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We study the Crank—Nicolson scheme for stochastic differential equa-
tions (SDEs) driven by a multidimensional fractional Brownian motion with
Hurst parameter H > 1/2. Itis well known that for ordinary differential equa-
tions with proper conditions on the regularity of the coefficients, the Crank—
Nicolson scheme achieves a convergence rate of n=2, regardless of the di-
mension. In this paper we show that, due to the interactions between the driv-
ing processes, the corresponding Crank—Nicolson scheme for m-dimensional
SDEs has a slower rate than for one-dimensional SDEs. Precisely, we shall
prove that when the fBm is one-dimensional and when the drift term is zero,
the Crank—Nicolson scheme achieves the convergence rate n~2H and when

the drift term is nonzero, the exact rate turns out to be n~ 2 H 15 the gen-

1

eral multidimensional case the exact rate equals n 2 —2H 1n all these cases the
asymptotic error is proved to satisfy some linear SDE. We also consider the
degenerated cases when the asymptotic error equals zero.

1. Introduction. This paper is concerned with the following stochastic differential equa-
tion (SDE for short) on R¢ driven by a fractional Brownian motion (fBm for short)

t
(1.1) X,:x+/ V(X,)dBs, tel0,T],
0

where B = (BO, B, ..., B™), and (Bl, ..., B™) is an m-dimensional fractional Brownian
motion with Hurst parameter H > % For notational convenience we denote Bt0 =t forte
[0, T'] in order to include the drift term in (1.1). The integral on the right-hand side of (1.1)
is of Riemann—Stieltjes type. It is well known that if the vector field V = (Vp, V1, ..., Vi) :
R? — L(R™*! R?) has bounded partial derivatives which are Holder continuous of order
o > % — 1, then there exists a unique solution for equation (1.1), which has bounded %—
variation on [0, T'] for any y < H; see for example, [14, 23].

As in the Brownian motion case, the explicit solution of SDEs driven by fractional Brow-
nian motions are rarely known. Thus one has to rely on numerical methods for simulations of
these equations. Various time-discrete numerical approximation schemes for (1.1) have been
considered in recent years. Recall that the classical Euler scheme is defined as follows:

(1.2) XZ(“ - ch + V(XZ{)(BU(H — By),
X§=x,
where k =0, 1,...,n — 1 and # = kT /n. This scheme is considered in [17, 18] for scalar

SDEs, and generalized in [10, 15] to the multidimensional case. The solution of (1.2) has the
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1-2H

exact strong convergence rate of n when H > %, while in the case H = % it converges

to the corresponding Itd6 SDE
t
Xi=x+ [ VX)0B,, 1el0 T,
0

where § denotes the It0 stochastic integral. Note also that the Euler scheme is not convergent
when H < %; see for example, [5]. A modified Euler scheme introduced in [10] generalizes
the classical Euler scheme to the fBm case

Tk+1

(1.3) j=1

X5 =x.

1n T 2H
= v, S avo(D)

The modified Euler scheme has been shown to have a better convergence rate than (1.2).

. . 1
More precisely, the rate is n2 21

when % <H< % and n—!,/Togn when H = %, and in the
case % < H < 1 the rate becomes n~!. Weak convergence rates and asymptotic error distribu-
tions were also obtained for the modified Euler scheme. In [9], the authors considered Taylor
schemes derived from the Taylor expansion in the one-dimensional case. In [11], the Taylor
schemes and their modifications were introduced for SDEs driven by fBm’s B L ..., B™ with
Hurst parameters Hy, ..., H,, where Hy, ..., H, € (%, 1] are not necessarily equal. In [4],
the Milstein scheme (or 2nd-order Taylor scheme) has been considered for the rough case
H < % and it is convergent as long as H > % An extension of the result to mth order Taylor
schemes is contained in [7]. In [5, 6], some 2nd and 3rd order implementable schemes are
studied via the Wong—Zakai approximation.

The Crank—Nicolson (or Trapezoidal) scheme has been studied only recently. Recall that
the Crank—Nicolson scheme for (1.1) is defined as follows:

i
(1.4) Xiwr = Xt + 5 VXL ) + VXD Brs = By,

n_
Xy =x,

where again ty = kT /n for k =0,...,n — 1. In [16, 18], the Crank—Nicolson scheme is
considered for SDEs with Hurst parameter H € (1/3, 1/2). It has been shown in [18] that if

. L1 . . .
V € C;° the convergence rate of the Crank—Nicolson scheme is n2 3H This rate is exact in

. _1
the sense that the renormalized error process n3# =2 (X — X™) converges weakly to a nonzero

limit (see, e.g., [16]). Note however that due to the use of the Doss—Sussmann representation
these results are applicable only to the scalar SDE setting, which corresponds to the case
m =d =1 and Vp = 0 in our notation. On the other hand, it has been conjectured in [19] that
the Crank—Nicolson scheme has exact root mean square convergence rate n2—2H
In view of these results, our first goal is to answer the following question:

QUESTION 1. Is the Crank—Nicolson scheme still convergent in the multidimensional
setting, and is the convergence rate the same as that of the scalar SDE?

Let us recall that in the case of deterministic ordinary differential equations (ODESs), either
in the one-dimensional or multidimensional settings, and with proper regularity assumptions
on the coefficients, the convergence rate of the Crank—Nicolson scheme is always n 2. Sur-
prisingly, as we will show in this paper, the Crank—Nicolson scheme (1.4) for SDEs has a
very different feature comparing to the ODE cases. While the Crank—Nicolson scheme is
still convergent, the convergence rate is largely “throttled” due to the interactions among the
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driving processes of the equation. More precisely, we will prove the following result. We
consider the continuous time interpolation of the Crank—Nicolson scheme for ¢ € [, fx+1),
k=0,....,n—1:

1
(1.5) X =X; + E[V(ka) + V(X3 )](B: — By).

THEOREM 1.1. Let X be the solution of equation (1.1) and let X" be the continuous time
interpolation of the Crank-Nicolson scheme {Xj, X}, ..., X} } defined by (1.5). Suppose
that V e C 2 . Then for any p > 1 there exists a constant K = K, independent of n such that
the following strong convergence result holds true for all n € N:

(1.6) sup (E|X, — X"|")"/? < K/9,.
1€[0,T]

where ¥, is defined as

nZH_% when m > 1,
Uy = nH+% whenm =1 and Vy #£ 0,
n?t whenm =1 and Vo = 0.

Theorem 1.1 shows that if the driving process B is one-dimensional and there is no drift
term, then the convergence rate of the Crank—Nicolson scheme (1.4) is n~2H This result
coincides with the case of deterministic ODEs if we formally set H = 1, and also with the
case of one-dimensional Brownian motion which corresponds to H = % (see, e.g., [16, 18]).

H

. . . . _H_1
If a drift term is included in the equation, then the rate turns out to be n 2, In the general

case when B is multidimensional the convergence rate becomes n2—2H , the same as that
of the modified Euler scheme (1.3) with % < H < %. Note also that Theorem 1.1 gives a
positive answer to the conjecture raised in [19] under this general assumption. The slowing
down of convergence rate from one-dimensional case to multidimensional cases is due to the
nonvanishing Lévy area term (see (3.1)). Indeed, in the one-dimensional case these Lévy area
type processes disappear and the convergence of X — X" is dictated by some higher order
terms.
The second part of the paper is motivated by the following question:

QUESTION 2. Are the convergence rates obtained in Theorem 1.1 exact? If yes, what is
the limiting distributions of the scheme for both the one-dimensional and multidimensional
cases?

To answer this question, we will consider the piecewise constant interpolations. Namely,
we consider the processes X” and X:

(1.7) X, =X, and X'=X", telti,tiz1),k=0,1,...,n.

>
Recall that X and X" are respectively the solutions of equations (1.1) and (1.4).

REMARK 1.2. The piecewise constant interpolation X of the true solution X allows us to
focus on the asymptotic error on the partition points. In fact, we will see that the interpolation
(1.5) of X" satisfies

(X = X7P) = (Xy, — X)) ~n72H
for t € [t, tr+1) (see (4.34)). According to the rates stated in Theorem 1.1, this difference
between the error at the partition points and at the nonpartition ones does not affect the rates
of convergence of the scheme in all three cases. However, in the case of m =1 and Vp =0, it
has a nontrivial contribution to the asymptotic error.
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THEOREM 1.3. Let X and X" be the processes defined in (1.7), and suppose that V €
C 2 Denote by ¢ ;' the Lie bracket between the vector fields V; and V-

(1.8) $jir=03V;Vyi—aVyV;, j,j'=0,1,...,m,

where V'V denotes the inner product (3V;, V) = Zle V;,E),- V.
(1) Suppose that m > 1. Then we have the convergence

(1.9) (9,(X — X"), B) — (U, B)

in the Skorohod space D([0, T1; R4 *1Y as n tends to infinity. The above process U is the
solution of the linear SDE on [0, T]

m . 1 K ..
(1.10) dU, =YV (X)U,dB! + T Z\E > ¢ (X)dw!

Jj=0 I<j'<j<m

with Uy = 0, where W = (Wj/j)lsj/q-sm is a standard W-dimensional Brownian mo-
tion independent of B and k is the constant defined by (3.4) in Section 3.

(1) Suppose that m =1 and Vo #£ 0. Then the above convergence (1.9) still holds true.
The process U is the solution of the linear SDE on [0, T']

(1.11) dU, = Z an(X,)U,a'Btj+TH+%\/g¢10(Xt)sz, Up=0,
j=0,1

where W is a one-dimensional standard Brownian motion independent of B and p is the
constant defined in (3.29) in Section 3.

(iii) Suppose that m = 1 and Vo = 0. Then, we have the following convergence in LP (Q2)
forall p>1landtel0,T]:

(1.12) (X, — X") - U,
where the process U is the solution of the linear equation

T2H 4.
(1.13) dU; =8V (X))U;dB; — —— S (ViVI9:9:V)(X)dB:, Up=0.

i,i’'=1

Theorem 1.3 shows that in the multidimensional cases, one obtains the central limit theo-
rem for the renormalized error process. It is worth mentioning that the equation of the limiting
process U does not depend on ¢, j =0, ..., m. This is due to the fact that ¢; arises from
the higher order terms of the expansion of the error process. In the scalar case the convergence
of the error process holds in L?(£2). One could prove tightness in item (ii) of Theorem 1.3,
but this requires an additional effort and will not be discussed in this paper, because L”
convergence is stronger than f.d.d. convergence and the tightness is not so relevant here. The-
orem 1.3 implies in particular that, generally speaking, the convergence rates in Theorem 1.1
are exact. It is worth mentioning that the cutoff of the convergence rates observed in [10,
19] is not present in either of these cases. The Crank—Nicolson scheme provides us a first
example in which the convergence is impacted by the dimension of the system.

We should point out that in the degenerated cases, for instance when the commutators are
zero, Theorem 1.3 only says that the corresponding asymptotic error is equal to zero. In such
situations, further investigations of the scheme are required. In the following two results, we
consider two levels of degeneracy:

(D1) ¢jy=0 forj,j'=1,....m and (D2) ¢;y=0 forj, j'=0,1,...,m.
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THEOREM 1.4. Let X, X", and V be as in Theorem 1.1. Then for any p > 1 there exists
a constant K = K, independent of n such that for all n € N:

—_H-1
(1.14) sup (E|X; — Xﬂp)l/p < Kn iy 2 when (D1) holds,
1€[0,7] Kn~ when (D2) holds.

Note that these rates in (1.14) are exactly those obtained in Theorem 1.1. They tell us
that the rates of convergence are dictated by Lie brackets of coefficients rather than by the
dimension of the system.

The next theorem provides our main result on the asymptotic errors of the scheme in
degenerated cases.

THEOREM 1.5. Let the processes X and X", the functions V and ¢jjr, and the constant
p be as in Theorem 1.3.

(1) Suppose that (D1) holds, and let U be the solution of the equation on [0, T]:
m X 1 Q m .
dU; =) aVi(X)UidB] + TH+2\E]§ ¢jo(X)dW/, Uy=0,

Jj=1

where W = (W', ..., W™) is an m-dimensional Brownian motion independent of B. Then
we have the convergence in D([0, T, RA+m+1y g5 n — oo:

(n"*2(X — X"), B) - (U, B).

(i1) Suppose that (D2) holds, and let U be the solution of the linear equation:
2H m

dU, =3 9V, (X,)Uy dB ——Z/ V.ii(s)dBI +Zf 0;(s)dB],

j=0
and Uy = 0, where we denote ;s j»(t) = z;f,.,zl(v%,va,a,-/ai Vi)(X;) and

1 op 1 >
0 (1) = 2T j%j(mﬂwu,() 2H+1w,”(t> re[0, T,

Then we have the following convergence in LP(Q2) forall p>1andt €0, T]:
(1.15) (X, — X" - U,.

Our first step to prove Theorem 1.1-1.5 is based on an explicit expression of X — X"
similar to that established in [10]. A significant difficulty is the integrability of the Malliavin
derivatives of the approximation X”. This is due to the fact that the Crank—Nicolson scheme
(1.4) is determined by an implicit equation. This difficulty will be handled thanks to some
fractional calculus techniques, see for example, [3, 11, 27]. A special attention has to be
paid also to the Lévy area type processes mentioned above. Our approach to handle these
processes relies on a combination of fractional calculus and Malliavin calculus tools. Let us
mention that it is possible to extend our results to the rough case by the approaches introduced
in [13].

The paper is structured as follows. In Section 2, we recall some basic results on the fBm’s
as well as some upper bound estimate results and limit theorem results on fractional integrals.
In Section 3, we consider the moment estimates and the weak convergence of some Lévy area
type processes. In Section 4, we consider the strong convergence, and then in Section 5 we
prove Theorem 1.3 on the asymptotic error. Section 6 focuses on the degenerate cases. Some
auxiliary results are stated and proved in the Appendix.
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2. Preliminaries.

2.1. Fractional Brownian motions. We briefly review some basic facts about the stochas-
tic calculus with respect to a fBm. The reader is referred to [20, 21] for further details. Let
B ={B;,t €[0, T]} be a one-dimensional fBm with Hurst parameter H € (%, 1), defined on
some complete probability space (£2,.#, P). Namely, B is a mean zero Gaussian process
with covariance

1
E(B,B,) = E(IZH + 52 | — 52

for s, t € [0, T]. Let H be the Hilbert space defined as the closure of the set of step functions
on [0, T'] with respect to the scalar product

1
— (21 4 21— 5P,

(10,11, Ljo,s)) 1 = 5

It is easy to verify that

T T 2H-2
@.1) <¢,w>H=H<2H—1>/O /0 Sutbol — v 2 du dv

for every pair of step functions ¢, V¥ € H.

The mapping 1jo ;; = B; can be extended to a linear isometry between H and the Gaussian
space spanned by B. We denote this isometry by & +— B(h). In this way, {B(h), h € H} is an
isonormal Gaussian process indexed by the Hilbert space H.

Let S be the set of smooth and cylindrical random variable of the form

F:f(Bllaﬂ-vBlN)v

where N > 1,11,...,ty €[0,T] and f € C}° (RN ), namely, f and all its partial derivatives
are bounded. The derivative operator D on F is defined as the H-valued random variable
N g 7
DZ‘F: %(Bl‘l"--aBl‘N)l[O,l‘,'](t)’ te[o’ T]

i=l !

For p > 1 we define the Sobolev space ]DD};” (or simply D!-7) as the closure of S with respect
to the norm

1
| Fllpr = E(FIP) +E(IDFIF)) 7.
The above definition of the Sobolev space D!-? can be extended to #-valued random vari-

ables (see Section 1.2 in [21]). We denote by D};p (H) (or simply D7 (H)) the corresponding
Sobolev space.

We denote by 4 the adjoint of the derivative operator D. We say u € Dom  if there is a
8(u) € L3(S2) such that for any F € D2 the following duality relationship holds

(2.2) E((u, DF)3) =E(F8(u)).

The random variable 8 () is also called the Skorohod integral of u with respect to the fBm B,

and we use the notation §(u#) = fOT u;8 B;. The following result is an example of application
of the duality relationship that will be used later in the paper.

LEMMA 2.1. Let B and B be independent one-dimensional fBm’s with Hurst parameter
He (%, 1). Take h € H ® H, then the integral fOT fOT hs 18 Bs8 By is well defined. Denote by

D and D the derivative operators associated with B and B, respectively. Take F € ]Dg2 and
assume that DF € ID)L’Z(’H). Then, applying the integration by parts twice, we obtain

5 T (T 3
(2.3) E((h,DDF)H@)H):E(FfO fo hs,,SBS(SB,>.
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2.2. Weighted random sums. In this subsection, we recall some estimates and limit re-
sults for Riemann—Stieltjes integrals of stochastic processes. Our main references are [3, 10,
11, 27]. Let us start with the definition of Holder continuous functions in L? := L? (). In
the following | - ||, denotes the L”-norm in the space L?, where p > 1.

DEFINITION 2.2. Let 8 € (0,1) and p > 1. Let f ={f(¢),t € [a, b]} be a continuous
process such that f(¢) € L? for all ¢ € [a, b]. Then f is called a Holder continuous function
of order 8 in L7 if the following relation holds true for all s, f € [a, b]:

[f @& = f®], <Kt —sI”.
We denote by || f||g,, the Holder semi-norm

If @) =&

17150 =sup{ 0L st s o, bl 25

Our first result provides an upper-bound estimate for the L”-norm of a Riemann—Stieltjes
integral.

LEMMA 2.3. Takepzl,p/,q/>1:%4—%:1andﬂ,ﬁ’e(O,l):,B+ﬂ/>1.Let

f(@0), g), t € [a, b] be Hilder continuous functions of order B and B’ in LPP and LPY,
respectively. Then the Riemann—Stieltjes integral |, f f dg is well defined in L?, and we have

the estimate
b
| rdg
a

where K is a constant depending only on the parameters p, p', q’, B, B'.

2.4)

< (KIS g ppr + [ £ @I, I8l pgr 0 = )P,
p

PROOF. The proof is based on the fractional integration by parts formula (see [27]),
following the arguments used in the proof of Lemma A.1 in [10]. O

Given a double sequence of random variables ¢ = {¢k.,,n € N,k =0, 1, ..., n}, for each
t €0, T] we set
lnt/T]
(2.5) gn®) =Y Cin

k=0

where |[nt/T | denotes the integer part of nt/T. We recall the following result from [11],
which provides an upper-bound estimate for weighted random sums (or the so-called discrete
integrals) of the process gj,.

LEMMA 2.4. Let p, p', q', B, B’ be as in Lemma 2.3. Let f be a Hélder continuous
function of order 8 in LPP. Let gn be as in (2.5) such that for any j, k=0,1,...,n we have

E(|gnkT/n) = gn(GT/m|"") < K (I = jI/n)" "7

Then the following estimate holds true fori, j =0,1,...,n,i > j:

’

Y f@)kn

k=j+1

] ﬁ
< K1 g + 1510 (57

p
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Let us now recall some limit theorems for weighted random sums. The first result says that
if the “weight-free” random sum (2.5) converges weakly and if the weight process satisfies
certain regularity assumption, then the weighted random sum also converges weakly. The
reader is referred to [3] for further details.

PROPOSITION 2.5. Let g, be defined in (2.5). Assume that g, satisfies the inequality

E(|g.kT/n) — g GT/m|*) < K (Ik — jI/n)>

for j,k=0,1,...,n.Suppose further that the finite-dimensional distributions of g, converge
stably to those of W = {W;, t € [0, T}, where W is a standard Brownian motion independent
of &n-

Let f ={f(t),t €0, T]} be a Holder continuous process of order B for § > 1/2. Con-
sider the Riemann—Stieltjes integral fot f(s)dWs. Recall that |nt /T | denotes the integer part
ofnt/T.

Then the finite-dimensional distributions of ) ,E":té“ S () k.n converge stably to those of

Jo f(s)dws.

Recall that a sequence of random vectors F;, converges stably to a random vector F, where
F is defined on an extension (', .%’, ') of the original probability (2, .7, P), if (F,,, Z) —
(F, Z) weakly for any .% -measurable random variable Z. The reader is referred to [1, 12, 25]
for further details on stable convergence.

The following result can be viewed as the L”-convergence version of Proposition 2.5 (see

[10D).

PROPOSITION 2.6. Take B, A €O, ):B+Ar>1.Let p>1and p',q" > 1 such that
;, q, =1and pp' > ﬂ, pq' > 5. Let g, be defined in (2.5). Suppose that the following two
conditions hold true:

(i) Fort €[0, T], we have the convergence g, (t) — z(t) in Lrd',
(ii) For j,k=0,1,...,n we have the relation

E(|gn (kT /n) = ga(GT/m)|"") < K (Jk = j1/n)""".
Let f = {f(),t € [0,T]} be a continuous process such that E(||f||§p/) < K and

E(f (())|pp’) < K. Then for each t € [0, T] we have the convergence:

Lne/ T .
Jdim > f(tk)ék,n:/o f(s)dz(s),
k=0

where the limit is understand as the limit in L?.

3. Lévy area type processes. Let B ={B;,t > 0} be a one-dimensional fBm with Hurst
parameter H € (%, 1), and let B = {B;, t > 0} be a Holder continuous process of order g > %
Let [1={0=1 <t <--- <t, =T} be the uniform partition on [0, T'] and take #,| =
”T“T. Fort e [t,441) N[0, T],1=0,...,n,define the Lévy area type process on [0, T']

tet1 1 Lle+1 o
3.1 Z,,(t)_ (/ dB dBg —/ / dBust).
1, K

In this section, we study the convergence rate and the asymptotic distribution of the sequence
{Z,,n € N}. We focus on two cases: (i) B is an independent copy of B; and (ii) B is the
identity function: B, =t fort>0.
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3.1. Case (i). For simplicity, we denote by y the measure on the plane R? given by
(3.2) w(dsdt)y=HQH —1)|s —t|*" % ds dt.

For each p € Z we set

Q(p) :ﬁa<s<p+1 ﬁxvqu(dvdu)u(dsdt),

O<r<l1 O<u<t

R(p) = _/1-7<S<[)+1 ﬁ,<v<su(dv du)u(ds dt).

O<r<l1 t<u<l

We have the following result on the process Z,,.

PROPOSITION 3.1. Let Z, be the process defined by (3.1) and let B be an independent
copy of B. Then, there exists a constant K depending on H and T such that for t,s € Il we
have

(3.3) n* VR (| Z, (1) — Zu(o)[?) < K|t —s).

Furthermore, the finite-dimensional distributions of (nzH_%Zn (1), By, Et,t € [0, T)]) con-

verge weakly to those of (TZH_%«/2KWt, B;, E,,t € [0,T]) as n tend:v to infinity, where
W ={W;,t €0, T1} is a standard Brownian motion independent of (B, B), and

(3.4 k=Y (0(p)— R(p)).

PEZL

REMARK 3.2. Figure 1 provides the graph of the parameter « as a function of H on
(%, 1). We observe that ¥ converges to % as H tends to % which corresponds to the Brownian
motion, and it approaches zero as H tends to one.

PROOF OF PROPOSITION 3.1. The proof is divided into several steps.
Step 1. In this step, we show the convergence of n*1=1E(7,()?) and derive its limit as
n — 0o. We first calculate the second moment of Z,(¢). Note that when B is an independent

0.5

5 2 & o %
&) w a S a

Value of x

o
o
T

0.15F

0.1F

0.05 L L L L L L .
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Value of H

FiG. 1. The value of k.
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copy of B we have

lnt/T] fest Tkl I+l .
Z= 3 (/t 8B 5By —ft / 8Bu83s>
* N

k=0
nt/T)

Z f / ,Bk(s)ytkv(u)SB S Bs,

where § denotes the Skorohod integral and
(3.6) ;35 () =1 151108), Vie.s @) = Lz 1) — g g1 (00).

By the integration by parts formula (2.3) and taking into account the expression of Z,(¢) in
(3.5) we obtain

(3.5)

nt) T
3.7) E(Z,(1)?) Z / D, DyZ, (t)ﬁk () Vs W p(dudu')u(ds ds'),

where D and D are the derivative operators associated with B and B, respectively. It is clear
that

lnt/T|
DuDyZy()= 3~ Bi(s) s ().
k=0
Therefore, we obtain the expression
lnt/T]
3.8) E(Z.0})= > f ﬁk(s)ytk,é( u )y s@p(dudu)u(ds ds').
ke k=

By changing the variables from (u, u’, s, s”) to %(u, u',s,s’), we obtain

) 4H nt/T]
/
220 =(3) 7 2 vy oy O Ottt 1),

k,k'=0" k<s<k+1

where @i s(u) = 1 s1(u) — 15 k417(u). Denote <p,?,s(u) = 1k 51 (u), <0;175(u) = 5 kr11(u),
and set

L= i N J / ’
eij = ﬁ/<s/<k/+1 /0<u o op o (W)op @) (dudu’)pu(ds ds').
k<s<k+1
Then we can write

T\4H [nt/T] o
E(Z(1)?) = <_) > ) (=D)'e;
n k=0 i,j=0,1
It is easy to see that egg = 1] = Q(k — k') and eg] = ej9 = R(k — k’). Therefore,

T 4H nt/T]
(3.9) E(Z,(1)?) :2(—) > [0k — k) — R(k —K')].
7 k=0
Taking p = k — k’ on the right-hand side of (3.9), we obtain
E(Z,(1)?)
TN\4H (nt/T]nt/T] -1 lnt/T|+p
(10) = 2(—) ( Y Y lew-rwls ¥ X [0~ R(p)])
n =0 k=p p=—Int/T| k=0

=q1+q.
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We decompose g1 as follows

o= 2(%)“ v (|5 |- r+1)@w - re)

p=0
TN\ (| ne | VLT nt/ T
:2(—) ({—J Y (@ —R(pP)— Y (p—D(Q(p) — R(p)))
n T
p=0 p=0
=4q11+4q12.

By the mean value theorem for the integrals appearing in the definitions of Q and P, it is easy
to show that |Q(p) — R(p)| < Kp*"=> for p > 0. This implies that Z —0(Q(p) — R(p)) is
convergent and we also have
[nt/T]

Y (p—D(Q(p) — R(p))| <

p=0

K(n4H_3 v 1).

Here a Vv b denotes the maximum of a and b and notice that the upper bound 1 is needed
when 4H — 3 < 0. Therefore,

lim -1 — fim o1 1)y | 0L i
e > (0(p) = R(p))

n— 00 n— 00 n T '
(3.11) b=
o0
=2T*"=13"(0(p) — R(p))
p=0
and
(3.12) lim n*1g1, = 0.

In summary, from (3.11) and (3.12), we obtain
e.¢]
4H—-1 4H—1
(3.13) Jim g =271 (0(p) — R(p)).
p=0
In a similar way, we can prove the following convergence for ¢

—1

. 4H-1,__ _ 4H-1
(3.14) TJim a7 lgy =271 S (0(p) — R(p)).
p=—00
Substituting (3.13) and (3.14) into (3.10) yields
(3.15) lim n*TE(Z,(0)%) = 274 e,

where recall that « is a constant defined in (3.4).

Step 2. In this step, we show inequality (3.3). This inequality is obvious when s = ¢. In the
following we consider the case when ¢ > s.

Take ¢ € I1. By the definition of g; we have

4H nt/T] nt
a1 52(;) )3 (7—p+1)!Q<p)—R(p)\

p=0
T

< 2(;)”(”7’ + 1) iO|Q<p> ~R(p)|.
fo
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In the same way, we can show that

o 52<£>4H<n?t+1> S 10 - R(p).

p=—00

Applying these two inequalities to (3.10) we obtain
T
(3.16) n*1=E(Z, (1)) < K<t+ —)
n

for ¢ € I1, where K is a constant depending on H, T. Take s, ¢ € I1 such that s < ¢. Inequality
(3.3) then follows by replacing ¢ in (3.16) by t — s — % and noticing that Z, () — Z,(s) and
Z,(t —s — %) are equal in distribution and thus have the same second moments.

Step 3. Take s,t € [0, T] such that s < ¢. In this step, we derive the limit of the quan-
tity n*~1E(Z,,(t)Z,(s)). Denote n(t) = t; for t € [t, trs1), k =0, 1, ..., n. Then we have
Z,(t) =Z,(n(t)). Since Z,(n(t)) — Z,(n(s)) and Z,(n(t) — n(s) — %) have the same dis-
tribution, we have

E(|Za(n(1)) = Za(n(s)) )

-+ )

Note that 0 < (t — ) — (n(t) — n(s) — L) < 2L so either Z,(n(t) —n(s) — L) =Z,(t — )
or Z,(n(t) —n(s) — %) =Zy(t—s— %). In both cases we have

E(|Z(t) — Zn(s)|)
(3.17)

AUGEIOEEY

2
Gy tm (|2, (v ) - )| ) = tim (20— ).

Indeed, the identity is clear in the first case. In the second case we write

ptH = (E(|Z,,(z -9 - E( Z, <z —5— %)‘2))
=n4H_1E<<Zn(t —5)— Zn<t -5 — %))(Zn(t —s)+ Zn<t —5— %)))

Then, applying Holder’s inequality and the estimate (3.16) to the right-hand side, yields

T\ |2 T
z4pﬂ__))§Kf
n n

This implies, in particular, that the right-hand side of (3.19) converges to zero as n — oo and
thus relation (3.18) holds.
Substituting (3.18) into (3.17) and with the help of (3.15) we obtain

(3.19) n*H-1

E(|Za(t — 9)[7) —E(

(3.20) nli)rgon4H_1E(|Zn (1) — Zp(s)|*) = 2Tkt — 5).
By expanding the left-hand side of (3.20) and using (3.15), we obtain
(3.21) lim 2 TE(Z, (02, () =2T* et As), 5,1 €10, T,

Step 4. In this step we prove the weak convergence of the finite-dimensional distributions

of (nZH_%Zn, B, B). Given rq,...,rr € [0,T], L € N, we need to show that the random
vector

1 ~
" .= m*"=2(Z,(r1), ..., Z4(rL)), Brys ... B, Bry, ..., By))

L
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converges in law to
1

O = (T*=2V2c(W(r1), ..., W(rL)), Brys ..., Brys Brys ..., Bry)

as n tends to inﬁnity: where recall that W = {W,,r € [0, T']} is a standard Brownian motion
independent of (B, B). According to [24] (see also Theorem 6.2.3 in [20]), this is true if we
can show the weak convergence of each component of ®’ to the corresponding component
of ® and the convergence of its covariance matrix to that of @y

The convergence of the covariance of n2t -3 Z,(r;) and n2H -3 Zy(rj) to that of

T2H=3/2cW(r;) and T2#=12cW(rj) follows from (3.21). The covariance of

I ~ . . o .
n*1=27,(r;) and (B, ;> Br;) 1s zero since they are in different chaoses, so the limit of the

covariance is zero, which equals the covariance of T2H-3 V2K W (r;) and (By;, érj) since W
and B are independent.

By the fourth moment theorem (see [22] and also Theorem 5.2.7 in [20]) and taking into
account (3.21), to show the weak convergence of the components of ®’ it remains to show
that the limits of their fourth moments exist, and

(3.22) lim 2R (Z, ()% =3 lim n¥=2(E(Z,(1)%))*

fort €0, T].
Applying the integration by parts formula (2.3) to E(Z,(r)*) and taking into account the
expression of Z, (¢) in (3.5), we obtain

E(Za()*) = E(Za (1) - Zu (1))
(3.23) Lt/ T)

:ZE

o1 Dy Dy[Zy (t)s]ﬁg (8)Vi.s @ p(du du’) u(ds ds’),
k=0 ’

where D and D are the differential operators associated with B and B, respectively. We
expand the second derivative D,y Dy[Z, ()3] as follows:

Dy Dy[Z,(t)*) =3Z,(t)> Dy Dy Zy (1) + 6 Zy (1) Dy Z,y () Dy Zy ().
Substituting the above identity into (3.23), we obtain
E(Zn(t)") = di + da,

where

lnt/T] )
(324) =6 Y E /  Zu(0) Dy Zy (6) Dy Zu (1) B ()i (@) (due d') o (ds )

k=0 1011 "
and
lnt/T] _
(325) dl =3E(Zn(t)2) Z /[‘0 - DM/DS/Zn(t)ﬁS(S)y;k’s(u)ﬂ(dudu/)u(dsds,).
k=0 ’

Substituting (3.7) into d1, we obtain
(3.26) dy =3E(Z,(1)*)E(Z,(1)?).
The term d» is more sophisticated. We shall prove in Section A.1 the following fact:
(3.27) lim n¥7 24, =0.

n—oo

The identity (3.26) and the convergence (3.27) together imply the identity (3.22). This com-
pletes the proof. [J
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F1G. 2.  The value of p.

3.2. Case (ii). Inthis subsection we consider the process Z, in (3.1) with the assumption
that B, = ¢, t € [0, T]. In order to distinguish this new Z, from the one in the previous
subsection, we will denote it by z,. For each p € Z, we define two quantities

0(p) :ﬁ:<s<p+l ﬁ@q dvdup(dsdt), R(p) :ﬁ)<s<p+1 ﬁ@q dvdup(dsdt),
O<t<1 “O<u<t O<t<1 “t<u<l

where recall that u(ds dt) = HQH — 1)|s — t|*" =2 ds dt is a measure on R2.

PROPOSITION 3.3. Let z,, be the process defined in (3.1) where we take l§, =t,t€
[0, T]. Then, there exists a constant K depending on H and T , such that for t,s € Tl

(3.28) n?HHE((2,(0) — 20 (s))%) < K|t — s].

. . . . . 1
Moreover, the finite-dimensional distributions of the process (n'*2z,, B) converge weakly

to those of (/20T +3 W, B) as n — oo, where W is a Brownian motion independent of B
and

(3.29) 0= (0(p) — R(p)).

pEL

REMARK 3.4. Figure 2 provides the graph of the parameter p versus H on (%, 1). We
see that p converges to % as H tends to % and p approaches zero as H tends to one.

PROOF OF PROPOSITION 3.3.  The proof will be done in several steps.
Step 1. We first calculate the second moment of z,(¢). We rewrite z,(¢) as

lnt/T] .7 .T
a= > [ [ By duss,
k=0 0 0 n

where B« (s) and y; s(u) are as in (3.6), and then applying the covariance formula (2.1) we

obtain
[nt/T]

(330) E(Zn(t)z) — Z </[‘0 - IBIL, (S/)ﬁﬁ (S)V’k/vs’(”/)yzk,s(”)du dul,u(ds ds/).
k.k'=0 10 " !

Note that, in comparison with formula (3.8), in the right-hand side of (3.30) the measure
W appears only once and this expression does not have the same symmetry of variables as
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(3.8). In the following we compute E(z, (1)2) in detail, which differs from the computations
performed in Proposition 3.1.
We apply a change of variables from (u, u’, s, s") to %(u, u',s,s’) to obtain

HE(Zn(t)Z)

(T>2H+2 Lngjf
/ / /
=|—- ' dudu'p(ds ds’)
k/ ’ k/ 1 / , (pk S (u )(pk,s(u)
n kom0 ) S Sih Jo<u <n

TN\2H+2 /7] o
-() X X v,

n kk'=01i, =0, 1
where
~ i N Jj / /
ei=1, , , P o (W) () dudu'pn(dsds’),
k <S <k +1 O<M u/<n ) 5
k<s<k+1

and (p,? s = Lk s <p,1 ¢ = g k1y and @ s = (p,? P go,l , are defined as in the previous subsec-
tion. It is easy to see that

(3.31) éo=0Q(k—k) and &o=R(k—FK).
By the change of variables from (s, s”) to (k + 1 — s,k + 1 — s”), we obtain
k—k'+1 p1 _
(3.32) Gy = / f (s' = (k — K))sp(ds ds’) = O(k — k),
k— 0

where the second equation follows by exchanging the orders of the two integrals. By changing
the variables from (s, s') to (k/ +1—s,k'+1—5") for 11, we obtain

e01_// T )6 = (0 — R uldsds) = R — K),

and, therefore,

Lnt/T| lnt/T] lnt/T)
(3.33) Z éo1 = Z R(k = Y R(k—K).
k,k'= k,k'= k,k'=0

In summary, from (3.31), (3.32) and (3.33), we obtain

H+2 [nt/T]
B =2(1)" S (0 k)~ Rk K)

k,k’=0

T\ 2H+2 lnt/T] nt/T]1=p B
2(—) (Z > (2(p)—R(p))

n p=0  k'=0
-1 [nt/T ]

+ Y Y (0w —ﬁ(p)))

p=—Int/T]K=—p

(3.34)

=q1+q.

Step 2. In this step we show inequality (3.28). Since |Q(p) R(p)l ~ 2H—3 for suffi-
ciently large p, it is easy to see that the series }_ ¢z 10(p) — R(p)] is convergent. So we
have the estimates

(3.35) §1 < 2(%>2H+2(m + 1) ZIQ(p) R(p)|
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and

(3.36) c}zszG)zM(’” ) S 16) - R,
Applying (3.35) and (3.36) to (3.34), yields "

(3.37) n? R (z,(1)%) < K(z - %)

Take s,¢ € I1. By replacing ¢ in (3.37) by t — s — % and noticing that z,(t) — z,(s) and
Zn(t — 5 — —) have the same distribution, we obtain

2H+1E(|Zn(t) . Zn(s)| ) 2H+1]E(

(3.38)
<K(t—y5).

This completes the proof of (3.28).

. 1
Step 3. In this step, we show the convergence of the process (n/*2z,, B). Note that the
finite-dimensional distributions of (n/*2z,, B) are Gaussian, so to show their convergences
it suffices to show the convergences of their covariances. We first consider the convergence

of n?H+1E(|z,(1)|?). To this aim, we write

G = 2(%)2“2 v (|5 |- r+1)@w - ko)

p=0
(3.39) TN2HA2 (1 U/ T1 Lnt/T]
=2<;) (L;J ;)(Q(p) R(p)) — Z<p—1> 0(p) — R(p)))
=q11 +q2.

First, it is easy to verify the following convergence

[t/ T)
lim n?" Gy = lim 2n2H+! T\ e nZ (O(p) — R(p))
n—00 = n T =0

(3.40) -
=2T*141 3" (0(p) — R(p)).

p=0

On the other hand, since | Zgi{)ﬂ (p— 1)(Q(p) — Ié(p))| < Kn*f=1 we have the conver-
gence

(3.41) lim n*7*1G), =0.

n— 00
Putting together (3.40) and (3.41), and taking into account (3.39), we obtain

(3.42) lim n?7+1G, 2T2H+1tz (Q(p) — R(p)).

n—oo
p=0

The quantity ¢, can be considered in a similar way. We can show that

-1
(3.43) lim n*# g, =212 3™ (Q(p) — R(p)).

n—o0
p=—00
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Applying (3.42) and (3.43) to (3.34) we obtain
(3.44) Tim n*HVE(z,(n0%) =27 or.

Take s, ¢ € [0, T']. By the same argument as in (3.21) and with the help of (3.37) and (3.44),
we can show that

(3.45) lim n? R (2,(0) 20 (5)) = 2T o1 A s).

On the other hand, by some elementary computation (see Section A.2), one can show that
(3.46) lim E(z,(t)B,) =0.
n—oo

Therefore, combining (3.45) and (3.46), we conclude that the covariances of the finite-

dimensional distributions of (n" +%zn, B) converge to those of («/2QTH +3 W, B). The proof
is now complete. [

4. The strong convergence. We recall that X is the solution of equation (1.1) and X"
is the continuous time interpolation of the Crank—Nicolson scheme defined in (1.5). In this
section we prove Theorem 1.1 and some auxiliary results.

PROOF OF THEOREM 1.1. The proof is divided into several steps.

Step 1: Decomposition of the error process. Denote Y; := X; — X}', t € [0, T'], and for
convenience we write 1n(t) =t for t € [tx, ty4+1) and €(t) = tx41 for t € (#, tx+1]. Equations
(1.1) and (1.5) allows us to write

t 1 t
vo= [ v - v + 5 [ Ve - vxg)lds,
1 ! n n
(4.1) + 5/0 [V(X5) — V(X)) ]dBs

m d ¢ _ . 1 1
= ZZ/ Vji(s)Ys dB] + SO+ 00,
j=0i=1"9

where we have set for ¢t € [0, T']:

1
4.2) Vji(s)zf() aVi(OXs+ (1—6)X7)do,

t
0 = [V = v (X))l dB.
(4.3) °

t
5 = [ [VX]) = V(X)) 4B

and we denote by 9; the partial differential operator with respect to the ith variable, that is,
dif(x)= E?—){l_(x) for f € C'. Notice that by the chain rule for the Young integral, we obtain

d
V(XY) = V(X)) = ZaiV(XZ(Av))(X?’I - XZ’(ls))

i=1
d K u . .
+ > / / 33 V(X")dX™ dXxm.
iir=17n() Jnis)
Substituting the above expression into Jj (¢), we obtain the following decomposition for Ji ()

4.4) Ji(t) =Ro(1) + Ri(1), 1€[0,T],
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where we denote

t d K} u y )
(4.5) Ri(1) =/ [ > / f 93 V(X" dx" dXZ”} dBy
0 ii'=1 n(s) Jn(s)
and
d .
Ro(1) = {Z % V(X)) (X3! X;’(i))} d By
i=1
(4.6) . S ./ |
Z Z / 3V (X5 ( (Xe(s)) + V (X7)] dB] >stj
l 1j,j/=0 n(s)
and in the second equation of (4.6) we have used relation (1.5).
In a similar way as for (4.4), we have
D)= —Ro() + Ri (1), 1€]0,T],
where
. [ & e e y .
(4.7) Ri(1) =f > / / 30 V(X" dX™ dX"™' | dBy
0.7 s u
i,i’=1
and

. . €(s) . .
Ro(t) = = Z Z / 3 Vi(XZy) (V./(XZ(S))JFV;/(x’,;(s))]/v dB,j)stf.

llJJ/O

We will need a further decomposition of the processes J; and J». To this aim, let us introduce
the processes 11 and I, defined on IT, namely, for ¢ € IT \ {0}

(4.8) L(t) = Z /(8VJV) m)/ dB!'dB],
J.J'=0
€(s) . .
(4.9) L(t) = Z /(av Vin( nm)f dB! dB/,
j,j'=0
and for t = 0 we set [1(0) = I2(0) = 0. Here d = (d1,...,d4) and 9V;V; means
Y vV

To make the computations more clear we will replace integrals on [0, ] by summations of
integrals over the intervals [#x, tx4+1], with 0 <k <nt/T — 1. Subtracting (4.9) from (4.8) we
obtain the following “Lévy area term”

m nt/T—1

(4.10) h)—hL®=E@):= Y > @V,V)(X )tk,kﬂ,

J,j’=0 k=0

topt
S,_// dB'dB) — //dBf)dB,j, 0<s<r<T.
u

Notice that Fubini’s theorem implies that gﬁé{, = —{Sj’ i So expression (4.10) can be rewritten
as

where we denote

nt/T—1

(4.11) Ex)y=)_ > ¢jy(X)it.,. 1€,

j'<j k=0
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where recall that ¢;; = dV;V; — 9V V;. It is worth mentioning that when B is one-
dimensional we have E; = 0.
With the above preparations we decompose Ji(¢) + J2(¢) for ¢ € IT as follows:

J1(t) + 2 (1)
4.12) = (I1(t) — (1)) + (Ro(t) — [1(1)) + (I2(t) — Ro(1)) + R (t) + Ry (1)
1= E1 (1) + Ea(t) + E3(t) + Ea(t) + Es(1).

Step 2: Upper-bound for the Crank—Nicolson scheme. For any function f over [0, T'] we
denote || flls.r.p = SUPy yefs.ey 1S5 — fel/Is — t|# and write I fllg:=Ilfllo,T,pg- It follows from
Lemma 8.4 in [11] that there exists a constant K such that

4.13) |X" o v X", < K+ K1BIY.

Furthermore, there exist constants K¢y and K(/) independent of n such that for0 <s <t <T
and (t — s)P|| B||g < Ko, we have

(4.14) 1X"|l,, 5 < KollBllg-

s,t,p —
Step 3: Estimates of E., 1 < e < 5. In this step we show that

5
(4.15) SIE() — Ee()], < K(t =) /05, 5.1l
e=1

We divide this step into two parts:
Step 3.1. Take s, t € Il such that s <¢. When e =2, 3,4, 5, we are going to show that

(4.16) |Ee®) = Ee)|, < Kn~2 (1 —5)2, s.rell,

where recall that | - ||, denotes the L?-norm.
First, subtracting (4.8) from (4.6) we obtain the following expression for E»

k Tk
where in the second equation we have applied the chain rule to V}/ (X ,”k +1) — V}/ (X 7,) and also
equation (1.5) for X". For convenience, letus put 7y, = 3;V; (XZ()[VJ’-/, (X5, )+ V;,/ (X})]and
fo= ai/V;,(X "), where we have omitted the dependence of 4 and f on the indices i, i’, j,

j’, j” for simplicity. Then the above expression becomes

m  nt/T—1

1 d
(4.18) Ez(t)zzz > th

ii'=1j,j',j"=0 k=0 *'%

Te+1

Tk+1 § n j/ j j//
/tk /tk fuhl dBJ dBJ dB]".
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Observe that some elementary computations show that the triple integral in (4.18) is equal to
te+1 T+ ./ .11 :
/ / fohy, dBJ dB/ dBf —|—/ / fohy dB; dB; dB]
t te Jig e JiIk
Tk+1 . . .
f ol dBI"dBi dB.
e Jix

Substituting the above expression into (4.18), we then obtain an expression of E;(¢) of the
form (A.24). Now with the help of the estimate of X" in (4.13), it is clear that f and A"
satisfy the conditions in Lemma A.2. Therefore, applying Lemma A.2 to E5(¢), we obtain
the desired estimate (4.16) for e = 2. Regarding E,., e = 3,4,5 we note that, like in the
case of Ej they are sums of weighted triple integrals of B. Precisely, recall that dXt"’i =

VIXp)+Vi(X
’]’.1 1#51B1 for ¢ € [t, tr+1). Therefore, we have
m nt/T— 1V’(X )+v1(x, ) VIXp) + ViXp )
k+1 lie+1
Ey= Z > Z 5 o
i,i'=1j,j’=1 k=
Te+1
/ ' / 010V (X")dBJ dBj dB’ .
173 I Jig
Z i m/XT:lw (X )+V’ (X,kH) V (X7 )+V Xy )
ii'=1j,j'=1 k= 2 2
1 Ll Ll . . . o
/t / / ai/aivj”(xv)ng dB;) dB] ,
u
and
m nt/T—1 . VIAXE, )+ VEXE)
E=YY % ((ai ViNXR) =3V ) e )

X

tk+1 [fle+1 Y ;
/ / dBj dB}
174 N
d m  nt/T— 1VI/I(X )+Vl//(X 1 [Tkt i’ j
-2 3"y L [ [ a4

y /lk+1 3 (3; V; VI(X}) +82i/(8,- VHXHVE(X) aBi.
Tk

Using a similar argument to that in the proof of Lemma A.2 we obtain relation (4.16) for
e =3,4,5. This completes the proof of (4.16).

Step 3.2. It remains to consider the process E1(t), t € [1. We decompose E in the follow-
ing way:

nt/T—1 nt)T—1
Ei() = Z Z ¢jj’(XZ< I, tk+1 + Z Z d)JJ fk fk+1
(4.19) 0#£j'<j k=0 0=j'<j k=0

=En @)+ Epn@).
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Expression (4.19) and Lemma 2.4 together suggest to consider the following “weight-free”
random sum corresponding to Eq

[nt/T]
gn(t) =n’ Z Z é‘fk le1
0#£j'<j k=0

It follows from relation (3.3) in Proposition 3.1 that g, satisfies the assumptions in
Lemma 2.4. Indeed, by Proposition 3.1 the following estimate holds true for all s, ¢ € 1
1

(4.20) E(|ga (1) — gn()?)? < K|t —s]2.

Furthermore, notice that g,(¢) — g,(s) belongs to the second chaos generated by B. There-
fore, a hypercontractivity argument (see, e.g., [21]) implies that relation (4.20) also holds
when the L2-norm is replaced by L”-norm, p > 1. Take f = ¢;;/(X"), B = %, % <B<H,
p = p' =q’ =2. Then applying Lemma 2.4 to E1; and g, we obtain the estimate

“.21) |En@) — En)|, < Kn 230 — )2, s.reTl,

We can proceed in a similar way to show the estimate for E1,. First, define the “weight-
free” random sum corresponding to E1>(t)

[nt/T]
1/2
gu(t) =n'/1 Z Z gtk fet1”
0=j'<j k=0

Then as in (4.20), estimate (3.28) in Proposition 3.3 together with an hypercontractivity argu-
ment, yields that g, satisfies the conditions in Lemma 2.4 for g’ = % and p = ¢’ = 2. Taking
% <B<H,q' =2and f =¢;;(X") as before and applying Lemma 2.4 to E|, we obtain
the estimate

(4.22) |E@) — En)|, < Kn#72(—5)2, siell.

In summary of relations (4.16), (4.21) and (4.22), and taking into account the fact that
Ei1=0whenm =1 and E;1 = E;p =0 when m = 1 and Vy = 0, we obtain the desired
estimate (4.15).

Step 4: Upper-bounds for the Jacobian. Our proof of Theorem 1.1 is based on a lineariza-
tion argument. This step aims at studying linear equations involved in the linearization argu-
ment. )

Let A" = (A}")1<i i< be the solution of the linear equation for 7 € [0, T']:

@) ANO=5+Y Z/ Vi AL 5)dBI, ' =1,....d.

_0 l// 1

Here V;i,, is defined by (4.2), and 55/ is the Kronecker function whose value is one for i =i’
and zero otherwise. The d x d matrix A" (¢) is invertible, and we denote its inverse by I'" (¢).
With an elementary application of the product rule to I'” A", we can verify that I'" solves the
equation

() =8 — sz L' ()Vi(s)dB], i.i'=1.....d.1€[0.T).
j=0i"=1

With the help of Lemma 3.2 (ii) in [10] together with the estimate (4.14), we have

[AM ooV A" v T o v T, < K X181

I
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We can now apply Fernique’s lemma to get for p > 1
(4.24) A oo ,vITEA™ ], v [T lloo]l , v [IT" NI, < K-

The above preparations provide an explicit expression of the error process

I [
(4.25) Y,=§A;’Z/O ridJi(s), tel0,Tl.
i=1

Indeed, applying the product rule to the right-hand side of (4.25), we see that Y in (4.25)
satisfies (4.1). '
Let A = (Ai./) 1<i.i’<a be the solution of the equation

. . m d t . " .
(4.26) Ao =8+ Y Y [ viX)al ) aBl,
N . 0
Jj=0i"=1

for ¢ € [0, T] and denote by I'(¢) the inverse of A(¢). As before, we have

. o4 ., .
rm=8-3 3% /O I ()3 Vi’ (X,) dB]

j=0i"=1

for ¢t € [0, T'], and it follows from Lemma 3.1 in [10] that relation (4.24) still holds when A"
and I'" in (4.24) are replaced by A and I, respectively.
Step 5: Estimates of I'"Y. Multiplying both sides of (4.25) by I'}' we have

R
F,”Y,:—Zf Ty dJi(w).
2o

Writing I'}], = FZ(M) + T - F;’(u)) we then get the following decomposition for s, ¢ € II,
s<t

2 et 2 et 2 ot opu
(4.27) Y| TidJiw) = Z/ 7 dJi(u) + Z/ dTy dJ; (u).
i=1"" i=17$ i=17s I
Regarding the first term in (4.27), we apply the relation (4.12) to get
2 L 5 nt/T—1
(4.28) > / Tpydli@) =YY" > Tp(Eeltigr) — Eo(tr)).
i=1"% e=1k=ns/T
For convenience, let us write the right-hand side of (4.28) in terms of an integral
t_z
n t
(4.29) S T (Eeltien) = Eeto) = | T dEet).
tk=s S

Note that equation (4.29) is only valid for s, ¢ € I1 since E,, e =1, ..., 5 are only defined on
[1. Now substituting (4.28) into (4.27) and taking into account (4.29), we get

2

1 St 2t ofu
(4.30) Yo TidJiw) :Zf FZ(M)dEe(u)—Ier ( )drgdj,-(u).
e=1"" i=17% TN

i=1Y%

In order to bound I'"'Y, we first estimate the quantity fst F:(u) dE.(u) in (4.30). This can

be done with the help of Lemma 2.4 as in the proof of (4.21). Indeed, take g, (r) = ¥, E (1),
telland f =T", and let B, B, p, p’, ¢’ be as before. Then estimate (4.15) shows that g,



CRANK-NICOLSON SCHEME FOR FRACTIONAL SDE 61

satisfies the conditions in Lemma 2.4. Applying Lemma 2.4 to | S’ FZ(M) dE,(u) and invoking
expression (4.29), we obtain

5 ot
Z/ L dEe(u)
e=17%

Let us turn to the second term in (4.27). By the definition of I'"" and J;, we have

Tg4+1 u
f / dT" d Jy ()
179 173

(4.32) =<% i Xd: ft

J.j'=0i,i"i"=1""%

<K(t—$)2/0, s,1ell
p

(4.31)

Tie+1

u I . .
/t(—Ff,’l (v)V;’i(v))dBl{
k

u . -1 ./
< [ Vi(xryaxri a ) .
173 lfiwfd

Therefore, writing

nt/T—1

t u T+1 u
(4.33) / dridiiw)y = > / drdJ, (u)
s Jnu) k /T Ik Tk

and then applying (4.32) and some elementary decompositions of multiple integrals, we can
show that the right-hand side of (4.33) is of the form (A.24). Applying Lemma A.2, we obtain

< Kn~2H( — 5\
P

(4.34)

t u
f dr" dJ;(u)
s In(u)

for i = 1. This estimate still holds true in the case i =2, and the proof is similar. Substituting
(4.31) and (4.34) into (4.27), we obtain the estimate

2t
> Thdliw)

i=1 N

<K(t—s)2/0, s,1ell
p

(4.35)

Applying Lemma 2.3 and taking into account the expression of J; in (4.3), we can show that

(4.36)

t
rrdlw| <Kn? telt,nli=12.
T P

Combining this estimate with (4.35), we obtain the inequality

<K /0.
p

2t
(4.37) sup | Y / Ty dJi(u)
0
i=1

tef0,T1||i =

Step 6: Conclusion. Inequality (1.6) follows by applying Holder’s inequality to (4.25) and
using estimate (4.37) and estimate (4.24) for A". 0

The following result provides an estimate on the increments of the error process.

LEMMA 4.1. Under the assumptions and notation of Theorem 1.1, the error process
Y = X — X" satisfies the following relation for all s,t € Tl

(4.38) E(|Yt_Ys|p)1/p§K|t_S|%/ﬁn-
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PROOF. Invoking expression (4.25) of Y, we can write

(4.39) Y, — Y, = 1 Z/ F"d]l(u)—l—lA"Z tl“ﬁd],-(u).

i=1"%

Inequality (4.38) then follows by applying Holder’s inequality to (4.39) and by taking into
account estimates (4.24) and (4.35) and the fact that ||A} — AT|l, < [IIIA"Igllp - (t — $)B.
This completes the proof. [

The following lemma is a convergence result for the processes A" and I'".

LEMMA 4.2. Take 8 such that % < B < H.Let A" and A be the solutions of equations
(4.23) and (4.26), respectively, and let I'" and " be their inverses. Then we have

(4.40) A" = Al + 1" =T, , < Kn'7?F.
PROOF. See Section A.4. [

We end this section with the following technical results. For convenience let us write, as
in (4.29),
t—T/n
> Th(Enien) — Er(w) = / TruydEn() fors,reTl.

tk=s

LEMMA 4.3. We continue to use the notation of Theorem 1.1. Let s,t € T1, s <¢t. If
m > 1, then we have the estimate

2

t t
(4.41) sup | Y ngj,-(u)—/ M dEn@)| <Kn 27
)
P

s,tell i=1 B

In the case m = 1, we have
2

t t
Yo Thdiiu) - / I dEn@w)| <Kn 2!
i=1"S § p
Suppose that m = 1 and Vo = 0. Then, for B < H, we can find a constant K = Kg such that

/ I dJ; (u)—Z/ 7 dE. (u)

(4.42) sup

s,tell

(4.43) sup
1€[0,T1|;

< Kﬁn174ﬂ.

PROOF. By subtracting ff F’;(u) dE11(u) from both sides of (4.27) and taking into ac-
count the expression (4.28) we obtain

2

Z F”dJ(u) /F,W)dEu(M)

i=1"%

t 5 t 2 t ru
=/ FZ<M)dE12(u)+Z/ rg(u>dEe(u)+Zf AT’ dJ; (u).
$ e:2 s i=1 s 77(“)

As in the proof of (4.31), we can show that the first two terms on the right-hand side of

(4.44) are bounded by K rf%*H and Kn—2H respectively. Furthermore, thanks to (4.34), we
have that the third term is bounded by Kn 2. Putting these bounds together, we obtain the
desired estimate (4.41). Relation (4.42) follows from a similar argument and is left to the
reader. Please refer to Section A.5 for a proof of estimate (4.43). [J

(4.44)
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5. Asymptotic error distributions. In this section we prove Theorem 1.3.

PROOF OF THEOREM 1.3. The proof is done in several steps.

Step 1. Suppose that m > 1 or Vy £ 0. We first observe that, by Theorem 13.5 in [2]
together with (4.38), the proof of the weak convergence of (¥, ()~( - X ™), B) can be reduced
to showing the convergence of its finite-dimensional distributions (f.d.d.). We also note that,
by (4.25) we have

v v n 1 n 2 f n
X — X, =XTk_th:§AlkZ/(; L,dJi(u), telt,tisr).
i=1

Step 2. In this step we assume that m > 1. Set

S"(Z)—lA" tkr‘” dE11(s), t €[ty tie1)
= 5 t 0 n(s) 11 ) ks tk+1)-

We first observe that, applying relation (4.41) in Lemma 4.3 and relation (4.36), we obtain that
D IS (1) — (Xt — }2;‘) | » is uniformly bounded by ﬁnn_%_H and thus it converges to zero as
n — 00. This implies that the limit of the finite-dimensional distributions of (%, (X—-X"), B)
is equal to that of (9,S", B).

To further reduce the problem, we set

1 Ik 1
S =34 fo CyoydE (), 1 € [ie. test)

and calculate

1 Ik .
NOENOEEIDY /O (AL T35 (X)) = Aulnw @iy Xy 4
(5.1) 0#)'<J
1 Tie+1
- EAtk/ L) dE11(s).
173

By Lemma 2.3 it follows that the L”-norm of the second term in the right-hand side of
(5.1) is bounded by Kn—2H. On the other hand, applying Lemmas 4.1 and 4.2 to f; =
AT @;i(XY) — ATspjjr(Xs), one can show that

(52) I fllg.p < Kn'~2.

Taking &k, = th;i{k +1» applying Lemma 2.4 and taking into account (5.2) we then obtain that

the first term in the right-hand side of (5.1) is bounded by Kn'=2#+1/2=2H Pplygging these
two estimates into (5.1), we obtain

||Sn(t) _ S(t)Hp < Kn1—2ﬂ+1/2—2H \/n—ZH

for t € I1, and thus for ¢ € [0, T']. This implies in particular that to show the f.d.d. convergence
of (1, 8™, B) is the same as to show that of (¢, S, B).

Applying Proposition 2.5 to the process (i, S, B) and taking into account the weak con-
vergence result in Proposition 3.1, we conclude that the f.d.d. of (¢, S, B) converge to that of
(U, B), where

_1 /K ! .
U =1 z\EA, > /Orsquj/(xs)dwgf.

I<j'<j<m

The convergence (1.9) follows from the fact that {U;, t € [0, T']} solves the SDE (1.10).
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Step 3. We turn to the case m = 1 and Vj % 0. Using similar arguments as in Step 2,
relatign (4;42) implies that in order to show the We~ak limit (for the convergence in f.d.d.) of
(¥, (X — X™), B) it suffices to consider that of (9,,S", B), where

1

“n " nw

With the help of Lemma 4.2 we obtain that the convergence of the f.d.d. of (9, S, B) is the
same as that of (9, S, B), where
lnt/T]
Si=5M0 2 Tad0X)ey,,-
k=0

Applying Proposition 2.5 to S and taking into account the weak convergence result in Propo-
sition 3.3, we obtain that the f.d.d. of (3, S, B) converges to that of (U, B), where

-~ 1 !
Ul = TH+7\/§AI/(; Fs¢10(Xs)dVVs-

Convergence (1.9) then follows from the fact that U is the solution of equation (1.11).

Step 4. We now consider the scalar case when m = 1 and Vi = 0. Convergence (1.12) is
clear for ¢t = 0, and for convenience we take ¢ > 0 from now on. In a similar way as in Step
2, with the help of estimate (4.43) and Lemma 4.2 we are able to reduce the proof of the
LP-convergence of 2" (X, — X 1) into that of the quantity

5 |nt/T]-1

(5.3) —n L Z Lo (Ee(ti1) — Eo(12)).
e=2

It now remains to show that the quantity in (5.3) converges to the solution of equation (1.13).
Observe that, by (4.17), we have, for r € I1,

nt/T—1

Y Ty(Ex(tis1) — Ex())
k=0

1 d nt/T—1

——Z Z T 0 V(X))
11 k=0

x(/t:k“(avi(x';),v( ")+ V(X ))dBv>(/t:k+l t: dBust).

Consider the following modification of this summation:

d nt/T—1 ter1 tet1 S
Er(t) = = Z Z T, (Vv v ))(th)/t dB, t t dB, dB;
l 1 k k k

1 d nt/T—1

=12 Z Lo (3 VOV, VI (X0) (Br ).
i=1 k=0

It is then easy to show that, for ¢ € I,

nt/T—1
(5.4) nZH( > Ty(Ea(tes) — Ex(t0) — Ez(t)> —0 inL”asn— oo.
k=0
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In a similar way we introduce

1 d nt/T—1 . )
E3(t)_——Z Z T ([0 VVH]V + V3@ V)]V)(Xy) - (By i)’

i=1 k=0

and
_ _ d nt/T—1 o
Esn=Es)=¢ 3 3 Ty(VIVaidV)(Xe) (B s, )’.
ili=1 k=0

Then we have the convergence in L? fore =3, 4, 5:

nt/T—1
(5.5) n“’( > Ty(Ee(tir1) — Ee(ti)) — Ee(n) -0

k=0

The convergences in (5.4) and (5.5) together imply that to show the convergence (1.12) it
suffices to consider the quantity n>" 25_2 E.(1).
With an elementary computation we get

d nt/T—1
> Z Ty (VIVI9:8: V) (Xi) (Byyy)’s 1 €Tl

i’i=1 k=0

[

5
5.6 Y Em=-

Take f; = Ft(Vi,Viai 0;7V)(Xy) and § o = (B — B,k)3. Applying Proposition 2.6 to (5.6)
and taking into account Lemma A.1(ii), we obtain

1

_An(t)< ZE n(t)>—>l7,

in L? for t € [0, T], where
t g
U=—— > A,/ Ty (VI V39, V)(X,)dBs.
. 0

The convergence (1.12) follows from the fact that the process U verifies the equation (1.13).
O

6. The degenerated cases. In this section we consider the degenerated cases in which
the limits in Theorem 1.3 are equal to zero. We consider the strong convergence of the Crank—
Nicolson scheme in the first subsection and then focus on the asymptotic error in the second
subsection.

6.1. The strong convergence. In this subsection, we prove Theorem 1.4.
PROOF OF THEOREM 1.4. Recall that ¢;;/, E11, E12 and E., e =1,...,5 are defined
in (1.8), (4.12) and (4.19). Suppose that ¢;; =0 for all j, j=1,...,m. In this case we

have E1; =0 and thus E| = E5. Applying (4.16) to E., e =2,3,4,5, and (4.22) to E; and
taking into account the identity E1 = E12, we obtain the estimate

5 1 1
E, (1) —E, )| . <K@t —s)2n"27H s rell
2l I,

In a similar way as in the proof of Theorem 1.1, Step 5 and 6, we obtain estimate (1.14) in
this case.
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We turn to the case ¢;; =0 fori, j =0, 1,...,m. Note that in this case E; =0, and so
applying (4.16), we get

5
SIE() —Ecs)|, <Kt —s)in"2, s

Following the lines of the proof of Theorem 1.1, Step 5 and 6 again, we obtain (1.14). [J
6.2. The asymptotic error. In this subsection, we prove Theorem 1.5.

PROOF OF THEOREM 1.5. The proof for Item (i) in Theorem 1.5 follows the lines in
Step 3 of the proof of Theorem 1.3, and will be left to the reader.

In the following we prove Item (ii). With the preparations in the first two subsections, we
can consider the asymptotic error of the scheme in a similar way as in the proof of Theo-
rem 1.3, Step 4. Indeed, with the help of Lemma 4.2, in view of the expression of the error
process Y in (4.25) and the expression of J; + J; in (4.12) in terms of E,, e =1,...,5, we
can show that the L2-limit of n?" Y, for t € I is equal to that of

1, &,
3N Y Ty (Ee(terr) — Ee(t),
e=2 k=0

where we have used the fact that £; = 0 due to the assumption that ¢;;» = 0 for j, j' =
0,...,m. With the help of estimate (4.38) in Lemma 4.1, one can further reduce the the
Lz-convergence of n?1'y, to that of

(6.1) n*t ZA E:@),

=2
where
m lnt/T|

Ez(z)_— Z YooY Ty (avy- v/,a Vi) (Xy)

ll’ 1j,j,j’=0 k=0

tk+1 ., .
/ / "dBJ B,
173 Tk

- 1 d n Lnt/T] y . .y
153(t)=—5 Z Z Z Lo (Vindy (8 Vi Vi) + Vi Vindind: Vi) (Xz,)
=1 L

tk+1 1 I+l . .
[ / [ anf as]
1 s

m |nt/T]

E4(t) = Z S T (VEVEad Vi) (Xy)

i,i’=1j,j",j"=0 k=0

Tk+1 . . .
/ / dB]'dBi dBJ,
I tr Jik

m |nt/T]

Es(1) = Z Z Z F;k(V;/,/V},ai/&'Vj)(th)

i,i’=1j,j,j"=0 k=0

k+1 L+l fTk+1 . ., .
/ / / dB]' dB] dB.
173 S u
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Now as in the proof of the convergence of (5.6), by applying Proposition 2.6 to (6.1) and
taking into account Proposition A.3 and A.5, Corollary A.4 and A.6, and Lemma A.7, we
obtain that

1
lim — 2HZA E;i(t)

}’l—)OO

(6.2)

(Zf ( swms)) dB] + Z/ Fs<pj(s)dBf>

where ¥ and ¢ are given in Theorem 1.5. The convergence (1.15) then follows by observing
that the right-hand side of (6.2) satisfies the equation of U in Theorem 1.5@i). [

APPENDIX

A.1. Proof of (3.27). The proof will be done in seven steps.
Step 1. In this step, we derive a decomposition for d5. First, applying the integration by
parts formula (2.3), we obtain
E(Z(1) Dy Zy (1) Dy Z (1))

|nt/T] _ _
Z / [Dy Dy Z (][ Dy Dy Zn(1)]
[0,71*

(A1) X B (r)ysr)pn(dvdv)u(dr dr')
Lnt/ T}

= 2 PP )

k,k3, k4=
X Bt () (W) (dv dv')p(dr dr'),

where the second equation follows from the fact that

lnt/T]

DyD;Zy(t)= Y Br()ypr()., 1€[0.T]
k=0

Substituting expression (A.1) into (3.24), we obtain
[nt/T]

dr=6 u'
2 Z tk4<3 <Igy O<uu/ <T tk3<r <lky 0<v,v/<TVZk3’r/( )

k1,ky,k3,kq=0 Tk <S <l Tky <r <,
X y,k4’s/(v )Yty or (V) Ve, s @ (dv dv Nuldrdr')u(dudu')pu(ds ds').

By changing the variables from (v,v',r,r’ ,u,u’,s,s’) to %(U, v,rr u,u’,s,s’) and ex-
changing the orders of integrals associated with p(du du’) and u(dr dr’) we obtain

T\ 8H lnt/T]
s :6<—) Y el ko ks k),

n

ki,k2,k3,k4=0
where
_ 1 1
c(ky, ko, k3, ka) = ﬁ4<s/<k4+1 /1;3<r/<k3+1 /0<v e Prsr (1) Prey s (V)
(A.2) ky<s<ki+1 ° ky<r<ky+1 o

X Qky.r (V) @k, s (dvdv' ) u(du du\pu(dr dr')n(ds ds'),
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and recall that

A3) g =9 ) — i ), @l ) =1pg@), @ @) =1,

where 1, ;) denotes the indicator function of the interval [a, b].
Now we denote

t
I:= {(kl,kz,k3,k4) tki ko ks ke =0, 1., {%“

Take i, j = 1,2, 3,4, and denote by /;; the set of (ki, k2, k3, k4) in I such that |k; —k;| > 2,
that is, I;; = {(k1, k2, k3,kq) € I : |k; — k;| > 2}. Denote by Ii‘}. the complement of I;;. We
decompose I as follows:

I= sz My,
=1
where
My = Igpp N Iy N 131 N 32,
My = (I, N 1g1 N 131 N I32) U (s N Iy N I5, N I32)
= Mo + My;
M3 = (Ip N I§ N 131 N I3) U (Lo N Iay N 131 N I5,);
My = (15N 15 N I3 N ) U (Lo N I N IS N I3)
U (L5 NIy N I3 N I5) U (Lo N Iy N I5 N I55)
= Mg UMg U Myz U Myg;
Ms = I 0I5 N Iy N I
Mg = I, 0 Igy N L5, N I3
My = (I N 15 N 15 N ) U (I N 15 N 1310 T5,)
U (13 N I N I35 N I55) U (L2 N0 Iy N 153 N 155);
Mg = 15,0 L5 N5 N IS
This decomposition of I puts similar cases together into one group and allows us to treat

different cases in each group M; simultaneously.
For any subset M of I, we denote

T 8H
dr(M) ::6<—> > clkiky k3, ka).
n (k1.ka. k3, ka)eM
It is clear that
8
dy =" dr(M)).
=1

Thus to show (3.27) it suffices to show that n87~2d,(M;) — 0 as n — oo for each [ =
1,...,8.
Step 2. In this step, we show the convergence of n8H _zdz(M7) and n8# _2d2(Mg). Since

(A4) lor.s @)| < 1) (@),
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we have
ek, ko, k3, ka)| < 1.

Applying this inequality to d, (M7), we obtain

T 8H

|dr(M7)| < 6(—) > 1.

" (k1,k2,k3,ka)eM7

Note that
M7 C{lki —kjl <6fori, j=1,2,3,4},

so the number of elements in M5 is less than 2 - 6°n. This implies that

8H
|da(M7)| <2 64n<z) :
n

It follows from this estimate that n87=2d,(M7) — 0 as n — 0. Note that Mg C {|k; — kjl <
4 fori, j =1,2,3,4}. So in the same way, we can show that n8=24,(Mg) — 0.

Step 3. In this step, we consider d>(Ms) and dr(Mg). For (k1, k2, k3, k4) € Ms, we have
|ko — k4| > 2 and |k1 — k3| > 2. By the mean value theorem and with the help of (A.4), it is
easy to see that
(A5) ek, ko, ks, ka)| < Klka — ka2 ky — ks P22

Applying (A.5) to d2(Ms), we obtain
T\% 2H-2 2H-2
(A.6) ldy(Ms)] < K(—) Sk — ka2 — 22,
n ki,k2,k3,kaeMs5
Note that for (kq, ko, k3, k4) € M5 we have |k1 — k4| <2 and |kr — k3] <2, so
lka — ka| < |ko — k3| + |k3 — k1| + |k1 — k4

<3lk3 — k1.
Applying this inequality to the right-hand side of (A.6), yields
T\ 2H-2 2H-2
|d2(M5)} =< K(;) Z lky — ka|“" " “|kg — ko |“" ™~

(k1,k2,k3,k4)eMs

T\ AH—4
<k, Y ke -k

n Ky a:la—ky|>2

By taking p = ks — k4, we obtain

T 8H n
|d2(M5)|§K(;) Y |pp

ko=0n>|p|>2
T

8H
< Kn(—) (n4H73 v 1).
n

It follows from the above estimate that n87—2d,(Ms) converges to zero as n tends to infinity.
The proof of the convergence n81=2d,(Mg) — 0 is similar. Instead of (A.5), we have the
estimate

|c(kr, k2, k3, k)| < K [ky — ka|*T 2 |ky — k3|?H 2
for (k1, k2, k3, ks) € M.
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Step 4. In this step, we derive a new expression for c(k1, k2, k3, k4). Recall that ¢y, ¢ (v') =
(p,?4 S,(v/ ) — (,0,14 s,(v/ ) (see (A.3)). Substituting this identity into (A.2), we obtain
(A7) c(ki, ko, k3, ka) = co(ky, ko, k3, ka) — c1(k1, k2, k3, k),

where

. — AP /
ci(k, k2, k3, ka) = /];4<s’<k4+1 ﬁ(3<r’<k3+1 /0 (Pk3,r/(1/l )(pk4,s/(v )

! /
ki<s<ki+1 = ky<r<ko+1 <U, VLU <

X Oky.r (V) @k, s (dv dv')u(du du’ ) (dr dr')u(ds ds').

By exchanging the orders of the integrals associated with v" and s’ in ¢, we obtain

ci(ky, ko, k3, ka)

. |U—U/‘2H_2|S—S/‘2H_2
T Jka<v' <kg+1 Jky<r'<k3+1 0 ki<s'<v'
ki<s<ki+1 = ky<r<ky+1 4

X Q.r () Pty r V@i, s W) dvds’ p(dudu’u(dr dr') ds dv’,

which, by switching the notations s” and v’, is equal to

2H-2 2H-2
[ o= P =P )

<v,u,u’'<n

ky<s'<kgy+1 Jkz<r'<k3+1 /(;

/
ki<s<ki+1 = ko<r<ko+1 <V, <n

X Qky.r (V) @k, s () dvdv' w(dudu’)u(drdr')ds ds'.
Substituting the above expression of ¢y into (A.7), we obtain
c(ki, ko, k3, ka)

/ I ’
(AS) = ka<s'<kg+1 Jkz<r'<kz+1 f , / , /d)(S, s,U,V )§0k3,r/(l/t )
ki<s<ki+1 ~ ky<r<kr+1 O<v,u,u’<n Jkg<v'<s

X Oky.r (V) @k, s () dvdv' w(dudu’)u(drdr')ds ds’,

where we denote

(A9) d)(s’ S/, v, U/) — |U _ U/}ZH_2|S _ s/|2H—2 _ |U _ S/|2H—2|S _ v/}ZH—Z.
Step 5. We turn to dy(My). It is easy to show that
(A.10) dry(My;) =do(Myj), i,j=1,2,3,4.

As an example, we show that d (Ma1) = dy(Mas). The other identities in (A.10) can be shown
in a similar way. First, by exchanging the orders of integrals associated with w(dr dr’) and
wu(ds ds’) and integrals associated with p(dvdv’) and u(du du’), we obtain

, /
ek k) = oo ot b o 0
X Oky.r (V@k, st (du du’ ) (dvdv')u(ds ds")u(dr dr').
Replacing (v, v',u,u’,r,r’,s,s") by (u,u’,v,v',s,s’,r,r") in the above expression, we ob-
tain
/ /
ek k)= oo bttt 000 )
X Qky.s Wk, r () (dvdv)u(dudu’ ) (dr dr')u(ds ds')
=c(kp, k1, ka, k3).
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So we have

T 8H
dr(Ms1) =6<;) > c(ka, ki, ka, k3) = d2(Mas),
(k1,k2,k3,ka) € M4y

where the second identity follows by replacing (k1, k2, k3, k4) by (ka, k1, ka, k3).

The identities in (A.10) imply that to show the convergence n37=24d,(My) — 0, it suffices
to show that nSH_Zdz(M44) — 0asn— oo.

Take (k1, ko, k3, k4) € Myq. Then we have |k; — k4| > 2 and |kp — k4| > 2, and thus the
quantities |v — vV'|, |s — s’|, [v — §’|, |s — V| in ¢ are larger than one. This allows us to apply
the mean value theorem to ¢ to obtain the estimate

(ALD) (s, 8" v, 0)] < K (Ika — ki kg — ka7 72 + kg — ki |7 72 kg — ka2 70).
Applying (A.11) to (A.8) and taking into account (A.4), we obtain
(A12) |e(k, ko, k3, ka)| < K (Ika — ki |27 73 kg — ko272 + kg — k1 |2 72 ka — ko |27,

Since |k; — k2| < |k1 — k3| + |k3 — k2| < 4, we have |kq — k1| < 3|ka — ko|. This applied to
(A.12) yields

|c(kr, k2, k3, k)| < K kg — Ky ¥,

and thus

T 8H
d>(Ma)| < 6(—) S Jelh ko ks, k)|
" (k1,k2,k3,kq)EMayq

T84 4H-5
<6(— E K ks — k1] .
n
Ky kazlki —ka|>2

By taking p = k| — k4, we obtain

|dy(Mug)| <6 (AN a5 1o, (T\Y § pons
2(Mag)| < , Yoo = L~ dop ,
p=3

ki=0n>|p|>2

which implies that ndH _zdz(M44) — 0asn— oo.

Step 6. In this step, we consider dr(M>) and dy(M3). As in Step 4, it is easy to show
that dr(Ms1) = da(Ma3). So to show that n87—2d,(M,) — 0, it suffices to show that
nSH_Zdz(Mzz) — 0asn— oo.

Take (ki, k2, k3, ka4) € M2>, we have |k; — k4| > 2, |kp — k4| > 2, and so inequality (A.11)
holds. Applying (A.11) to d>(M>3) and taking p; = k; — k4 and pr = k4 — ko, we obtain

|dr(M)|

T\ 8H
=K (—) Yo (ks =k PP = P k= kP e = kP

T (ks ka)e Mo

8SH
x(X S 2H-3|, (2H-2 2H-2, 2H-3
=K(—) X > (Ip1 P 21272 + | P72 pa PP 9).

ka=1 p1,p2:n=|p1l.|p2] =2

It is easy to see from the above estimate that n8H _2|d2(M22)| < Kn*"=2 which converges
to zero as n tends to infinity. The proof for the convergence n37~2d,(M3) — 0 follows the
same lines.
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Step 7. It remains to show that nSH_zdz(Ml) — 0 as n — o0o. To do this, we first de-
rive a new expression for c(ki, k2, k3, k4). Recall ¢, »(u') = (p,?3 MUSES (,o,i3 (') in (A.3).
Substituting this identity into (A.8), we obtain

(A.13) c(ky, ko, k3, ka) = co(ky, ka2, k3, ka) — c1(ky, ko, k3, kg),
where
Ci(ky, ko, k3, ks)
= , ) s, s v, )l (!
by short Joor <fod [ RO
X Oky.r (V) @k, s () dvdv' w(dudu')u(dr dr')ds ds’,

where recall that ¢ is defined by (A.9). As in Step 3, by exchanging the order of the integrals
associated with the variables r’ and u’, and then switching the notations r” and u’, we obtain

~ ’ ’
4= hoetetot byt b o fuws #6050
s lu—r' P72 — | P, (0, s (@) dvdv du du dr dr ds ds'.
Substituting the above expression of ¢; into (A.13), we obtain
c(ky, ko, k3, ka)
_ ’ ’
(A.14) N ];(41<<§/<</:1“_—:11 '/]‘;:22:/5]];23_7__11 -/0<v,u<n /1;3 <u'<r’ -/k4<v/<s/ ¢(S’ Sauv )
X ¢(r,r' u, ')y r (V) @k, s(u) dvdv' dudu' drdr'dsds’.

Take (k1, ko, k3, k4) € M1, then it is clear that the inequality (A.11) holds true, and in the
same way, we can show that

(A15) | (r,r' u, u')| < K (1ky — k3?3 1ky — k3|22 =2 4 kg — k3|22 2 kg — ks *H173).

Applying inequalities (A.11) and (A.15) to (A.14) and taking p; = k3 — k1, p2 = ko — k3,
p3 = k4 — ko, we obtain
T 8H
da(M)| < 6(;) S Jelh ko ks, k)|

(k1.k2,k3,kq)e M|

n
<Kn SN N (Ip P pa P p PR pa PR )
k1=0(p1,p2,p3)€J

(A.16) x &(p1, P2, P3)
n
=Kn8H Y 3 (1173 pa P72 4 | pr P2 po P 5)
k1=0 p1,p2:n=|p1l,Ip2|>2
x Y. &p1, p2p3),
p3€J(p1,p2)
where
&(p1, p2, p3) = Ip1 + p2+ p3P 3 ps P2 4 1 py 4 po + 3PP 2 paPH 3,

J={(p1, p2. p3) :n > |p1l, |p2l, Ip3l, Ip1 + p2 + p3l > 2},
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and

J(p1, p2) ={p3:n=>|psl,|p1 + p2 + p3l > 2}.

We claim that . j(p,. p) €(P1, P2, p3). is uniformly bounded in (p1, p2) by a constant.
Take py, p> such that n > |p1]|, |p2| > 2. Since when |p| + p2 + p3| < |p3| we have |p| +
p2+ p3l* > |p3|® fora =2H — 2 and « = 2H — 3, we can write

> prpp)= Y. Ipi+pa+paltT?
p3€J(p1,p2):p1+patp3l<|psl p3€J(p1,p2)
(A.17) -~
< 2 Z p4H—5‘
p=3
Similarly, we have
o0
(A.18) 3 prpnp <y IplMTT <2y pt
p3€J(p1,p2):|p1+p2+p3l=|p3l p3n=|p3|>2 p=3

In summary of (A.17) and (A.18), we have shown that

o0
(A.19) > &prpap3)<4d pti.
p3€J (p1,p2) p=2

Applying inequality (A.19) to (A.16), we obtain the estimate
|da(M)| < Kn™%H,
which implies that n87=24,(M) — 0 as n — 0.

A.2. Proof of (3.46). By the integration by parts formula (2.2), we obtain
lnt/ T

E(z4 (1) By) Z f/ / B ()Yy.s () dupu(ds ds').

By changing the variables from (u, s, s") to %(u, s, s') in the above expression, we obtain

T\ 2H+1 [nt/T] mektl pn e
(A.20) E(zn(t)B,)=<—) > / / / orsW)|s — |77 " dudsds’,
n i— 0 Jk 0

where @ s (u) is defined in (A.3). Let us denote Iy (k) = [k — 2,k +2] N[0, %] and I>(k) =
[0, 21\ 1, (k), and set

TN\2H+1 /] k+1 pn _
A = (—) Z / / / Ors(W)|s — s/|2H 2dudsds’.
n k=0 i(k) Jk 0

Then it is easy to show that
E(Zn(t)Br) = A+ As.

So to prove that nH+%E(zn (t)B,) — 0 it suffices to show that nH+%Ai — 0 as n — oo for
i=1,2.
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We can write

TN2H+H T jgn a1 phtl B
A< (—) > / / f s — s’ dudsds'
n = 2 ek

T 2H+1
SK”<_) )
n

1
so we have nH+§A1 — 0asn— o0.
Now we turn to A>. By exchanging the orders of the integrals with respect to # and s, we
have

k+1 k+1
(A.21) / / 1 ()]s — s 2duds_/ /|u—s 72 du ds.

Substituting (A.21) into A,, we obtain
T\ 2H+1 Lnf/TJ k+1 ps B

(A22) Ary=(=— (Is =572 = ju—s'|* ) duds ds'.
n I (k)

Note that for s’ € I, (k) we have

k+1

N
(|s — s/|2H_2 — |u— s/|2H_2) duds| < K|k — s/|2H_3,

SO

TN\2H+1 Lnt/TJ
IAzls( ) / Klk—s'[*"3a
n I (k)

2H+1 Lnt/T]

T
— k(= 2H-2 _ ¢ p\2H-2 | »2H-2 _ 1 2H-2
(n> Y@ (n—k)"" 42 k*172)
k=0
T\2H+1 " T\2H+1
K ()
n = n

which implies that n’! +%A2 — 0 as n — o0. This completes the proof.

A.3. Estimates of some triple integrals. In this subsection, we provide estimates for
some triple integrals which have been used in the main body of the paper.
LEMMA A.1.

(i) Fort eIl, we define

nt/T 1 o1 S [u
(A.23) [ f dB!dB?dB?,
Tk e Jt

where B!, B2, B3 are independent processes, and are either fBm’s with Hurst parameter
H > % or are equal to the identity function. Let p > 1. Then we have

1
IG, — Gsllp < Kn"*|t —5)2, s,1ell



CRANK-NICOLSON SCHEME FOR FRACTIONAL SDE 75

(i) Let B a one-dimensional fBm with Hurst parameter H > 5. Take p > 1 and t € [0, T].
We have the following convergence in L?:

5 lnt/T|—1 5 )
n* 3 (B, — By’ —37*"B,.

PROOF. The result in (i) follows from Proposition 5.10 in [11] with r' =3 and H, =
H + H + H. The convergence in (ii) follows immediately from results in [8] or [26]. [

We need the following technical lemma.

LEMMA A.2. Let f and g be B-Holder continuous stochastic processes on [0, T and
E(||f||g) +E(||g||g) <K forall 5 <p < H and p > 1, and let h", n € N be processes on
[0, T'] such that

|ny =k}, <K@ —9)F, sitel:is<t

Let BY, B% and B3 be as in Lemma A.1. For each i, j=1,2,3 we denote

ij nt/T—1 Tl 53 [S2
(A.24) Z " / / fugs;dB} dB; dB;, tell
1 174
Then the following estimate holds true for all s,t € I1:
(A.25) |GV — G|, < Kn~2M1t — 5.

PROOF. We decompose G as follows:

nt/T-1 L [Tk [s3o s | ) 3
Z ftkgtkhtk / dBS] dBSz dBS3
k=0 Tk Ik ik

"t/T ! Tkl [S3 052 [S)
(A.26) + f,k / f / dgs,dB! dB2 dB}
Tk i i T N

nt)T—1

kel 83 52 [Si . 5 3
+ Z tk/ /t‘k /fk . gdefs4stlst2st3.

Applying Proposition 5.10 in [11] with " =4 and Hy, = 8 + H + H + H to the second and
third terms on the right-hand side of (A.26), and applying Lemma 2.4 to the first term and
taking into account the estimate in Lemma A.1(i), we obtain inequality (A.25). U

A.4. Proof of Lemma 4.2. By the definition of J; (see (4.3)), we have

/ F”dJl(u)—Z/ F”/ dX™ dB,

d lnt/T] tp Nt u A
Z Z f r’ V(X" dX"" dB,
1

=1k=|ns/T| kVS n(u)
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for s, t € [0, T]. Applying the Minkovski inequality to the right-hand side of the above equa-
tion, and then taking into account Lemma 8.2 in [11] as well as the integrability of ', X"
and B in the sense of Definition 2.2, we obtain the estimate

t d_ |nt/T)
H/ FZdJl(u) <> Y n P nt—nvs)P
(A.27) s i=lk=|ns/T]

< K|t —slﬂnlfw.

In the same way we can show that estimate (A.27) holds while J; is replaced by J,. Applying
these two estimates to

1 &t
= EA;’E/O I dJ;(s),
we obtain
(A.28) IYlgp, <Kn'—2P.

We denote @ := A — A". Subtracting (4.23) from (4.26), we can write

@, (t)—z Z/ [0 VIX )AL (5) = V)AL ()] d B

j=0i"=1

m d
:Z Z/ awv (X )CID’ '(s)dB]

£33 [ evicn - Vi@ ©as]

j=0i"=1
The following identity is an easy consequence of the product rule

d
(A29) A(M)—A"()= ) ZA(t)/ o ()[8i VI (Xy) = Vi()]A™ () d B .

i,i’=1j=0

Denote

~ 1 1 .11

V(XS, X;’) :/ / 88,-/VJ’- (AXS +(1— A)(GXS + (1 - Q)X;’))(l —0)dArde.

0 JO
One can show that
VI (Xs) = Vi(s) =V (X, XY,

Then (A.29) becomes

t
At — A1) = Affo dgs - Yy,
where

Z Z/ Tin()V (X5, X")A ”’(s)dBJ

i"=1j=0
Applying Lemma 2.3 and takmg into account the estimate (A.28), we obtain

t
Az‘/ dgs 'Ys
K

which implies the estimate for ||[A — Al|g, ,. The estimate for the quantity I' — I'"* can be
shown similarly.

< Kn'72 (1 —s)P,
)4
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A.5. Proof of (4.43). Since E| =0, it is clear that

2ot S
> [ rianew-Y [T T dEw
— 1 J0 — JO
i=1 e=2
2t 2
(A.30) => /O I NAESY /0 7 dJi(u)
i=1 i=1

22:‘/% /s 22: t
- AT d J; (s) + / ™ dJi(u).
=Jo Sy " =y "™

In the following, we estimate the L”-norms of the two terms on the right-hand side of (A.30).
Recall that 71 and I, are defined by (4.8)—(4.9). For t € [0, T], we set

d t
I0H=> /O (V!'3: V) (X)) (Bs — By(s)) dBs.
i=1

It is clear that I(#;) = I1(tx) = I (t) for k =0,1,...,n. As in (4.12), we introduce the
decomposition

Ji(t) + () = (Ro(t) — I (1)) + (I(t) — Ro(t)) + Ri(t) + R (1)
i= Ey(t) + E3(1) + Es(t) + Es(1)

fort € [0, T'], where Ry, R, Iéo and R 1 are defined as before. Note that the £, and E3 defined
here are extensions of similar terms in (4.12) from IT to [0, T']. Applying Lemma 8.2 in [11]
to (4.5) and (4.7), we obtain

1/8
(A31) IEellip < KeXI1Ple =28 e =45,

Similarly, we can show that inequality (A.31) also holds for e = 2, 3. Therefore, we obtain

5
2 Ee

e=2

1/8
< KeKIBIS" =28

[tk tk+11,8

Applying Lemma 8.2 in [11] and with the help of the estimate (A.32), we can write

2 t" s
> [ aridie
i=1 7"

n(s)

(A.32) 191+ L2l 0118 =

< Kn~P
P

for t’',t” € [ty, ty41]. Therefore, we have

2 ot ops /T 2 pat ps

Zf dridii(s)| < > Z/ dr), d Ji (s)

i=1 0 Jn(s) p k=0 Ili=1 Tk n(s) p
§Kn1_4’3.

On the other hand, applying (A.32) to

2 ¢ 2
; /n(t) [ dJi(s) = ; Lo (Ji(0) = Ji(n@)),

we obtain

2t
> fn o 7 dJi(s)
i=1

This completes the proof.

< Kn3# < Kn'=f,
P
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A.6. LP-Convergence results. In this subsection we denote by B and B two inde-
pendent fBm’s on [0, 7] with H > 1/2. As before, we adopt the notations for increment:
Bs: = B; — Bs and Bs; = By — B;. We start with the following processes defined on [0, T']:

lnt/T]

lkv1 fu pvo ~
) =2 Z / | [ ab.a.as,.
I Jitg
L"I/TJ kel U LU - .
(A33) 2(0) = / f dB,dB,dB,,
173 Iy Jitg
lnt/T] /T
e (t)_ Z / (Btktk+|) dB Z (Btktk+])2’Btktk+|-

k=0

Observe that, by an elementary application of the chain rule and the exchange of integrals,
we have

lnt/ T _ ln/T) vher
(A3 )= > f (By)?dBe.  2(0)= Y ft (Burg,)>dBu.
k=0 k

PROPOSITION A.3. Let zil, i =1,2,3 be defined in (A.33). Then there exists a constant
K depending on H and T such that fori =1, 2,3 we have

(A.35) nE( (1) -2 ) )< K@ —s), tsell,s<t.

Furthermore, for each t € [0, T] and i = 1,2, we have that n*" 7! ! () converges in L? to
T2H (2H + D)~!'B, and n*" 3(t) converges in L?t0 T*" B, as n — oo.

PROOF. The proof is divided into several steps.
Step 1. L? estimate of Z}L. We start with the decomposition

lnt/T] oy /T g
A= [Tw-wdb+ Y [ B’ - @-w?dB,
k=0 ' k=0 7

=z + 212 (0).
With some elementary computations similar to Lemma 4.3 in [13] we can show that
(]E(|z12(t) _ le(s)|2))1/2 < K(n‘z v n1/2—3H)(t _9l2,

In order to show (A.35) for zn it then remains to prove that (A.35) holds for znl (1).
Let us apply the covariance formula (2.1) to get

|_nt/TJ ) t 1
l(t) k+1/ + tk)ZH ’)ZH/_L(deS/)
173

k. k’ T

6H W/TJ K+1 pk+1
= ( ) / / (s — k2" (s — k) u(ds ds'),
k,k'=

where w is defined by (3.2), and in the second equation we have replaced the variables (s, s)
by (%s, %s/). Denoting

(A.36)

- 1 pp+1
O(p) = /0 / (s — p)2H2H (s di).
14
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Noticing that Q(p) = Q(—p) for p € Z, equation (A.36) becomes
6H |nt/T]

B @)= (5) X 0k-k)
k,k'=0
T 6H_ T 6H _ ,
(A37) =(;) Q(O)(Lnt/TJ+1)+2(;) osk/<gm/TJQ(k_k)
B T\6H _ | 5 6H Lnt/T] |
—(;) OO)(lnt/T) +1) + (;) pZ:] Op)(nt/T) +1—=p).

In order to bound E(z!!(r)?), we use the fact that [nt/T| <nt/T <n*"t/T, Q(p) < (p —
D2H=2for p>1and |nt/T|+1— p <nt/T.We end up with

E(z!'(#)?) < kn=t, t>0.

Taking into account that E(Iz,lil(t) — zil(s)|2) = E(z,%l(t -5 — %)2) for s, t € I1, we obtain
the desired estimate (A.35) for z,lll.
Step 2. L*-convergence of Z,i (i). We first observe that to show the L2-convergence of
n*f 7] it suffices to show the following two convergences:
n*UE(Z (1)) - T QH + 1) 7221,
(A.38)
n?HE( () B) — T 2H 4+ 1)7121,

We consider the two convergences in (A.38) respectively in this and next steps.
Notice that the mean value theorem implies that for |p| > 1 there exists p € [p— 1, p + 1]
such that

_ 1 pp+l
O(p) = /O /,, (s — p)2H 2 yds dr)

oy 2H2 ! pH( L VH2H g g o 52H-2
=ayp A s—p) sdt=cup ;
P

where oy = HQRH —1)andcy = HQH — 1)(2H + 1)~2. Therefore, we can write
lnt/T1
n %" 0(p)(Int/T1+1—p)
p=1

—cyn~ +n 2 Q) nt/ T

aniTJ(é)ZH—Z lnt/T]+1—p
=1 n n

cyg T Lnt/T] T . 2H=2 T —2H A
=2 - - “(lnt)T]+1— D(nt/T
Iy (np) <n(Lnt/ I+ p))+n O nt/T),

s2H=2(

which is the Riemann sum of the function s — T‘% —s) from O to ¢ plus a remainder

term. Sending n — oo we obtain
) /T cH [ ap
n Y 0y (nt/TI+1-p)— TW/O s?=2(t —5)ds
(A.39) p=l
_@HD2,,
2T2H :
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Applying (A.39) to the second term on the right-hand side of (A.37) and bounding the first
term by n! %% we obtain the first convergence in (A.38).
Step 3. L%-convergence of z,l, (ii). Take t € [#,t;41) for [ =0,...,n. In order to show

the second convergence in (A.38), we write B, = an/ Tl I ““1 dBs — By ,,,,. Applying the
covariance formula (2.1) as in (A.36) and using th1s express1on of B;, we obtain

nt/T] iy het1 2H , 1
Zn(l)Bt Z /t /t (s — 1) u(dsds’) —E(z,(1) By y,,)

k,k'=
4H Lnt/TJ K+1 pk+1 5 1
( ) / /k (s — 2 u(ds ds’) —E(z (1) Br.,,)-
k,k'=

In a similar way as for the convergence of n*t E(z}l (1)), we can now show that the conver-
gence of nzHIE(z,i(t)B,) in (A.38) holds.

This completes the proof of the theorem for z.. The proof for z2 and z; can be shown in a
similar way and is left to the reader. [J

COROLLARY A.4. Let B and B be as in Proposition A.3. Let

Lnt / TV o puopo -
(A.40) 2y = / / dB,dB,dB,.
173 te Jtx

Then the estimate (A.35) holds for zn Furthermore, for any t € [0, T] we have that z,, A1)
converges in L? to T?H (QH —1)4H +2)~ 1B,.

PROOF. We notice that by an exchange of integrals we obtain

nt/T1 gy
Zn(t)— Z f By vlk+1dB

le/TJ flerl 2_ (B 2 _ (R 2
/ (Byns)? — (Byo)? — (Buy,)?) dB
174

1
= E(Zf’(t) —zy (1) — 22 (1)).
The corollary now follows from the application of Proposition A.3. [J

In the following we consider the processes

nt/T)

Tg41 u v
()= Z f / / dB,dB,du,
e Jitg
Lnt/TJ el U v
(A.41) 2 (1) = / f drdB,dB,,
174 e Jitg

nt/T)

kg1 pu fv
B0 = Z/ /tk [ as.avas,



CRANK-NICOLSON SCHEME FOR FRACTIONAL SDE 81
PROPOSITION A.5. Let zi, i =06,7,8 be defined in (A.41). Then there exists a constant
K depending on H and T such that for i = 6,7, 8 we have
(A.42) nE(Z ) - ) <K@t —s), tsell
Furthermore, for each t € [0, T] and i = 6,7, we have that n* 7} n(t) converges in L? 10

%TZH(ZH + D)~ and n?H; 8(t) converges in L?to QH — )(4H +2)"'T?H¢ a5 n — oo.

PROOF. The proof follows the same arguments as in the proof of Proposition A.3 and
Corollary A.4 and the details are omitted. [

A.7. Further L?-convergence results. In this subsection we denote by B = (Bl, R
B™) an m-dimensional fBm. Let us introduce the following index sets:

E={l,...,m}, E=EU{0}, E0=E X E X E, Eo=Ex E x &,
Bl ={(JJ J") Bo:j#j'=j"Y,  Eu={(.ji")e8:j#i=j"},

E={0.J.Jj")€8:j"#j=J"},  Bua={(.j.Jj")e€Bo:j =j"#j=0}
En={(j, ', j") €8o:j=j"#] =0},

B3 ={(j.jj") €Eo:j=J #j" =0}

We also denote
E1=EB11UERUE;3s and E&Ep= Ep1 U Ex U Er3.

The following is a consequence of the results in the previous subsection:

COROLLARY A.6. Consider the following processes on [0, T]:

Lnt/TJ -// Tie+1 s ./ .
/ dB] dBJ
174 179

lk+1

Z 1) = Zf

and
lnt/T]

Zi= 3 [

fk+1

" lk+1 S j’ j
dB;j dB).
173 173

() If (j, j', j") € E\, then the estimate (A.35) holds for Z} and Z2, and for t € [0, T]
andi=1,2, Zfl (t) converges in L? to %TZHB,.
(i) If (j, j', j") € Ea, then the estimate (A.42) holds for Z,i and Z,Zl, and for t € [0, T

andi=1,2, Z,i, (1) converges in L? to %TZHt.

PROOF. In the case (J, j’, j”) € B, the corollary follows by a decomposition of Zﬁ,,
i = 1,2 into the sum of the processes of the forms of z., z2 and z# in (A.33) and (A.40). In
the case (j, j’, j") € Ea, the corollary can be shown by a decomposition of Z, i = 1,2 into
the sum of the processes of the forms of z/, z5 and z) in (A.41). O

LEMMA A.7. Take (j,j',j") € Eo\ (EpU E1 U E»). Denote
nt/ T}

Tk+1
Z3(t) = Z / ' f "aB)" dBi B,
e Jitg
Then the following inequality holds:
E(|Z3() — Z2))? < K(n 2 v n2 3 1) — 5)1/2,
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PROOF. It follows from Proposition 5.5 in [11] that

(A.43) E(|Z3 () — Z2(s)|) < IE(

Lnt/ T }

. !
J J J
Z BlkkaBtktkHBfklkH
k=|ns/T|+1

)

The lemma then follows from some elementary computations of the right-hand side of (A.43)
similar to Lemma 4.3 in [13]. O
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