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We study the Crank–Nicolson scheme for stochastic differential equa-
tions (SDEs) driven by a multidimensional fractional Brownian motion with
Hurst parameter H > 1/2. It is well known that for ordinary differential equa-
tions with proper conditions on the regularity of the coefficients, the Crank–
Nicolson scheme achieves a convergence rate of n−2, regardless of the di-
mension. In this paper we show that, due to the interactions between the driv-
ing processes, the corresponding Crank–Nicolson scheme for m-dimensional
SDEs has a slower rate than for one-dimensional SDEs. Precisely, we shall
prove that when the fBm is one-dimensional and when the drift term is zero,
the Crank–Nicolson scheme achieves the convergence rate n−2H , and when

the drift term is nonzero, the exact rate turns out to be n− 1
2 −H . In the gen-

eral multidimensional case the exact rate equals n
1
2 −2H . In all these cases the

asymptotic error is proved to satisfy some linear SDE. We also consider the
degenerated cases when the asymptotic error equals zero.

1. Introduction. This paper is concerned with the following stochastic differential equa-
tion (SDE for short) on R

d driven by a fractional Brownian motion (fBm for short)

(1.1) Xt = x +
∫ t

0
V (Xs) dBs, t ∈ [0, T ],

where B = (B0,B1, . . . ,Bm), and (B1, . . . ,Bm) is an m-dimensional fractional Brownian
motion with Hurst parameter H > 1

2 . For notational convenience we denote B0
t = t for t ∈

[0, T ] in order to include the drift term in (1.1). The integral on the right-hand side of (1.1)
is of Riemann–Stieltjes type. It is well known that if the vector field V = (V0,V1, . . . , Vm) :
R

d → L(Rm+1,Rd) has bounded partial derivatives which are Hölder continuous of order
α > 1

H
− 1, then there exists a unique solution for equation (1.1), which has bounded 1

γ
-

variation on [0, T ] for any γ < H ; see for example, [14, 23].
As in the Brownian motion case, the explicit solution of SDEs driven by fractional Brow-

nian motions are rarely known. Thus one has to rely on numerical methods for simulations of
these equations. Various time-discrete numerical approximation schemes for (1.1) have been
considered in recent years. Recall that the classical Euler scheme is defined as follows:

Xn
tk+1

= Xn
tk

+ V
(
Xn

tk

)
(Btk+1 − Btk ),

Xn
0 = x,

(1.2)

where k = 0,1, . . . , n − 1 and tk = kT /n. This scheme is considered in [17, 18] for scalar
SDEs, and generalized in [10, 15] to the multidimensional case. The solution of (1.2) has the
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exact strong convergence rate of n1−2H when H > 1
2 , while in the case H = 1

2 it converges
to the corresponding Itô SDE

Xt = x +
∫ t

0
V (Xs)δBs, t ∈ [0, T ],

where δ denotes the Itô stochastic integral. Note also that the Euler scheme is not convergent
when H < 1

2 ; see for example, [5]. A modified Euler scheme introduced in [10] generalizes
the classical Euler scheme to the fBm case

Xn
tk+1

= Xn
tk

+ V
(
Xn

tk

)
(Btk+1 − Btk ) + 1

2

m∑
j=1

∂VjVj

(
Xn

tk

)(T

n

)2H

,

Xn
0 = x.

(1.3)

The modified Euler scheme has been shown to have a better convergence rate than (1.2).

More precisely, the rate is n
1
2 −2H when 1

2 < H < 3
4 and n−1√logn when H = 3

4 , and in the
case 3

4 < H < 1 the rate becomes n−1. Weak convergence rates and asymptotic error distribu-
tions were also obtained for the modified Euler scheme. In [9], the authors considered Taylor
schemes derived from the Taylor expansion in the one-dimensional case. In [11], the Taylor
schemes and their modifications were introduced for SDEs driven by fBm’s B1, . . . ,Bm, with
Hurst parameters H1, . . . ,Hm, where H1, . . . ,Hm ∈ (1

2 ,1] are not necessarily equal. In [4],
the Milstein scheme (or 2nd-order Taylor scheme) has been considered for the rough case
H < 1

2 and it is convergent as long as H > 1
3 . An extension of the result to mth order Taylor

schemes is contained in [7]. In [5, 6], some 2nd and 3rd order implementable schemes are
studied via the Wong–Zakai approximation.

The Crank–Nicolson (or Trapezoidal) scheme has been studied only recently. Recall that
the Crank–Nicolson scheme for (1.1) is defined as follows:

Xn
tk+1

= Xn
tk

+ 1

2

[
V
(
Xn

tk+1

) + V
(
Xn

tk

)]
(Btk+1 − Btk ),

Xn
0 = x,

(1.4)

where again tk = kT /n for k = 0, . . . , n − 1. In [16, 18], the Crank–Nicolson scheme is
considered for SDEs with Hurst parameter H ∈ (1/3,1/2). It has been shown in [18] that if

V ∈ C∞
b the convergence rate of the Crank–Nicolson scheme is n

1
2 −3H . This rate is exact in

the sense that the renormalized error process n3H− 1
2 (X −Xn) converges weakly to a nonzero

limit (see, e.g., [16]). Note however that due to the use of the Doss–Sussmann representation
these results are applicable only to the scalar SDE setting, which corresponds to the case
m = d = 1 and V0 ≡ 0 in our notation. On the other hand, it has been conjectured in [19] that

the Crank–Nicolson scheme has exact root mean square convergence rate n
1
2 −2H .

In view of these results, our first goal is to answer the following question:

QUESTION 1. Is the Crank–Nicolson scheme still convergent in the multidimensional
setting, and is the convergence rate the same as that of the scalar SDE?

Let us recall that in the case of deterministic ordinary differential equations (ODEs), either
in the one-dimensional or multidimensional settings, and with proper regularity assumptions
on the coefficients, the convergence rate of the Crank–Nicolson scheme is always n−2. Sur-
prisingly, as we will show in this paper, the Crank–Nicolson scheme (1.4) for SDEs has a
very different feature comparing to the ODE cases. While the Crank–Nicolson scheme is
still convergent, the convergence rate is largely “throttled” due to the interactions among the
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driving processes of the equation. More precisely, we will prove the following result. We
consider the continuous time interpolation of the Crank–Nicolson scheme for t ∈ [tk, tk+1),
k = 0, . . . , n − 1:

(1.5) Xn
t = Xn

tk
+ 1

2

[
V
(
Xn

tk

) + V
(
Xn

tk+1

)]
(Bt − Btk ).

THEOREM 1.1. Let X be the solution of equation (1.1) and let Xn be the continuous time
interpolation of the Crank–Nicolson scheme {Xn

t0
,Xn

t1
, . . . ,Xn

tn
} defined by (1.5). Suppose

that V ∈ C3
b . Then for any p ≥ 1 there exists a constant K = Kp independent of n such that

the following strong convergence result holds true for all n ∈N:

(1.6) sup
t∈[0,T ]

(
E
∣∣Xt − Xn

t

∣∣p)1/p ≤ K/ϑn,

where ϑn is defined as

ϑn =

⎧⎪⎪⎨
⎪⎪⎩

n2H− 1
2 when m > 1,

nH+ 1
2 when m = 1 and V0 	≡ 0,

n2H when m = 1 and V0 ≡ 0.

Theorem 1.1 shows that if the driving process B is one-dimensional and there is no drift
term, then the convergence rate of the Crank–Nicolson scheme (1.4) is n−2H . This result
coincides with the case of deterministic ODEs if we formally set H = 1, and also with the
case of one-dimensional Brownian motion which corresponds to H = 1

2 (see, e.g., [16, 18]).

If a drift term is included in the equation, then the rate turns out to be n−H− 1
2 . In the general

case when B is multidimensional the convergence rate becomes n
1
2 −2H , the same as that

of the modified Euler scheme (1.3) with 1
2 < H < 3

4 . Note also that Theorem 1.1 gives a
positive answer to the conjecture raised in [19] under this general assumption. The slowing
down of convergence rate from one-dimensional case to multidimensional cases is due to the
nonvanishing Lévy area term (see (3.1)). Indeed, in the one-dimensional case these Lévy area
type processes disappear and the convergence of X − Xn is dictated by some higher order
terms.

The second part of the paper is motivated by the following question:

QUESTION 2. Are the convergence rates obtained in Theorem 1.1 exact? If yes, what is
the limiting distributions of the scheme for both the one-dimensional and multidimensional
cases?

To answer this question, we will consider the piecewise constant interpolations. Namely,
we consider the processes X̃n and X̃:

(1.7) X̃t = Xtk and X̃n
t = Xn

tk
, t ∈ [tk, tk+1), k = 0,1, . . . , n.

Recall that X and Xn are respectively the solutions of equations (1.1) and (1.4).

REMARK 1.2. The piecewise constant interpolation X̃ of the true solution X allows us to
focus on the asymptotic error on the partition points. In fact, we will see that the interpolation
(1.5) of Xn satisfies (

Xt − Xn
t

) − (
Xtk − Xn

tk

) ∼ n−2H

for t ∈ [tk, tk+1) (see (4.34)). According to the rates stated in Theorem 1.1, this difference
between the error at the partition points and at the nonpartition ones does not affect the rates
of convergence of the scheme in all three cases. However, in the case of m = 1 and V0 ≡ 0, it
has a nontrivial contribution to the asymptotic error.
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THEOREM 1.3. Let X̃ and X̃n be the processes defined in (1.7), and suppose that V ∈
C3

b . Denote by φjj ′ the Lie bracket between the vector fields Vj and Vj ′ :

(1.8) φjj ′ = ∂VjVj ′ − ∂Vj ′Vj , j, j ′ = 0,1, . . . ,m,

where ∂VjVj ′ denotes the inner product 〈∂Vj ,Vj ′ 〉 = ∑d
i=1 V i

j ′∂iVj .

(i) Suppose that m > 1. Then we have the convergence

(1.9)
(
ϑn

(
X̃ − X̃n),B) → (U,B)

in the Skorohod space D([0, T ];Rd+m+1) as n tends to infinity. The above process U is the
solution of the linear SDE on [0, T ]

(1.10) dUt =
m∑

j=0

∂Vj (Xt)Ut dB
j
t + T 2H− 1

2

√
κ

2

∑
1≤j ′<j≤m

φjj ′(Xt) dW
j ′j
t

with U0 = 0, where W = (Wj ′j )1≤j ′<j≤m is a standard m(m−1)
2 -dimensional Brownian mo-

tion independent of B and κ is the constant defined by (3.4) in Section 3.
(ii) Suppose that m = 1 and V0 	≡ 0. Then the above convergence (1.9) still holds true.

The process U is the solution of the linear SDE on [0, T ]

(1.11) dUt = ∑
j=0,1

∂Vj (Xt)Ut dB
j
t + T H+ 1

2

√
	

2
φ10(Xt) dWt, U0 = 0,

where W is a one-dimensional standard Brownian motion independent of B and ρ is the
constant defined in (3.29) in Section 3.

(iii) Suppose that m = 1 and V0 ≡ 0. Then, we have the following convergence in Lp(�)

for all p ≥ 1 and t ∈ [0, T ]:
(1.12) n2H (

X̃t − X̃n
t

) → Ut,

where the process U is the solution of the linear equation

(1.13) dUt = ∂V (Xt)Ut dBt − T 2H

4

d∑
i,i′=1

(
V iV i′∂i∂i′V

)
(Xt) dBt , U0 = 0.

Theorem 1.3 shows that in the multidimensional cases, one obtains the central limit theo-
rem for the renormalized error process. It is worth mentioning that the equation of the limiting
process U does not depend on φ0j , j = 0, . . . ,m. This is due to the fact that φ0j arises from
the higher order terms of the expansion of the error process. In the scalar case the convergence
of the error process holds in Lp(�). One could prove tightness in item (ii) of Theorem 1.3,
but this requires an additional effort and will not be discussed in this paper, because Lp

convergence is stronger than f.d.d. convergence and the tightness is not so relevant here. The-
orem 1.3 implies in particular that, generally speaking, the convergence rates in Theorem 1.1
are exact. It is worth mentioning that the cutoff of the convergence rates observed in [10,
19] is not present in either of these cases. The Crank–Nicolson scheme provides us a first
example in which the convergence is impacted by the dimension of the system.

We should point out that in the degenerated cases, for instance when the commutators are
zero, Theorem 1.3 only says that the corresponding asymptotic error is equal to zero. In such
situations, further investigations of the scheme are required. In the following two results, we
consider two levels of degeneracy:

(D1) φjj ′ ≡ 0 for j, j ′ = 1, . . . ,m and (D2) φjj ′ ≡ 0 for j, j ′ = 0,1, . . . ,m.
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THEOREM 1.4. Let X, Xn, and V be as in Theorem 1.1. Then for any p ≥ 1 there exists
a constant K = Kp independent of n such that for all n ∈ N:

(1.14) sup
t∈[0,T ]

(
E
∣∣Xt − Xn

t

∣∣p)1/p ≤
{
Kn−H− 1

2 when (D1) holds,

Kn−2H when (D2) holds.

Note that these rates in (1.14) are exactly those obtained in Theorem 1.1. They tell us
that the rates of convergence are dictated by Lie brackets of coefficients rather than by the
dimension of the system.

The next theorem provides our main result on the asymptotic errors of the scheme in
degenerated cases.

THEOREM 1.5. Let the processes X̃ and X̃n, the functions V and φjj ′ , and the constant
ρ be as in Theorem 1.3.

(i) Suppose that (D1) holds, and let U be the solution of the equation on [0, T ]:

dUt =
m∑

j=1

∂Vj (Xt)Ut dB
j
t + T H+ 1

2

√
	

2

m∑
j=1

φj0(Xt) dW
j
t , U0 = 0,

where W = (W 1, . . . ,Wm) is an m-dimensional Brownian motion independent of B . Then
we have the convergence in D([0, T ];Rd+m+1) as n → ∞:(

nH+ 1
2
(
X̃ − X̃n),B) → (U,B).

(ii) Suppose that (D2) holds, and let U be the solution of the linear equation:

dUt =
m∑

j=0

∂Vj (Xt)Ut dB
j
t − T 2H

4

m∑
j=1

∫ t

0
ψjjj (s) dBj

s +
m∑

j=0

∫ t

0
ϕj (s) dBj

s ,

and U0 = 0, where we denote ψjj ′j ′′(t) = ∑d
i,i′=1(V

i
j ′V i′

j ′′∂i′∂iVj )(Xt) and

ϕj (t) = 1

2
T 2H

∑
j ′ /∈{0,j}

(
1 − 2H

4H + 2
ψjj ′j ′(t) − 1

2H + 1
ψj ′j ′j (t)

)
, t ∈ [0, T ].

Then we have the following convergence in Lp(�) for all p ≥ 1 and t ∈ [0, T ]:
(1.15) n2H (

X̃t − X̃n
t

) → Ut .

Our first step to prove Theorem 1.1–1.5 is based on an explicit expression of X − Xn

similar to that established in [10]. A significant difficulty is the integrability of the Malliavin
derivatives of the approximation Xn. This is due to the fact that the Crank–Nicolson scheme
(1.4) is determined by an implicit equation. This difficulty will be handled thanks to some
fractional calculus techniques, see for example, [3, 11, 27]. A special attention has to be
paid also to the Lévy area type processes mentioned above. Our approach to handle these
processes relies on a combination of fractional calculus and Malliavin calculus tools. Let us
mention that it is possible to extend our results to the rough case by the approaches introduced
in [13].

The paper is structured as follows. In Section 2, we recall some basic results on the fBm’s
as well as some upper bound estimate results and limit theorem results on fractional integrals.
In Section 3, we consider the moment estimates and the weak convergence of some Lévy area
type processes. In Section 4, we consider the strong convergence, and then in Section 5 we
prove Theorem 1.3 on the asymptotic error. Section 6 focuses on the degenerate cases. Some
auxiliary results are stated and proved in the Appendix.
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2. Preliminaries.

2.1. Fractional Brownian motions. We briefly review some basic facts about the stochas-
tic calculus with respect to a fBm. The reader is referred to [20, 21] for further details. Let
B = {Bt, t ∈ [0, T ]} be a one-dimensional fBm with Hurst parameter H ∈ (1

2 ,1), defined on
some complete probability space (�,F ,P ). Namely, B is a mean zero Gaussian process
with covariance

E(BsBt ) = 1

2

(
t2H + s2H − |t − s|2H )

for s, t ∈ [0, T ]. Let H be the Hilbert space defined as the closure of the set of step functions
on [0, T ] with respect to the scalar product

〈1[0,t],1[0,s]〉H = 1

2

(
t2H + s2H − |t − s|2H )

.

It is easy to verify that

(2.1) 〈φ,ψ〉H = H(2H − 1)

∫ T

0

∫ T

0
φuψv|u − v|2H−2 dudv

for every pair of step functions φ,ψ ∈ H.
The mapping 1[0,t] �→ Bt can be extended to a linear isometry between H and the Gaussian

space spanned by B . We denote this isometry by h �→ B(h). In this way, {B(h),h ∈ H} is an
isonormal Gaussian process indexed by the Hilbert space H.

Let S be the set of smooth and cylindrical random variable of the form

F = f (Bt1, . . . ,BtN ),

where N ≥ 1, t1, . . . , tN ∈ [0, T ] and f ∈ C∞
b (RN), namely, f and all its partial derivatives

are bounded. The derivative operator D on F is defined as the H-valued random variable

DtF =
N∑

i=1

∂f

∂xi

(Bt1, . . . ,BtN )1[0,ti ](t), t ∈ [0, T ].

For p ≥ 1 we define the Sobolev space D1,p
B (or simply D

1,p) as the closure of S with respect
to the norm

‖F‖D1,p = (
E
(|F |p) +E

(‖DF‖p
H
))1/p

.

The above definition of the Sobolev space D
1,p can be extended to H-valued random vari-

ables (see Section 1.2 in [21]). We denote by D
1,p
B (H) (or simply D

1,p(H)) the corresponding
Sobolev space.

We denote by δ the adjoint of the derivative operator D. We say u ∈ Dom δ if there is a
δ(u) ∈ L2(�) such that for any F ∈ D

1,2 the following duality relationship holds

(2.2) E
(〈u,DF 〉H) = E

(
Fδ(u)

)
.

The random variable δ(u) is also called the Skorohod integral of u with respect to the fBm B ,
and we use the notation δ(u) = ∫ T

0 utδBt . The following result is an example of application
of the duality relationship that will be used later in the paper.

LEMMA 2.1. Let B and B̃ be independent one-dimensional fBm’s with Hurst parameter
H ∈ (1

2 ,1). Take h ∈ H ⊗ H, then the integral
∫ T

0
∫ T

0 hs,t δBsδB̃t is well defined. Denote by

D and D̃ the derivative operators associated with B and B̃ , respectively. Take F ∈ D
1,2
B̃

and

assume that D̃F ∈ D
1,2
B (H). Then, applying the integration by parts twice, we obtain

(2.3) E
(〈h,DD̃F 〉H⊗H

) = E

(
F

∫ T

0

∫ T

0
hs,t δBsδB̃t

)
.
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2.2. Weighted random sums. In this subsection, we recall some estimates and limit re-
sults for Riemann–Stieltjes integrals of stochastic processes. Our main references are [3, 10,
11, 27]. Let us start with the definition of Hölder continuous functions in Lp := Lp(�). In
the following ‖ · ‖p denotes the Lp-norm in the space Lp , where p ≥ 1.

DEFINITION 2.2. Let β ∈ (0,1) and p ≥ 1. Let f = {f (t), t ∈ [a, b]} be a continuous
process such that f (t) ∈ Lp for all t ∈ [a, b]. Then f is called a Hölder continuous function
of order β in Lp if the following relation holds true for all s, t ∈ [a, b]:∥∥f (t) − f (s)

∥∥
p ≤ K|t − s|β.

We denote by ‖f ‖β,p the Hölder semi-norm

‖f ‖β,p = sup
{‖f (t) − f (s)‖p

|t − s|β : t, s ∈ [a, b], t 	= s

}
.

Our first result provides an upper-bound estimate for the Lp-norm of a Riemann–Stieltjes
integral.

LEMMA 2.3. Take p ≥ 1, p′, q ′ > 1 : 1
p′ + 1

q ′ = 1 and β,β ′ ∈ (0,1) : β + β ′ > 1. Let

f (t), g(t), t ∈ [a, b] be Hölder continuous functions of order β and β ′ in Lpp′
and Lpq ′

,
respectively. Then the Riemann–Stieltjes integral

∫ b
a f dg is well defined in Lp , and we have

the estimate

(2.4)
∥∥∥∥
∫ b

a
f dg

∥∥∥∥
p

≤ (
K‖f ‖β,pp′ + ∥∥f (a)

∥∥
pp′

)‖g‖β ′,pq ′(b − a)β
′
,

where K is a constant depending only on the parameters p, p′, q ′, β , β ′.

PROOF. The proof is based on the fractional integration by parts formula (see [27]),
following the arguments used in the proof of Lemma A.1 in [10]. �

Given a double sequence of random variables ζ = {ζk,n, n ∈ N, k = 0,1, . . . , n}, for each
t ∈ [0, T ] we set

(2.5) gn(t) :=
�nt/T �∑
k=0

ζk,n,

where �nt/T � denotes the integer part of nt/T . We recall the following result from [11],
which provides an upper-bound estimate for weighted random sums (or the so-called discrete
integrals) of the process gn.

LEMMA 2.4. Let p, p′, q ′, β , β ′ be as in Lemma 2.3. Let f be a Hölder continuous
function of order β in Lpp′

. Let gn be as in (2.5) such that for any j, k = 0,1, . . . , n we have

E
(∣∣gn(kT /n) − gn(jT /n)

∣∣pq ′) ≤ K
(|k − j |/n

)β ′pq ′
.

Then the following estimate holds true for i, j = 0,1, . . . , n, i > j :∥∥∥∥∥
i∑

k=j+1

f (tk)ζk,n

∥∥∥∥∥
p

≤ K
(‖f ‖β,pp′ + ∥∥f (tj )

∥∥
pp′

)( i − j

n

)β ′
.
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Let us now recall some limit theorems for weighted random sums. The first result says that
if the “weight-free” random sum (2.5) converges weakly and if the weight process satisfies
certain regularity assumption, then the weighted random sum also converges weakly. The
reader is referred to [3] for further details.

PROPOSITION 2.5. Let gn be defined in (2.5). Assume that gn satisfies the inequality

E
(∣∣gn(kT /n) − gn(jT /n)

∣∣4) ≤ K
(|k − j |/n

)2

for j, k = 0,1, . . . , n. Suppose further that the finite-dimensional distributions of gn converge
stably to those of W = {Wt, t ∈ [0, T ]}, where W is a standard Brownian motion independent
of gn.

Let f = {f (t), t ∈ [0, T ]} be a Hölder continuous process of order β for β > 1/2. Con-
sider the Riemann–Stieltjes integral

∫ t
0 f (s) dWs . Recall that �nt/T � denotes the integer part

of nt/T .
Then the finite-dimensional distributions of

∑�nt/T �
k=0 f (tk)ζk,n converge stably to those of∫ t

0 f (s) dWs .

Recall that a sequence of random vectors Fn converges stably to a random vector F , where
F is defined on an extension (�′,F ′,P′) of the original probability (�,F ,P), if (Fn,Z) →
(F,Z) weakly for any F -measurable random variable Z. The reader is referred to [1, 12, 25]
for further details on stable convergence.

The following result can be viewed as the Lp-convergence version of Proposition 2.5 (see
[10]).

PROPOSITION 2.6. Take β,λ ∈ (0,1) : β + λ > 1. Let p ≥ 1 and p′, q ′ > 1 such that
1
p′ + 1

q ′ = 1 and pp′ > 1
β

, pq ′ > 1
λ

. Let gn be defined in (2.5). Suppose that the following two
conditions hold true:

(i) For t ∈ [0, T ], we have the convergence gn(t) → z(t) in Lpq ′
;

(ii) For j, k = 0,1, . . . , n we have the relation

E
(∣∣gn(kT /n) − gn(jT /n)

∣∣pq ′) ≤ K
(|k − j |/n

)λpq ′
.

Let f = {f (t), t ∈ [0, T ]} be a continuous process such that E(‖f ‖pp′
β ) ≤ K and

E(|f (0)|pp′
) ≤ K . Then for each t ∈ [0, T ] we have the convergence:

lim
n→∞

�nt/T �∑
k=0

f (tk)ζk,n =
∫ t

0
f (s) dz(s),

where the limit is understand as the limit in Lp .

3. Lévy area type processes. Let B = {Bt, t ≥ 0} be a one-dimensional fBm with Hurst
parameter H ∈ (1

2 ,1), and let B̃ = {B̃t , t ≥ 0} be a Hölder continuous process of order β > 1
2 .

Let � = {0 = t0 < t1 < · · · < tn = T } be the uniform partition on [0, T ] and take tn+1 =
n+1
n

T . For t ∈ [tl, tl+1) ∩ [0, T ], l = 0, . . . , n, define the Lévy area type process on [0, T ]

(3.1) Zn(t) =
l∑

k=0

(∫ tk+1

tk

∫ s

tk

dB̃u dBs −
∫ tk+1

tk

∫ tk+1

s
dB̃u dBs

)
.

In this section, we study the convergence rate and the asymptotic distribution of the sequence
{Zn,n ∈ N}. We focus on two cases: (i) B̃ is an independent copy of B; and (ii) B̃ is the
identity function: B̃t = t for t ≥ 0.
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3.1. Case (i). For simplicity, we denote by μ the measure on the plane R
2 given by

(3.2) μ(ds dt) = H(2H − 1)|s − t |2H−2 ds dt.

For each p ∈ Z we set

Q(p) =
∫
p<s<p+1

0<t<1

∫
p<v<s
0<u<t

μ(dv du)μ(ds dt),

R(p) =
∫
p<s<p+1

0<t<1

∫
p<v<s
t<u<1

μ(dv du)μ(ds dt).

We have the following result on the process Zn.

PROPOSITION 3.1. Let Zn be the process defined by (3.1) and let B̃ be an independent
copy of B . Then, there exists a constant K depending on H and T such that for t, s ∈ � we
have

(3.3) n4H−1
E
(∣∣Zn(t) − Zn(s)

∣∣2) ≤ K|t − s|.

Furthermore, the finite-dimensional distributions of (n2H− 1
2 Zn(t),Bt , B̃t , t ∈ [0, T ]) con-

verge weakly to those of (T 2H− 1
2
√

2κWt,Bt , B̃t , t ∈ [0, T ]) as n tends to infinity, where
W = {Wt, t ∈ [0, T ]} is a standard Brownian motion independent of (B, B̃), and

(3.4) κ = ∑
p∈Z

(
Q(p) − R(p)

)
.

REMARK 3.2. Figure 1 provides the graph of the parameter κ as a function of H on
(1

2 ,1). We observe that κ converges to 1
2 as H tends to 1

2 which corresponds to the Brownian
motion, and it approaches zero as H tends to one.

PROOF OF PROPOSITION 3.1. The proof is divided into several steps.
Step 1. In this step, we show the convergence of n4H−1

E(Zn(t)
2) and derive its limit as

n → ∞. We first calculate the second moment of Zn(t). Note that when B̃ is an independent

FIG. 1. The value of κ .
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copy of B we have

Zn(t) =
�nt/T �∑
k=0

(∫ tk+1

tk

∫ s

tk

δB̃uδBs −
∫ tk+1

tk

∫ tk+1

s
δB̃uδBs

)

=
�nt/T �∑
k=0

∫ T

0

∫ T

0
βk

n
(s)γtk,s(u)δB̃uδBs,

(3.5)

where δ denotes the Skorohod integral and

(3.6) βk
n
(s) = 1[tk,tk+1](s), γtk,s(u) = 1[tk,s](u) − 1[s,tk+1](u).

By the integration by parts formula (2.3) and taking into account the expression of Zn(t) in
(3.5) we obtain

(3.7) E
(
Zn(t)

2) =
�nt/T �∑
k=0

∫
[0,T ]4

D̃u′Ds′Zn(t)β k
n
(s)γtk,s(u)μ

(
dudu′)μ(

ds ds′),
where D and D̃ are the derivative operators associated with B and B̃ , respectively. It is clear
that

D̃u′Ds′Zn(t) =
�nt/T �∑
k=0

βk
n

(
s′)γtk,s

′
(
u′).

Therefore, we obtain the expression

E
(
Zn(t)

2) =
�nt/T �∑
k,k′=0

∫
[0,T ]4

βk′
n

(
s′)βk

n
(s)γtk′ ,s′

(
u′)γtk,s(u)μ

(
dudu′)μ(

ds ds′).(3.8)

By changing the variables from (u,u′, s, s′) to T
n
(u,u′, s, s′), we obtain

E
(
Zn(t)

2) =
(

T

n

)4H �nt/T �∑
k,k′=0

∫
k′<s′<k′+1
k<s<k+1

∫
0<u,u′<n

ϕk′,s′
(
u′)ϕk,s(u)μ

(
dudu′)μ(

ds ds′),
where ϕk,s(u) = 1[k,s](u) − 1[s,k+1](u). Denote ϕ0

k,s(u) = 1[k,s](u), ϕ1
k,s(u) = 1[s,k+1](u),

and set

eij =
∫
k′<s′<k′+1
k<s<k+1

∫
0<u,u′<n

ϕi
k′,s′

(
u′)ϕj

k,s(u)μ
(
dudu′)μ(

ds ds′).
Then we can write

E
(
Zn(t)

2) =
(

T

n

)4H �nt/T �∑
k,k′=0

∑
i,j=0,1

(−1)i+j eij .

It is easy to see that e00 = e11 = Q(k − k′) and e01 = e10 = R(k − k′). Therefore,

(3.9) E
(
Zn(t)

2) = 2
(

T

n

)4H �nt/T �∑
k,k′=0

[
Q
(
k − k′) − R

(
k − k′)].

Taking p = k − k′ on the right-hand side of (3.9), we obtain

(3.10)

E
(
Zn(t)

2)

= 2
(

T

n

)4H
(�nt/T �∑

p=0

�nt/T �∑
k=p

[
Q(p) − R(p)

] +
−1∑

p=−�nt/T �

�nt/T �+p∑
k=0

[
Q(p) − R(p)

])

:= q1 + q2.
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We decompose q1 as follows

q1 = 2
(

T

n

)4H �nt/T �∑
p=0

(⌊
nt

T

⌋
− p + 1

)(
Q(p) − R(p)

)

= 2
(

T

n

)4H
(⌊

nt

T

⌋ �nt/T �∑
p=0

(
Q(p) − R(p)

) −
�nt/T �∑
p=0

(p − 1)
(
Q(p) − R(p)

))

:= q11 + q12.

By the mean value theorem for the integrals appearing in the definitions of Q and P , it is easy
to show that |Q(p) − R(p)| ≤ Kp4H−5 for p > 0. This implies that

∑∞
p=0(Q(p) − R(p)) is

convergent and we also have∣∣∣∣∣
�nt/T �∑
p=0

(p − 1)
(
Q(p) − R(p)

)∣∣∣∣∣ ≤ K
(
n4H−3 ∨ 1

)
.

Here a ∨ b denotes the maximum of a and b and notice that the upper bound 1 is needed
when 4H − 3 < 0. Therefore,

lim
n→∞n4H−1q11 = lim

n→∞ 2n4H−1
(

T

n

)4H⌊
nt

T

⌋ �nt/T �∑
p=0

(
Q(p) − R(p)

)

= 2tT 4H−1
∞∑

p=0

(
Q(p) − R(p)

)(3.11)

and

(3.12) lim
n→∞n4H−1q12 = 0.

In summary, from (3.11) and (3.12), we obtain

(3.13) lim
n→∞n4H−1q1 = 2tT 4H−1

∞∑
p=0

(
Q(p) − R(p)

)
.

In a similar way, we can prove the following convergence for q2

(3.14) lim
n→∞n4H−1q2 = 2tT 4H−1

−1∑
p=−∞

(
Q(p) − R(p)

)
.

Substituting (3.13) and (3.14) into (3.10) yields

(3.15) lim
n→∞n4H−1

E
(
Zn(t)

2) = 2T 4H−1κt,

where recall that κ is a constant defined in (3.4).
Step 2. In this step, we show inequality (3.3). This inequality is obvious when s = t . In the

following we consider the case when t > s.
Take t ∈ �. By the definition of q1 we have

q1 ≤ 2
(

T

n

)4H �nt/T �∑
p=0

(
nt

T
− p + 1

)∣∣Q(p) − R(p)
∣∣

≤ 2
(

T

n

)4H(
nt

T
+ 1

) ∞∑
p=0

∣∣Q(p) − R(p)
∣∣.
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In the same way, we can show that

q2 ≤ 2
(

T

n

)4H(
nt

T
+ 1

) −1∑
p=−∞

∣∣Q(p) − R(p)
∣∣.

Applying these two inequalities to (3.10) we obtain

(3.16) n4H−1
E
(
Zn(t)

2) ≤ K

(
t + T

n

)

for t ∈ �, where K is a constant depending on H , T . Take s, t ∈ � such that s < t . Inequality
(3.3) then follows by replacing t in (3.16) by t − s − T

n
and noticing that Zn(t) − Zn(s) and

Zn(t − s − T
n
) are equal in distribution and thus have the same second moments.

Step 3. Take s, t ∈ [0, T ] such that s < t . In this step, we derive the limit of the quan-
tity n4H−1

E(Zn(t)Zn(s)). Denote η(t) = tk for t ∈ [tk, tk+1), k = 0,1, . . . , n. Then we have
Zn(t) = Zn(η(t)). Since Zn(η(t)) − Zn(η(s)) and Zn(η(t) − η(s) − T

n
) have the same dis-

tribution, we have

E
(∣∣Zn(t) − Zn(s)

∣∣2) = E
(∣∣Zn

(
η(t)

) − Zn

(
η(s)

)∣∣2)
= E

(∣∣∣∣Zn

(
η(t) − η(s) − T

n

)∣∣∣∣2
)
.

(3.17)

Note that 0 < (t − s) − (η(t) − η(s) − T
n
) < 2T

n
, so either Zn(η(t) − η(s) − T

n
) = Zn(t − s)

or Zn(η(t) − η(s) − T
n
) = Zn(t − s − T

n
). In both cases we have

(3.18) lim
n→∞n4H−1

E

(∣∣∣∣Zn

(
η(t) − η(s) − T

n

)∣∣∣∣2
)

= lim
n→∞n4H−1

E
(∣∣Zn(t − s)

∣∣2).
Indeed, the identity is clear in the first case. In the second case we write

n4H−1
(
E
(∣∣Zn(t − s)

∣∣2) −E

(∣∣∣∣Zn

(
t − s − T

n

)∣∣∣∣2
))

= n4H−1
E

((
Zn(t − s) − Zn

(
t − s − T

n

))(
Zn(t − s) + Zn

(
t − s − T

n

)))
.

Then, applying Hölder’s inequality and the estimate (3.16) to the right-hand side, yields

(3.19) n4H−1
∣∣∣∣E(∣∣Zn(t − s)

∣∣2) −E

(∣∣∣∣Zn

(
t − s − T

n

)∣∣∣∣2
)∣∣∣∣ ≤ K

T

n
.

This implies, in particular, that the right-hand side of (3.19) converges to zero as n → ∞ and
thus relation (3.18) holds.

Substituting (3.18) into (3.17) and with the help of (3.15) we obtain

(3.20) lim
n→∞n4H−1

E
(∣∣Zn(t) − Zn(s)

∣∣2) = 2T 4H−1κ(t − s).

By expanding the left-hand side of (3.20) and using (3.15), we obtain

(3.21) lim
n→∞n4H−1

E
(
Zn(t)Zn(s)

) = 2T 4H−1κ(t ∧ s), s, t ∈ [0, T ].
Step 4. In this step we prove the weak convergence of the finite-dimensional distributions

of (n2H− 1
2 Zn,B, B̃). Given r1, . . . , rL ∈ [0, T ], L ∈ N, we need to show that the random

vector

�n
L := (

n2H− 1
2
(
Zn(r1), . . . ,Zn(rL)

)
,Br1, . . . ,BrL, B̃r1, . . . , B̃rL

)
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converges in law to

�L := (
T 2H− 1

2
√

2κ
(
W(r1), . . . ,W(rL)

)
,Br1, . . . ,BrL, B̃r1, . . . , B̃rL

)
as n tends to infinity, where recall that W = {Wt, t ∈ [0, T ]} is a standard Brownian motion
independent of (B, B̃). According to [24] (see also Theorem 6.2.3 in [20]), this is true if we
can show the weak convergence of each component of �n

L to the corresponding component
of �L and the convergence of its covariance matrix to that of �L.

The convergence of the covariance of n2H− 1
2 Zn(ri) and n2H− 1

2 Zn(rj ) to that of

T 2H− 1
2
√

2κW(ri) and T 2H− 1
2
√

2κW(rj ) follows from (3.21). The covariance of

n2H− 1
2 Zn(ri) and (Brj , B̃rj ) is zero since they are in different chaoses, so the limit of the

covariance is zero, which equals the covariance of T 2H− 1
2
√

2κW(ri) and (Brj , B̃rj ) since W

and B are independent.
By the fourth moment theorem (see [22] and also Theorem 5.2.7 in [20]) and taking into

account (3.21), to show the weak convergence of the components of �n
L it remains to show

that the limits of their fourth moments exist, and

(3.22) lim
n→∞n8H−2

E
(
Zn(t)

4) = 3 lim
n→∞n8H−2(

E
(
Zn(t)

2))2

for t ∈ [0, T ].
Applying the integration by parts formula (2.3) to E(Zn(t)

4) and taking into account the
expression of Zn(t) in (3.5), we obtain

E
(
Zn(t)

4) = E
(
Zn(t)

3 · Zn(t)
)

=
�nt/T �∑
k=0

E

∫
[0,T ]4

D̃u′Ds′
[
Zn(t)

3]βk
n
(s)γtk,s(u)μ

(
dudu′)μ(

ds ds′),(3.23)

where D and D̃ are the differential operators associated with B and B̃ , respectively. We
expand the second derivative D̃u′Ds′ [Zn(t)

3] as follows:

D̃u′Ds′
[
Zn(t)

3] = 3Zn(t)
2D̃u′Ds′Zn(t) + 6Zn(t)D̃u′Zn(t)Ds′Zn(t).

Substituting the above identity into (3.23), we obtain

E
(
Zn(t)

4) = d1 + d2,

where

(3.24) d2 = 6
�nt/T �∑
k=0

E

∫
[0,T ]4

Zn(t)D̃u′Zn(t)Ds′Zn(t)β k
n
(s)γtk,s(u)μ

(
dudu′)μ(

ds ds′)
and

d1 = 3E
(
Zn(t)

2) �nt/T �∑
k=0

∫
[0,T ]4

D̃u′Ds′Zn(t)β k
n
(s)γtk,s(u)μ

(
dudu′)μ(

ds ds′).(3.25)

Substituting (3.7) into d1, we obtain

(3.26) d1 = 3E
(
Zn(t)

2)
E
(
Zn(t)

2).
The term d2 is more sophisticated. We shall prove in Section A.1 the following fact:

(3.27) lim
n→∞n8H−2d2 = 0.

The identity (3.26) and the convergence (3.27) together imply the identity (3.22). This com-
pletes the proof. �
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FIG. 2. The value of ρ.

3.2. Case (ii). In this subsection we consider the process Zn in (3.1) with the assumption
that B̃t = t , t ∈ [0, T ]. In order to distinguish this new Zn from the one in the previous
subsection, we will denote it by zn. For each p ∈ Z, we define two quantities

Q̃(p) =
∫
p<s<p+1

0<t<1

∫
p<v<s
0<u<t

dv duμ(ds dt), R̃(p) =
∫
p<s<p+1

0<t<1

∫
p<v<s
t<u<1

dv duμ(ds dt),

where recall that μ(ds dt) = H(2H − 1)|s − t |2H−2 ds dt is a measure on R
2.

PROPOSITION 3.3. Let zn be the process defined in (3.1) where we take B̃t = t , t ∈
[0, T ]. Then, there exists a constant K depending on H and T , such that for t, s ∈ �

(3.28) n2H+1
E
((

zn(t) − zn(s)
)2) ≤ K|t − s|.

Moreover, the finite-dimensional distributions of the process (nH+ 1
2 zn,B) converge weakly

to those of (
√

2	T H+ 1
2 W,B) as n → ∞, where W is a Brownian motion independent of B

and

(3.29) 	 := ∑
p∈Z

(
Q̃(p) − R̃(p)

)
.

REMARK 3.4. Figure 2 provides the graph of the parameter ρ versus H on (1
2 ,1). We

see that ρ converges to 1
6 as H tends to 1

2 , and ρ approaches zero as H tends to one.

PROOF OF PROPOSITION 3.3. The proof will be done in several steps.
Step 1. We first calculate the second moment of zn(t). We rewrite zn(t) as

zn(t) =
�nt/T �∑
k=0

∫ T

0

∫ T

0
βk

n
(s)γtk,s(u) duδBs,

where βk
n
(s) and γtk,s(u) are as in (3.6), and then applying the covariance formula (2.1) we

obtain

(3.30) E
(
zn(t)

2) =
�nt/T �∑
k,k′=0

∫
[0,T ]4

βk′
n

(
s′)βk

n
(s)γtk′ ,s′

(
u′)γtk,s(u) dudu′μ

(
ds ds′).

Note that, in comparison with formula (3.8), in the right-hand side of (3.30) the measure
μ appears only once and this expression does not have the same symmetry of variables as
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(3.8). In the following we compute E(zn(t)
2) in detail, which differs from the computations

performed in Proposition 3.1.
We apply a change of variables from (u,u′, s, s′) to T

n
(u,u′, s, s′) to obtain

E
(
zn(t)

2)

=
(

T

n

)2H+2 �nt/T �∑
k,k′=0

∫
k′<s′<k′+1
k<s<k+1

∫
0<u,u′<n

ϕk′,s′
(
u′)ϕk,s(u) dudu′μ

(
ds ds′)

=
(

T

n

)2H+2 �nt/T �∑
k,k′=0

∑
i,j=0,1

(−1)i+j ẽij ,

where

ẽij =
∫
k′<s′<k′+1
k<s<k+1

∫
0<u,u′<n

ϕi
k′,s′

(
u′)ϕj

k,s(u) dudu′μ
(
ds ds′),

and ϕ0
k,s = 1[k,s], ϕ1

k,s = 1[s,k+1] and ϕk,s = ϕ0
k,s − ϕ1

k,s are defined as in the previous subsec-
tion. It is easy to see that

(3.31) ẽ00 = Q̃
(
k − k′) and ẽ10 = R̃

(
k − k′).

By the change of variables from (s, s′) to (k + 1 − s, k + 1 − s ′), we obtain

(3.32) ẽ11 =
∫ k−k′+1

k−k′

∫ 1

0

(
s′ − (

k − k′))sμ(
ds ds′) = Q̃

(
k − k′),

where the second equation follows by exchanging the orders of the two integrals. By changing
the variables from (s, s′) to (k′ + 1 − s, k′ + 1 − s′) for ẽ11, we obtain

ẽ01 =
∫ 1

0

∫ k′−k+1

k′−k

(
1 − s′)(s − (

k′ − k
))

μ
(
ds ds′) = R̃

(
k′ − k

)
,

and, therefore,

(3.33)
�nt/T �∑
k,k′=0

ẽ01 =
�nt/T �∑
k,k′=0

R̃
(
k′ − k

) =
�nt/T �∑
k,k′=0

R̃
(
k − k′).

In summary, from (3.31), (3.32) and (3.33), we obtain

E
(
zn(t)

2) = 2
(

T

n

)2H+2 �nt/T �∑
k,k′=0

(
Q̃
(
k − k′) − R̃

(
k − k′))

= 2
(

T

n

)2H+2
(�nt/T �∑

p=0

�nt/T �−p∑
k′=0

(
Q̃(p) − R̃(p)

)

+
−1∑

p=−�nt/T �

�nt/T �∑
k′=−p

(
Q̃(p) − R̃(p)

))

:= q̃1 + q̃2.

(3.34)

Step 2. In this step we show inequality (3.28). Since |Q̃(p) − R̃(p)| ∼ p2H−3 for suffi-
ciently large p, it is easy to see that the series

∑
p∈Z |Q̃(p) − R̃(p)| is convergent. So we

have the estimates

(3.35) q̃1 ≤ 2
(

T

n

)2H+2(nt

T
+ 1

) ∞∑
p=0

∣∣Q̃(p) − R̃(p)
∣∣
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and

(3.36) q̃2 ≤ 2
(

T

n

)2H+2(nt

T
+ 1

) −1∑
p=−∞

∣∣Q̃(p) − R̃(p)
∣∣.

Applying (3.35) and (3.36) to (3.34), yields

(3.37) n2H+1
E
(
zn(t)

2) ≤ K

(
t + T

n

)
.

Take s, t ∈ �. By replacing t in (3.37) by t − s − T
n

and noticing that zn(t) − zn(s) and
zn(t − s − T

n
) have the same distribution, we obtain

n2H+1
E
(∣∣zn(t) − zn(s)

∣∣2) = n2H+1
E

(∣∣∣∣zn

(
t − s − T

n

)∣∣∣∣2
)

≤ K(t − s).

(3.38)

This completes the proof of (3.28).

Step 3. In this step, we show the convergence of the process (nH+ 1
2 zn,B). Note that the

finite-dimensional distributions of (nH+ 1
2 zn,B) are Gaussian, so to show their convergences

it suffices to show the convergences of their covariances. We first consider the convergence
of n2H+1

E(|zn(t)|2). To this aim, we write

(3.39)

q̃1 = 2
(

T

n

)2H+2 �nt/T �∑
p=0

(⌊
nt

T

⌋
− p + 1

)(
Q̃(p) − R̃(p)

)

= 2
(

T

n

)2H+2
(⌊

nt

T

⌋ �nt/T �∑
p=0

(
Q̃(p) − R̃(p)

) −
�nt/T �∑
p=0

(p − 1)
(
Q̃(p) − R̃(p)

))

:= q̃11 + q̃12.

First, it is easy to verify the following convergence

lim
n→∞n2H+1q̃11 = lim

n→∞ 2n2H+1
(

T

n

)2H+2⌊nt

T

⌋ �nt/T �∑
p=0

(
Q̃(p) − R̃(p)

)

= 2T 2H+1t

∞∑
p=0

(
Q̃(p) − R̃(p)

)
.

(3.40)

On the other hand, since |∑�nt/T �
p=0 (p − 1)(Q̃(p) − R̃(p))| ≤ Kn2H−1, we have the conver-

gence

(3.41) lim
n→∞n2H+1q̃12 = 0.

Putting together (3.40) and (3.41), and taking into account (3.39), we obtain

(3.42) lim
n→∞n2H+1q̃1 = 2T 2H+1t

∞∑
p=0

(
Q̃(p) − R̃(p)

)
.

The quantity q̃2 can be considered in a similar way. We can show that

(3.43) lim
n→∞n2H+1q̃2 = 2T 2H+1t

−1∑
p=−∞

(
Q̃(p) − R̃(p)

)
.
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Applying (3.42) and (3.43) to (3.34) we obtain

(3.44) lim
n→∞n2H+1

E
(
zn(t)

2) = 2T 2H+1	t.

Take s, t ∈ [0, T ]. By the same argument as in (3.21) and with the help of (3.37) and (3.44),
we can show that

(3.45) lim
n→∞n2H+1

E
(
zn(t)zn(s)

) = 2T 2H+1	(t ∧ s).

On the other hand, by some elementary computation (see Section A.2), one can show that

(3.46) lim
n→∞E

(
zn(t)Br

) = 0.

Therefore, combining (3.45) and (3.46), we conclude that the covariances of the finite-

dimensional distributions of (nH+ 1
2 zn,B) converge to those of (

√
2	T H+ 1

2 W,B). The proof
is now complete. �

4. The strong convergence. We recall that X is the solution of equation (1.1) and Xn

is the continuous time interpolation of the Crank–Nicolson scheme defined in (1.5). In this
section we prove Theorem 1.1 and some auxiliary results.

PROOF OF THEOREM 1.1. The proof is divided into several steps.
Step 1: Decomposition of the error process. Denote Yt := Xt − Xn

t , t ∈ [0, T ], and for
convenience we write η(t) = tk for t ∈ [tk, tk+1) and ε(t) = tk+1 for t ∈ (tk, tk+1]. Equations
(1.1) and (1.5) allows us to write

Yt =
∫ t

0

[
V (Xs) − V

(
Xn

s

)]
dBs + 1

2

∫ t

0

[
V
(
Xn

s

) − V
(
Xn

η(s)

)]
dBs

+ 1

2

∫ t

0

[
V
(
Xn

s

) − V
(
Xn

ε(s)

)]
dBs

=
m∑

j=0

d∑
i=1

∫ t

0
Vji(s)Y

i
s dBj

s + 1

2
J1(t) + 1

2
J2(t),

(4.1)

where we have set for t ∈ [0, T ]:
Vji(s) =

∫ 1

0
∂iVj

(
θXs + (1 − θ)Xn

s

)
dθ,(4.2)

J1(t) =
∫ t

0

[
V
(
Xn

s

) − V
(
Xn

η(s)

)]
dBs,

J2(t) =
∫ t

0

[
V
(
Xn

s

) − V
(
Xn

ε(s)

)]
dBs,

(4.3)

and we denote by ∂i the partial differential operator with respect to the ith variable, that is,
∂if (x) = ∂f

∂xi
(x) for f ∈ C1. Notice that by the chain rule for the Young integral, we obtain

V
(
Xn

s

) − V
(
Xn

η(s)

) =
d∑

i=1

∂iV
(
Xn

η(s)

)(
Xn,i

s − X
n,i
η(s)

)

+
d∑

i,i′=1

∫ s

η(s)

∫ u

η(s)
∂i′∂iV

(
Xn

v

)
dXn,i′

v dXn,i
u .

Substituting the above expression into J1(t), we obtain the following decomposition for J1(t)

(4.4) J1(t) = R0(t) + R1(t), t ∈ [0, T ],
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where we denote

(4.5) R1(t) =
∫ t

0

[
d∑

i,i′=1

∫ s

η(s)

∫ u

η(s)
∂i′∂iV

(
Xn

v

)
dXn,i′

v dXn,i
u

]
dBs

and

R0(t) =
∫ t

0

[
d∑

i=1

∂iV
(
Xn

η(s)

)(
Xn,i

s − X
n,i
η(s)

)]
dBs

= 1

2

d∑
i=1

m∑
j,j ′=0

∫ t

0
∂iVj

(
Xn

η(s)

)([
V i

j ′
(
Xn

ε(s)

) + V i
j ′
(
Xn

η(s)

)] ∫ s

η(s)
dBj ′

u

)
dBj

s

(4.6)

and in the second equation of (4.6) we have used relation (1.5).
In a similar way as for (4.4), we have

J2(t) = −R̃0(t) + R̃1(t), t ∈ [0, T ],
where

(4.7) R̃1(t) =
∫ t

0

[
d∑

i,i′=1

∫ ε(s)

s

∫ ε(s)

u
∂i′∂iV

(
Xn

v

)
dXn,i′

v dXn,i
u

]
dBs

and

R̃0(t) = 1

2

d∑
i=1

m∑
j,j ′=0

∫ t

0
∂iVj

(
Xn

ε(s)

)([
V i

j ′
(
Xn

ε(s)

) + V i
j ′
(
Xn

η(s)

)] ∫ ε(s)

s
dBj ′

u

)
dBj

s .

We will need a further decomposition of the processes J1 and J2. To this aim, let us introduce
the processes I1 and I2 defined on �, namely, for t ∈ � \ {0}

I1(t) =
m∑

j,j ′=0

∫ t

0
(∂VjVj ′)

(
Xn

η(s)

) ∫ s

η(s)
dBj ′

u dBj
s ,(4.8)

I2(t) =
m∑

j,j ′=0

∫ t

0
(∂VjVj ′)

(
Xn

η(s)

) ∫ ε(s)

s
dBj ′

u dBj
s ,(4.9)

and for t = 0 we set I1(0) = I2(0) = 0. Here ∂ = (∂1, . . . , ∂d) and ∂VjVj ′ means∑d
i=1 ∂iVjV

i
j ′ .

To make the computations more clear we will replace integrals on [0, t] by summations of
integrals over the intervals [tk, tk+1], with 0 ≤ k ≤ nt/T − 1. Subtracting (4.9) from (4.8) we
obtain the following “Lévy area term”

(4.10) I1(t) − I2(t) = E1(t) :=
m∑

j,j ′=0

nt/T −1∑
k=0

(∂VjVj ′)
(
Xn

tk

)
ζ

j ′j
tk,tk+1

,

where we denote

ζ
ij
st =

∫ t

s

∫ u

s
dBi

v dBj
u −

∫ t

s

∫ t

u
dBi

v dBj
u, 0 ≤ s ≤ t ≤ T .

Notice that Fubini’s theorem implies that ζ
ij
s,t = −ζ

ji
s,t . So expression (4.10) can be rewritten

as

(4.11) E1(t) = ∑
j ′<j

nt/T −1∑
k=0

φjj ′
(
Xn

tk

)
ζ

j ′j
tk,tk+1

, t ∈ �,
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where recall that φjj ′ = ∂VjVj ′ − ∂Vj ′Vj . It is worth mentioning that when B is one-
dimensional we have E1 ≡ 0.

With the above preparations we decompose J1(t) + J2(t) for t ∈ � as follows:

J1(t) + J2(t)

= (
I1(t) − I2(t)

) + (
R0(t) − I1(t)

) + (
I2(t) − R̃0(t)

) + R1(t) + R̃1(t)

:= E1(t) + E2(t) + E3(t) + E4(t) + E5(t).

(4.12)

Step 2: Upper-bound for the Crank–Nicolson scheme. For any function f over [0, T ] we
denote ‖f ‖s,t,β = supu,v∈[s,t] |fs − ft |/|s − t |β and write ‖f ‖β := ‖f ‖0,T ,β . It follows from
Lemma 8.4 in [11] that there exists a constant K such that

(4.13)
∥∥Xn

∥∥∞ ∨ ∥∥Xn
∥∥
β ≤ K + K‖B‖1/β

β .

Furthermore, there exist constants K0 and K ′
0 independent of n such that for 0 ≤ s < t ≤ T

and (t − s)β‖B‖β ≤ K0, we have

(4.14)
∥∥Xn

∥∥
s,t,β ≤ K ′

0‖B‖β.

Step 3: Estimates of Ee,1 ≤ e ≤ 5. In this step we show that

(4.15)
5∑

e=1

∥∥Ee(t) − Ee(s)
∥∥
p ≤ K(t − s)

1
2 /ϑn, s, t ∈ �.

We divide this step into two parts:
Step 3.1. Take s, t ∈ � such that s ≤ t . When e = 2,3,4,5, we are going to show that

(4.16)
∥∥Ee(t) − Ee(s)

∥∥
p ≤ Kn−2H(t − s)

1
2 , s, t ∈ �,

where recall that ‖ · ‖p denotes the Lp-norm.
First, subtracting (4.8) from (4.6) we obtain the following expression for E2

(4.17)

E2(t)

=
d∑

i=1

m∑
j,j ′=0

nt/T −1∑
k=0

1

2
∂iVj

(
Xn

tk

) · [V i
j ′
(
Xn

tk+1

) − V i
j ′
(
Xn

tk

)] ∫ tk+1

tk

∫ s

tk

dBj ′
u dBj

s

= 1

4

d∑
i=1

m∑
j,j ′,j ′′=0

nt/T −1∑
k=0

∂iVj

(
Xn

tk

) ·
∫ tk+1

tk

〈
∂V i

j ′
(
Xn

v

)
,Vj ′′

(
Xn

tk+1

) + Vj ′′
(
Xn

tk

)〉
dBj ′′

v

·
∫ tk+1

tk

∫ s

tk

dBj ′
u dBj

s ,

where in the second equation we have applied the chain rule to V i
j ′(Xn

tk+1
)−V i

j ′(Xn
tk
) and also

equation (1.5) for Xn. For convenience, let us put hn
tk

= ∂iVj (X
n
tk
)[V i′

j ′′(Xn
tk+1

)+V i′
j ′′(Xn

tk
)] and

fv = ∂i′V i
j ′(Xn

v), where we have omitted the dependence of h and f on the indices i, i ′, j ,
j ′, j ′′ for simplicity. Then the above expression becomes

(4.18) E2(t) = 1

4

d∑
i,i′=1

m∑
j,j ′,j ′′=0

nt/T −1∑
k=0

∫ tk+1

tk

∫ tk+1

tk

∫ s

tk

fvh
n
tk

dBj ′
u dBj

s dBj ′′
v .
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Observe that some elementary computations show that the triple integral in (4.18) is equal to

∫ tk+1

tk

∫ v

tk

∫ s

tk

fvh
n
tk

dBj ′
u dBj

s dBj ′′
v +

∫ tk+1

tk

∫ s

tk

∫ v

tk

fvh
n
tk

dBj ′
u dBj ′′

v dBj
s

+
∫ tk+1

tk

∫ s

tk

∫ u

tk

fvh
n
tk

dBj ′′
v dBj ′

u dBj
s .

Substituting the above expression into (4.18), we then obtain an expression of E2(t) of the
form (A.24). Now with the help of the estimate of Xn in (4.13), it is clear that f and hn

satisfy the conditions in Lemma A.2. Therefore, applying Lemma A.2 to E2(t), we obtain
the desired estimate (4.16) for e = 2. Regarding Ee, e = 3,4,5 we note that, like in the
case of E2 they are sums of weighted triple integrals of B . Precisely, recall that dX

n,i
t =∑m

j=1
V i

j (Xn
tk

)+V i
j (Xn

tk+1
)

2 dB
j
t for t ∈ [tk, tk+1). Therefore, we have

E4 =
d∑

i,i′=1

m∑
j,j ′=1

nt/T −1∑
k=0

V i′
j ′ (Xn

tk
) + V i′

j ′ (Xn
tk+1

)

2
· V i

j (Xn
tk
) + V i

j (Xn
tk+1

)

2

×
∫ tk+1

tk

∫ s

tk

∫ u

tk

∂i′∂iVj ′′
(
Xn

v

)
dBj ′

v dBj
u dBj ′′

s ,

E5 =
d∑

i,i′=1

m∑
j,j ′=1

nt/T −1∑
k=0

V i′
j ′ (Xn

tk
) + V i′

j ′ (Xn
tk+1

)

2
· V i

j (Xn
tk
) + V i

j (Xn
tk+1

)

2

×
∫ tk+1

tk

∫ tk+1

s

∫ tk+1

u
∂i′∂iVj ′′

(
Xn

v

)
dBj ′

v dBj
u dBj ′′

s ,

and

E3 =
d∑

i=1

m∑
j,j ′=0

nt/T −1∑
k=0

((
∂iVjV

i
j ′
)(

Xn
tk

) − ∂iVj

(
Xn

tk+1

)V i
j ′(Xn

tk+1
) + V i

j ′(Xn
tk
)

2

)

×
∫ tk+1

tk

∫ tk+1

s
dBj ′

u dBj
s

= −
d∑

i=1

m∑
j,j ′=0

nt/T −1∑
k=0

V i′
j ′′(Xn

tk
) + V i′

j ′′(Xn
tk+1

)

2
·
∫ tk+1

tk

∫ tk+1

s
dBj ′

u dBj
s

×
∫ tk+1

tk

∂i′(∂iVjV
i
j ′)(Xn

v) + ∂i′(∂iVj )(X
n
v)V i

j ′(Xn
tk
)

2
dBj ′′

v .

Using a similar argument to that in the proof of Lemma A.2 we obtain relation (4.16) for
e = 3,4,5. This completes the proof of (4.16).

Step 3.2. It remains to consider the process E1(t), t ∈ �. We decompose E1 in the follow-
ing way:

(4.19)
E1(t) = ∑

0	=j ′<j

nt/T −1∑
k=0

φjj ′
(
Xn

tk

)
ζ

j ′j
tk,tk+1

+ ∑
0=j ′<j

nt/T −1∑
k=0

φjj ′
(
Xn

tk

)
ζ

j ′j
tk,tk+1

:= E11(t) + E12(t).
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Expression (4.19) and Lemma 2.4 together suggest to consider the following “weight-free”
random sum corresponding to E11

gn(t) = n2H− 1
2

∑
0	=j ′<j

�nt/T �∑
k=0

ζ
j ′j
tk,tk+1

.

It follows from relation (3.3) in Proposition 3.1 that gn satisfies the assumptions in
Lemma 2.4. Indeed, by Proposition 3.1 the following estimate holds true for all s, t ∈ �

(4.20) E
(∣∣gn(t) − gn(s)

∣∣2) 1
2 ≤ K|t − s| 1

2 .

Furthermore, notice that gn(t) − gn(s) belongs to the second chaos generated by B . There-
fore, a hypercontractivity argument (see, e.g., [21]) implies that relation (4.20) also holds
when the L2-norm is replaced by Lp-norm, p ≥ 1. Take f = φjj ′(Xn· ), β ′ = 1

2 , 1
2 < β < H ,

p = p′ = q ′ = 2. Then applying Lemma 2.4 to E11 and gn we obtain the estimate

(4.21)
∥∥E11(t) − E11(s)

∥∥
p ≤ Kn−2H+ 1

2 (t − s)
1
2 , s, t ∈ �.

We can proceed in a similar way to show the estimate for E12. First, define the “weight-
free” random sum corresponding to E12(t)

g̃n(t) = n1/2+H
∑

0=j ′<j

�nt/T �∑
k=0

ζ
j ′j
tk,tk+1

.

Then as in (4.20), estimate (3.28) in Proposition 3.3 together with an hypercontractivity argu-
ment, yields that g̃n satisfies the conditions in Lemma 2.4 for β ′ = 1

2 and p = q ′ = 2. Taking
1
2 < β < H , q ′ = 2 and f = φjj ′(Xn· ) as before and applying Lemma 2.4 to E12, we obtain
the estimate

(4.22)
∥∥E12(t) − E12(s)

∥∥
p ≤ Kn−H− 1

2 (t − s)
1
2 , s, t ∈ �.

In summary of relations (4.16), (4.21) and (4.22), and taking into account the fact that
E11 = 0 when m = 1 and E11 = E12 = 0 when m = 1 and V0 ≡ 0, we obtain the desired
estimate (4.15).

Step 4: Upper-bounds for the Jacobian. Our proof of Theorem 1.1 is based on a lineariza-
tion argument. This step aims at studying linear equations involved in the linearization argu-
ment.

Let �n = (�
n,i
i′ )1≤i,i′≤d be the solution of the linear equation for t ∈ [0, T ]:

(4.23) �
n,i
i′ (t) = δi

i′ +
m∑

j=0

d∑
i′′=1

∫ t

0
V i

ji′′(s)�
n,i′′
i′ (s) dBj

s , i, i ′ = 1, . . . , d.

Here V i
ji′′ is defined by (4.2), and δi

i′ is the Kronecker function whose value is one for i = i ′
and zero otherwise. The d × d matrix �n(t) is invertible, and we denote its inverse by �n(t).
With an elementary application of the product rule to �n�n, we can verify that �n solves the
equation

�
n,i
i′ (t) = δi

i′ −
m∑

j=0

d∑
i′′=1

∫ t

0
�

n,i
i′′ (s)V i′′

ji′(s) dBj
s , i, i ′ = 1, . . . , d, t ∈ [0, T ].

With the help of Lemma 3.2 (ii) in [10] together with the estimate (4.14), we have

∥∥�n
∥∥∞ ∨ ∥∥�n

∥∥
β ∨ ∥∥�n

∥∥∞ ∨ ∥∥�n
∥∥
β ≤ Ke

K‖B‖1/β
β .
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We can now apply Fernique’s lemma to get for p ≥ 1

(4.24)
∥∥‖�n‖∞

∥∥
p∨∥∥‖�n‖β

∥∥
p ∨ ∥∥‖�n‖∞

∥∥
p ∨ ∥∥‖�n‖β

∥∥
p ≤ K.

The above preparations provide an explicit expression of the error process

(4.25) Yt = 1

2
�n

t

2∑
i=1

∫ t

0
�n

s dJi(s), t ∈ [0, T ].

Indeed, applying the product rule to the right-hand side of (4.25), we see that Y in (4.25)
satisfies (4.1).

Let � = (�i
i′)1≤i,i′≤d be the solution of the equation

(4.26) �i
i′(t) = δi

i′ +
m∑

j=0

d∑
i′′=1

∫ t

0
∂i′′V

i
j (Xs)�

i′′
i′ (s) dBj

s ,

for t ∈ [0, T ] and denote by �(t) the inverse of �(t). As before, we have

�i
i′(t) = δi

i′ −
m∑

j=0

d∑
i′′=1

∫ t

0
�

n,i
i′′ (s)∂i′V

i′′
j (Xs) dBj

s

for t ∈ [0, T ], and it follows from Lemma 3.1 in [10] that relation (4.24) still holds when �n

and �n in (4.24) are replaced by � and �, respectively.
Step 5: Estimates of �nY . Multiplying both sides of (4.25) by �n

t we have

�n
t Yt = 1

2

2∑
i=1

∫ t

0
�n

u dJi(u).

Writing �n
u = �n

η(u) + (�n
u − �n

η(u)) we then get the following decomposition for s, t ∈ �,
s ≤ t

(4.27)
2∑

i=1

∫ t

s
�n

u dJi(u) =
2∑

i=1

∫ t

s
�n

η(u) dJi(u) +
2∑

i=1

∫ t

s

∫ u

η(u)
d�n

v dJi(u).

Regarding the first term in (4.27), we apply the relation (4.12) to get

(4.28)
2∑

i=1

∫ t

s
�n

η(u) dJi(u) =
5∑

e=1

nt/T −1∑
k=ns/T

�n
tk

(
Ee(tk+1) − Ee(tk)

)
.

For convenience, let us write the right-hand side of (4.28) in terms of an integral

(4.29)
t− T

n∑
tk=s

�n
tk

(
Ee(tk+1) − Ee(tk)

) =:
∫ t

s
�n

η(u) dEe(u).

Note that equation (4.29) is only valid for s, t ∈ � since Ee, e = 1, . . . ,5 are only defined on
�. Now substituting (4.28) into (4.27) and taking into account (4.29), we get

(4.30)
2∑

i=1

∫ t

s
�n

u dJi(u) =
5∑

e=1

∫ t

s
�n

η(u) dEe(u) +
2∑

i=1

∫ t

s

∫ u

η(u)
d�n

v dJi(u).

In order to bound �nY , we first estimate the quantity
∫ t
s �n

η(u) dEe(u) in (4.30). This can
be done with the help of Lemma 2.4 as in the proof of (4.21). Indeed, take ĝn(t) = ϑnEe(t),
t ∈ � and f = �n, and let β , β ′, p, p′, q ′ be as before. Then estimate (4.15) shows that ĝn
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satisfies the conditions in Lemma 2.4. Applying Lemma 2.4 to
∫ t
s �n

η(u) dEe(u) and invoking
expression (4.29), we obtain

(4.31)

∥∥∥∥∥
5∑

e=1

∫ t

s
�n

η(u) dEe(u)

∥∥∥∥∥
p

≤ K(t − s)
1
2 /ϑn, s, t ∈ �.

Let us turn to the second term in (4.27). By the definition of �n and J1, we have∫ tk+1

tk

∫ u

tk

d�n
v dJ1(u)

=
(

1

2

m∑
j,j ′=0

d∑
i,i′,i′′=1

∫ tk+1

tk

∫ u

tk

(−�
n,i′′′
i′ (v)V i′

j,i(v)
)
dBj

v

×
∫ u

tk

∂i′′V
i
j ′
(
Xn

r

)
dXn,i′′

r dBj ′
u

)
1≤i′′′≤d

.

(4.32)

Therefore, writing

(4.33)
∫ t

s

∫ u

η(u)
d�n

v dJ1(u) =
nt/T −1∑
k=ns/T

∫ tk+1

tk

∫ u

tk

d�n
v dJ1(u)

and then applying (4.32) and some elementary decompositions of multiple integrals, we can
show that the right-hand side of (4.33) is of the form (A.24). Applying Lemma A.2, we obtain

(4.34)
∥∥∥∥
∫ t

s

∫ u

η(u)
d�n

v dJi(u)

∥∥∥∥
p

≤ Kn−2H(t − s)1/2

for i = 1. This estimate still holds true in the case i = 2, and the proof is similar. Substituting
(4.31) and (4.34) into (4.27), we obtain the estimate

(4.35)

∥∥∥∥∥
2∑

i=1

∫ t

s
�n

u dJi(u)

∥∥∥∥∥
p

≤ K(t − s)
1
2 /ϑn, s, t ∈ �.

Applying Lemma 2.3 and taking into account the expression of Ji in (4.3), we can show that

(4.36)
∥∥∥∥
∫ t

tk

�n
u dJi(u)

∥∥∥∥
p

≤ Kn−2H , t ∈ [tk, tk+1], i = 1,2.

Combining this estimate with (4.35), we obtain the inequality

(4.37) sup
t∈[0,T ]

∥∥∥∥∥
2∑

i=1

∫ t

0
�n

u dJi(u)

∥∥∥∥∥
p

≤ K/ϑn.

Step 6: Conclusion. Inequality (1.6) follows by applying Hölder’s inequality to (4.25) and
using estimate (4.37) and estimate (4.24) for �n. �

The following result provides an estimate on the increments of the error process.

LEMMA 4.1. Under the assumptions and notation of Theorem 1.1, the error process
Y = X − Xn satisfies the following relation for all s, t ∈ �

(4.38) E
(|Yt − Ys |p)1/p ≤ K|t − s| 1

2 /ϑn.
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PROOF. Invoking expression (4.25) of Y , we can write

(4.39) Yt − Ys = 1

2

(
�n

t − �n
s

) 2∑
i=1

∫ t

0
�n

u dJi(u) + 1

2
�n

s

2∑
i=1

∫ t

s
�n

u dJi(u).

Inequality (4.38) then follows by applying Hölder’s inequality to (4.39) and by taking into
account estimates (4.24) and (4.35) and the fact that ‖�n

t − �n
s ‖p ≤ ‖‖�n‖β‖p · (t − s)β .

This completes the proof. �

The following lemma is a convergence result for the processes �n and �n.

LEMMA 4.2. Take β such that 1
2 < β < H . Let �n and � be the solutions of equations

(4.23) and (4.26), respectively, and let �n and � be their inverses. Then we have

(4.40)
∥∥�n − �

∥∥
β,p + ∥∥�n − �

∥∥
β,p ≤ Kn1−2β.

PROOF. See Section A.4. �

We end this section with the following technical results. For convenience let us write, as
in (4.29),

t−T/n∑
tk=s

�n
tk

(
E11(tk+1) − E1(tk)

) =:
∫ t

s
�n

η(u) dE11(u) for s, t ∈ �.

LEMMA 4.3. We continue to use the notation of Theorem 1.1. Let s, t ∈ �, s ≤ t . If
m > 1, then we have the estimate

(4.41) sup
s,t∈�

∥∥∥∥∥
2∑

i=1

∫ t

s
�n

u dJi(u) −
∫ t

s
�n

η(u) dE11(u)

∥∥∥∥∥
p

≤ Kn− 1
2 −H .

In the case m = 1, we have

(4.42) sup
s,t∈�

∥∥∥∥∥
2∑

i=1

∫ t

s
�n

u dJi(u) −
∫ t

s
�n

η(u) dE12(u)

∥∥∥∥∥
p

≤ Kn−2H .

Suppose that m = 1 and V0 ≡ 0. Then, for β < H , we can find a constant K = Kβ such that

sup
t∈[0,T ]

∥∥∥∥∥
2∑

i=1

∫ t

0
�n

u dJi(u) −
5∑

e=2

∫ η(t)

0
�n

η(u) dEe(u)

∥∥∥∥∥
p

≤ Kβn1−4β.(4.43)

PROOF. By subtracting
∫ t
s �n

η(u) dE11(u) from both sides of (4.27) and taking into ac-
count the expression (4.28) we obtain

2∑
i=1

∫ t

s
�n

u dJi(u) −
∫ t

s
�n

η(u) dE11(u)

=
∫ t

s
�n

η(u) dE12(u) +
5∑

e=2

∫ t

s
�n

η(u) dEe(u) +
2∑

i=1

∫ t

s

∫ u

η(u)
d�n

v dJi(u).

(4.44)

As in the proof of (4.31), we can show that the first two terms on the right-hand side of

(4.44) are bounded by Kn− 1
2 −H and Kn−2H , respectively. Furthermore, thanks to (4.34), we

have that the third term is bounded by Kn−2H . Putting these bounds together, we obtain the
desired estimate (4.41). Relation (4.42) follows from a similar argument and is left to the
reader. Please refer to Section A.5 for a proof of estimate (4.43). �
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5. Asymptotic error distributions. In this section we prove Theorem 1.3.

PROOF OF THEOREM 1.3. The proof is done in several steps.
Step 1. Suppose that m > 1 or V0 	≡ 0. We first observe that, by Theorem 13.5 in [2]

together with (4.38), the proof of the weak convergence of (ϑn(X̃ − X̃n),B) can be reduced
to showing the convergence of its finite-dimensional distributions (f.d.d.). We also note that,
by (4.25) we have

X̃t − X̃n
t = Xtk − Xn

tk
= 1

2
�n

tk

2∑
i=1

∫ tk

0
�n

u dJi(u), t ∈ [tk, tk+1).

Step 2. In this step we assume that m > 1. Set

Sn(t) = 1

2
�n

tk

∫ tk

0
�n

η(s) dE11(s), t ∈ [tk, tk+1).

We first observe that, applying relation (4.41) in Lemma 4.3 and relation (4.36), we obtain that

ϑn‖Sn(t)− (X̃t − X̃n
t )‖p is uniformly bounded by ϑnn

− 1
2 −H and thus it converges to zero as

n → ∞. This implies that the limit of the finite-dimensional distributions of (ϑn(X̃− X̃n),B)

is equal to that of (ϑnS
n,B).

To further reduce the problem, we set

S(t) = 1

2
�tk

∫ tk+1

0
�η(s) dE11(s), t ∈ [tk, tk+1)

and calculate

(5.1)

Sn(tk) − S(tk) = 1

2

∑
0	=j ′<j

∫ tk

0

[
�n

tk
�n

η(s)φjj ′
(
Xn

η(s)

) − �tk�η(s)φjj ′(Xη(s))
]
dζ

j ′j
η(s),s

− 1

2
�tk

∫ tk+1

tk

�η(s) dE11(s).

By Lemma 2.3 it follows that the Lp-norm of the second term in the right-hand side of
(5.1) is bounded by Kn−2H . On the other hand, applying Lemmas 4.1 and 4.2 to fs =
�n

t �
n
s φjj ′(Xn

s ) − �t�sφjj ′(Xs), one can show that

(5.2) ‖f ‖β,p ≤ Kn1−2β.

Taking ζk,n = ζ
j ′j
tk,tk+1

, applying Lemma 2.4 and taking into account (5.2) we then obtain that
the first term in the right-hand side of (5.1) is bounded by Kn1−2β+1/2−2H . Plugging these
two estimates into (5.1), we obtain∥∥Sn(t) − S(t)

∥∥
p ≤ Kn1−2β+1/2−2H ∨ n−2H

for t ∈ �, and thus for t ∈ [0, T ]. This implies in particular that to show the f.d.d. convergence
of (ϑnS

n,B) is the same as to show that of (ϑnS,B).
Applying Proposition 2.5 to the process (ϑnS,B) and taking into account the weak con-

vergence result in Proposition 3.1, we conclude that the f.d.d. of (ϑnS,B) converge to that of
(U,B), where

Ut = T 2H− 1
2

√
κ

2
�t

∑
1≤j ′<j≤m

∫ t

0
�sφjj ′(Xs) dWj ′j

s .

The convergence (1.9) follows from the fact that {Ut, t ∈ [0, T ]} solves the SDE (1.10).



64 Y. HU, Y. LIU AND D. NUALART

Step 3. We turn to the case m = 1 and V0 	≡ 0. Using similar arguments as in Step 2,
relation (4.42) implies that in order to show the weak limit (for the convergence in f.d.d.) of
(ϑn(X̃ − X̃n),B) it suffices to consider that of (ϑnS̃

n,B), where

S̃n
t = 1

2
�n

η(t)

∫ η(t)

0
�n

η(s) dE12(s).

With the help of Lemma 4.2 we obtain that the convergence of the f.d.d. of (ϑnS̃
n,B) is the

same as that of (ϑnS̃,B), where

S̃t = 1

2
�η(t)

�nt/T �∑
k=0

�tkφ10(Xtk )ζ
01
tk,tk+1

.

Applying Proposition 2.5 to S̃ and taking into account the weak convergence result in Propo-
sition 3.3, we obtain that the f.d.d. of (ϑnS̃,B) converges to that of (Ũ ,B), where

Ũt = T H+ 1
2

√
	

2
�t

∫ t

0
�sφ10(Xs) dWs.

Convergence (1.9) then follows from the fact that Ũ is the solution of equation (1.11).
Step 4. We now consider the scalar case when m = 1 and V0 ≡ 0. Convergence (1.12) is

clear for t = 0, and for convenience we take t > 0 from now on. In a similar way as in Step
2, with the help of estimate (4.43) and Lemma 4.2 we are able to reduce the proof of the
Lp-convergence of n2H (X̃t − X̃n

t ) into that of the quantity

(5.3)
1

2
n2H�η(t)

5∑
e=2

�nt/T �−1∑
k=0

�tk

(
Ee(tk+1) − Ee(tk)

)
.

It now remains to show that the quantity in (5.3) converges to the solution of equation (1.13).
Observe that, by (4.17), we have, for t ∈ �,

nt/T −1∑
k=0

�tk

(
E2(tk+1) − E2(tk)

)

= 1

4

d∑
i=1

nt/T −1∑
k=0

�tk∂iV
(
Xn

tk

)

×
(∫ tk+1

tk

〈
∂V i(Xn

v

)
,V

(
Xn

tk+1

) + V
(
Xn

tk

)〉
dBv

)(∫ tk+1

tk

∫ s

tk

dBu dBs

)
.

Consider the following modification of this summation:

Ẽ2(t) = 1

2

d∑
i=1

nt/T −1∑
k=0

�tk

(
∂iV

〈
∂V i,V

〉)
(Xtk )

∫ tk+1

tk

dBv

∫ tk+1

tk

∫ s

tk

dBu dBs

= 1

4

d∑
i=1

nt/T −1∑
k=0

�tk

(
∂iV

〈
∂V i,V

〉)
(Xtk )(Btk,tk+1)

3.

It is then easy to show that, for t ∈ �,

n2H

(nt/T −1∑
k=0

�tk

(
E2(tk+1) − E2(tk)

) − Ẽ2(t)

)
→ 0 in Lp as n → ∞.(5.4)
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In a similar way we introduce

Ẽ3(t) = −1

4

d∑
i=1

nt/T −1∑
k=0

�tk

([
∂
(
∂iV V i)]V + V i[∂(∂iV )

]
V
)
(Xtk ) · (Btk,tk+1)

3

and

Ẽ4(t) = Ẽ5(t) = 1

6

d∑
i′,i=1

nt/T −1∑
k=0

�tk

(
V i′V i∂i∂i′V

)
(Xtk )(Btk,tk+1)

3.

Then we have the convergence in Lp for e = 3,4,5:

(5.5) n2H

(nt/T −1∑
k=0

�tk

(
Ee(tk+1) − Ee(tk)

) − Ẽe(t)

)
→ 0.

The convergences in (5.4) and (5.5) together imply that to show the convergence (1.12) it
suffices to consider the quantity n2H ∑5

e=2 Ẽe(t).
With an elementary computation we get

(5.6)
5∑

e=2

Ẽe(t) = −1

6

d∑
i′,i=1

nt/T −1∑
k=0

�tk

(
V i′V i∂i∂i′V

)
(Xtk )(Btk,tk+1)

3, t ∈ �.

Take ft = �t(V
i′V i∂i∂i′V )(Xt) and ζk,n = (Btk+1 − Btk )

3. Applying Proposition 2.6 to (5.6)
and taking into account Lemma A.1(ii), we obtain

1

2
�η(t)

(
n2H

5∑
e=2

Ẽe

(
η(t)

)) → Ūt

in Lp for t ∈ [0, T ], where

Ūt = −T 2H

4

d∑
i′,i=1

�t

∫ t

0
�s

(
V i′V i∂i∂i′V

)
(Xt) dBs.

The convergence (1.12) follows from the fact that the process Ū verifies the equation (1.13).
�

6. The degenerated cases. In this section we consider the degenerated cases in which
the limits in Theorem 1.3 are equal to zero. We consider the strong convergence of the Crank–
Nicolson scheme in the first subsection and then focus on the asymptotic error in the second
subsection.

6.1. The strong convergence. In this subsection, we prove Theorem 1.4.

PROOF OF THEOREM 1.4. Recall that φjj ′ , E11, E12 and Ee, e = 1, . . . ,5 are defined
in (1.8), (4.12) and (4.19). Suppose that φjj ′ ≡ 0 for all j, j ′ = 1, . . . ,m. In this case we
have E11 ≡ 0 and thus E1 = E12. Applying (4.16) to Ee, e = 2,3,4,5, and (4.22) to E12 and
taking into account the identity E1 = E12, we obtain the estimate

5∑
e=1

∥∥Ee(t) − Ee(s)
∥∥
p ≤ K(t − s)

1
2 n− 1

2 −H , s, t ∈ �.

In a similar way as in the proof of Theorem 1.1, Step 5 and 6, we obtain estimate (1.14) in
this case.
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We turn to the case φij ≡ 0 for i, j = 0,1, . . . ,m. Note that in this case E1 ≡ 0, and so
applying (4.16), we get

5∑
e=1

∥∥Ee(t) − Ee(s)
∥∥
p ≤ K(t − s)

1
2 n−2H , s, t ∈ �.

Following the lines of the proof of Theorem 1.1, Step 5 and 6 again, we obtain (1.14). �

6.2. The asymptotic error. In this subsection, we prove Theorem 1.5.

PROOF OF THEOREM 1.5. The proof for Item (i) in Theorem 1.5 follows the lines in
Step 3 of the proof of Theorem 1.3, and will be left to the reader.

In the following we prove Item (ii). With the preparations in the first two subsections, we
can consider the asymptotic error of the scheme in a similar way as in the proof of Theo-
rem 1.3, Step 4. Indeed, with the help of Lemma 4.2, in view of the expression of the error
process Y in (4.25) and the expression of J1 + J2 in (4.12) in terms of Ee, e = 1, . . . ,5, we
can show that the L2-limit of n2HYt for t ∈ � is equal to that of

1

2
n2H

5∑
e=2

�t

�nt/T �∑
k=0

�tk

(
Ee(tk+1) − Ee(tk)

)
,

where we have used the fact that E1 ≡ 0 due to the assumption that φjj ′ ≡ 0 for j, j ′ =
0, . . . ,m. With the help of estimate (4.38) in Lemma 4.1, one can further reduce the the
L2-convergence of n2HYt to that of

(6.1)
1

2
n2H

5∑
i=2

�tĒi(t),

where

Ē2(t) = 1

2

d∑
i,i′=1

m∑
j,j ′,j ′′=0

�nt/T �∑
k=0

�tk

(
∂iVj · V i′

j ′′∂i′V
i
j ′
)
(Xtk )

×
∫ tk+1

tk

dBj ′′
v

∫ tk+1

tk

∫ s

tk

dBj ′
u dBj

s ,

Ē3(t) = −1

2

d∑
i,i′=1

m∑
j,j ′,j ′′=0

�nt/T �∑
k=0

�tk

(
V i′

j ′′∂i′
(
∂iVjV

i
j ′
) + V i

j ′V i′
j ′′∂i′∂iVj

)
(Xtk )

×
∫ tk+1

tk

dBj ′′
v

∫ tk+1

tk

∫ tk+1

s
dBj ′

u dBj
s ,

Ē4(t) =
d∑

i,i′=1

m∑
j,j ′,j ′′=0

�nt/T �∑
k=0

�tk

(
V i′

j ′′V i
j ′∂i′∂iVj

)
(Xtk )

×
∫ tk+1

tk

∫ s

tk

∫ u

tk

dBj ′′
v dBj ′

u dBj
s ,

Ē5(t) =
d∑

i,i′=1

m∑
j,j ′,j ′′=0

�nt/T �∑
k=0

�tk

(
V i′

j ′′V i
j ′∂i′∂iVj

)
(Xtk )

×
∫ tk+1

tk

∫ tk+1

s

∫ tk+1

u
dBj ′′

v dBj ′
u dBj

s .
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Now as in the proof of the convergence of (5.6), by applying Proposition 2.6 to (6.1) and
taking into account Proposition A.3 and A.5, Corollary A.4 and A.6, and Lemma A.7, we
obtain that

lim
n→∞

1

2
n2H

5∑
i=2

�tĒi(t)

= �t

(∑
j∈�

∫ t

0

(
−T 2H

4
�sψjjj (s)

)
dBj

s + ∑
j∈�̄

∫ t

0
�sϕj (s) dBj

s

)
,

(6.2)

where ψ and ϕ are given in Theorem 1.5. The convergence (1.15) then follows by observing
that the right-hand side of (6.2) satisfies the equation of U in Theorem 1.5(ii). �

APPENDIX

A.1. Proof of (3.27). The proof will be done in seven steps.
Step 1. In this step, we derive a decomposition for d2. First, applying the integration by

parts formula (2.3), we obtain

E
(
Zn(t)D̃u′Zn(t)Ds′Zn(t)

)

=
�nt/T �∑
k=0

∫
[0,T ]4

[
Dr ′D̃u′Zn(t)

][
D̃v′Ds′Zn(t)

]

× βk
n
(r)γtk,r (v)μ

(
dv dv′)μ(

dr dr ′)

=
�nt/T �∑

k,k3,k4=0

∫
[0,T ]4

βk3
n

(
r ′)γtk3 ,r ′

(
u′)βk4

n

(
s′)γtk4 ,s′

(
v′)

× βk
n
(r)γtk,r (v)μ

(
dv dv′)μ(

dr dr ′),

(A.1)

where the second equation follows from the fact that

D̃vDrZn(t) =
�nt/T �∑
k=0

βk
n
(r)γtk,r (v), t ∈ [0, T ].

Substituting expression (A.1) into (3.24), we obtain

d2 = 6
�nt/T �∑

k1,k2,k3,k4=0

∫
tk4<s′<tk4
tk1<s<tk1

∫
0<u,u′<T

∫
tk3<r ′<tk3
tk2<r<tk2

∫
0<v,v′<T

γtk3 ,r ′
(
u′)

× γtk4 ,s′
(
v′)γtk2 ,r (v)γtk1 ,s(u)μ

(
dv dv′)μ(

dr dr ′)μ(
dudu′)μ(

ds ds′).
By changing the variables from (v, v′, r, r ′, u,u′, s, s′) to T

n
(v, v′, r, r ′, u,u′, s, s′) and ex-

changing the orders of integrals associated with μ(dudu′) and μ(dr dr ′) we obtain

d2 = 6
(

T

n

)8H �nt/T �∑
k1,k2,k3,k4=0

c(k1, k2, k3, k4),

where

c(k1, k2, k3, k4) =
∫
k4<s′<k4+1
k1<s<k1+1

∫
k3<r ′<k3+1
k2<r<k2+1

∫
0<v,v′,u,u′<n

ϕk3,r
′
(
u′)ϕk4,s

′
(
v′)

× ϕk2,r (v)ϕk1,s(u)μ
(
dv dv′)μ(

dudu′)μ(
dr dr ′)μ(

ds ds′),
(A.2)
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and recall that

(A.3) ϕk,s(u) = ϕ0
k,s(u) − ϕ1

k,s(u), ϕ0
k,s(u) = 1[k,s](u), ϕ1

k,s(u) = 1[s,k+1](u),

where 1[a,b] denotes the indicator function of the interval [a, b].
Now we denote

I :=
{
(k1, k2, k3, k4) : k1, k2, k3, k4 = 0,1, . . . ,

⌊
nt

T

⌋}
.

Take i, j = 1,2,3,4, and denote by Iij the set of (k1, k2, k3, k4) in I such that |ki − kj | > 2,
that is, Iij = {(k1, k2, k3, k4) ∈ I : |ki − kj | > 2}. Denote by I c

ij the complement of Iij . We
decompose I as follows:

I =
8⋃

l=1

Ml,

where

M1 = I42 ∩ I41 ∩ I31 ∩ I32;
M2 = (

I c
42 ∩ I41 ∩ I31 ∩ I32

) ∪ (
I42 ∩ I41 ∩ I c

31 ∩ I32
)

:= M21 + M22;
M3 = (

I42 ∩ I c
41 ∩ I31 ∩ I32

) ∪ (
I42 ∩ I41 ∩ I31 ∩ I c

32
);

M4 = (
I c

42 ∩ I c
41 ∩ I31 ∩ I32

) ∪ (
I42 ∩ I c

41 ∩ I c
31 ∩ I32

)
∪ (

I c
42 ∩ I41 ∩ I31 ∩ I c

32
) ∪ (

I42 ∩ I41 ∩ I c
31 ∩ I c

32
)

:= M41 ∪ M42 ∪ M43 ∪ M44;
M5 = I42 ∩ I c

41 ∩ I31 ∩ I c
32;

M6 = I c
42 ∩ I41 ∩ I c

31 ∩ I32;
M7 = (

I c
42 ∩ I c

41 ∩ I c
31 ∩ I32

) ∪ (
I c

42 ∩ I c
41 ∩ I31 ∩ I c

32
)

∪ (
I c

42 ∩ I41 ∩ I c
31 ∩ I c

32
) ∪ (

I42 ∩ I c
41 ∩ I c

31 ∩ I c
32
);

M8 = I c
42 ∩ I c

41 ∩ I c
31 ∩ I c

32.

This decomposition of I puts similar cases together into one group and allows us to treat
different cases in each group Mi simultaneously.

For any subset M of I , we denote

d2(M) := 6
(

T

n

)8H ∑
(k1,k2,k3,k4)∈M

c(k1, k2, k3, k4).

It is clear that

d2 =
8∑

l=1

d2(Ml).

Thus to show (3.27) it suffices to show that n8H−2d2(Ml) → 0 as n → ∞ for each l =
1, . . . ,8.

Step 2. In this step, we show the convergence of n8H−2d2(M7) and n8H−2d2(M8). Since

(A.4)
∣∣ϕk,s(u)

∣∣ ≤ 1[k,k+1](u),
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we have ∣∣c(k1, k2, k3, k4)
∣∣ ≤ 1.

Applying this inequality to d2(M7), we obtain

∣∣d2(M7)
∣∣ ≤ 6

(
T

n

)8H ∑
(k1,k2,k3,k4)∈M7

1.

Note that

M7 ⊂ {|ki − kj | ≤ 6 for i, j = 1,2,3,4
}
,

so the number of elements in M7 is less than 2 · 63n. This implies that

∣∣d2(M7)
∣∣ ≤ 2 · 64n

(
T

n

)8H

.

It follows from this estimate that n8H−2d2(M7) → 0 as n → 0. Note that M8 ⊂ {|ki − kj | ≤
4 for i, j = 1,2,3,4}. So in the same way, we can show that n8H−2d2(M8) → 0.

Step 3. In this step, we consider d2(M5) and d2(M6). For (k1, k2, k3, k4) ∈ M5, we have
|k2 − k4| > 2 and |k1 − k3| > 2. By the mean value theorem and with the help of (A.4), it is
easy to see that

(A.5)
∣∣c(k1, k2, k3, k4)

∣∣ ≤ K|k2 − k4|2H−2|k1 − k3|2H−2.

Applying (A.5) to d2(M5), we obtain

(A.6)
∣∣d2(M5)

∣∣ ≤ K

(
T

n

)8H ∑
k1,k2,k3,k4∈M5

|k2 − k4|2H−2|k1 − k3|2H−2.

Note that for (k1, k2, k3, k4) ∈ M5 we have |k1 − k4| ≤ 2 and |k2 − k3| ≤ 2, so

|k2 − k4| ≤ |k2 − k3| + |k3 − k1| + |k1 − k4|
≤ 3|k3 − k1|.

Applying this inequality to the right-hand side of (A.6), yields

∣∣d2(M5)
∣∣ ≤ K

(
T

n

)8H ∑
(k1,k2,k3,k4)∈M5

|k2 − k4|2H−2|k4 − k2|2H−2

≤ K

(
T

n

)8H ∑
k2,k4:|k2−k4|>2

|k2 − k4|4H−4.

By taking p = k2 − k4, we obtain

∣∣d2(M5)
∣∣ ≤ K

(
T

n

)8H n∑
k2=0

∑
n≥|p|>2

|p|4H−4

≤ Kn

(
T

n

)8H (
n4H−3 ∨ 1

)
.

It follows from the above estimate that n8H−2d2(M5) converges to zero as n tends to infinity.
The proof of the convergence n8H−2d2(M6) → 0 is similar. Instead of (A.5), we have the
estimate ∣∣c(k1, k2, k3, k4)

∣∣ ≤ K|k1 − k4|2H−2|k2 − k3|2H−2

for (k1, k2, k3, k4) ∈ M6.
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Step 4. In this step, we derive a new expression for c(k1, k2, k3, k4). Recall that ϕk4,s
′(v′) =

ϕ0
k4,s

′(v′) − ϕ1
k4,s

′(v′) (see (A.3)). Substituting this identity into (A.2), we obtain

(A.7) c(k1, k2, k3, k4) = c0(k1, k2, k3, k4) − c1(k1, k2, k3, k4),

where

ci(k1, k2, k3, k4) =
∫
k4<s′<k4+1
k1<s<k1+1

∫
k3<r ′<k3+1
k2<r<k2+1

∫
0<v,v′,u,u′<n

ϕk3,r
′
(
u′)ϕi

k4,s
′
(
v′)

× ϕk2,r (v)ϕk1,s(u)μ
(
dv dv′)μ(

dudu′)μ(
dr dr ′)μ(

ds ds′).
By exchanging the orders of the integrals associated with v′ and s′ in c1, we obtain

c1(k1, k2, k3, k4)

=
∫
k4<v′<k4+1
k1<s<k1+1

∫
k3<r ′<k3+1
k2<r<k2+1

∫
0<v,u,u′<n

∫
k4<s′<v′

∣∣v − v′∣∣2H−2∣∣s − s′∣∣2H−2

× ϕk3,r
′
(
u′)ϕk2,r (v)ϕk1,s(u) dv ds′μ

(
dudu′)μ(

dr dr ′)ds dv′,
which, by switching the notations s′ and v′, is equal to∫

k4<s′<k4+1
k1<s<k1+1

∫
k3<r ′<k3+1
k2<r<k2+1

∫
0<v,u,u′<n

∫
k4<v′<s′

∣∣v − s′∣∣2H−2∣∣s − v′∣∣2H−2
ϕk3,r

′
(
u′)

× ϕk2,r (v)ϕk1,s(u) dv dv′μ
(
dudu′)μ(

dr dr ′)ds ds′.
Substituting the above expression of c1 into (A.7), we obtain

c(k1, k2, k3, k4)

=
∫
k4<s′<k4+1
k1<s<k1+1

∫
k3<r ′<k3+1
k2<r<k2+1

∫
0<v,u,u′<n

∫
k4<v′<s′

φ
(
s, s′, v, v′)ϕk3,r

′
(
u′)

× ϕk2,r (v)ϕk1,s(u) dv dv′μ
(
dudu′)μ(

dr dr ′)ds ds′,

(A.8)

where we denote

(A.9) φ
(
s, s′, v, v′) = ∣∣v − v′∣∣2H−2∣∣s − s′∣∣2H−2 − ∣∣v − s′∣∣2H−2∣∣s − v′∣∣2H−2

.

Step 5. We turn to d2(M4). It is easy to show that

(A.10) d2(M4i ) = d2(M4j ), i, j = 1,2,3,4.

As an example, we show that d2(M41) = d2(M44). The other identities in (A.10) can be shown
in a similar way. First, by exchanging the orders of integrals associated with μ(dr dr ′) and
μ(ds ds′) and integrals associated with μ(dv dv′) and μ(dudu′), we obtain

c(k1, k2, k3, k4) =
∫
k3<r ′<k3+1
k2<r<k2+1

∫
k4<s′<k4+1
k1<s<k1+1

∫
0<v,v′,u,u′<n

ϕk3,r
′
(
u′)ϕk4,s

′
(
v′)

× ϕk2,r (v)ϕk1,s(u)μ
(
dudu′)μ(

dv dv′)μ(
ds ds′)μ(

dr dr ′).
Replacing (v, v′, u,u′, r, r ′, s, s′) by (u,u′, v, v′, s, s′, r, r ′) in the above expression, we ob-
tain

c(k1, k2, k3, k4) =
∫
k3<s′<k3+1
k2<s<k2+1

∫
k4<r ′<k4+1
k1<r<k1+1

∫
0<v,v′,u,u′<n

ϕk3,s
′
(
v′)ϕk4,r

′
(
u′)

× ϕk2,s(u)ϕk1,r (v)μ
(
dv dv′)μ(

dudu′)μ(
dr dr ′)μ(

ds ds′)
= c(k2, k1, k4, k3).
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So we have

d2(M41) = 6
(

T

n

)8H ∑
(k1,k2,k3,k4)∈M41

c(k2, k1, k4, k3) = d2(M44),

where the second identity follows by replacing (k1, k2, k3, k4) by (k2, k1, k4, k3).
The identities in (A.10) imply that to show the convergence n8H−2d2(M4) → 0, it suffices

to show that n8H−2d2(M44) → 0 as n → ∞.
Take (k1, k2, k3, k4) ∈ M44. Then we have |k1 − k4| > 2 and |k2 − k4| > 2, and thus the

quantities |v − v′|, |s − s′|, |v − s ′|, |s − v′| in φ are larger than one. This allows us to apply
the mean value theorem to φ to obtain the estimate

(A.11)
∣∣φ(

s, s′, v, v′)∣∣ ≤ K
(|k4 − k1|2H−3|k4 − k2|2H−2 + |k4 − k1|2H−2|k4 − k2|2H−3).

Applying (A.11) to (A.8) and taking into account (A.4), we obtain

(A.12)
∣∣c(k1, k2, k3, k4)

∣∣ ≤ K
(|k4 − k1|2H−3|k4 − k2|2H−2 + |k4 − k1|2H−2|k4 − k2|2H−3).

Since |k1 − k2| ≤ |k1 − k3| + |k3 − k2| ≤ 4, we have |k4 − k1| ≤ 3|k4 − k2|. This applied to
(A.12) yields ∣∣c(k1, k2, k3, k4)

∣∣ ≤ K|k4 − k1|4H−5,

and thus

∣∣d2(M44)
∣∣ ≤ 6

(
T

n

)8H ∑
(k1,k2,k3,k4)∈M44

∣∣c(k1, k2, k3, k4)
∣∣

≤ 6
(

T

n

)8H ∑
k1,k4:|k1−k4|>2

K|k4 − k1|4H−5.

By taking p = k1 − k4, we obtain

∣∣d2(M44)
∣∣ ≤ 6

(
T

n

)8H n∑
k1=0

∑
n≥|p|>2

p4H−5 ≤ 12n

(
T

n

)8H ∞∑
p=3

p4H−5,

which implies that n8H−2d2(M44) → 0 as n → ∞.
Step 6. In this step, we consider d2(M2) and d2(M3). As in Step 4, it is easy to show

that d2(M21) = d2(M22). So to show that n8H−2d2(M2) → 0, it suffices to show that
n8H−2d2(M22) → 0 as n → ∞.

Take (k1, k2, k3, k4) ∈ M22, we have |k1 − k4| > 2, |k2 − k4| > 2, and so inequality (A.11)
holds. Applying (A.11) to d2(M22) and taking p1 = k1 − k4 and p2 = k4 − k2, we obtain∣∣d2(M22)

∣∣
≤ K

(
T

n

)8H ∑
(k1,k2,k3,k4)∈M22

(|k4 − k1|2H−3|k4 − k2|2H−2 + |k4 − k1|2H−2|k4 − k2|2H−3)

≤ K

(
T

n

)8H n∑
k4=1

∑
p1,p2:n≥|p1|,|p2|≥2

(|p1|2H−3|p2|2H−2 + |p1|2H−2|p2|2H−3).
It is easy to see from the above estimate that n8H−2|d2(M22)| ≤ Kn2H−2, which converges
to zero as n tends to infinity. The proof for the convergence n8H−2d2(M3) → 0 follows the
same lines.
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Step 7. It remains to show that n8H−2d2(M1) → 0 as n → ∞. To do this, we first de-
rive a new expression for c(k1, k2, k3, k4). Recall ϕk3,r

′(u′) = ϕ0
k3,r

′(u′) − ϕ1
k3,r

′(u′) in (A.3).
Substituting this identity into (A.8), we obtain

(A.13) c(k1, k2, k3, k4) = c̃0(k1, k2, k3, k4) − c̃1(k1, k2, k3, k4),

where

c̃i (k1, k2, k3, k4)

=
∫
k4<s′<k4+1
k1<s<k1+1

∫
k3<r ′<k3+1
k2<r<k2+1

∫
0<v,u,u′<n

∫
k4<v′<s′

φ
(
s, s′, v, v′)ϕi

k3,r
′
(
u′)

× ϕk2,r (v)ϕk1,s(u) dv dv′μ
(
dudu′)μ(

dr dr ′)ds ds′,

where recall that φ is defined by (A.9). As in Step 3, by exchanging the order of the integrals
associated with the variables r ′ and u′, and then switching the notations r ′ and u′, we obtain

c̃1 =
∫
k4<s′<k4+1
k1<s<k1+1

∫
k3<r ′<k3+1
k2<r<k2+1

∫
0<v,u<n

∫
k3<u′<r ′

∫
k4<v′<s′

φ
(
s, s′, v, v′)

× ∣∣u − r ′∣∣2H−2∣∣r − u′∣∣2H−2
ϕk2,r (v)ϕk1,s(u) dv dv′ dudu′ dr dr ′ ds ds′.

Substituting the above expression of c̃1 into (A.13), we obtain

c(k1, k2, k3, k4)

=
∫
k4<s′<k4+1
k1<s<k1+1

∫
k3<r ′<k3+1
k2<r<k2+1

∫
0<v,u<n

∫
k3<u′<r ′

∫
k4<v′<s′

φ
(
s, s′, v, v′)

× φ
(
r, r ′, u,u′)ϕk2,r (v)ϕk1,s(u) dv dv′ dudu′ dr dr ′ ds ds′.

(A.14)

Take (k1, k2, k3, k4) ∈ M1, then it is clear that the inequality (A.11) holds true, and in the
same way, we can show that

(A.15)
∣∣φ(

r, r ′, u,u′)∣∣ ≤ K
(|k1 − k3|2H−3|k2 − k3|2H−2 + |k1 − k3|2H−2|k1 − k3|2H−3).

Applying inequalities (A.11) and (A.15) to (A.14) and taking p1 = k3 − k1, p2 = k2 − k3,
p3 = k4 − k2, we obtain

(A.16)

∣∣d2(M1)
∣∣ ≤ 6

(
T

n

)8H ∑
(k1,k2,k3,k4)∈M1

∣∣c(k1, k2, k3, k4)
∣∣

≤ Kn−8H
n∑

k1=0

∑
(p1,p2,p3)∈J

(|p1|2H−3|p2|2H−2 + |p1|2H−2|p2|2H−3)

× c̃(p1,p2,p3)

= Kn−8H
n∑

k1=0

∑
p1,p2:n≥|p1|,|p2|>2

(|p1|2H−3|p2|2H−2 + |p1|2H−2|p2|2H−3)

× ∑
p3∈J (p1,p2)

c̃(p1,p2,p3),

where

c̃(p1,p2,p3) = |p1 + p2 + p3|2H−3|p3|2H−2 + |p1 + p2 + p3|2H−2|p3|2H−3,

J = {
(p1,p2,p3) : n ≥ |p1|, |p2|, |p3|, |p1 + p2 + p3| > 2

}
,
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and

J (p1,p2) = {
p3 : n ≥ |p3|, |p1 + p2 + p3| > 2

}
.

We claim that
∑

p3∈J (p1,p2)
c̃(p1,p2,p3) is uniformly bounded in (p1,p2) by a constant.

Take p1, p2 such that n ≥ |p1|, |p2| > 2. Since when |p1 + p2 + p3| < |p3| we have |p1 +
p2 + p3|α > |p3|α for α = 2H − 2 and α = 2H − 3, we can write∑

p3∈J (p1,p2):|p1+p2+p3|<|p3|
c̃(p1,p2,p3) ≤ ∑

p3∈J (p1,p2)

|p1 + p2 + p3|4H−5

≤ 2
∞∑

p=3

p4H−5.

(A.17)

Similarly, we have

(A.18)
∑

p3∈J (p1,p2):|p1+p2+p3|≥|p3|
c̃(p1,p2,p3) ≤ ∑

p3:n≥|p3|>2

|p3|4H−5 ≤ 2
∞∑

p=3

p4H−5.

In summary of (A.17) and (A.18), we have shown that

(A.19)
∑

p3∈J (p1,p2)

c̃(p1,p2,p3) ≤ 4
∞∑

p=2

p4H−5.

Applying inequality (A.19) to (A.16), we obtain the estimate∣∣d2(M1)
∣∣ ≤ Kn−6H ,

which implies that n8H−2d2(M1) → 0 as n → ∞.

A.2. Proof of (3.46). By the integration by parts formula (2.2), we obtain

E
(
zn(t)Br

) =
�nt/T �∑
k=0

∫ r

0

∫ T

0

∫ T

0
βk

n
(s)γtk,s(u) duμ

(
ds ds′).

By changing the variables from (u, s, s′) to T
n
(u, s, s ′) in the above expression, we obtain

E
(
zn(t)Br

) =
(

T

n

)2H+1 �nt/T �∑
k=0

∫ nr
T

0

∫ k+1

k

∫ n

0
ϕk,s(u)

∣∣s − s′∣∣2H−2
duds ds ′,(A.20)

where ϕk,s(u) is defined in (A.3). Let us denote I1(k) = [k − 2, k + 2] ∩ [0, nr
T

] and I2(k) =
[0, nr

T
] \ I1(k), and set

Ai =
(

T

n

)2H+1 �nt/T �∑
k=0

∫
Ii (k)

∫ k+1

k

∫ n

0
ϕk,s(u)

∣∣s − s′∣∣2H−2
duds ds ′.

Then it is easy to show that

E
(
zn(t)Br

) = A1 + A2.

So to prove that nH+ 1
2E(zn(t)Br) → 0 it suffices to show that nH+ 1

2 Ai → 0 as n → ∞ for
i = 1,2.
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We can write

A1 ≤
(

T

n

)2H+1 �nt/T �∑
k=0

∫ k+2

k−2

∫ k+1

k

∫ k+1

k

∣∣s − s′∣∣2H−2
duds ds′

≤ Kn

(
T

n

)2H+1
,

so we have nH+ 1
2 A1 → 0 as n → ∞.

Now we turn to A2. By exchanging the orders of the integrals with respect to u and s, we
have ∫ k+1

k

∫ n

0
1[k,s](u)

∣∣s − s′∣∣2H−2
duds =

∫ k+1

k

∫ s

k

∣∣u − s′∣∣2H−2
duds.(A.21)

Substituting (A.21) into A2, we obtain

(A.22) A2 =
(

T

n

)2H+1 �nt/T �∑
k=0

∫
I2(k)

∫ k+1

k

∫ s

k

(∣∣s − s′∣∣2H−2 − ∣∣u − s′∣∣2H−2)
duds ds′.

Note that for s′ ∈ I2(k) we have∣∣∣∣
∫ k+1

k

∫ s

k

(∣∣s − s′∣∣2H−2 − ∣∣u − s′∣∣2H−2)
duds

∣∣∣∣ ≤ K
∣∣k − s′∣∣2H−3

,

so

|A2| ≤
(

T

n

)2H+1 �nt/T �∑
k=0

∫
I2(k)

K
∣∣k − s′∣∣2H−3

ds′

= K

(
T

n

)2H+1 �nt/T �∑
k=0

(
22H−2 − (n − k)2H−2 + 22H−2 − k2H−2)

≤ K

(
T

n

)2H+1 n∑
k=0

22H−2 = Kn

(
T

n

)2H+1
,

which implies that nH+ 1
2 A2 → 0 as n → ∞. This completes the proof.

A.3. Estimates of some triple integrals. In this subsection, we provide estimates for
some triple integrals which have been used in the main body of the paper.

LEMMA A.1.

(i) For t ∈ �, we define

(A.23) Gt =
nt/T −1∑

k=0

∫ tk+1

tk

∫ s

tk

∫ u

tk

dB1
v dB2

u dB3
s ,

where B1, B2, B3 are independent processes, and are either fBm’s with Hurst parameter
H > 1

2 or are equal to the identity function. Let p ≥ 1. Then we have

‖Gt − Gs‖p ≤ Kn−2H |t − s| 1
2 , s, t ∈ �.
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(ii) Let B a one-dimensional fBm with Hurst parameter H > 1
2 . Take p ≥ 1 and t ∈ [0, T ].

We have the following convergence in Lp:

n2H
�nt/T �−1∑

k=0

(Btk+1 − Btk )
3 → 3T 2HBt .

PROOF. The result in (i) follows from Proposition 5.10 in [11] with r ′ = 3 and Hα =
H + H + H . The convergence in (ii) follows immediately from results in [8] or [26]. �

We need the following technical lemma.

LEMMA A.2. Let f and g be β-Hölder continuous stochastic processes on [0, T ] and
E(‖f ‖p

β) + E(‖g‖p
β) ≤ K for all 1

2 < β < H and p ≥ 1, and let hn, n ∈ N be processes on
[0, T ] such that ∥∥hn

t − hn
s

∥∥
p ≤ K(t − s)β, s, t ∈ � : s ≤ t.

Let B1, B2 and B3 be as in Lemma A.1. For each i, j = 1,2,3 we denote

G̃
ij
t =

nt/T −1∑
k=0

hn
tk

∫ tk+1

tk

∫ s3

tk

∫ s2

tk

fsi gsj dB1
s1

dB2
s2

dB3
s3

, t ∈ �.(A.24)

Then the following estimate holds true for all s, t ∈ �:

(A.25)
∥∥G̃ij

t − G̃ij
s

∥∥
p ≤ Kn−2H |t − s| 1

2 .

PROOF. We decompose G̃ij as follows:

G̃
ij
t =

nt/T −1∑
k=0

ftkgtkh
n
tk

∫ tk+1

tk

∫ s3

tk

∫ s2

tk

dB1
s1

dB2
s2

dB3
s3

+
nt/T −1∑

k=0

ftkh
n
tk

∫ tk+1

tk

∫ s3

tk

∫ s2

tk

∫ sj

tk

dgs4 dB1
s1

dB2
s2

dB3
s3

+
nt/T −1∑

k=0

hn
tk

∫ tk+1

tk

∫ s3

tk

∫ s2

tk

∫ si

tk

gsj dfs4 dB1
s1

dB2
s2

dB3
s3

.

(A.26)

Applying Proposition 5.10 in [11] with r ′ = 4 and Hα = β + H + H + H to the second and
third terms on the right-hand side of (A.26), and applying Lemma 2.4 to the first term and
taking into account the estimate in Lemma A.1(i), we obtain inequality (A.25). �

A.4. Proof of Lemma 4.2. By the definition of J1 (see (4.3)), we have

∫ t

s
�n

u dJ1(u) =
d∑

i=1

∫ t

s
�n

u

∫ u

η(u)
∂iV

(
Xn

v

)
dXn,i

v dBu

=
d∑

i=1

�nt/T �∑
k=�ns/T �

∫ tk+1∧t

tk∨s
�n

u

∫ u

η(u)
∂iV

(
Xn

v

)
dXn,i

v dBu
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for s, t ∈ [0, T ]. Applying the Minkovski inequality to the right-hand side of the above equa-
tion, and then taking into account Lemma 8.2 in [11] as well as the integrability of �n, Xn

and B in the sense of Definition 2.2, we obtain the estimate∥∥∥∥
∫ t

s
�n

u dJ1(u)

∥∥∥∥
p

≤
d∑

i=1

�nt/T �∑
k=�ns/T �

n−β(tk+1 ∧ t − tk ∨ s)β

≤ K|t − s|βn1−2β.

(A.27)

In the same way we can show that estimate (A.27) holds while J1 is replaced by J2. Applying
these two estimates to

Yt = 1

2
�n

t

2∑
i=1

∫ t

0
�n

s dJi(s),

we obtain

(A.28) ‖Y‖β,p ≤ Kn1−2β.

We denote � := � − �n. Subtracting (4.23) from (4.26), we can write

�i
i′(t) =

m∑
j=0

d∑
i′′=1

∫ t

0

[
∂i′′V

i
j (Xs)�

i′′
i′ (s) − V i

ji′′(s)�
n,i′′
i′ (s)

]
dBj

s

=
m∑

j=0

d∑
i′′=1

∫ t

0
∂i′′V

i
j (Xs)�

i′′
i′ (s) dBj

s

+
m∑

j=0

d∑
i′′=1

∫ t

0

[
∂i′′V

i
j (Xs) − V i

ji′′(s)
]
�

n,i′′
i′ (s) dBj

s .

The following identity is an easy consequence of the product rule

�(t) − �n(t) =
d∑

i,i′=1

m∑
j=0

�(t)

∫ t

0
�i′(s)

[
∂iV

i′
j (Xs) − V i′

ji(s)
]
�n,i(s) dBj

s .(A.29)

Denote

Ṽ
(
Xs,X

n
s

) =
∫ 1

0

∫ 1

0
∂∂i′V

i′′
j

(
λXs + (1 − λ)

(
θXs + (1 − θ)Xn

s

))
(1 − θ) dλdθ.

One can show that

∂i′V
i′′
j (Xs) − V i′′

ji′(s) = Ṽ
(
Xs,X

n
s

)
Ys.

Then (A.29) becomes

�i(t) − �n
i (t) = �t

∫ t

0
dgs · Ys,

where

gt =
d∑

i′,i′′=1

m∑
j=0

∫ t

0
�i′′(s)Ṽ

(
Xs,X

n
s

)
�

n,i′
i (s) dBj

s .

Applying Lemma 2.3 and taking into account the estimate (A.28), we obtain∥∥∥∥�t

∫ t

s
dgs · Ys

∥∥∥∥
p

≤ Kn1−2β(t − s)β,

which implies the estimate for ‖� − �‖β,p . The estimate for the quantity � − �n can be
shown similarly.
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A.5. Proof of (4.43). Since E1 = 0, it is clear that
2∑

i=1

∫ t

0
�n

u dJi(u) −
5∑

e=2

∫ η(t)

0
�n

η(u) dEe(u)

=
2∑

i=1

∫ t

0
�n

u dJi(u) −
2∑

i=1

∫ η(t)

0
�n

η(u) dJi(u)

=
2∑

i=1

∫ t

0

∫ s

η(s)
d�n

u dJi(s) +
2∑

i=1

∫ t

η(t)
�n

η(u) dJi(u).

(A.30)

In the following, we estimate the Lp-norms of the two terms on the right-hand side of (A.30).
Recall that I1 and I2 are defined by (4.8)–(4.9). For t ∈ [0, T ], we set

I (t) =
d∑

i=1

∫ t

0

(
V i∂iV

)(
Xn

η(s)

)
(Bs − Bη(s)) dBs.

It is clear that I (tk) = I1(tk) = I2(tk) for k = 0,1, . . . , n. As in (4.12), we introduce the
decomposition

J1(t) + J2(t) = (
R0(t) − I (t)

) + (
I (t) − R̃0(t)

) + R1(t) + R̃1(t)

:= E2(t) + E3(t) + E4(t) + E5(t)

for t ∈ [0, T ], where R0, R1, R̃0 and R̃1 are defined as before. Note that the E2 and E3 defined
here are extensions of similar terms in (4.12) from � to [0, T ]. Applying Lemma 8.2 in [11]
to (4.5) and (4.7), we obtain

(A.31) ‖Ee‖tk,tk+1,β ≤ Ke
K‖B‖1/β

β n−2β, e = 4,5.

Similarly, we can show that inequality (A.31) also holds for e = 2,3. Therefore, we obtain

(A.32) ‖J1 + J2‖[tk,tk+1],β =
∥∥∥∥∥

5∑
e=2

Ee

∥∥∥∥∥[tk,tk+1],β
≤ Ke

K‖B‖1/β
β n−2β.

Applying Lemma 8.2 in [11] and with the help of the estimate (A.32), we can write∥∥∥∥∥
2∑

i=1

∫ t ′′

t ′

∫ s

η(s)
d�n

u dJi(s)

∥∥∥∥∥
p

≤ Kn−4β

for t ′, t ′′ ∈ [tk, tk+1]. Therefore, we have∥∥∥∥∥
2∑

i=1

∫ t

0

∫ s

η(s)
d�n

u dJi(s)

∥∥∥∥∥
p

≤
�nt/T �∑
k=0

∥∥∥∥∥
2∑

i=1

∫ tk+1∧t

tk

∫ s

η(s)
d�n

u dJi(s)

∥∥∥∥∥
p

≤ Kn1−4β.

On the other hand, applying (A.32) to

2∑
i=1

∫ t

η(t)
�n

η(s) dJi(s) =
2∑

i=1

�n
η(t)(Ji(t) − Ji

(
η(t)

)
,

we obtain ∥∥∥∥∥
2∑

i=1

∫ t

η(t)
�n

η(s) dJi(s)

∥∥∥∥∥
p

≤ Kn−3β ≤ Kn1−4β.

This completes the proof.
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A.6. Lp-Convergence results. In this subsection we denote by B and B̃ two inde-
pendent fBm’s on [0, T ] with H > 1/2. As before, we adopt the notations for increment:
Bst = Bt − Bs and B̃st = B̃t − B̃s . We start with the following processes defined on [0, T ]:

z1
n(t) = 2

�nt/T �∑
k=0

∫ tk+1

tk

∫ u

tk

∫ v

tk

dB̃r dB̃v dBu,

z2
n(t) = 2

�nt/T �∑
k=0

∫ tk+1

tk

∫ u

tk

∫ v

tk

dBr dB̃v dB̃u,

z3
n(t) =

�nt/T �∑
k=0

∫ tk+1

tk

(B̃tktk+1)
2 dBu =

�nt/T �∑
k=0

(B̃tktk+1)
2 · Btktk+1 .

(A.33)

Observe that, by an elementary application of the chain rule and the exchange of integrals,
we have

z1
n(t) =

�nt/T �∑
k=0

∫ tk+1

tk

(B̃tku)
2 dBu, z2

n(t) =
�nt/T �∑
k=0

∫ tk+1

tk

(B̃utk+1)
2 dBu.(A.34)

PROPOSITION A.3. Let zi
n, i = 1,2,3 be defined in (A.33). Then there exists a constant

K depending on H and T such that for i = 1,2,3 we have

(A.35) n4H
E
(∣∣zi

n(t) − zi
n(s)

∣∣2) ≤ K(t − s), t, s ∈ �,s ≤ t.

Furthermore, for each t ∈ [0, T ] and i = 1,2, we have that n2Hzi
n(t) converges in L2 to

T 2H (2H + 1)−1Bt and n2Hz3
n(t) converges in L2 to T 2HBt as n → ∞.

PROOF. The proof is divided into several steps.
Step 1. L2 estimate of z1

n. We start with the decomposition

z1
n(t) =

�nt/T �∑
k=0

∫ tk+1

tk

(u − tk)
2H dBu +

�nt/T �∑
k=0

∫ tk+1

tk

[
(B̃tku)

2 − (u − tk)
2H ]

dBu

:= z11
n (t) + z12

n (t).

With some elementary computations similar to Lemma 4.3 in [13] we can show that(
E
(∣∣z12

n (t) − z12
n (s)

∣∣2))1/2 ≤ K
(
n−2 ∨ n1/2−3H )

(t − s)1/2.

In order to show (A.35) for z1
n it then remains to prove that (A.35) holds for z11

n (t).
Let us apply the covariance formula (2.1) to get

E
(
z11
n (t)2) =

�nt/T �∑
k,k′=0

∫ tk′+1

tk′

∫ tk+1

tk

(s − tk)
2H (

s′ − tk′
)2H

μ
(
ds ds′)

=
(

T

n

)6H �nt/T �∑
k,k′=0

∫ k′+1

k′

∫ k+1

k
(s − k)2H (

s′ − k′)2H
μ
(
ds ds′),

(A.36)

where μ is defined by (3.2), and in the second equation we have replaced the variables (s, s′)
by (T

n
s, T

n
s′). Denoting

Q̄(p) =
∫ 1

0

∫ p+1

p
(s − p)2H t2Hμ(ds dt).
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Noticing that Q̄(p) = Q̄(−p) for p ∈ Z, equation (A.36) becomes

(A.37)

E
(
z11
n (t)2) =

(
T

n

)6H �nt/T �∑
k,k′=0

Q̄
(
k − k′)

=
(

T

n

)6H

Q̄(0)
(�nt/T � + 1

) + 2
(

T

n

)6H ∑
0≤k′<k≤�nt/T �

Q̄
(
k − k′)

=
(

T

n

)6H

Q̄(0)
(�nt/T � + 1

) + 2
(

T

n

)6H �nt/T �∑
p=1

Q̄(p)
(�nt/T � + 1 − p

)
.

In order to bound E(z11
n (t)2), we use the fact that �nt/T � ≤ nt/T ≤ n2H t/T , Q̄(p) ≤ (p −

1)2H−2 for p > 1 and �nt/T � + 1 − p ≤ nt/T . We end up with

E
(
z11
n (t)2) ≤ Kn−4H t, t > 0.

Taking into account that E(|z11
n (t) − z11

n (s)|2) = E(z11
n (t − s − T

n
)2) for s, t ∈ �, we obtain

the desired estimate (A.35) for z11
n .

Step 2. L2-convergence of z1
n (i). We first observe that to show the L2-convergence of

n2Hz1
n, it suffices to show the following two convergences:

n4H
E
(
z1
n(t)

2) → T 4H (2H + 1)−2t2H ,

n2H
E
(
z1
n(t)Bt

) → T 2H (2H + 1)−1t2H .
(A.38)

We consider the two convergences in (A.38) respectively in this and next steps.
Notice that the mean value theorem implies that for |p| > 1 there exists p̃ ∈ [p − 1,p + 1]

such that

Q̄(p) =
∫ 1

0

∫ p+1

p
(s − p)2H t2Hμ(ds dt)

= αH p̃2H−2
∫ 1

0

∫ p+1

p
(s − p)2H t2H ds dt = cH p̃2H−2,

where αH = H(2H − 1) and cH = H(2H − 1)(2H + 1)−2. Therefore, we can write

n−2H
�nt/T �∑
p=1

Q̄(p)
(�nt/T � + 1 − p

)

= cHn−1
�nt/T �∑
p=1

(
p̃

n

)2H−2 �nt/T � + 1 − p

n
+ n−2HQ̄(1)�nt/T �

= cH

T 2H

T

n

�nt/T �∑
p=1

(
T

n
p̃

)2H−2(T

n

(�nt/T � + 1 − p
)) + n−2HQ̄(1)�nt/T �,

which is the Riemann sum of the function s → cH

T 2H ·s2H−2(t −s) from 0 to t plus a remainder
term. Sending n → ∞ we obtain

n−2H
�nt/T �∑
p=1

Q̄(p)
(�nt/T � + 1 − p

) → cH

T 2H

∫ t

0
s2H−2(t − s) ds

= (2H + 1)−2

2T 2H
t2H .

(A.39)
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Applying (A.39) to the second term on the right-hand side of (A.37) and bounding the first
term by n1−6H we obtain the first convergence in (A.38).

Step 3. L2-convergence of z1
n (ii). Take t ∈ [tl, tl+1) for l = 0, . . . , n. In order to show

the second convergence in (A.38), we write Bt = ∑�nt/T �
k=0

∫ tk+1
tk

dBs − Bt,tl+1 . Applying the
covariance formula (2.1) as in (A.36) and using this expression of Bt , we obtain

E
(
z1
n(t)Bt

) =
�nt/T �∑
k,k′=0

∫ tk′+1

tk′

∫ tk+1

tk

(s − tk)
2Hμ

(
ds ds′) −E

(
z1
n(t)Bt,tl+1

)

=
(

T

n

)4H �nt/T �∑
k,k′=0

∫ k′+1

k′

∫ k+1

k
(s − k)2H μ

(
ds ds′) −E

(
z1
n(t)Bt,tl+1

)
.

In a similar way as for the convergence of n4H
E(z1

n(t)
2), we can now show that the conver-

gence of n2H
E(z1

n(t)Bt ) in (A.38) holds.
This completes the proof of the theorem for z1

n. The proof for z2
n and z3

n can be shown in a
similar way and is left to the reader. �

COROLLARY A.4. Let B and B̃ be as in Proposition A.3. Let

(A.40) z4
n(t) =

�nt/T �∑
k=0

∫ tk+1

tk

∫ u

tk

∫ v

tk

dB̃r dBv dB̃u.

Then the estimate (A.35) holds for z4
n. Furthermore, for any t ∈ [0, T ] we have that z4

n(t)

converges in L2 to T 2H (2H − 1)(4H + 2)−1Bt .

PROOF. We notice that by an exchange of integrals we obtain

z3
n(t) =

�nt/T �∑
k=0

∫ tk+1

tk

B̃tkvB̃vtk+1 dBv

= 1

2

�nt/T �∑
k=0

∫ tk+1

tk

(
(B̃tktk+1)

2 − (B̃tkv)
2 − (B̃vtk+1)

2)dBv

= 1

2

(
z3
n(t) − z1

n(t) − z2
n(t)

)
.

The corollary now follows from the application of Proposition A.3. �

In the following we consider the processes

z6
n(t) =

�nt/T �∑
k=0

∫ tk+1

tk

∫ u

tk

∫ v

tk

dBr dBv du,

z7
n(t) =

�nt/T �∑
k=0

∫ tk+1

tk

∫ u

tk

∫ v

tk

dr dBv dBu,

z8
n(t) =

�nt/T �∑
k=0

∫ tk+1

tk

∫ u

tk

∫ v

tk

dBr dv dBu.

(A.41)
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PROPOSITION A.5. Let zi
n i = 6,7,8 be defined in (A.41). Then there exists a constant

K depending on H and T such that for i = 6,7,8 we have

(A.42) n4H
E
(∣∣zi

n(t) − zi
n(s)

∣∣2) ≤ K(t − s), t, s ∈ �.

Furthermore, for each t ∈ [0, T ] and i = 6,7, we have that n2Hzi
n(t) converges in L2 to

1
2T 2H(2H + 1)−1t and n2Hz8

n(t) converges in L2 to (2H − 1)(4H + 2)−1T 2H t as n → ∞.

PROOF. The proof follows the same arguments as in the proof of Proposition A.3 and
Corollary A.4 and the details are omitted. �

A.7. Further Lp-convergence results. In this subsection we denote by B = (B1, . . . ,

Bm) an m-dimensional fBm. Let us introduce the following index sets:

� = {1, . . . ,m}, �̄ = � ∪ {0}, �0 = � × � × �, �̄0 = �̄ × �̄ × �̄,

�11 = {(
j, j ′, j ′′) ∈ �0 : j 	= j ′ = j ′′}, �12 = {(

j, j ′, j ′′) ∈ �0 : j ′ 	= j = j ′′},
�13 = {(

j, j ′, j ′′) ∈ �0 : j ′′ 	= j = j ′}, �21 = {(
j, j ′, j ′′) ∈ �̄0 : j ′ = j ′′ 	= j = 0

}
,

�22 = {(
j, j ′, j ′′) ∈ �̄0 : j = j ′′ 	= j ′ = 0

}
,

�23 = {(
j, j ′, j ′′) ∈ �̄0 : j = j ′ 	= j ′′ = 0

}
.

We also denote

�1 = �11 ∪ �12 ∪ �13 and �2 = �21 ∪ �22 ∪ �23.

The following is a consequence of the results in the previous subsection:

COROLLARY A.6. Consider the following processes on [0, T ]:

Z1
n(t) =

�nt/T �∑
k=0

∫ tk+1

tk

dBj ′′
v

∫ tk+1

tk

∫ s

tk

dBj ′
u dBj

s

and

Z2
n(t) =

�nt/T �∑
k=0

∫ tk+1

tk

dBj ′′
v

∫ tk+1

tk

∫ s

tk

dBj ′
u dBj

s .

(i) If (j, j ′, j ′′) ∈ �1, then the estimate (A.35) holds for Z1
n and Z2

n, and for t ∈ [0, T ]
and i = 1,2, Zi

n(t) converges in L2 to 1
2T 2HBt .

(ii) If (j, j ′, j ′′) ∈ �2, then the estimate (A.42) holds for Z1
n and Z2

n, and for t ∈ [0, T ]
and i = 1,2, Zi

n(t) converges in L2 to 1
2T 2H t .

PROOF. In the case (j, j ′, j ′′) ∈ �1, the corollary follows by a decomposition of Zi
n,

i = 1,2 into the sum of the processes of the forms of z1
n, z2

n and z4
n in (A.33) and (A.40). In

the case (j, j ′, j ′′) ∈ �2, the corollary can be shown by a decomposition of Zi
n, i = 1,2 into

the sum of the processes of the forms of z7
n, z8

n and z9
n in (A.41). �

LEMMA A.7. Take (j, j ′, j ′′) ∈ �̄0 \ (�0 ∪ �1 ∪ �2). Denote

Z3
n(t) =

�nt/T �∑
k=0

∫ tk+1

tk

∫ u

tk

∫ v

tk

dBj ′′
r dBj ′

v dBj
u .

Then the following inequality holds:

E
(∣∣Z3

n(t) − Z3
n(s)

∣∣2)1/2 ≤ K
(
n−2 ∨ n

1
2 −3H )

(t − s)1/2.
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PROOF. It follows from Proposition 5.5 in [11] that

E
(∣∣Z3

n(t) − Z3
n(s)

∣∣2) ≤ E

(∣∣∣∣∣
�nt/T �∑

k=�ns/T �+1

B
j
tktk+1

B
j ′
tktk+1

B
j ′′
tktk+1

∣∣∣∣∣
2)

.(A.43)

The lemma then follows from some elementary computations of the right-hand side of (A.43)
similar to Lemma 4.3 in [13]. �
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