

n

)
− 2gt

(
x

n

)]
∀x 
= −1,0,

∂tgt

(
0

n

)
= n2

2

[
gt

(
1

n

)
− gt

(
0

n

)]
+ αn2−β

2

[
gt

(−1

n

)
− gt

(
0

n

)]
,

∂tgt

(−1

n

)
= n2

2

[
gt

(−2

n

)
− gt

(−1

n

)]
+ αn2−β

2

[
gt

(
0

n

)
− gt

(−1

n

)]
,

g

(
0,

x

n

)
= f

(
x

n

)
∀x ∈ Z.

Note the resemblance of (5.3) above with the discrete heat equation. To continue we make
some symmetry considerations. Let us consider the following notion of parity for functions
f : 1

n
Z → R, where the symmetry axis is located at − 1

2n
instead of the origin. That is, we

will say that feven(n) : 1
n
Z →R is an even function if

(5.4) feven(n)

(
x

n

)
= feven(n)

(−1 − x

n

)
∀x ∈ Z,

while by an odd function we will mean that

(5.5) fodd(n)

(
x

n

)
= −fodd(n)

(−1 − x

n

)
∀x ∈ Z.
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The even and odd parts of a given function f : 1
n
Z →R are hence given by

feven(n)

(
x

n

)
= f (x

n
) + f (−1−x

n
)

2
and fodd(n)

(
x

n

)
= f (x

n
) − f (−1−x

n
)

2
,

and it is clear that f (x
n
) = feven(n)(

x
n
) + fodd(n)(

x
n
). Denote by Pn

t f (x) the solution of the
semi-discrete scheme (5.3) with initial condition f . Due to linearity,

Pn
t f = Pn

t feven(n) + Pn
t fodd(n).

Next, we argue by a simple probabilistic argument that the semi-discrete scheme (5.3) pre-
serves parity, which is an indispensable ingredient in this work.

PROPOSITION 5.1 (Parity invariance). The semigroup Pn
t preserves parity as defined in

(5.4) and (5.5). That is, if h : 1
n
Z → R is even (respectively, odd), then Pn

t h is even (respec-
tively, odd) for all positive times.

PROOF. By symmetry of the jump rates, the distribution of Xslow
tn2 starting from x ∈ Z

is equal to the distribution of the stochastic process −1 − Xslow
tn2 with Xslow

tn2 starting from
−1 − x.

Suppose that h : 1
n
Z →R is even, that is, h(x

n
) = h(−1−x

n
). Hence

g

(
t,

x

n

)
= Ex

[
h

(
Xslow

tn2

n

)]
= E−1−x

[
h

(−1 − Xslow
tn2

n

)]

= E−1−x

[
h

(
Xslow

tn2

n

)]
= g

(
t,

−1 − x

n

)
∀t > 0,

which means that Pn
t h is an even function. The argument for an odd function h is analogous.

�

Let us discuss the case when (5.3) starts from feven(n). Under our notion of parity, an even
function h satisfies h(−1

n
) = h( 0

n
). This observation together with Proposition 5.1 allows us

to replace the factors αn2−β/2 appearing in (5.3) by any factor. In particular, we may replace
those factors by n2/2, thus concluding that Pn

t feven(n)(
x
n
) is also a solution of

(5.6)

⎧⎪⎪⎨
⎪⎪⎩

∂tgt

(
x

n

)
= 1

2

ngt

(
x

n

)
, x ∈ Z,

g

(
0,

x

n

)
= feven(n)

(
x

n

)
, x ∈ Z,

which is the well-known discrete heat equation, where 
ng(x) := n2[g(x+1
n

) + g(x−1
n

) −
2g(x

n
)] is the discrete Laplacian. Since the discrete heat equation is also the forward Fokker–

Planck equation for the symmetric random walk speeded up by n2, we have therefore con-
cluded that

Pn
t feven(n)

(
x

n

)
= Ex

[
feven(n)

(
Xtn2

n

)]
,(5.7)

where Xtn2 is the usual continuous-time symmetric random walk. Of course, now the classic
central limit theorem gives us the desired convergence towards the expectation with respect
to the Brownian motion Bt . There is only one detail to be handled: the notion of parity
previously stated was defined on 1

n
Z, not on R, that is, given f :R →R, the function feven(n) :
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1
n
Z →R as previously defined depends on the chosen value of n ∈ N. Denote by feven, fodd :

R →R the standard even and odd parts of f , that is,

feven(u) = f (u) + f (−u)

2
and fodd(u) = f (u) − f (−u)

2
∀u ∈ R.

It is a simple task to check that∣∣∣∣feven(n)

(
x

n

)
− feven

(
x

n

)∣∣∣∣ ≤ K

2n
∀x ∈ Z,(5.8)

where K is the Lipschitz constant of f ∈ BL(β). Recall that Pt is the Brownian semigroup,
as defined in (2.4). We have henceforth gathered the ingredients to deduced the following
result:

LEMMA 5.2. Let f ∈ BL(β). Then, there exists a constant C > 0 such that for all t > 0,
all n ∈ N and all u ∈ R we have the estimate

(5.9)
∣∣∣∣Pn

t feven(n)

(�un

n

)
− Ptfeven(u)

∣∣∣∣ ≤ C

n
.

The result above is quite standard. However, since we did not find this exact statement in
the literature, we provide a short proof of it in the Appendix.

Let us turn our attention to the odd part. Under our notion of parity, an odd function
h : 1

n
Z →R satisfies h(−1

n
) = −h( 0

n
). This together with the parity invariance given in Propo-

sition 5.1 permits to conclude that Pn
t fodd(n)(

x
n
), for x ≥ 0, is a solution of

(5.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tgt

(
x

n

)
= 1

2

ngt

(
x

n

)
, x ≥ 1,

∂tgt

(
0

n

)
= n2

2

[
gt

(
1

n

)
− gt

(
0

n

)]
− αn2−βgt

(
0

n

)
,

g

(
0,

x

n

)
= fodd(n)

(
x

n

)
, x ≥ 0,

which completely determines Pn
t fodd(n) since it is an odd function for all positive times.

Define

Lref
n f

(
x

n

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n2

2

[
f

(
x + 1

n

)
+ f

(
x − 1

n

)
− 2f

(
x

n

)]
x ≥ 1,

n2

2

[
f

(
1

n

)
− f

(
0

n

)]
x = 0,

which is the generator of the reflected random walk speeded up by n2. Writing Vn(
x
n
) =

−αn2−β1{0}(x), we can write (5.10) in the form⎧⎪⎪⎨
⎪⎪⎩

∂tgt

(
x

n

)
= Lref

n gt

(
x

n

)
+ Vn

(
x

n

)
g

(
x

n

)
, x ≥ 0,

g

(
0,

x

n

)
= fodd(n)

(
x

n

)
, x ≥ 0.

The Feynman–Kac Formula, which can be found for instance in [16], page 334, Proposi-
tion 7.1, yields that

Pn
t fodd(n)

(
x

n

)
= Ex

[
fodd(n)

(
Xref

tn2

n

)
exp

{∫ t

0
Vn

(
Xref

sn2

n

)
ds

}]

= Ex

[
fodd(n)

(
Xref

tn2

n

)
exp

{−αn−βξ ref
tn2(0)

}]
,



THE SLOW BOND RW AND THE SNAPPING OUT BM 115

where

ξ ref
tn2(0) = n2

∫ t

0
1{0}

(
Xref

sn2

)
ds =

∫ tn2

0
1{0}

(
Xref

s

)
ds

is the local time at zero of the reflected random walk up to time tn2. Using the coupling
outlined after Proposition 4.3 which connects the usual symmetric random walk with the
reflected random walk, and the fact that fodd(n) is an odd function in the sense of (5.5), we
then deduce that

(5.11) Pn
t fodd(n)

(
x

n

)
= Ex

[
fodd(n)

(
1

n

[∣∣∣∣Xtn2 + 1

2

∣∣∣∣ − 1

2

])
exp

{
− α

nβ
ξtn2

({−1,0})}]
.

Let now

Qtfodd(u)
def= Eu

[
fodd

(|Bt |) exp
{−2αLt(0)

}] ∀u ∈ R,

where we recall that Bt denotes a standard Brownian motion at time t and L denotes its local
time. With all these preparations at hand we can now formulate one of the main results of this
section.

LEMMA 5.3. Let f ∈ BL(β), then for all t > 0 and all u ∈ R with u > 0 we have the
following estimates:

• If β < 1, then ∣∣∣∣Pn
t fodd(n)

(�un

n

)
− Ptfodd(u)

∣∣∣∣ � nβ−1.

• If β = 1, then for all δ > 0∣∣∣∣Pn
t fodd(n)

(�un

n

)
− Qtfodd(u)

∣∣∣∣ � n− 1
2 +δ.

• If β > 1, then ∣∣∣∣Pn
t fodd(n)

(�un

n

)
−Eu

[
fodd

(|Bt |)]
∣∣∣∣ � max

{
n−1, n1−β}

.

Here the proportionality constants above are independent of u.

The proof of this lemma will be given in the next two subsections.

5.1. Proof of Lemma 5.3 for β ∈ [0,1). Fix u > 0 and f ∈ BL(β) = BL(R) and recall
(5.11). Since f is Lipschitz continuous, we can replace Pn

t fodd(n)(
�un


n
) by

(5.12) E�un

[
fodd

( |Xtn2 |
n

)
exp

{
− α

nβ
ξtn2

({−1,0})}]

paying a price of order n−1.
By the strong Markov property applied at the stopping time T = inf{t ≥ 0 : Xt = 0}, we

observe now that

(5.13) E�un

[
fodd

(
Xtn2

n

)
1{T <tn2}

]
= E�un


[
1{T <tn2}E0

[
fodd

(
Xtn2−T

n

)]]
= 0,

where the last equality follows from the facts that {Xtn2 : t ≥ 0} law= {−Xtn2 : t ≥ 0} provided
X0 = 0 and that fodd is an odd function in the usual sense.



116 D. ERHARD, T. FRANCO AND D. S. DA SILVA

Thus, “adding” the null term (5.13) to (5.12) and then using that on the event {T ≥ tn2}
the exponential factor is equal to 1 (recall that we are assuming u > 0, hence not hitting 0
means not hitting −1 as well), we see that (5.12) equals

(5.14) E�un

[
fodd

(
Xtn2

n

)]
+E�un


[
fodd

( |Xtn2 |
n

)
exp

{
− α

nβ
ξtn2

({−1,0})}1{T <tn2}
]
.

The distance between the first parcel above and Eu[fodd(Bt )] is bounded by some constant
times n−1, which can be seen exactly as in the proof of Lemma 5.2. Hence, in order to finish
the proof of the Lemma 5.3 for β < 1 it is sufficient to show that the second term in (5.14)
converges to zero with the desired order.

The proof that the second term in (5.14) vanishes in the limit will crucially rely on the
next lemma, which may be interpreted as follows: when starting the usual random walk from
�un
 and looking at a time window of size tn2, either the local time (at the origin) is zero
or it is reasonably large. Since {T < tn2} = {ξtn2(0) > 0}, the situation where the local time
vanishes is excluded in the second parcel of (5.14), which means the local time is reasonably
large, which in turn yields that the exponential in the second parcel of (5.14) is reasonably
small. This outlines the strategy to be followed in the sequel. Let us first state the lemma
mentioned above.

LEMMA 5.4. Let γ ∈ [0,1) and γ ′ ∈ (γ,1). Then, there is a constant C = C(γ, γ ′) > 0
such that for all n ∈N large enough and all j < nγ ′−γ ,

(5.15) P�un

[
jnγ < ξtn2(0) ≤ (j + 1)nγ ] ≤ Cnγ−1.

We defer the proof of the lemma to the end of this section and we show first how it implies
that the second term in (5.14) converges to zero with the desired order. Fix δ ∈ (0,1 − β).
Using that ξtn2({−1,0}) ≥ ξtn2(0), we can then estimate the rightmost term in (5.14) by I+ II,
where

I = E�un

[
fodd

( |Xtn2 |
n

)
exp

{
− α

nβ
ξtn2(0)

}
1{ξ

tn2 (0)>nβ+δ}
]

and

II = E�un

[
fodd

( |Xtn2 |
n

)
exp

{
− α

nβ
ξtn2(0)

}
1{0<ξ

tn2 (0)≤nβ+δ}
]
.

It is then straightforward to see that the term I indeed has the desired behaviour. To see that
the same also holds for II, we can estimate it using that fodd is bounded as follows:

II =
nδ∑

j=0

E�un

[
fodd

( |Xtn2 |
n

)
exp

{
− α

nβ
ξtn2(0)

}
1{jnβ<ξ

tn2 (0)≤(j+1)nβ }
]

�
nδ∑

j=0

exp{−αj}P[
jnβ < ξtn2(0) ≤ (j + 1)nβ]

.

Applying Lemma 5.4 with γ = β is enough to deduce the claim.

PROOF OF LEMMA 5.4. We first derive the above statement for the local time of a dis-
crete time random walk, which we denote by {Sn : n ∈ N}. Moreover we denote its local time
until time n of the point a ∈ Z by ζn(a). By [23], equation (27), for any k ∈ N, and any a ≥ 0
we have the formula

(5.16) P0
[
ζn(a) ≥ k

] = P0[Sn−k+1 ≥ a + k − 1] + P0[Sn−k+1 > a + k − 1].
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Note that by symmetry the same formula applies to the local time at zero provided that S0 = a.
Denoting as above by T the first hitting time of zero and applying the strong Markov property
at time T , we therefore see that for any k ≥ 2,

(5.17) P�un

[
1 ≤ ζn2(0) < k

] = E�un

[
1{T <n2}P0

[
1 ≤ ζn2−T (0) < k

]]
.

Note that under P0 the local time at zero is always strictly positive. Using (5.16) with a = 0
we deduce that

P0
[
1 ≤ ζn2−T (0) < k

] = P0[Sn2−T −k+1 < k − 1] − P0[Sn2−T −k+1 > k − 1].
Adding and subtracting the cumulative distribution function � of the standard normal distri-
bution we can write

P0
[
1 ≤ ζn2−T (0) < k

]
= P0[Sn2−T −k+1 < k − 1] − P0[Sn2−T −k+1 > k − 1]
= P0[Sn2−T −k+1 < k − 1] + P0[Sn2−T −k+1 ≤ k − 1] − 1

= I(k) + II(k),

(5.18)

where

I(k) = 2�

(
k − 1√

n2 − T − k + 1

)
− 1 and

II(k) = P0[Sn2−T −k+1 ≤ k − 1] + P0[Sn2−T −k+1 < k − 1] − 2�

(
k − 1√

n2 − T − k + 1

)
.

Note that I(k) and II(k) are close to one whenever T is close to n2. This however is bad, since
we are aiming to show that P0[1 ≤ ζn2−T (0) < k] is small.

Therefore, to get a good upper bound on P0[1 ≤ ζn2−T (0) < k], we need to first show that
the probability that T is close to n2 is small, afterwards it remains to bound I and II for those
values of T that are reasonably far away from n2.

Let γ ′ ∈ (γ,1) as in the statement of the lemma. The hitting time theorem (see [25]) states
that

(5.19) P�un
[T = �] = �un

�

P�un
[S� = 0].
Applying the local central limit theorem [17], Theorem 2.3.5, we see that

(5.20) P�un

[
T ∈ (

n2 − nγ ′
, n2)]

� un

n2∑
�=n2−nγ ′

1

�
3
2

+ O
(
nγ ′−2)

.

Here, one would actually get an extra factor e− u2n2
2� in the sum above. Nevertheless, in the

considered range of �’s, this factor behaves like a constant, hence it is omitted. Since � �→ 1
�3/2

is a decreasing function, we have the following inequality:

n2∑
�=n2−nγ ′

1

�
3
2

≤
∫ n2

n2−nγ ′−1

dx

x
3
2

= 2√
n2 − nγ ′ − 1

− 2

n
= O

(
nγ ′−3)

from which we can infer that the probability on the left hand side of (5.20) is of order nγ ′−2,
which by our choice of γ ′ is smaller than nγ−1. This provides the first ingredient of the proof,
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that is, (5.17) can be estimated from above by

E�un

[
1{T <n2−nγ ′ }P0

[
1 ≤ ζn2−T (0) < k

]]
+E�un


[
1{T ∈(n2−nγ ′

,n2)}P0
[
1 ≤ ζn2−T (0) < k

]]
(5.21)

� E�un

[
1{T <n2−nγ ′ }P0

[
1 ≤ ζn2−T (0) < k

]] + nγ−1.

We turn to the analysis of I and II. To continue, note that

P�un

[
ζn2(0) ∈ (jnγ , (j + 1)nγ ]]

= P�un
[ζn2(0) ∈ [
1, (j + 1)nγ ] − P�un


[
ζn2(0) ∈ [

1, jnγ ]]
,

which can be written in terms of differences of (5.21). Thus, in order to get the desired bounds

we need to estimate I((j +1)nγ )− I(jnγ ) and II((j +1)nγ )− II(jnγ ). Using that x �→ e− x2
2

is decreasing in |x|, we see that∣∣I((j + 1)nγ ) − I
(
jnγ )∣∣

= 2√
2π

∫ (j+1)nγ −1√
n2−T −(j+1)nγ +1

jnγ −1√
n2−T −jnγ +1

e− x2
2 dx

�
(

(j + 1)nγ√
n2 − T − (j + 1)nγ

− jnγ√
n2 − T − jnγ

)
exp

{
− j2n2γ

2(n2 − T − jnγ )

}

def= A(j, j + 1).

(5.22)

Invoking (5.19), noting that T ≥ �un
 if the random walk S starts at �un
, and once again
recalling the local central limit theorem, we can estimate

E�un

[
1{0≤T ≤n2−nγ ′ }

(
I
(
(j + 1)nγ ) − I

(
jnγ ))]

(5.23)

= E�un

[
1{�un
≤T ≤n2−nγ ′ }

(
I
(
(j + 1)nγ ) − I

(
jnγ ))]

� un

n2−nγ ′∑
k=un

1

k
3
2

exp
{
−u2n2

2k

}
A(j, j + 1).(5.24)

To estimate the rightmost term above, we first note that for all k as above

exp
{
− j2n2γ

2(n2 − k − jnγ )

}
≤ exp

{
− j2n2γ

2(n2 − un − jnγ )

}
.

Writing k = k
n2 n

2, factoring out a factor n2 of the two square root terms in (5.22), and making
a Riemann sum approximation, it is a long but elementary procedure to see that (5.24) is
bounded from above by some constant times

unγ−1 exp
{
− j2n2γ

2(n2 − un − jnγ )

}

×
∫ 1−nγ ′−2

u
n

1

x
3
2

exp
{
−u2

2x

}(
(j + 1)√

1 − x − (j + 1)nγ−2
− j√

1 − x − jnγ−2

)
dx.

(5.25)

Note that j < nγ ′−γ , thus 1−x − (j +1)nγ−2 is always positive in the range of x considered.
Keeping this in mind one can check that u times the integral in (5.25) is uniformly bounded
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in n and u, therefore (5.24) is bounded by a constant times

nγ−1 exp
{
− j2n2γ

2(n2 − un − jnγ )

}
� nγ−1 exp

{−Cj2n2(γ−1)} ≤ nγ−1

for some constant C > 0, which finally gives us the bound on (5.23). We now turn to the
bound of II, which is easier than the previous bound for I, since there is no necessity to take
differences. Grosso modo, we may say that

II(k) � 1√
n2 − T − k + 1

by the usual Berry–Esseen estimate for the random walk; see [7], page 137, Theorem 3.4.9,
for instance (of course, some knowledge on T is needed to make it precise). Therefore,

E�un

[
1{0≤T ≤n2−nγ ′ }II

(
jnγ )] = E�un


[
1{�un
≤T ≤n2−nγ ′ }II

(
jnγ )]

�
n2−nγ ′∑
�=�un


P�un
[T = �] 1√
n2 − � − jnγ + 1

.

Applying the hitting time theorem, the last expression above is equal to

�un

n2−nγ ′∑
�=�un


1

�
P�un
[S� = 0] 1√

n2 − � − jnγ + 1
.

By the local central limit theorem, the above is bounded by a constant times

�un

n2−nγ ′∑
�=�un


1

�3/2 exp
{
−u2n2

2�

}
1√

n2 − � − jnγ + 1

� u

n2

n2−nγ ′∑
�=�un


1

(�/n2)3/2 exp
{
− u2

2(�/n2)

}
1√

n2(1 − �−jnγ +1
n2 )

= 1

n
× u

n2

n2−nγ ′∑
�=�un


1

(�/n2)3/2 exp
{
− u2

2(�/n2)

}
1√

(1 − �−jnγ +1
n2 )

.

Note now that the second factor above is a Riemann sum approximation similar to (5.25).
Thus, uniformly in j < nγ ′−γ ,

E�un

[
1{T ≤n2−nγ ′ }II

(
jnγ )]

� n−1,

immediately implying that

E�un

[
1{T ≤n2−nγ ′ }

(
II(j + 1)nγ ) − II

(
jnγ )

)
]
� n−1,

from which the result follows for the discrete time random walk. A standard Poissonisation
argument now begets the result for the continuous time case. �

5.2. Proof of Lemma 5.3 for β ∈ [1,∞].

PROOF. Case β = 1. Using that x �→ e−x defined on [0,∞) is bounded by one and Lips-
chitz continuous with Lipschitz constant one, we can estimate |Pn

t fodd(n)(
x
n
)−Qtfodd(

x
n
)| �
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I + II, where

I = Ex,x/n

[∣∣∣∣fodd(n)

(
1

n

[∣∣∣∣Xtn2 + 1

2

∣∣∣∣ − 1

2

])
− fodd

(
1

n
|Btn2 |

)∣∣∣∣
]

and

II = Ex,x/n

[
1

n

∣∣ξtn2
({−1,0}) − 2Ltn2(0)

∣∣].
Here, Ex,x/n denotes the expectation induced by the coupling introduced in Proposition 4.2
of X and B . We first estimate I. To that end denote the Lipschitz constant of f by L, and note
that for any number a ∈ Z we have the estimate ||a + 1/2| − 1/2 − |a|| ≤ 1. Thus,

I ≤ L

n
×Ex,x/n

[∣∣∣∣
(∣∣∣∣Xtn2 + 1

2

∣∣∣∣
)

− 1

2
− |Btn2 |

∣∣∣∣
]

≤ L

n
+ L

n
×Ex,x/n

[∣∣|Xtn2 | − |Btn2 |∣∣].
It now only remains to apply Proposition 4.2 to deduce the desired estimate for I. To estimate
II we write

II ≤ 1

n
Ex,x/n

[∣∣ξtn2
({−1,0}) − 2ξtn2(0)

∣∣] + 2

n
Ex,x/n

[∣∣ξtn2(0) − Ltn2(0)
∣∣].

The result therefore follows from an application of Propositions 4.2 and 4.6.
Case β ∈ (1,∞]. We adopt the abbreviation

1

n

[∣∣∣∣Xtn2 + 1

2

∣∣∣∣ − 1

2

]
= |Xtn2 |(n).

Using as above that x �→ e−x is Lipschitz continuous and bounded by 1 on [0,∞), as well as
the boundedness of f , we see that∣∣∣∣E�un


[
fodd(n)

(|Xtn2 |(n)

)
exp

{
− α

nβ
ξtn2

({−1,0})}]
−E�un


[
fodd(n)

(|Xtn2 |(n)

)]∣∣∣∣
≤ C ×E�un


[
ξtn2({−1,0})

nβ

]
≤ Cn1−β.

Here, we made use of Proposition A.4 to arrive at the last estimate. To conclude one may now
proceed as in the proof of Lemma 5.2. �

5.3. Convergence of the slow bond random walk at a fixed time. We have gathered all
ingredients to prove the main result of this section, which immediately implies Theorem 2.4.

THEOREM 5.5. Let u > 0 and let f ∈ BL(β). By P snob
t denote the semigroup of the

snapping out Brownian motion of parameter κ = 2α. Then, for all t > 0, we have the follow-
ing estimates:

• If β ∈ [0,1), then ∣∣∣∣Pn
t f

(�un

n

)
− Ptf (u)

∣∣∣∣ � max
{
n−1, nβ−1} = nβ−1.

• If β = 1, then for all δ > 0,∣∣∣∣Pn
t f

(�un

n

)
− P snob

t f (u)

∣∣∣∣ � n−1/2+δ.

• If β ∈ (1,∞], then ∣∣∣∣Pn
t f

(�un

n

)
−Eu

[
f

(|Bt |)]
∣∣∣∣ � max

{
n−1, n1−β}

.
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PROOF. Case β ∈ [0,1). Writing Pn
t f (x

n
) = Pn

t fodd(n)(
x
n
)+ Pn

t feven(n)(
x
n
), we can apply

Lemmas 5.2 and 5.3 to infer that Pn
t f (

�un

n

) indeed converges to Ptfeven(u) + Ptfodd(u) =
Ptf (u) at the desired rate.

Case β = 1. Writing Pn
t f (x

n
) = Pn

t fodd(n)(
x
n
) + Pn

t feven(n)(
x
n
), Lemmas 5.2 and 5.3 imply

that Pn
t f (

�un

n

) converges to Ptfeven(u) + Qtfodd(u) at the desired rate.
It therefore only remains to check that Ptfeven + Qtfodd = P snob

t f , which can be verified
via the following direct computation. Note that

(5.26) f (u) + f (−u) = f
(|u|) + f

(−|u|) ∀u ∈ R,

and recall (2.2). Then,

Ptfeven(u) + Qtfodd(u)

= Eu

[
f (Bt) + f (−Bt)

2

]
+Eu

[
f (|Bt |) − f (−|Bt |)

2
exp

{−2αLt(0)
}]

= Eu

[
f (|Bt |) + f (−|Bt |)

2

]
+Eu

[
f (|Bt |) − f (−|Bt |)

2
exp

{−2αLt(0)
}]

= Eu

[
1 + exp{−2αLt(0)}

2
f

(|Bt |)
]

+Eu

[
1 − exp{−2αLt(0)}

2
f

(−|Bt |)
]

= P snob
t f (u).

Case β ∈ (1,∞]. It follows from Lemmas 5.2 and 5.3 that there exists a constant C > 0
such that for all t > 0 and all n large enough∣∣∣∣Pn

t f

(�un

n

)
−Eu

[
feven(Bt )

] −Eu

[
fodd

(|Bt |)]
∣∣∣∣ � max

{
n−1, n1−β}

.

To conclude the proof it therefore only remains to show that

Eu

[
feven(Bt )

] = Eu

[
feven

(|Bt |)],
which follows by the observation (5.26). �

6. CLT for finite-dimensional distributions. In what follows, since there is no neces-
sity to specify the precise value of β , we will use Bslow to denote the respective limiting
process in Theorem 2.2, which can either be the BM, the snapping out BM or the reflected
BM. The same applies for the notation Xslow for the slow bond RW.

Fix k ∈ N and times 0 = t0 < t1 < · · · < tk ≤ 1. We will show in this section that

(6.1)
1

n

(
Xslow

t1n
2 ,Xslow

t2n
2 , . . . ,Xslow

tkn
2

) =⇒ (
Bslow

t1
,Bslow

t2
, . . . ,Bslow

tk

)
as n → ∞,

where the arrow above denotes weak convergence. Let us introduce some notation. Given a

process Z and an independent copy Ẑ of Z, denote by E
Ẑ,t
z the expectation with respect to

the process Ẑ started at time t at the position z. This is not a standard notation, but it will be
suitable for our purposes.

For j ∈ {0, . . . , k − 1}, and f ∈ BL(β), we have by the Markov property that

(6.2) Ex

[
f

(Xslow
tj+1n

2 − Xslow
tj n2

n

)]
= Ex

[
E

X̂slow,tj n2

Xslow
tj n2

[
f

(X̂slow
tj+1n

2 − Xslow
tj n2

n

)]]
.

Choose x to be of the form �un
 with, let us say, u > 0. We claim that, since the convergence
in Theorem 5.5 is uniform in the starting point, it follows that the above converges to

(6.3) Eu

[
f

(
Bslow

tj+1
− Bslow

tj

)]
.
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Indeed, we have on the one hand that

∣∣∣∣Ex

[
E

X̂slow,tj n2

Xslow
tj n2

[
f

(X̂slow
tj+1n

2 − Xslow
tj n2

n

)]]
−Ex/n

[
E

Bslow,tj

Xslow
tj n2/n

[
f

(
Bslow

tj+1
−

Xslow
tj n2

n

)]]∣∣∣∣
converges to zero, which is a consequence of the uniformity in Theorem 5.5 alluded to above.
On the other hand, denoting by B̂slow an independent copy of Bslow, we affirm that

(6.4)
∣∣∣∣E x

n

[
E

Bslow,tj

Xslow
tj n2/n

[
f

(
Bslow

tj+1
−

Xslow
tj n2

n

)]]
−E x

n

[
E

B̂slow,tj

Bslow
tj

[
f

(
B̂slow

tj+1
− Bslow

tj

)]]∣∣∣∣
goes to zero. To see this, define the function g by

g(x) = E
B̂slow,tj
x

[
f

(
B̂slow

tj+1
− x

)]
,

which belongs to BL(β) due to Corollary 3.2. Then, (6.4) can be written as

∣∣∣∣E x
n

[
g

(Xslow
tj n2

n

)]
−E x

n

[
g
(
Bslow

tj

)]∣∣∣∣,
which proves the claim by applying Theorem 5.5. Now, note that Xslow has independent
increments, so that the above arguments yields that

1

n

(
Xslow

t1n
2 ,Xslow

t2n
2 − Xslow

t1n
2 , . . . ,Xslow

tkn
2 − Xslow

tk−1n
2

)
⇒ (

Bslow
t1

,Bslow
t2

− Bslow
t1

, . . . ,Bslow
tk

− Bslow
tk−1

)
,

(6.5)

as n tends to infinity. The desired convergence of the finite dimensional distributions now
follows, since (6.1) is the image of the left hand side of (6.5) under a linear map.

7. Tightness in the J1-topology. In this section we show that the sequence {n−1Xslow
tn2 :

t ∈ [0,1]} is tight in the J1-topology of Skorohod of D([0,1],R). To do so, we make use of
the following criterion that can be found in [3], Theorem 13.5.

PROPOSITION 7.1. Consider a sequence (Xn)n∈N and a process X in D([0,1],R). As-
sume that the finite dimensional distributions of (Xn)n∈N converge to those of X, and assume
that X is almost surely continuous at t = 1. Moreover assume that there are β ≥ 0, α > 1/2
and a nondecreasing continuous function F such that for all r ≤ s ≤ t , all n ≥ 1, and all
x ∈ Z,

(7.1) Ex

[∣∣Xn
s − Xn

r

∣∣2β ∣∣Xn
t − Xn

s

∣∣2β] ≤ [
F(t) − F(r)

]2α
.

Then, the sequence (Xn)n∈N converges to X in the J1-topology of Skorohod of D([0,1],R).

As a consequence of the above result we only need to establish the moment condition
(7.1). We claim that it is enough to show that there is a constant C such that for any pair of
times 0 ≤ s ≤ t , and any starting point x, the following inequality holds:

(7.2) Ex

[∣∣∣∣X
slow
tn2

n
− Xslow

sn2

n

∣∣∣∣2
]

≤ C|t − s|.
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Indeed assume that (7.2) holds and let r ≤ s ≤ t . Then the Markov property applied at time
sn2 yields

1

n4Ex

[∣∣Xslow
sn2 − Xslow

rn2

∣∣2∣∣Xslow
tn2 − Xslow

sn2

∣∣2]

= 1

n4Ex

[∣∣Xslow
sn2 − Xslow

rn2

∣∣2EXslow
sn2

[∣∣Xslow
tn2 − Xslow

sn2

∣∣2]]
≤ C2|t − s||s − r| ≤ C2|t − r|2,

hence the claim follows. To establish (7.2), recall that Dynkin’s formula yields that for any
function f in the domain of Ln, there is a martingale M (f ) such that

(7.3) f

(
Xslow

tn2

n

)
= f

(
Xslow

0

n

)
+

∫ tn2

0
Lnf

(
Xslow

s

n

)
ds + Mtn2(f ).

Our case is the case in which f is the identity. Note that in this case the definition of Ln

implies that

Lnf

(
x

n

)
= 1

n
[ξx,x+1 − ξx,x−1] = α

n
×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2
− 1

2nβ
if x = 0,

1

2nβ
− 1

2
if x = −1,

0 otherwise.

Denoting by � the local time of Xslow, the above considerations then show that the right hand
side of (7.3) equals

f

(
Xslow

0

n

)
+ α

n

[
1

2
− 1

2nβ

][
�tn2(0) − �tn2(−1)

] + Mtn2(f ).

Thus, to show (7.2) it is enough to bound the second moment of

1

n

[
�sn2,tn2(0) − �sn2,tn2(−1)

]
and

[
Mtn2(f ) − Msn2(f )

]
.

Here, we used the notation �s,t to denote the local time of Xslow between times s and t . We
first analyse the local time term above. To that end, we note that Proposition 4.3 and the
discussion following it yield a coupling between {�tn2(0) + �tn2(−1) : t ≥ 0} and {ξtn2(0) +
ξtn2(−1) : t ≥ 0} under which these processes are equal. We recall that ξ denotes the local
time process of the usual continuous-time symmetric random walk. Since∣∣�sn2,tn2(0) − �sn2,tn2(−1)

∣∣ ≤ ∣∣�sn2,tn2(0) + �sn2,tn2(−1)
∣∣

and x �→ x2 is a monotone function of the modulus of x, we see that it is sufficient to estimate
the second moment of the sum of the respective local times between times sn2 and tn2.
However, by the coupling just mentioned it is sufficient to estimate

1

n2Ex

[(
ξsn2,tn2(0) + ξsn2,tn2(−1)

)2]
,

and we obtain the desired estimate as a consequence of Proposition A.4. We turn to the
analysis of the martingale term. To that end we apply the following version of the Burkholder–
Davis–Gundy inequality.
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THEOREM 7.2. Let M be a càdlàg square integrable martingale. For any p > 0 there
exists a constant C = C(p) > 0 such that for all T > 0,

E

[
sup

0≤t≤T

|Mt |p
]
≤ CE

[[M,M]p/2
T

]
.

Note that Mtn2 = Mtn2(f ) − Msn2(f ) is also a martingale in t ≥ s whose optional
quadratic variation is given by

[M,M]tn2 = 1

n2

∑
sn2≤r≤tn2

∣∣
rX
slow∣∣2,

where 
rX
slow denotes the size of the jump of Xslow at time r . Note that Xslow only does

jumps of size one, so that the above is 1/n2 times the number of jumps in the time interval
[sn2, tn2]. However, since for β ≥ 0 we always have that α/2nβ ≤ max{1/2, α/2}, it readily
follows that the number of jumps of Xslow in the time interval [sn2, tn2] is stochastically
dominated by the number of jumps of a continuous-time simple symmetric random walk
jumping at rate max{1, α}, that is, by N(t−s)n2(m), where m = max{1, α} and N(m) is a
Poisson process with rate m. We can now conclude the proof using that

E
[
N(t−s)n2(m)

] = (t − s)n2m.

APPENDIX: AUXILIARY TOOLS

Here we resume the idea from [10] on how to obtain the explicit solution of PDE (2.5):

(A.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tρ = 1

2

ρ, u 
= 0,

∂uρ
(
t,0+) = ∂uρ

(
t,0−) = κ

2

[
ρ

(
t,0+) − ρ

(
t,0−)]

,

ρ(0, u) = f (u).

Denote by T κ
t f (u) the solution of above, where f is the initial condition and denote by

feven(u) and fodd(u) its even and odd parts, respectively. By linearity, the solution of (A.1)
may be written as the sum of T κ

t feven(u) and T κ
t fodd(u). Since the PDE (A.1) preserves

parity, we conclude that T κ
t feven(u) is solution of

(A.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tρ = 1

2

ρ,

ρ(0, u) = feven(n)(u),

∂uρ
(
t,0+) = ∂uρ

(
t,0−) = 0,

which boundary condition can be dropped due to the fact that feven is an even function. That
is, T κ

t feven(u) is simply the solution of the usual heat equation

(A.3)

⎧⎨
⎩∂tρ = 1

2

ρ,

ρ(0, u) = feven(u),

the solution of which is given by the classical formula

ρ(t, u) =
∫
R

feven(u − y)
e−y2/2t

√
2πt

dy.
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On the other hand, again by preservation of parity, we can deduce that T κ
t fodd(u) is given by

(A.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tρ = 1

2

ρ, u > 0,

ρ(0, u) = fodd(u), u > 0,

∂uρ
(
t,0+) = κρ

(
t,0+)

, t > 0,

on the positive half line, with analogous definition on the negative half line. The standard
technique to solve the (A.4) is to define

(A.5) v(t, u) := κρ(t, u) − ∂uρ(t, u),

which will be the solution of

(A.6)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tv = 1

2

v, u > 0,

v(0, u) = κfodd(u) − f ′
odd(u), u > 0,

v(t,0) = 0,

with analogous definition for the negative half line. Note that the equation above has Dirichlet
boundary conditions, which can easily be solved by the image method. Once we have the
expression for v, solving the linear ODE (A.5) gives us the expression for T κ

t fodd(u).

PROPOSITION A.3. The random variables L(x, t) and L(x
√

n, tn)/
√

n have the same
distribution.

PROOF. Doing the changing of variables u = sn, we get

L(x, t) = lim
ε↘0

1

2ε

∫ t

0
1Bs∈(x−ε,x+ε) ds = lim

ε↘0

1

2εn

∫ tn

0
1Bu/n∈(x−ε,x+ε)

du

n

= lim
ε↘0

1

2εn

∫ tn

0
1√

nBu/n∈(x
√

n−ε
√

n,x
√

n+ε
√

n)

du

n
.

Due to the BM’s scaling invariance, the last expression is equal in law to

lim
ε↘0

1

2εn

∫ tn

0
1Bu∈(x

√
n−ε

√
n,x

√
n+ε

√
n)

du

n
= L(x

√
n, tn)√
n

. �

The next result is probably standard, however we were not able to find it in the literature,
so we provide a proof. Recall that ξtn2(0) denotes the local time of a simple random walk at
the origin.

PROPOSITION A.4. Let p ∈ N, then for all t > 0 there exists a constant C > 0 such that
for all n ∈ N and all x ∈ Z,

Ex

[(
ξsn2,tn2(0)

)p]
� |t − s|p

2 np.

PROOF. For simplicity we prove the result only for s = 0, however since our estimates
are uniform in the starting point, the general case is a straightforward consequence. First note
that a change of variables yields that

ξtn2(0) =
∫ tn2

0
1{Xs=0} ds = n2

∫ t

0
1{X

sn2=0} ds.
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We then see that

(A.7) E
[(

ξtn2(0)
)p] = n2pm!

∫ t

0
ds1

∫ t

s1

ds2 · · ·
∫ t

sm−1

dsm

m∏
i=1

p(si−si−1)n
2(0),

where we set s0 = 0. We apply now the local central limit theorem ([17], Theorem 2.5.6),
which states that there is a constant c such that for all t and all n

nptn2(0) ≤ c√
t
.

Plugging this estimate into (A.7) we may now finish the proof. �

Next we furnish a short proof of Lemma 5.2.

PROOF OF LEMMA 5.2. By equation (5.8) and the Lipschitz continuity of the map u �→
Ptfeven(u), provided by Corollary 3.2, it is enough to prove (5.9) with Ptfeven(u) replaced
by Ptfeven(n)(

�un

n

). Moreover, with a slight abuse of notation un will henceforth denote the
integer part of un. We can now write

(A.8) Pn
t feven(n)

(�un

n

)
= ∑

z∈ 1
n
Z

feven(n)(z)ptn2
(
n(u − z)

)
.

We now apply the local central limit theorem ([17], Theorem 2.3.11), which states that for
x ∈ 1

n
Z,

nptn2(nx) = Kt(x) exp
{
O

(
1

tn2 + ‖nx‖4

(tn2)3

)}
,

where Kt denotes the usual heat kernel. We use this estimate in (A.8) for all z ∈ 1
n
Z such

that |n(u− z)| ≤ n5/4. Since there exists a constant C > 0 such that for all x ∈ [0,1) we have
the estimate |ex − 1| ≤ C|x| the above states that |nptn2(n(u − z)) − Kt(u − z)| ≤ C

n
for the

range of z’s just mentioned. Moreover, note that∣∣∣∣ ∑
z∈ 1

n
Z:

|n(u−z)|≥n5/4

feven(n)(z)ptn2
(
n(u − z)

)∣∣∣∣ ≤ ‖f ‖LP0
[|Xtn2 | ≥ n5/4]

,

and by [17], Proposition 2.1.2(b), we see that the above is bounded by C1e
−C2n

1/8
, for some

constants C1 and C2. The proof may now be finished by using the above approximation of the
continuous heat kernel by the discrete one and by a standard Riemann sum approximation.
We omit the details. �
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