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We consider a simple Markov model for the spread of a disease caused
by two virus strains in a closed homogeneously mixing population of size N .
The spread of each strain in the absence of the other one is described by the
stochastic SIS logistic epidemic process, and we assume that there is perfect
cross-immunity between the two strains, that is, individuals infected by one
are temporarily immune to re-infections and infections by the other. For the
case where one strain is strictly stronger than the other, and the stronger strain
on its own is supercritical, we derive precise asymptotic results for the dis-
tribution of the time when the weaker strain disappears from the population.
We further extend our results to certain parameter values where the differ-
ence between the basic reproductive ratios of the two strains may tend to 0 as
N → ∞.

In our proofs, we illustrate a new approach to a fluid limit approximation
for a sequence of Markov chains in the vicinity of a stable fixed point of the
limit differential equation, valid over long time intervals.

1. Introduction. Mathematical models of epidemics provide important tools for under-
standing the spread of many diseases relevant to public health, and may help health organi-
zations develop measures to prevent and manage epidemic outbreaks, as well as control the
emergence of new infections.

The vast majority of mathematical models of epidemics view infectious diseases as caused
by a single pathogen strain; such models tend to be more tractable but inappropriate for
predicting the long-term evolutionary dynamics of pathogen populations, see Humplik et
al. [10], or for analysing pathogen infections where host susceptibility may be altered due to
infections by other pathogens. For instance, it is known that pathogen strains which are suffi-
ciently antigenically similar may induce a (partial) cross-protective immune response, so that
hosts infected by one of the strains may acquire different degrees of temporary or permanent
immunity to re-infections and infections by antigenically similar strains. Thus, if a certain
closed population of hosts is affected by a particular virus strain and a number of individuals
infected by an antigenically similar strain are introduced, then the different pathogen strains
may interact as if competing for susceptible individuals in the host population.

A long-standing principle in ecology known as the competitive exclusion principle
(Levin [14]) predicts that, when species sharing the same ecological niche compete for lim-
ited resources, the one with even the slightest advantage will eventually outcompete the others
and become dominant. In the context of infectious diseases, for instance, it is shown by Bahl
et al. [3] that viral gene flow from Eurasia had led to replacement of endemic avian influenza
viruses in North America; moreover, the authors argue that the most likely mechanism for
that was competition for susceptible hosts.
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In this work, we consider a simple Markov model for the spread of a disease with stochastic
susceptible-infective-susceptible (SIS) dynamics caused by two different virus strains with a
perfect cross-protective immune response, so individuals infected by one strain are temporar-
ily immune to re-infections and infections by the other strain. We focus on the case where one
of the virus strains has some advantage over its competitor (a higher basic reproductive ratio),
and competitive exclusion occurs. Starting with positive but otherwise arbitrary proportions
of infected individuals of each virus strain in a large host population, we track the long-term
evolution of this process, so as to obtain the distribution of the time until competitive exclu-
sion occurs, that is, the extinction time of the weaker virus strain.

The simplest stochastic model for a disease with SIS dynamics is the stochastic SIS logistic
epidemic model. In that model, each individual within the population is either susceptible or
infective. We assume a population of size N , and let λ > 0 denote the infection rate. Each
infective individual encounters a uniformly chosen member of the population at rate λ (as
is standard, contacts with oneself are allowed); if the encountered individual is susceptible,
then he/she becomes infective. Also, each infective individual recovers at rate μ > 0 and,
once recovered, becomes susceptible again.

Let YN(t) denote the number of infective individuals in the population at time t ; then
(YN(t))t≥0 is a continuous-time Markov chain on {0,1, . . . ,N} with transition rates from
state Y given by

Y → Y + 1 at rate λY (1 − Y/N);
Y → Y − 1 at rate μY.

The extinction time τN is defined as τN = inf{t ≥ 0 : YN(t) = 0}, and, since the state space
is finite, τN is a.s. finite. The following theorem summarises asymptotic results for the dis-
tribution of τN in the case where the initial epidemic infects a positive proportion of the
population, see Andersson and Djehiche [1], Brightwell, House, and Luczak [6], and Fox-
all [9].

THEOREM 1. Let λ,μ,α > 0, and suppose that YN(0)/N → α as N → ∞.

(i) (Supercritical case; Andersson and Djehiche (1998), Foxall (2018).) If λ > μ, then,
as N → ∞, τN/E(τN) → Z in distribution, where Z is an exponential random variable with
parameter 1. Furthermore,

E(τN) ∼
√

2π

N

λ

(λ − μ)2 eNv,

as N → ∞, where v = log(λ/μ) − 1 + μ
λ

.
(ii) (Subcritical case; Brightwell, House and Luczak (2018).) If λ < μ, then, as N → ∞,

(μ − λ)τN − {
logα + logN + log(1 − λ/μ) − log

(
1 + λα/(μ − λ)

)} → G

in distribution, where G is a standard Gumbel random variable.

When λ = μ (i.e., the basic reproductive ratio equals 1), for most starting states the time
to extinction is of the order N1/2, see Nåsell [17]. Brightwell, House and Luczak [6] also
consider more general initial conditions, as well as determine the extinction time when λ =
λ(N), μ = μ(N) satisfy μ − λ → 0 and (μ − λ)N1/2 → ∞ (the barely subcritical case).
Foxall [9], Theorem 5, includes the barely supercritical case, where λ = λ(N), μ = μ(N),
λ − μ → 0 and (λ − μ)N1/2 → ∞, extending the formula of Andersson and Djehiche [1].

The stochastic SIS logistic competition model describes the spread of a disease in a ho-
mogeneously mixing population via two different virus strains, say types 1 and 2, which are
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sufficiently antigenically similar to induce a cross-protective immune response. An individ-
ual infected with strain i (i = 1,2) stays infected for an exponentially distributed time with
rate μi > 0, and, during the infectious period, each such individual independently makes an
infectious contact to a uniformly random individual according to a Poisson process with rate
λi > 0; if the contacted individual is currently susceptible, then he/she becomes infected with
strain i as a result. The dynamics can thus be described as a two-dimensional continuous-time
Markov chain (XN(t))t≥0 = (XN,1(t),XN,2(t))t≥0, where XN,1(t) and XN,2(t) denote the
numbers of individuals infected with strains of type 1 and 2 respectively, at time t . The state
space is {(X1,X2)

T : X1,X2 ∈ Z
+,0 ≤ X1 + X2 ≤ N}, and the transition rates from state

(X1,X2) can be written as follows:

(X1,X2) → (X1 + 1,X2) at rate λ1X1(1 − X1/N − X2/N);
(X1,X2) → (X1,X2 + 1) at rate λ2X2(1 − X1/N − X2/N);
(X1,X2) → (X1 − 1,X2) at rate μ1X1;
(X1,X2) → (X1,X2 − 1) at rate μ2X2.

We note that, in the absence of one of the strains, the other strain evolves according to the
basic stochastic SIS logistic epidemic model described above.

Let R0,1 = λ1/μ1 and R0,2 = λ2/μ2 denote the basic reproductive ratios of the two strains.
We assume that R0,1 > R0,2, and R0,1 > 1, and that XN,1(0)/N → α and XN,2(0)/N → β as
N → ∞ (0 < α,β , α +β ≤ 1). Informally, the assumption R0,1 > R0,2 means that strain 1 is
more infectious than strain 2. Since R0,1 > 1, Theorem 1(i) implies that the stronger subtype,
in the absence of its competitor, would stay endemic in the population for a time that grows
exponentially in the size N of the population.

Surprisingly, competing SIS epidemic dynamics was first studied in a spatial context by
Neuhauser [18], with infectious interactions occuring ‘locally’, along the edges of the lattice.
The model with ‘global’ infectious interactions, defined above, was proposed by Parsons
and Quince [19, 20] as an extension to the Moran model for a haploid population studied
in Moran [16]. They assume that both alleles (strains) are supercritical, which in our setting
translates to assuming also that R0,2 > 1. Parsons and Quince [19] consider the case where
one of the alleles is weaker (the case considered in the present paper), while Parsons and
Quince [20] consider the case where both types of allele have equal fitness (basic reproduction
number), that is, R0,1 = R0,2, the case not studied here. Parsons and Quince [19] study the
probability that the weaker strain replaces the stronger one for various starting conditions, in
finite populations, using approximations and numerics. They also study the extinction times
of both the weaker and stronger strains numerically. Also, Humplik et al. [10] study, using
approximations and numerics, the probability that the stronger strain replaces the weaker
one, assuming that initially the weaker one is in quasi-equilibrium and there is one individual
infected with the stronger one. They focus mainly on finite populations, as well as what
happens when the basic reproduction numbers of the strains may tend to infinity, and do not
consider the time taken by the strains to reach extinction.

For a closely related model with K ≥ 2 types, Parsons, Quince and Plotkin [21] obtain
analytic approximations for the expected time until competitive exclusion occurs, which turns
out to be linear in the population size when all the alleles have the same (supercritical) basic
reproductive ratio. These authors further conjecture that a similar result should hold for the
model considered in our paper, and Kogan et al. [12] have argued, using an approximating
“perturbation method”, this is indeed the case for K = 2 strains of equal strength.

Theorem 2 below concerns the case where there is a dominant, supercritical, strain and
each of the two strains initially affects a positive fraction of the population. Under these
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conditions, competitive exclusion of the weaker strain by the stronger occurs with high prob-
ability (i.e., with probability tending to 1 as the population size N → ∞). Our result shows
that, with high probability, the extinction time for the weaker type scales logarithmically as
the population size grows large, with randomness asymptotically Gumbel distributed. On the
other hand, the time to extinction for the dominant strain grows exponentially with population
size.

The corresponding deterministic SIS logistic competition model is among the simplest
epidemic models for infections caused by multiple pathogen strains. It is represented by the
pair

dx1(t)

dt
= λ1x1(t)

(
1 − x1(t) − x2(t)

) − μ1x1(t),

dx2(t)

dt
= λ2x2(t)

(
1 − x1(t) − x2(t)

) − μ2x2(t)(1)

of differential equations, and is thus a particular instance of the deterministic Lotka–Volterra
system—see Lotka [15], Volterra [25], Zeeman [27]. In the context of epidemics, this type
of deterministic Lotka–Volterra system is considered, for instance, by Kirupaharan and
Allen [11] (see also references therein), generalised to allow births and deaths; these authors
also consider SDE versions of such systems. When births and deaths are allowed, there are
parameter values for which several strains can coexist in the deterministic system, although
the authors’ numerical studies suggest that this is unlikely in the corresponding SDEs.

Let κN = inf{t ≥ 0 : XN,2(t) = 0}, the time when the weaker species goes extinct. Let also
κ̃N = inf{t ≥ 0 : XN,1(t) = 0}, the time the stronger species goes extinct. We now state our
main result, concerning the distribution of κN, κ̃N in the case when initially both strains are
already established in the population, each infecting a positive proportion of its size.

THEOREM 2. Suppose that R0,1 > R0,2 and that R0,1 > 1. Suppose further that
XN,1(0)/N → α and XN,2(0)/N → β as N → ∞, where α,β > 0 and α + β ≤ 1. Then, as
N → ∞,

μ2

(
1 − R0,2

R0,1

)
κN −

[
log

(
Nβ

(
1 − R0,2

R0,1

))
+ R0,2μ2

R0,1μ1
log

(1 − R−1
0,1

α

)]
→ G,

in distribution, where G is a standard Gumbel random variable.
Furthermore, as N → ∞,

E(κ̃N) ∼
√

2π

N

R0,1

μ1(R0,1 − 1)2 eNv1,

as N → ∞, where v1 = logR0,1 − 1 + R−1
0,1, and κ̃N/E(κ̃N) → Z in distribution, and Z is

an exponential random variable with parameter 1.

Theorem 2 thus shows that, if initially strain 1 infects around αN individuals and strain 2
infects around βN individuals, then the extinction time κN of strain 2 (the weaker strain) can
be written as

κN = logN + GN

μ2(1 − R0,2
R0,1

)
,

where GN is a random variable with a bounded mean and variance, while the scaled extinc-
tion time κ̃N of the stronger strain asymptotically has the same distribution as if the weaker
strain was absent to begin with.
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The long-term behaviour of Markov population processes is of considerable importance
in applications. In epidemic models, long-term phenomena include extinction of certain
pathogen strains, or replacement of a dominant pathogen strain in the host population by
another more adapted pathogen strain introduced into the host population, for example, due
to mutation or migration. Mathematically, these phenomena are related to the behaviour of
the scaled process near fixed points of its approximating differential equation, including ab-
sorbing boundaries for one or more coordinates.

Recently, Barbour, Hamza, Kaspi and Klebaner [4] have shown that, under appropriate
conditions, a density dependent Markov population process that starts near an absorbing
boundary and manages to escape from it, still can be well-approximated by the determin-
istic solution as described by the standard theory but with a random time shift, and that the
time to escape from such a boundary is random and of order O(logN), see Theorem 1.1
in Barbour et al. [4]. Also, similar to the phenomenon we investigate in the present work,
they describe in a very general setting the behaviour of a class of population processes near
a fixed point at which one or more coordinates of the process have value 0, that is, they are
extinct, and derive the limit distribution for the extinction times for such processes as a stan-
dard Gumbel random variable, after scaling and centering, see Theorem 1.2 in Barbour et
al. [4]. In both results, the randomness when the process is escaping or reaching an absorbing
boundary is captured by a branching process approximation. However, at their level of gener-
ality, the formulae they obtain contain nonexplicit constants, and their bounds on the rate of
convergence are too weak to investigate near-critical phenomena. Also, rigorous justification
of such a general approximation, based on an abstract coupling of Thorisson (see Theorem
7.3 in Thorisson [24]), is quite involved.

In the present work, we develop a related but more direct and precise approximation to
prove an explicit formula for the extinction time of the weaker virus strain in the stochastic
logistic SIS competition model. Like the approach of Barbour et al. [4], our approach is
based on decomposing the drifts of the process into linear and nonlinear parts, and using a
variation of constants formula. However, we additionally take full advantage of the fact that
the nonlinear parts are small in the neighbourhood of a fixed point, and provide more refined
bounds on the deviations of the martingale transform appearing in the equations. Similar
ideas were also used in a different context in discrete time by Brightwell and Luczak [7].

Unlike the approach of Barbour et al. [4], the precision of our approximation facilitates
study of near-critical phenomena, and we extend Theorem 2 to a near-critical case where
R0,1 = R0,1(N) and R0,2 = R0,2(N) are such that R0,1 − R0,2 → 0, while R0,1 − 1 may or
may not tend to 0 but satisfies (R0,1 − R0,2)(R0,1 − 1)−1 → 0 as N → ∞. As is argued in
Brightwell et al. [6]—see Section 1.1 and Appendix A, as well as references therein—there is
evidence from data that near-critical phenomena may manifest themselves in large finite pop-
ulations. Also, there is evidence that many real-life epidemics are in a sense “near-critical”,
corresponding to scenarios where, for instance, a mutating pathogen or waning population
immunity pushes the basic reproductive ratio just above 1, or where control measures such as
mass vaccination push the basic reproductive ratio just below 1.

As a proof of concept, we consider the following special case where μ1 = μ2 = 1,
λ1 = λ1(N) > λ2 = λ2(N) > 1, and λ1 − λ2 → 0 as N → ∞ (while λ1 is bounded, and
may or may not tend to 1). This may model a real-world scenario where a slightly more
infectious strain emerges during an outbreak, for instance, via a mutation, and we want
to know the time it takes to supplant the weaker one in the population. We assume that
(λ1 − λ2)(λ1 − 1)−1 → 0; this implies that, at least for large N , λ2 > 1, and so the weaker
strain is also supercritical. Also note that we do allow λ1 → 0, but our assumptions imply then
the separation of both R0,1 and R0,2 from the critical value 1 is, asymptotically as N → ∞,
greater than the separation between R0,1 and R0,2.
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We further assume that

(2) N(λ1 − λ2)
3(λ1 − 1)−1/ log log

(
N(λ1 − λ2)

2) → ∞.

The initial conditions are as in Theorem 2, that is, XN,1(0)/N → α and XN,2(0)/N → β as
N → ∞, where α,β > 0 and α + β ≤ 1.

THEOREM 3. Under the above assumptions,

κN = λ1

λ1 − λ2

(
log

(
N

(λ1 − 1)(λ1 − λ2)

λ2
1

β

α

)
+ GN

)
,

where GN converges in distribution to a Gumbel random variable G.
Furthermore, as N → ∞,

E(κ̃N) ∼
√

2π

N

λ1

(λ1 − 1)2 eN(logλ1−1+λ−1
1 ),

as N → ∞, and κ̃N/E(κ̃N) → Z in distribution, and Z is an exponential random variable
with parameter 1.

This means that the formulae for the distribution of κN and κ̃N in Theorem 2 extend
to this near-critical regime. The exact form of the technical condition (2) is an artefact of
our proof technique, and does not define the transition to criticality. We believe that, given
λ1 = λ1(N), λ2 = λ2(N) bounded and such that (λ2 − λ1)(λ1 − 1)−1 → 0, imposing the
additional condition N(λ1 − λ2)

2 → ∞ is necessary and sufficient for Theorem 3 to hold
in this case. Note that, if N(λ1 − λ2)

3(λ1 − 1)−1 → ∞ and (λ1 − λ2)(λ1 − 1)−1 → 0, then
N(λ1 − λ2)

2 → ∞. We conjecture that there is a further regime, with a different distribution
of the randomness (not Gumbel), where N(λ1 − λ2)(λ1 − 1) → ∞ but N(λ1 − λ2)

2 does
not tend to infinity. A discussion of this as well as of what happens when condition (2) is
not satisfied is included in Section 7.1. In particular, it seems feasible to refine our proof
technique by splitting the differential equation approximation phase into subphases, possibly
with enough precision to go all the way to what we believe to be the critical window; however,
in the interest of clarity, we do not explore such improvements in the present paper.

Clearly, we do not cover the entire spectrum of near-critical behaviours: the example con-
sidered is meant as a proof of concept, and a full investigation will be carried out system-
atically in future work. One challenge of such an investigation will be to understand the
behaviour of the approximating deterministic process in various near-critical regimes. In par-
ticular, in future work we intend to study cases where the strengths of the two strains are even
closer to identical than considered in the present paper. A further project is to rigorously study
the probability that the stronger strain wins, starting with only a small number of infected in-
dividuals relative to the number of infectives of the weaker strain, in particular in near-critical
scenarios, where there is likely to be a delicate interplay between initial conditions and the
asymptotic differences between the strain strengths.

We will further work to extend our results to competition of more than two strains. Away
from criticality, the fact that the randomness of the extinction time of the weaker strains has
an approximate Gumbel distribution as the population size grows large follows from Theo-
rem 1.2 in Barbour et al. [4], however obtaining an explicit formula does not seem straight-
forward. With one strain (the stochastic SIS logistic epidemic process), an explicit solution to
the deterministic system is available, see Brightwell et al. [6] and references therein, as well
as equation (19) in the present paper. With two strains, we are able to draw on the following
formula satisfied by any solution x(t) = (x1(t), x2(t))

T to (1):

(x1(t))
λ2

(x2(t))
λ1

= (x1(0))λ2

(x2(0))λ1
e(μ2λ1−μ1λ2)t for all t ≥ 0.

This is easy to verify by differentiating x1(t)
λ2/x2(t)

λ1 . However, we are not aware of anal-
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ogous properties for systems with three or more strains, which makes it more challenging to
study near-critical behaviour.

The rest of the paper is organised as follows. In Section 2, we present some preliminaries
concerning the stability of fixed points of the deterministic logistic SIS competition model.
Furthermore, we give an overview of the strategy used to prove Theorem 2. The idea is
that the stochastic SIS logistic competition process follows closely the corresponding deter-
ministic process for a long time, until the latter one is close to its attractive fixed point at
((λ1 − μ1)/λ1,0)T . From there on, the time to extinction for the second species is short, and
well approximated by a linear birth-and-death chain, with the randomness captured by the
Gumbel distribution. We break up the analysis of the process into phases, similarly to the ap-
proach of Brightwell, House and Luczak [6] used to prove a general version of Theorem 1(ii).
We analyze each of these phases in the subsequent sections. In Section 6, we combine the
results from the preceding sections to prove Theorem 2. In Section 7, we prove Theorem 3.

Throughout our proofs, we treat XN(t) and x(t) as column vectors.

2. Preliminaries. In this section, we discuss the deterministic Lotka–Volterra system.
For suitable choices of parameter values, this model becomes the deterministic logistic SIS
competition model, and approximates the stochastic logistic SIS competition model over cer-
tain timescales.

We further outline the proof of our main result, Theorem 2.

2.1. A deterministic version of the competition model. The deterministic competitive
Lotka–Volterra system represents a community of k mutually competing species described
by equations

(3)
dxi(t)

dt
= xi(t)

(
bi −

k∑
j=1

aij xj (t)

)
, i = 1, . . . , k,

where xi(t) denotes the population size of the ith species at time t . It is assumed that bi > 0
for all i, and aij > 0 for all i, j . For each i = 1, . . . , k, species i would by itself, in the
absence of all the other species, exhibit logistic growth, with its growth rate decreasing as its
population increases near the carrying capacity of the environment. Mathematically,

dxi(t)

dt
= xi(t)

(
bi − aiixi(t)

)
, bi, aii > 0.

This equation has two fixed points: 0 and bi/aii , the latter being the carrying capacity of
species i. Also, dxi/dt decreases in xi near the carrying capacity.

The following result of Zeeman [27] gives simple criteria on the parameters bi and aij of
(3) which guarantee that, for all strictly positive initial conditions of (3), all but one of the
species is driven to extinction, while the one remaining species stabilizes at its own carrying
capacity.

We recall that a fixed point x∗ of a system of ordinary differential equations is globally
attractive on a set U if and only if its basin of attraction is equal to U . In other words, x∗ is
globally attractive if every solution to the system with initial condition in U converges to x∗
as t → ∞.

THEOREM 4 (Zeeman 1995 [27]). Suppose that the parameters in (3) satisfy
bj

ajj

<
bi

aij

∀i < j,

bj

ajj

>
bi

aij

∀i > j.(4)

Then fixed point ( b1
a11

,0, . . . ,0)T is globally attractive on the interior of Rk+.
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Clearly, if conditions (4) are satisfied, and xi(0) = 0 for some i > 1, then the solution x(t)

still converges to ( b1
a11

,0, . . . ,0)T as t → ∞, as this case amounts to eliminating species i

from the equations.
In the case λ1/μ1 > λ2/μ2 > 1, the stochastic competition model defined in the Intro-

duction can be naturally associated with a particular two-dimensional instance of (3) with
bi = λi − μi for i = 1,2, and aij = λi for i, j = 1,2, which is precisely system (1). In epi-
demic modelling, x1(t) and x2(t) represent the proportions of individuals who at time t are
infected by strains 1 and 2 respectively, in a closed homogeneously mixing population.

By Theorem 4, all solutions with x1(0) > 0 converge as t → ∞ to (
λ1−μ1

λ1
,0)T . We claim

this still holds even when λ2/μ2 ≤ 1 (corresponding to the case b2 ≤ 0). First of all, using (1),

d

dt

(
x2(t)

μ1

x1(t)μ2

)
= μ1μ2

x2(t)
μ1

x1(t)μ2

(
1 − x1(t) − x2(t)

)( λ2

μ2
− λ1

μ1

)
< 0,

so x2(t)
μ1/x1(t)

μ2 is decreasing in t . Hence, one can see that dx1(t)
dt

≥ 0 if x1(t) ≤ ε, for
ε > 0 small enough: we can choose ε such that ε + (ε/x1(0))μ2/μ1 ≤ 1 − μ1/λ1, and then,
from (1) again,

dx1(t)

dt
≥ λ1x1

(
1 − μ1

λ1
− ε −

(
ε

x1(0)

)μ2/μ1
)

≥ 0.

Now consider the Lyapunov function

φ(x1, x2) = 1

2

(
x1 + x2 − 1 + μ1

λ1

)2
+ x2

(
μ2

λ2
− μ1

λ1

)
.

This function is nonnegative, and is zero only at the fixed point (1 − μ1
λ1

,0)T . The derivative
is given by

d

dt
φ
(
x1(t), x2(t)

)

=
(
x1 + x2 − 1 + μ1

λ1

)(
dx1

dt
+ dx2

dt

)
+

(
μ2

λ2
− μ1

λ1

)
dx2

dt

= −λ1x1

(
x1 + x2 − 1 + μ1

λ1

)2
+

(
x1 + x2 − 1 + μ2

λ2

)
dx2

dt

= −λ1x1

(
x1 + x2 − 1 + μ1

λ1

)2
− λ2x2

(
x1 + x2 − 1 + μ2

λ2

)2
,

and is nonpositive everywhere; furthermore, for any 0 < ε < 1 − μ1/λ1, it is zero in
{(x1, x2)

T : x1 ≥ ε, x2 ≥ 0, x1 + x2 ≤ 1} only at the fixed point (1 − μ1
λ1

,0)T . Since

dx1(t)/dt ≥ 0 if x1(t) ≤ ε, the set {(x1, x2)
T : x1 ≥ ε, x2 ≥ 0, x1 +x2 ≤ 1} is invariant for the

deterministic logistic SIS competition model. As ε can be taken arbitrarily small, the claim
will follow from a standard Lyapunov stability argument—see, for instance, Chapter 3 of
Arrowsmith and Place [2]—as follows.

Take any solution x(t) with x1(0) > 0. Note that there is some ε > 0 so that x1(t) > ε

for all t . As φ(x1(t), x2(t)) ≥ 0 and decreasing, it converges to some nonnegative limit.
From the mean value theorem, there is a sequence (tk) of times such that tk → ∞ and
d
dt

φ(x1(tk), x2(tk)) tends to zero. Using that and the fact that x1(tk) is bounded away from
zero, it follows that x1(tk) + x2(tk) → 1 − μ1/λ1. This then implies that x1(tk) + x2(tk) 
→
1 − μ2/λ2 and so x2(tk) → 0 and x1(tk) → 1 − μ1/λ1—in other words, x(tk) approaches
the fixed point. Now we can conclude that φ(x1(tk), x2(tk)) → 0. As φ(x1(t), x2(t)) is de-
creasing, it tends to 0. From the formula for φ, it follows that x2(t) tends to 0, and then that
x1(t) → 1 − μ1/λ1—in other words, x(t) approaches the fixed point.
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It is easy to check that each solution x(t) = (x1(t), x2(t))
T to (1) satisfies

(5)
(x1(t))

λ2

(x2(t))
λ1

= (x1(0))λ2

(x2(0))λ1
e(μ2λ1−μ1λ2)t for all t ≥ 0.

This can be used to calculate the time tc→d spent by x(t) to travel from a point c = (c1, c2)
T

to another point d = (d1, d2)
T on the same trajectory:

(6) tc→d = λ2

μ2λ1 − μ1λ2
log(d1/c1) − λ1

μ2λ1 − μ1λ2
log(d2/c2).

The Jacobian of (1) at (
λ1−μ1

λ1
,0)T is given by

A =
(−(λ1 − μ1) −(λ1 − μ1)

0 −(μ2 − λ2μ1/λ1)

)
,(7)

and thus has eigenvalues −(λ1 − μ1) and −(μ2 − λ2μ1/λ1), which are real and strictly
negative under the assumptions that λ1/μ1 > 1 and λ1/μ1 > λ2/μ2. By standard theory, the
speed of convergence is determined by −min{λ1 − μ1,μ2 − λ2μ1/λ1}. Indeed, by Chapter
VII §29, Theorem VII in Walter [26], for any 0 < σ < min{λ1 − μ1,μ2 − λ2μ1/λ1}, there
exist η > 0, C > 0 such that, if ‖(x1(0), x2(0))T − (

λ1−μ1
λ1

,0)T ‖2 < η, then∥∥∥∥(x1(t), x2(t)
)T −

(
λ1 − μ1

λ1
,0

)T ∥∥∥∥
2
≤ Ce−σ t for all t ≥ 0.

In Section 2.2 below, we will give a stronger bound, as well as a lower bound on the speed of
convergence.

2.2. Convergence to fixed point. We now give quantitative upper and lower bounds on
the speed of convergence. Let η1 = λ1 − μ1 and η2 = μ2 − λ2μ1/λ1, so that −η1,−η2 are
the eigenvalues of A. Let

(8) a = 1 − η2

η1
,

and assume that a 
= 0, that is, η2 
= η1. When a = 0, the matrix (7) has repeated eigenvalues.
We will consider this case at the end of this subsection.

We introduce new coordinates x̃1(t) = x1(t) − λ1−μ1
λ1

+ 1
a
x2(t) and x̃2(t) = x2(t), and let

x̃(t) = (x̃1(t), x̃2(t))
T . In the new coordinates, the differential equation (1) is expressed as

dx̃1(t)

dt
= −η1x̃1(t) − λ1x̃1(t)

2 − η2(λ1 − λ2)

η1

(
x̃2(t)

a

)2

+
(
λ1 − λ2 + λ1η2

η1

)
x̃1(t)

x̃2(t)

a
,

dx̃2(t)

dt
= −η2x̃2(t) − λ2x̃2(t)x̃1(t) + λ2

a

η2

η1
x̃2(t)

2.(9)

Note the diagonal form of the linear terms in the equation, reflecting the fact that (1,1/a)

and (0,1) are the left eigenvectors of the matrix A, with eigenvalues −η1 and −η2 respec-
tively.

LEMMA 1. Suppose that a 
= 0. Let L = min{η1, η2} and L1 = (λ1 + |λ1 − λ2|)η1+η2
η1

.
Suppose x̃(0) is such that

y(0) = max
{∣∣x̃1(0)

∣∣, x̃2(0)/|a|} ≤ L/2L1.

Then, for all t ≥ 0, |x̃1(t)| ≤ 2y(0)e−tL, and x̃2(t) ≤ 2|a|y(0)e−tL.
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PROOF. We write, as is standard, x̃(t) = x̃(0) + ∫ t
0 F(x̃(s)) ds, where, from (9),

(10) F(x) =

⎛
⎜⎜⎝

−η1x1 − λ1x
2
1 − η2(λ1 − λ2)

η1

(
x2

a

)2
+

(
λ1 − λ2 + λ1η2

η1

)
x1

x2

a

−η2x2 − λ2x2x1 + λ2

a

η2

η1
x2

2

⎞
⎟⎟⎠ .

We then decompose F(x) = Ã

(
x1
x2

)
+ F̃ (x), where

Ã =
(−η1 0

0 −η2

)
(11)

and

(12) F̃ (x) =

⎛
⎜⎜⎝

−λ1x
2
1 − η2(λ1 − λ2)

η1

(
x2

a

)2
+

(
λ1 − λ2 + λ1η2

η1

)
x1

x2

a

−λ2x2x1 + λ2

a

η2

η1
x2

2

⎞
⎟⎟⎠ .

Then, treating (9) as a perturbation of a linear system, see Chapter 6 of Pazy [22], the solution
x̃(t) satisfies

x̃(t) = etÃx̃(0) +
∫ t

0
e(t−s)ÃF̃

(
x̃(s)

)
ds,

or, equivalently,(
x̃1(t)

x̃2(t)

)
=

(
e−tη1 x̃1(0)

e−tη2x2(0)

)

+
∫ t

0

⎛
⎜⎜⎝

e−(t−s)η1

[
−λ1x̃1(s)2 − η2(λ1 − λ2)

η1

(
x̃2(s)

a

)2
+

(
λ1 − λ2 + λ1η2

η1

)
x̃1(s)

x̃2(s)

a

]

e−(t−s)η2

[
−λ2x̃2(s)x̃1(s) + λ2

a

η2

η1
x̃2(s)2

]
⎞
⎟⎟⎠ ds.

Let y1(t) = |x̃1(t)|eLt , let y2(t) = x̃2(t)|a| eLt and let y(t) = max{y1(t), y2(t)}. Then, from the
above,

y1(t) ≤ y1(0) +
∫ t

0
eLs

[
λ1x̃1(s)

2 + η2|λ1 − λ2|
η1

(
x̃2(s)

a

)2

+
∣∣∣∣λ1 − λ2 + λ1η2

η1

∣∣∣∣∣∣x̃1(s)
∣∣ x̃2(s)

|a|
]
ds

≤ y1(0) +
(
λ1 + η2|λ1 − λ2|

η1
+ |λ1 − λ2| + λ1η2

η1

)∫ t

0
y(s)2e−Ls ds

= y1(0) + η1 + η2

η1

(
λ1 + |λ1 − λ2|)

∫ t

0
y(s)2e−Ls ds

= y1(0) + L1

∫ t

0
y(s)2e−Ls ds,

and also

y2(t) ≤ y2(0) + λ2
η1 + η2

η1

∫ t

0
y(s)2e−Ls ds ≤ y2(0) + L1

∫ t

0
y(s)2e−Ls ds,

so that

y(t) ≤ y(0) + L1

∫ t

0
y(s)2e−Ls ds.
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Now, the equation z(t) = z(0) + L1
∫ t

0 z(s)2e−Ls ds is solved by

z(t) = Lz(0)

L + L1z(0)(e−Lt − 1)

for all t , as long as z(0) < L/L1, and, if z(0) ≤ L/2L1, then z(t) ≤ 2z(0) for all t . Now
a standard argument, considering the difference z(t) − y(t), shows that y(t) ≤ z(t) ≤ 2z(0)

provided that y(0) ≤ z(0) ≤ L/2L1. Hence, |x̃1(t)| ≤ 2 max{x̃1(0), x̃2(0)
|a| }e−Lt and x̃2(t) ≤

2|a|max{x̃1(0), x̃2(0)
|a| }e−Lt for all t , as required. �

LEMMA 2. Suppose that a 
= 0. Let L,L1 be as in Lemma 1. Suppose x̃(0) is such that

y(0) = max
{∣∣x̃1(0)

∣∣, x̃2(0)/|a|} ≤ L/8L1.

Then, for all t ≥ 0, x2(t) ≤ 2x2(0)e−tη2 , and x2(t) ≥ 1
2x2(0)e−tη2 .

PROOF. Defining y(t) as in the proof of Lemma 1, and using that lemma,

x2(t) ≤ x2(0)e−tη2 + λ2

∫ t

0
e−(t−s)η2

∣∣x̃1(s)
∣∣x2(s) ds + λ2

|a|
η2

η1

∫ t

0
e−(t−s)η2 x̃2(s)

2 ds

≤ x2(0)e−tη2 + 2λ2
η1 + η2

η1
e−tη2y(0)

∫ t

0
x2(s)e

sη2e−sL ds.

Letting ỹ2(t) = x2(t)e
tη2 , and using the fact that λ2 ≤ λ1 + |λ1 − λ2|,

ỹ2(t) ≤ ỹ2(0) + 2L1y(0)

∫ t

0
ỹ2(s)e

−sL ds,

so, by Grönwall’s inequality,

ỹ2(t) ≤ ỹ2(0) exp
(

2L1y(0)

∫ t

0
e−sL ds

)
≤ ỹ2(0) exp

(
2L1y(0)/L

)
,

and so ỹ2(t) ≤ 2ỹ2(0), for all t , as required, since y(0) ≤ L/8L1.
Furthermore, for all t , using the upper bound on x2(t) derived above,

x2(t) ≥ x2(0)e−tη2 − λ2

∫ t

0
e−(t−s)η2

∣∣x̃1(s)
∣∣x2(s) ds − λ2

|a|
η2

η1

∫ t

0
e−(t−s)η2 x̃2(s)

2 ds

≥ x2(0)e−tη2 − 2L1e
−tη2y(0)

∫ t

0
x2(s)e

sη2e−sL ds

≥ x2(0)e−tη2 − 4L1y(0)x2(0)e−tη2

∫ t

0
e−sL ds

≥ x2(0)e−tη2 − 4L1y(0)

L
x2(0)e−tη2 ≥ 1

2
x2(0)e−tη2 . �

In the case η1 = η2, we work with the original variables x1(t), x2(t), and write⎛
⎝x1(t) − λ1 − μ1

λ1
x2(t)

⎞
⎠ = etA

⎛
⎝x1(0) − λ1 − μ1

λ1
x2(0)

⎞
⎠ +

∫ t

0
eA(t−s)F̃

(
x(s)

)
ds

= etA

⎛
⎝x1(0) − λ1 − μ1

λ1
x2(0)

⎞
⎠

+
∫ t

0
eA(t−s)

⎛
⎜⎜⎝−λ1

(
x1(s) − λ1 − μ1

λ1

)2
− λ1

(
x1(s) − λ1 − μ1

λ1

)
x2(s)

−λ2

(
x1(s) − λ1 − μ1

λ1

)
x2(s) − λ2

(
x2(s)

)2

⎞
⎟⎟⎠ ds,
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where

etA =
(
e−t (λ1−μ1) −(λ1 − μ1)te

−t (λ1−μ1)

0 e−t (λ1−μ1)

)
.

Since, in the near-critical scenario we consider, the eigenvalues are always distinct, we
settle below for a fairly weak bound on the speed of convergence. Let y(t) = et(λ1−μ1)/2 ×
max{|x1(t) − (λ1 − μ1)/λ1|, x2(t)}.

LEMMA 3. Suppose that a = 0. Assume that y(0) ≤ (λ1 − μ1)/32(λ1 + λ2). Then, for
all t ≥ 0, |x1(t) − (λ1 − μ1)/λ1| ≤ 4y(0)e−t (λ1−μ1)/2 and x2(t) ≤ 4y(0)e−t (λ1−μ1)/2.

PROOF. Using the inequalities λ2[(λ1 − μ1)t + λ1/λ2]e−t (λ1−μ1)/2 ≤ 2(λ1 + λ2) and
[(λ1 − μ1)t + 1]e−t (λ1−μ1)/2 ≤ 2, we have∣∣x1(t) − (λ1 − μ1)/λ1

∣∣
≤ 2y(0)e−t (λ1−μ1)/2 + 4(λ1 + λ2)e

−t (λ1−μ1)/2
∫ t

0
y(s)2e−s(λ1−μ1)/2 ds

and

x2(t) ≤ y(0)e−t (λ1−μ1)/2 + 2λ2e
−t (λ1−μ1)/2

∫ t

0
y(s)2e−s(λ1−μ1)/2 ds.

It follows using the same argument as in the proof of Lemma 1 that

y(t) ≤ 2y(0) + 4(λ1 + λ2)

∫ t

0
y(s)2e−s(λ1−μ1)/2 ds,

so

y(t) ≤ (λ1 − μ1)y(0)

(λ1 − μ1)/2 + 8(λ1 + λ2)y(0)(e−t (λ1−μ1)/2 − 1)
.

Thus if y(0) ≤ (λ1 − μ1)/32(λ1 + λ2), then y(t) ≤ 4y(0), and so |x1(t) − (λ1 − μ1)/λ1| ≤
4y(0)e−t (λ1−μ1)/2 and x2(t) ≤ 4y(0)e−t (λ1−μ1)/2, as required. �

LEMMA 4. Suppose that a = 0. Assume that y(0) ≤ (λ1 − μ1)/32(λ1 + λ2). Then, for
all t ≥ 0, x2(t) ≤ 2x2(0)e−t (λ1−μ1) and x2(t) ≥ 1

2x2(0)e−t (λ1−μ1).

PROOF. Letting ỹ2(t) = x2(t)e
(λ1−μ1)t , we have, using Lemma 3,

ỹ2(t) ≤ ỹ2(0) + 4λ2y(0)

∫ t

0
ỹ2(s)e

−s(λ1−μ1)/2 ds,

so

ỹ2(t) ≤ ỹ2(0) exp
(
8λ2y(0)/(λ1 − μ1)

) ≤ 2ỹ2(0),

since y(0) ≤ (λ1 − μ1)/32λ2, and so x2(t) ≤ 2x2(0)e−t (λ1−μ1). Finally,

ỹ2(t) ≥ ỹ2(0) − 4λ2y(0)

∫ t

0
ỹ2(s)e

−s(λ1−μ1)/2 ds

≥ ỹ2(0) − 8λ2y(0)x2(0)

∫ t

0
e−s(λ1−μ1)/2 ds

≥ x2(0) − 16λ2y(0)x2(0)/(λ1 − μ1),

so y2(t) ≥ 1
2x2(0)e−t (λ1−μ1). �
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2.3. Proof strategy. As we mentioned in the Introduction, we break up the analysis of
the competition process into phases as follows.

Initial phase (“burn-in” period): By standard theory, see for instance Kurtz [13] or Darling
and Norris [8], for large N , XN(t)/N , is well approximated by the solution x(t) of (1) starting
from the same (or nearby) initial condition, at least over a fixed length (i.e., independent of
N ) interval [0, t0]. We will choose t0 such that x1(t0) is close to λ1−μ1

λ1
and x2(t0) is very

small. (This is possible by Theorem 4 and the discussion following it, since the fixed point
((λ1 − μ1)/λ1,0)T is stable.)

Intermediate phase: After time t0, we linearise (1) and its stochastic analogue around
((λ1 − μ1)/λ1,0)T , and use this to show that xN(t) = XN(t)/N follows the solution x(t)

to (1) for quite a long time after t0. Our approach here is a variation on standard martingale
techniques adapted to exploit the proximity of a stable fixed point.

We choose the time tN,1 as the time when x2(t) drops down to N−1/4 (so XN,2(t) will be
around N3/4).

Final phase: This phase starts with XN,1(t) near λ1−μ1
λ1

N and XN,2(t) near N3/4. From
then onwards, “logistic effects” can be ignored, and the path of XN,2(t) can be sandwiched
between the paths of two subcritical linear birth and death processes also starting near N3/4.
Since the time to extinction of a linear birth and death process is well known, we obtain the
distribution of the remaining time until the extinction of XN,2(t).

Theorem 2 follows by adding up the times spent in each phase.

3. Initial phase.

LEMMA 5. Set xN(t) = XN(t)/N and � = 5(λ1 +λ2 +μ1 +μ2). Let t0 > 0, let 0 < δ ≤
(log 4)t0�, and let x(t) be a solution to (1) such that ‖xN(0) − x(0)‖1 ≤ δ. Then

P

(
sup
t≤t0

∥∥xN(t) − x(t)
∥∥

1 > 2δe�t0
)

≤ 4e−δ2N/(4t0�).

PROOF. We use a general method described in, for instance, Darling and Norris [8]. In
the next section, we will develop a variant adapted to the case where the solution x(t) is in
the neighbourhood of a stable fixed point.

As is standard, we write

x(t) = x(0) +
∫ t

0
F

(
x(s)

)
ds,

where F :R2 →R
2 is given by

F(x) =
(
F1(x)

F2(x)

)
=

(
λ1x1(1 − x1 − x2) − μ1x1
λ2x2(1 − x1 − x2) − μ2x2

)
.

Also, xN(t) = XN(t)/N satisfies

xN(t) = xN(0) +
∫ t

0
F

(
xN(s)

)
ds + MN(t),

where (MN(t)) is a zero-mean martingale.
We can take � = 5(λ1 + λ2 + μ1 + μ2) for a Lipschitz constant of F with respect to ‖ · ‖1

in the subset of R2 given by {x = (x1, x2)
T : 0 ≤ x1, x2 ≤ 1}. Then for t ≤ t0,∥∥xN(t) − x(t)

∥∥
1 ≤ ∥∥xN(0) − x(0)

∥∥
1 +

∫ t0

0

∥∥F (
xN(s)

) − F
(
x(s)

)∥∥
1 ds + sup

t≤t0

∥∥MN(t)
∥∥

1

≤ ∥∥xN(0) − x(0)
∥∥

1 + �

∫ t0

0
sup
u≤s

∥∥xN(u) − x(u)
∥∥

1 ds + sup
t≤t0

∥∥MN(t)
∥∥

1

≤
(∥∥xN(0) − x(0)

∥∥
1 + sup

t≤t0

∥∥MN(t)
∥∥

1

)
e�t0,
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so, by Grönwall’s inequality,

(13) sup
t≤t0

∥∥xN(t) − x(t)
∥∥

1 ≤
(∥∥xN(0) − x(0)

∥∥
1 + sup

t≤t0

∥∥MN(t)
∥∥

1

)
e�t0 .

For θ ∈ R
2, let

ZN(t, θ) = exp
(
θT (

xN(t) − xN(0)
) −

∫ t

0
ds

∑
y

qN

(
xN(s), xN(s) + y

)(
eθT y − 1

))

= exp
(
θT MN(t) −

∫ t

0
ds

∑
y

qN

(
xN(s), xN(s) + y

)(
eθT y − 1 − θT y

))
,

where qN(x, x + y) denotes the rate of y jumps (i.e., jumps resulting in an increment by a
vector y) of xN(t) when in state x. Then (ZN(t, θ)) is a mean 1 martingale. Note that, for our
model, the jumps y are of the form (±1/N,0)T and (0,±1/N)T , and F(x) = ∑

y qN(x, x +
y)y.

Using the identity ez − 1 − z = z2 ∫ 1
r=0 erz(1 − r) dr , ZN(t, θ) equals

exp
(
θT MN(t) −

∫ t

0

∑
y

qN

(
xN(s), xN(s) + y

)(
θT y

)2
(∫ 1

0
erθT y(1 − r) dr

)
ds

)
.

As the jumps y are of the form (±1/N,0)T and (0,±1/N)T ,
∫ 1

0
erθT y(1 − r) dr ≤ 1

2
eγ

for ‖θ‖2 ≤ γN . It follows that, for all t ,

ZN(t, θ) ≥ exp
(
θT MN(t) − 1

2
eγ

∫ t

0

∑
y

qN

(
xN(s), xN(s) + y

)(
θT y

)2
ds

)
.

In particular, let θ1, θ2 ∈ R, and let θi = θiei (where ei is the unit vector with 1 in the ith
coordinate). Then, for all t , for i = 1,2, with MN,i(t) denoting the ith component of MN(t),

ZN

(
t, θ i) ≥ exp

(
θiMN,i(t) − 1

2
eγ θ2

i t (λi + μi)
1

N

)
.

For δ > 0, let T i+(δ) = inf{t ≥ 0 : MN,i(t) > δ} and let T i−(δ) = inf{t ≥ 0 : MN,i(t) < −δ}.
By optional stopping and Markov’s inequality,

P
(
T i+(δ) ≤ t0

) ≤ exp
(
−θiδ + 1

2
eγ θ2

i t0�
1

N

)
.

Choosing γ = log 2, θi = Nδ/(2t0�), we have 0 ≤ θi ≤ γN , as long as δ ≤ (log 4)t0�. We
then obtain, for i = 1,2,

P
(
T i+(δ) ≤ t0

) ≤ e−δ2N/(4t0�).

Arguing similarly about negative δ, we see that, for i = 1,2,

P

(
sup
t≤t0

∣∣MN,i(t)
∣∣ > δ

)
≤ 2e−δ2N/(4t0�).

Then the lemma follows from (13). �
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4. Intermediate phase: Long-term differential equation approximation. As in the
previous section, we use xN(t) to denote XN(t)/N . The aim of this section is to show
that xN(t) stays concentrated around the solution x(t) of the deterministic system (1) for
a long time, provided xN(0) and x(0) are close to each other, and to the fixed point
((λ1 − μ1)/λ1,0)T .

We will treat in detail only the case where the eigenvalues of matrix A are distinct, so
that a 
= 0. By analogy with the notation in Section 2.2, we let x̃N,1(t) = xN,1(t) − λ1−μ1

λ1
+

1
a
xN,2(t), x̃N,2(t) = xN,2(t), and we let x̃N (t) be the column vector with components x̃N,1(t)

and x̃N,2(t).
As in Section 2.2, L = min{η1, η2} and L1 = (λ1 + |λ1 − λ2|)η1+η2

η1
.

Additionally, we let b = |a|+1
|a| , c = b2

2L
(λ1 + μ1 + λ2 + μ2), and L̃ = max{η1, η2}.

LEMMA 6. Suppose 0 < ω ≤ 4(log 2)2Nc/b2. Let

fN(t) := max
{∣∣x̃N,1(t) − x̃1(t)

∣∣, ∣∣x̃N,2(t) − x̃2(t)
∣∣|a|−1}, t ≥ 0,

and suppose that

fN(0) ≤ eL̃

(
ωc

N

)1/2
.

Suppose also that y(0) := max{x̃1(0), |a|−1x̃2(0)} ≤ L/8L1. Then

P

(
sup

t≤�eω/8
fN(t) > 8eL̃

(
ωc

N

)1/2)
≤ 8e−ω/8.

The proof of Lemma 6 will follow shortly. By standard theory,

x̃N (t) = x̃N (0) +
∫ t

0
F

(
x̃N (s)

)
ds + MN(t),

where (MN(t)) is a martingale, and F(x) is the drift of (x̃N (t)) when in state x, given as
in (10). Analogously to the deterministic process x(t),

(14) x̃N (t) = eÃt x̃N (0) +
∫ t

0
eÃ(t−s)F̃

(
XN(s)

)
ds +

∫ t

0
eÃ(t−s) dMN(s),

where Ã is as in (11) and F̃ is as in (12). (This formula is proven in the same way as the
“variation of constants” formula in Lemma 4.1 in Barbour and Luczak [5].)

The following analysis of the martingale transform
∫ t

0 eÃ(t−s) dMN(s) is general, and ap-
plicable to any finite-dimensional jump Markov chain. We will use it to prove Lemma 6. In
what follows, the matrix norm we use is the operator norm induced by the vector ‖ · ‖2 norm.

LEMMA 7. Let (X(t)) be a Markov chain with state space X ⊆ R
k , where k is a positive

integer. For x, y ∈ R
k such that x, x + y ∈ X , let q̃(x, x + y) denote the rate of jump y from

x, and assume that there is a bound B > 0 such that ‖y‖2 ≤ B for each possible jump y.
Suppose further that, for each x ∈ X , the drift F(x) := ∑

y yq̃(x, x + y) at x can be written
in the form

F(x) = Ãx + F̃ (x),

where Ã is a k × k matrix with nonpositive eigenvalues. Let (M(t)) be the corresponding
Dynkin martingale, that is,

X(t) = X(0) +
∫ t

0

(
ÃX(s) + F̃

(
X(s)

))
ds + M(t).
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Given a vector e ∈ R
k with ‖e‖2 = 1, let Me(t) = ∫ t

0 eT eÃ(t−s) dM(s). For δ > 0, let T +
e (δ) =

inf{t ≥ 0 : Me(t) > δ} and let T −
e (δ) = inf{t ≥ 0 : Me(t) < −δ}. Let Te(δ) = T +

e (δ) ∧ T −
e (δ),

the infimum of times t such that Me(t) exceeds δ in absolute value.
Further, given vector e ∈ R

k and u ∈ R+, let ve(x,u) = ∑
y q̃(x, x + y)(eT eÃuy)2, and,

for K > 0, let Se(K) = inf{t ≥ 0 : ∫ t
0 ve(X(s), t − s) ds > K}. Let Si(K) = Sei

(K), where ei

is a unit vector with 1 in the ith coordinate.
There is a constant D dependent on matrix Ã such that the following holds. Suppose eT

is a unit left eigenvector of Ã with eigenvalue −η, where η ≥ 0. Then, given K,σ > 0, and
0 < ω ≤ 4(log 2)2K/(BD)2,

P
(
Te

(
eση

√
ωK

) ≤ σ
⌈
eω/8⌉ ∧ Se(K)

) ≤ 4e−ω/8.

Given numbers K1, . . . ,Kk > 0, let ω satisfy 0 < ω < 4(log 2)2Ki/(BD)2 for each i.
Then, for a unit vector e,

P

(
Te

(
e‖Ã‖2σ

√
ω

∑
i

Ki

)
≤ σ

⌈
eω/8⌉ ∧

(
k∧

i=1

Si(Ki)

))
≤ 4ke−ω/8.

If Ã is diagonal, then we may take D = 1; in general, D = max{‖eÃt‖2 : t ≥ 0}, which is
finite, since Ã has negative eigenvalues.

REMARK 1. The function ve(x,u) defined in the statement of the lemma is a measure
of variance of jumps in direction e for a time-inhomogeneous Markov chain with transition
rates q̃(x, x + y), where jump y at time u gets transformed by the matrix eÃu.

PROOF. Fix a time τ > 0, and consider Mτ given by

Mτ(t) =
∫ t∧τ

0
eÃ(τ−s) dM(s)

=
∫ t∧τ

0
eÃ(τ−s)

(
dX(s) − ∑

y

yq̃
(
X(s),X(s) + y

)
ds

)
.

Then (Mτ (t)) is a zero mean martingale. Also, for each t ≥ 0,∫ t

0
eÃ(t−s) dM(s) = Mt(t).

We now define

Y τ (t) =
∫ t∧τ

0
eÃ(τ−s)F

(
X(s)

)
ds + Mτ(t)

=
∫ t∧τ

0

∑
y

eÃ(τ−s)yq̃
(
X(s),X(s) + y

)
ds

+
∫ t∧τ

0
eÃ(τ−s)

(
dX(s) − ∑

y

yq̃
(
X(s),X(s) + y

)
ds

)

=
∫ t∧τ

0
eÃ(τ−s)dX(s).

The process (Y τ (t)) is a time-inhomogeneous Markov chain, stopped at τ .
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For θ ∈ R
k , let Rτ (t, θ) be defined by

Rτ (t, θ) = eθT Y τ (t)

−
∫ t∧τ

0

∑
y

q̃
(
X(r),X(r) + y

)(
eθT [Y τ (r)+eÃ(τ−r)y] − eθT Y τ (r))dr.

Then (Rτ (t, θ)) is a martingale. Also, for θ ∈ R
k , (Zτ (t, θ)) given by

Zτ (t, θ) = eθT Y τ (t) exp
(
−

∫ t∧τ

0

∑
y

q̃
(
X(s),X(s) + y

)(
eθT eÃ(τ−s)y − 1

)
ds

)

is a mean 1 martingale, since, for all t , using integration by parts to obtain the first equality,

Zτ (t, θ) = eθT Y τ (0)

+
∫ t

0
exp

(
−

∫ r∧τ

0

∑
y

q̃
(
X(s),X(s) + y

)(
eθT eÃ(τ−s)y − 1

)
ds

)
deθT Y τ (r)

−
∫ t∧τ

0
eθT Y τ (r)

∑
y

q̃
(
X(r),X(r) + y

)(
eθT eÃ(τ−r)y − 1

)

× exp
(
−

∫ r∧τ

0

∑
y

q̃
(
X(s),X(s) + y

)(
eθT eÃ(τ−s)y − 1

)
ds

)
dr

= 1 +
∫ t∧τ

0
exp

(
−

∫ r∧τ

0

∑
y

q̃
(
X(s),X(s) + y

)(
eθT eÃ(τ−s)y − 1

)
ds

)

×
(
deθT Y τ (r) − ∑

y

q̃
(
X(r),X(r) + y

)(
eθT [Y τ (r)+eÃ(τ−r)y] − eθT Y τ (r))dr

)

= 1 +
∫ t∧τ

0
exp

(
−

∫ r∧τ

0

∑
y

q̃
(
X(s),X(s) + y

)(
eθT eÃ(τ−s)y − 1

)
ds

)
dRτ (r, θ).

Note that Zτ (t, θ) can be written as

Zτ (t, θ) = exp
(
θT Y τ (t) −

∫ t∧τ

0

∑
y

q̃
(
X(s),X(s) + y

)
θT eÃ(τ−s)y ds

)

× exp
(
−

∫ t∧τ

0

∑
y

q̃
(
X(s),X(s) + y

)(
eθT eÃ(τ−s)y − 1 − θT eÃ(τ−s)y

)
ds

)

= exp
(
θT Mτ (t)

−
∫ t∧τ

0

∑
y

q̃
(
X(s),X(s) + y

)(
eθT eÃ(τ−s)y − 1 − θT eÃ(τ−s)y

)
ds

)
.

Since ez − 1 − z = z2 ∫ 1
r=0 erz(1 − r) dr , we see that Zτ (t, θ) equals

exp
(
θT Mτ (t)

−
∫ t∧τ

0

∑
y

q̃
(
X(s),X(s) + y

)(
θT eÃ(τ−s)y

)2
(∫ 1

0
erθT eÃ(τ−s)y(1 − r) dr

)
ds

)
.
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Recall that each jump y satisfies ‖y‖2 ≤ B , and set D = max{‖eÃu‖2 : u ≥ 0}: as Ã has
negative eigenvalues, the bound D is always finite, and is equal to 1 if Ã is diagonal. Since
s ≤ τ , it then follows that, for ‖θ‖2 ≤ �,∫ 1

0
erθT eÃ(τ−s)y(1 − r) dr ≤ 1

2
eB�‖eÃ(τ−s)‖2 ≤ 1

2
eB�D.

Hence, for all t ,

Zτ (t, θ) ≥ exp
(
θT Mτ (t) − 1

2
eB�D

∫ t∧τ

0

∑
y

q̃
(
X(s),X(s) + y

)(
θT eÃ(τ−s)y

)2
ds

)
.

Writing θ = ‖θ‖2e, for a unit vector e ∈ R
k ,

Zτ (t, θ) ≥ exp
(
‖θ‖2eT Mτ (t) − 1

2
eB�D‖θ‖2

2

∫ t∧τ

0
ve

(
X(s), τ − s

)
ds

)
.

Since (X(t)) is right-continuous, for K > 0, time Se(K) defined by Se(K) = inf{t ≥ 0 :∫ t
0 ve(X(s), t − s) ds > K} is a stopping time. Given u > 0, let

Su
e (K) = inf

{
t ≥ 0 :

∫ t∧u

0
ve

(
X(s), u − s

)
ds > K

}
.

Then, using continuity of the integral, necessarily either Su
e (K) < u or Su

e (K) = ∞. Note
that, if Se(K) ≥ τ , then

∫ t
0 ve(X(s), t − s) ds ≤ K for all t ≤ τ so St

e(K) = ∞ for all t ≤ τ .
For t > 0 and unit vector e, let Mτ

e (t) = eT Mτ (t). Also given δ > 0, let T τ,+
e (δ) = inf{t ≥

0 : Mτ
e (t) > δ}, and let T

τ,−
i (δ) = inf{t ≥ 0 : Mτ

e (t) < −δ}. Then T τ,±
e (δ) ≤ τ or T τ,±

e (δ) =
∞.

Given K > 0, on the event {T τ,+
e (δ) ≤ τ ∧ Sτ

e (K)},

Zτ (T τ,+
e (δ),‖θ‖2e

) ≥ exp
(
‖θ‖2δ − 1

2
eB�D‖θ‖2

2K

)
.

By optional stopping and Markov inequality,

P
(
T τ,+

e (δ) ≤ τ ∧ Sτ
e (K)

) ≤ exp
(
−‖θ‖2δ + 1

2
eB�D‖θ‖2

2K

)
.

Choosing ‖θ‖2 = δ/eB�DK , and assuming δ ≤ �KeB�D so that ‖θ‖2 ≤ �, we obtain

P
(
T τ,+

e (δ) ≤ τ ∧ Sτ
e (K)

) ≤ e−δ2/2KeB�D

,

and, similarly,

P
(
T τ,−

e (δ) ≤ τ ∧ Sτ
e (K)

) ≤ e−δ2/2KeB�D

.

Letting T τ
e (δ) = T τ,+

e (δ) ∧ T τ,−
e (δ), it follows that

P
(
T τ

e (δ) ≤ τ ∧ Sτ
e (K)

) ≤ 2e−δ2/2KeB�D

.

Choosing � = (BD)−1 log 2 and δ = √
ωK , with 0 < ω < 4(log 2)2K/(BD)2, we have

‖θ‖2 ≤ �, so

(15) P
(
T τ

e (
√

ωK) ≤ τ ∧ Sτ
e (K)

) ≤ 2e−ω/4.

Note that, for t ≤ τ , Mt(t) = eÃ(t−τ)Mτ (t), and so Mt
e(t) = eT eÃ(t−τ)Mτ (t). In particu-

lar, if eT is a left eigenvector of Ã with eigenvalue −η (η > 0), then Me(t) = Mt
e(t) =

eη(τ−t)Mτ
e (t). In general,

Me(t) = eT eÃ(t−τ)Mτ (t) ≤ ∥∥eÃ(t−τ)
∥∥

2

∥∥Mτ(t)
∥∥

2 ≤ e‖Ã‖2(τ−t)
∥∥Mτ(t)

∥∥
2.
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Choosing 0 < σ < τ , if eT is a left eigenvector of Ã with eigenvalue −η, then

sup
τ−σ≤t≤τ

∣∣Mt
e(t)

∣∣ ≤ eση sup
τ−σ≤t≤τ

∣∣Mτ
e (t)

∣∣.
For a general vector e,

sup
τ−σ≤t≤τ

∣∣Mt
e(t)

∣∣ ≤ eσ‖Ã‖2
∥∥Mτ(t)

∥∥
2.

Applying (15) to all times τ1 = σ , τ2 = 2σ , . . . , τj0 = j0σ , τj0+1 = Se(K) ∧ �eω/8σ ,
where j0 ≤ �eω/8 − 1 is the largest j such that jσ < Se(K) ∧ �eω/8σ , we see that

P
(∃j ≤ j0 + 1 : T τj

e (
√

ωK) ≤ τj ∧ S
τj
e (K)

) ≤ 4e−ω/8.

As noted above, t ≤ Se(K) implies Su
e (K) = ∞ for all u ≤ t , and so, for each j ≤ j0 + 1,

we have S
τj
e (K) = ∞.

So, for eT a left eigenvector of Ã with eigenvalue η, we obtain from the above that

P
(
Te

(
eση

√
ωK

) ≤ σ
⌈
eω/8⌉ ∧ Se(K)

) ≤ 4e−ω/8.

In general, given numbers K1, . . . ,Kk > 0, and a vector e, we similarly obtain

P

(
Te

(
e‖Ã‖2σ

√
ω

∑
i

Ki

)
≤ σ

⌈
eω/8⌉ ∧

(
k∧

i=1

Si(Ki)

))
≤ 4ke−ω/8.

�

PROOF OF LEMMA 6. We will apply Lemma 7 to the chain (x̃N (t)). The possible jumps
y of (x̃N (t)) are of the form ±(1/N,0)T and ±(1/(aN),1/N)T , so ‖y‖2 ≤ B := b/N .

We let vi(x̃N (s), u) = vei
(x̃N (s), u), where ve is defined in the statement of Lemma 7. We

first bound
∫ t

0 vi(x̃N(s), t − s) ds = ∫ t
0
∑

y q̃N(x̃N(s), x̃N(s) + y)(eÃ(t−s)y)2
i ds:

∫ t

0
v1

(
x̃N (s), t − s

)
ds ≤ λ1

N

∫ t

0
xN,1(s)

(
1 − xN,1(s) − xN,2(s)

)
e−2η1(t−s) ds

+ μ1

N

∫ t

0
xN,1(s)e

−2η1(t−s) ds + μ2

Na2

∫ t

0
xN,2(s)e

−2η1(t−s) ds

+ λ2

Na2

∫ t

0
xN,2(s)

(
1 − xN,1(s) − xN,2(s)

)
e−2η1(t−s) ds

≤ N−1(λ1 + μ1)

∫ t

0
e−2η1(t−s) ds

+ N−1 (λ2 + μ2)

a2

∫ t

0
e−2η1(t−s) ds

≤ N−1(2η1)
−1[(λ1 + μ1) + a−2(λ2 + μ2)

] ≤ c

N
;

∫ t

0
v2

(
x̃N (s), t − s

)
ds ≤ λ2

N

∫ t

0
xN,2(s)

(
1 − xN,1(s) − xN,2(s)

)
e−2η2(t−s) ds

+ μ2

N

∫ t

0
xN,2(s)e

−2η2(t−s) ds

≤ N−1(λ2 + μ2)

∫ t

0
e−2η2(t−s) ds ≤ N−1 λ2 + μ2

2η2
≤ c

b2N
.
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Using (14), (11), (12), and the definition of fN(t),∣∣x̃N,2(t) − x̃2(t)
∣∣ ≤ e−tη2

∣∣x̃N,2(0) − x̃2(0)
∣∣ + ∣∣∣∣

∫ t

0
e−(t−s)η2 dMN,2(s)

∣∣∣∣
+ λ2

|a|
η2

η1

∫ t

0
e−(t−s)η2

∣∣(x̃N,2(s)
)2 − (

x̃2(s)
)2∣∣ds

+ λ2

∫ t

0
e−(t−s)η2

∣∣x̃N,1(s)x̃N,2(s) − x̃1(s)x̃2(s)
∣∣ds

≤ e−tη2 |a|fN(0) +
∣∣∣∣
∫ t

0
e−(t−s)η2 dMN,2(s)

∣∣∣∣
+ λ2η2

η1

∫ t

0
e−(t−s)η2fN(s)

(
2x̃2(s) + |a|fN(s)

)
ds

+
∫ t

0
e−(t−s)η2λ2fN(s)

(
x̃2(s) + |a|fN(s) + |a|∣∣x̃1(s)

∣∣)ds

and∣∣x̃N,1(t) − x̃1(t)
∣∣

≤ e−tη1
∣∣x̃N,1(0) − x̃1(0)

∣∣ + ∣∣∣∣
∫ t

0
e−(t−s)η1 dMN,1(s)

∣∣∣∣
+ λ1

∫ t

0
e−(t−s)η1

∣∣x̃N,1(s)
2 − x̃1(s)

2∣∣ds

+ η2|λ1 − λ2|
η1a2

∫ t

0
e−(t−s)η1

∣∣x̃N,2(s)
2 − x̃2(s)

2∣∣ds

+ 1

|a|
(
|λ1 − λ2| + λ1η2

η1

)∫ t

0
e−(t−s)η1

∣∣x̃N,1(s)x̃N,2(s) − x̃1(s)x̃2(s)
∣∣ds

≤ e−tη1fN(0) +
∣∣∣∣
∫ t

0
e−(t−s)η1 dMN,1(s)

∣∣∣∣ + λ1

∫ t

0
e−(t−s)η1fN(s)

(
2
∣∣x̃1(s)

∣∣ + fN(s)
)
ds

+ |λ1 − λ2|η2

η1

∫ t

0
e−(t−s)η1fN(s)

(
2
x̃2(s)

|a| + fN(s)

)
ds

+
(
|λ1 − λ2| + λ1η2

η1

)∫ t

0
e−(t−s)η1fN(s)

(
x̃2(s)

|a| + fN(s) + ∣∣x̃1(s)
∣∣)ds.

Then, by Lemma 1, and since L1 = (λ1 + |λ1 − λ2|)(η1 + η2)/η1,

1

|a|
∣∣x̃N,2(t) − x̃2(t)

∣∣ ≤ e−tη2fN(0) + 1

|a|
∣∣∣∣
∫ t

0
e−(t−s)η2 dMN,2(s)

∣∣∣∣
+ L1

∫ t

0

(
fN(s)

)2
e−(t−s)η2 ds + 4L1y(0)e−tL

∫ t

0
fN(s) ds

and ∣∣x̃N,1(t) − x̃1(t)
∣∣ ≤ e−tη1fN(0) +

∣∣∣∣
∫ t

0
e−(t−s)η1 dMN,1(s)

∣∣∣∣
+ L1

∫ t

0
e−(t−s)η1

(
fN(s)

)2
ds + 4L1y(0)e−tL

∫ t

0
fN(s) ds.

Let T1 be the infimum of times t such that for either i = 1 or i = 2∣∣∣∣
∫ t

0
e−(t−s)ηi dMN,i(s)

∣∣∣∣ >
(

ωci

N

)1/2
eηi ,
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where c1 = c and c2 = c/b2. On the event t < T1,

|x̃N,2(t) − x̃2(t)|
|a| ≤ e−tη2fN(0) + L1

∫ t

0
e−(t−s)η2

(
fN(s)

)2
ds

+ 4L1y(0)e−tL
∫ t

0
fN(s) ds + 1

|a|b
(

ωc

N

)1/2
eη2

and
∣∣x̃N,1(t) − x̃1(t)

∣∣ ≤ e−tη1fN(0) + L1

∫ t

0
e−(t−s)η1

(
fN(s)

)2
ds

+ 4L1y(0)e−tL
∫ t

0
fN(s) ds +

(
ωc

N

)1/2
eη1 .

Hence, for t < T1,

fN(t) ≤ e−tLfN(0)+L1

∫ t

0
e−(t−s)L(

fN(s)
)2

ds+4L1y(0)e−tL
∫ t

0
fN(s) ds+

(
ωc

N

)1/2
eL̃.

Let T2 = inf{t : fN(t) > 10eL̃(ωc
N

)1/2}. Then on the event t < T1 ∧ T2,

fN(t) ≤ e−tLfN(0) + 100e2L̃L1

L

ωc

N
+ 4L1y(0)e−tL

∫ t

0
fN(s) ds +

(
ωc

N

)1/2
eL̃,

so, for N large enough,

fN(t) ≤ e−tLfN(0) + 4L1y(0)e−tL
∫ t

0
fN(s) ds + 2

(
ωc

N

)1/2
eL̃.

Letting gN(t) = fN(t)etL, we see that, for large N , on the event t < T1 ∧ T2,

gN(t) ≤ gN(0) + 4L1y(0)

∫ t

0
e−sLgN(s) ds + 2etL

(
ωc

N

)1/2
eL̃.

By Grönwall’s inequality, for large N , for t < T1 ∧ T2,

gN(t) ≤
(
gN(0) + 2etL+L̃

(
ωc

N

)1/2)
e

4L1y(0)

L ,

so, if y(0) ≤ L/8L1 and fN(0) ≤ eL̃(ωc/N)1/2, then

fN(t) ≤ 2
(
fN(0) + 2eL̃

(
ωc

N

)1/2)
≤ 6eL̃

(
ωc

N

)1/2
.

Fix 0 < t0 ≤ eω/8. Let T3 = inf{t : fN(t) > 8eL̃(ωc
N

)1/2}. We now apply Lemma 7 to (x̃N (t)),
with matrix Ã as in (11) and F̃ as in (12), B = b/N , σ = 1. We take η to be equal to ηi , D =
1, K to be equal to Ki = ciN

−1, e to be equal to ei , for i = 1,2, and note that we have shown
that P(

∫ t
0 vi(x̃N (s), t − s) ds ≤ Ki, i = 1,2,∀t ≤ �eω/8}) = 1, and so P(Si(Ki) = ∞) = 1

for i = 1,2. Lemma 7 then implies that P(T1 ≤ �eω/8) ≤ 8e−ω/8.
Also, since jumps are of size O(1/N), P(T2 ≤ T3) = 0 for large N . Furthermore, we

showed above that P(T3 < T1 ∧ T2) = 0. Then we can only have T3 < T1 if T3 ≥ T2, and
hence P(T3 < T1) = 0. It follows that

P
(
T3 ≤ ⌈

eω/8⌉) ≤ P
(
T1 ≤ ⌈

eω/8⌉) + P(T3 < T1) ≤ 8e−ω/8,

which completes the proof of Lemma 6. �
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REMARK 2. In the case when a = 0, the matrix A has a repeated eigenvalue, and
is not diagonalisable. We work with the original variables xN,1(t) and xN,2(t), and let
fN(t) = maxi=1,2 |xN,i(t) − xi(t)|. Using Lemmas 3 and 4, and the fact that, for all t ,
λ2e

−(λ1−μ1)t/2[(λ1 − μ1)t + λ1/λ2] ≤ λ1 + λ2, we show that

fN(t) ≤ 2e−(λ1−μ1)t/2fN(0) + 2(λ1 + λ2)

∫ t

0
e−(λ1−μ1)(t−s)/2fN(s)2 ds

+ 16(λ1 + λ2)y(0)e−(λ1−μ1)t/2
∫ t

0
fN(s) ds + M,

where

M = max
{∣∣∣∣

∫ t

0

(
eA(t−s) dMN(s)

)
1

∣∣∣∣,
∣∣∣∣
∫ t

0

(
eA(t−s) dMN(s)

)
2

∣∣∣∣
}
,

euA =
(
e−u(λ1−μ1) −(λ1 − μ1)ue−u(λ1−μ1)

0 e−u(λ1−μ1)

)
,

y(0) = max{|x1(0)− (λ1 −μ1)/λ1|, x2(0)}. The remainder of the analysis can then be carried
out in a way analogous to the case with distinct eigenvalues. We apply Lemma 7, taking e = ei

for i = 1,2. We further take B = 1/N , K1 = K2 = N−1(2η)−1(λ1 + μ1 + λ2 + μ2), where
η = η1 = η2 = λ1 − μ1. Also, using the fact that the operator-induced norm ‖ · ‖2 of a matrix
is at most its Frobenius norm, we can take D = √

2.
Then we can bound the martingale deviation M by e2(λ1−μ1)

√
ω(λ1+μ1+λ2+μ2)

N(λ1−μ1)
, and hence

we can show that, for large N , with probability at least 1 − 8e−ω/8,

fN(t) ≤ 8e2(λ1−μ1)N−1/2
√

ω(λ1 + μ1 + λ2 + μ2)/(λ1 − μ1),

over an interval of length �eω/8, provided ω ≤ 4(log 2)2(λ1 + λ2 + μ1 + μ2)η
−1N , and

provided y(0) ≤ (λ1 − μ1)/64(λ1 + λ2), and

fN(0) ≤ e2(λ1−μ1)N−1/2
√

ω(λ1 + μ1 + λ2 + μ2)/(λ1 − μ1).

5. Final phase.

LEMMA 8. For w ∈R, let

tN (y,w) = (μ2 − λ2μ1/λ1)
−1(logy + log(1 − λ2μ1/λ1μ2) + w

)
.

Let 0 < ε < 1/4. Suppose that |xN,1(0) − λ1−μ1
λ1

| ≤ N−ε and |xN,2(0) − N−1/4| ≤ N−1/3.

Then, the weaker species extinction time κN satisfies P(κN ≤ tN (N3/4,w)) → e−e−w
as N →

∞.

Let (Y (t))t≥0 be a subcritical linear birth and death chain, with birth and death rates λ

and μ, where μ > λ. Let T Y = inf{t ≥ 0 : Y(t) = 0}. It is a well known fact (see, e.g.,
Renshaw [23]) that, for t ≥ 0,

P
(
T Y ≤ t

) = P
(
Y(t) = 0

) =
(

1 − (μ − λ)e−(μ−λ)t

μ − λe−(μ−λ)t

)Y (0)

.

Assume that Y(0) = y, and let

t (y,w) = logy + log(μ − λ) − logμ + w

μ − λ
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for y and w such that t (y,w) ≥ 0. Then e−(μ−λ)t (y,w) = μe−w/(μ − λ)y, so

P
(
T Y ≤ t (y,w)

) =
(

1 − e−w/y

1 − λe−w/(μ − λ)y

)y

.

Now, consider a sequence (YN(t)) of linear birth and death chains with birth rate λ = λ(N)

and death rate μ = μ(N), where μ(N) > λ(N). Assume further that YN(0) = y(N), where
y(N)(μ − λ) → ∞. Then, as N → ∞,

P
(
T YN ≤ t

(
y(N),w

)) =
(

1 − e−w/y(N)

1 − λe−w/(μ − λ)y(N)

)y(N)

=
(

1 − e−w

y(N) − λe−w/(μ − λ)

)y(N)

→ e−e−w

.

In other words, the following holds for the asymptotic distribution of the extinction times of
a sequence of subcritical linear birth and death chains.

LEMMA 9. Let (YN(t)) be a sequence of subcritical linear birth and death chains with
birth and death rates λ(N) and μ(N), respectively, where μ(N) > λ(N). Suppose further
that YN(0) = y(N), where y(N)(μ − λ) → ∞. Let T YN = inf{t ≥ 0 : YN(t) = 0}. Then, as
N → ∞,(

μ(N) − λ(N)
)
T YN − (

logy(N) + log
(
μ(N) − λ(N)

) − logμ(N)
) → G,

in distribution, where G has a standard Gumbel distribution.

PROOF OF LEMMA 8. Let x1(0) = xN,1(0) and x2(0) = xN,2(0), so |x1(0) − λ1−μ1
λ1

| ≤
N−ε and x2(0) ≤ 2N−1/4.

By Lemma 2, for large enough N , for all t ≥ 0, x2(t) ≤ 4N−1/4. Also, by Lemma 1, if N

is large enough, for all t ≥ 0, |x1(t) − (λ1 − μ1)/λ1| ≤ 4N−ε .
Let ZN be a linear birth and death process defined as follows. The death rate is μ2, the

birth rate is

λ2

(
1 − λ1 − μ1

λ1
+ 5N−ε

)
= λ2μ1

λ1
+ 5λ2N

−ε,

and ZN(0) = N3/4 + N2/3. By Lemma 9, as N → ∞, in distribution,(
μ2 − λ2μ1

λ1
− 5λ2N

−ε

)
T ZN

−
(

log
(
N3/4 + N2/3) + log

(
μ2 − λ2μ1

λ1
− 5λ2N

−ε

)
− logμ2

)
→ G,

where G has a standard Gumbel distribution, and so, for w ∈ R,

P

(
T ZN ≤ log(N3/4 + N2/3) + log(μ2 − λ2μ1

λ1
− 5λ2N

−ε) − logμ2 + w

μ2 − λ2μ1
λ1

− 5λ2N−ε

)
→ e−e−w

.

This means that

P

(
T ZN ≤ logN3/4 + log(μ2 − λ2μ1

λ1
) − logμ2 + w + o(1)

μ2 − λ2μ1
λ1

)
→ e−e−w

,

and so also(
μ2 − λ2μ1

λ1

)
T ZN −

(
logN3/4 + log

(
μ2 − λ2μ1

λ1

)
− logμ2

)
→ G.
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Let WN be a linear birth and death process defined as follows. The death rate is μ2, the
birth rate is

λ2

(
1 − λ1 − μ1

λ1
− 6N−ε

)
= λ2μ1

λ1
− 6λ2N

−ε,

and WN(0) = N3/4 − N2/3. By Lemma 9, in distribution,(
μ2 − λ2μ1

λ1
+ 6λ2N

−ε

)
T WN − log

(
N3/4(1 − N−1/12))

− log
(
μ2 − λ2μ1

λ1
+ 6λ2N

−ε

)
+ logμ2 → G,

where G has a standard Gumbel distribution. As above, it follows also that(
μ2 − λ2μ1

λ1

)
T WN −

(
logN3/4 + log

(
μ2 − λ2μ1

λ1

)
− logμ2

)
→ G.

Let fN(t) be as in Lemma 6, and let EN(t) be the event that fN(s) ≤ N−1/3 for all s < t .
For N large enough, on the event EN(t), for all s < t ,

−5N−ε ≤ xN,1(s) − λ1 − 1

λ1
≤ 5N−ε,

and, furthermore,

0 ≤ xN,2(s) ≤ 4N−1/4 + N−1/3 ≤ N−ε.

Therefore, on the event EN(t), we can couple ZN , WN and XN,2 in such a way that, for s ≤ t ,

WN(s) ≤ XN,2(s) ≤ ZN(s).

It follows that, on the event EN(t), T ZN ≤ t implies κN ≤ t , and κN ≤ t implies T WN ≤ t .
Also, by Lemma 6 (with any ω = ω(N) such that ω(N)/N1/3 → 0), P(EN(t)) → 0 as long
as t ≤ eω/8. So, choosing ω(N) = N1/4, for t ≤ eω/8,

P
({

T ZN ≤ t
} ∩ EN(t)

) ≤ P
({κN ≤ t} ∩ EN(t)

) ≤ P
({

T WN ≤ t
} ∩ EN(t)

)
.

Hence, for any fixed w,

P
(
κN ≤ t

(
N3/4,w

)) ≤ P
(
T WN ≤ t

(
N3/4,w

)) + P
(
EN

(
t
(
N3/4,w

))) → e−e−w

and

P
(
κN ≤ t

(
N3/4,w

)) ≥ P
(
T ZN ≤ t

(
N3/4,w

)) − P
(
EN

(
t
(
N3/4,w

))) → e−e−w

,

which completes the proof of Lemma 8. �

6. Proof of Theorem 2. By assumption, xN(0) = (αN,βN)T , where αN → α and βN →
β as N → ∞. We let x(0) = xN(0) as the initial condition for (1). By Theorem 4 and the dis-
cussion following it, if λ1/μ1 > λ2/μ2 and λ1/μ1 > 1, then the fixed point x∗ = (

λ1−μ1
λ1

,0)T

of (1) is globally attractive, so that there exists t0 > 0 such that, with L = min{η1, η2}, L1 =
(λ1 + |λ1 − λ2|)(η1 + η2)/η1, as defined in Section 2.2, max{|x̃1(t0)|, |a|−1x̃2(t0)} ≤ L/8L1.
It is also not hard to see that we can choose a finite t0 that works for every value of N , for
N -dependent initial conditions as above.

Let tN = inf{t ≥ t0 : x2(t) ≤ N−1/4}. Lemma 2 implies that, as N → ∞,

tN = 1

4η2
logN + O(1).
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It then also follows from Lemmas 1 and 2 that there exists 0 < ε < 1/4 such that, if N is
large enough, then ∣∣∣∣x1(tN) − λ1 − μ1

λ1

∣∣∣∣ ≤ 1

2
N−ε.

By Lemma 5 with δ = N−5/12 and Lemma 6 with ω = N1/4, if N is large enough, then
with probability at least 1 − e−N1/12

sup
t≤tN

∣∣xN,1(t) − x1(t)
∣∣ ≤ 1

2
N−1/3 ≤ 1

2
N−ε;

sup
t≤tN

∣∣xN,2(t) − x2(t)
∣∣ ≤ 1

2
N−1/3.(16)

By (6), the length t0 of the first phase can be written as

λ2

μ2λ1 − μ1λ2
log

(
x1(t0)/x1(0)

) − λ1

μ2λ1 − μ1λ2
log

(
x2(t0)/x2(0)

)
,

and the length tN − t0 of the second phase can be written as

λ2

μ2λ1 − μ1λ2
log

(
x1(tN)/x1(t0)

) − λ1

μ2λ1 − μ1λ2
log

(
x2(tN)/x2(t0)

)
.

When (16) holds, we take xN,1(tN) and xN,2(tN) as initial values in Lemma 8. On the
event Ẽ that (16) holds, by Lemma 8, the length of the third phase is

λ1

μ2λ1 − μ1λ2

(
logN3/4 + log

(
1 − μ1λ2

λ1μ2

))
+ λ1

μ2λ1 − μ1λ2
GN,

where GN converges in distribution to a standard Gumbel variable G. Hence, on the event Ẽ ,
the total time κN until the extinction of XN,2 is

λ2

μ2λ1 − μ1λ2
log

(
x1(tN)/αN

) − λ1

μ2λ1 − μ1λ2
log

(
N−1/4/βN

)

+ λ1

μ2λ1 − μ1λ2

(
logN3/4 + log

(
1 − μ1λ2

μ2λ1

))
+ λ1

μ2λ1 − μ1λ2
GN.

Since P(Ẽ) → 1, αN → α, βN → β as N → ∞, and, for large N , |x1(tN)− (λ1 −μ1)/λ1| ≤
N−ε , we conclude

(17)
μ2λ1 − μ1λ2

λ1
κN −

(
logNβ

(
1 − μ1λ2

μ2λ1

)
+ λ2

λ1
log

(
1 − μ1/λ1

α

))
→ G,

in distribution, with G a standard Gumbel, so the first part of Theorem 2 follows. The second
part of Theorem 2 then follows from Theorem 1, since, after the extinction of the weaker
species, the stronger species evolves as a single supercritical logistic epidemic, and we have
shown that κN is with high probability negligible in comparison with κ̃N .

7. Near-critical phenomena. In this section, we will prove Theorem 3, showing that the
formulae for the extinction times κN and κ̃N of the weaker and stronger species in Theorem 2
extend to near-criticality.

Recall that μ1 = μ2 = 1, and λ1 = λ1(N), λ2 = λ2(N) are such that λ1 > λ2, λ1 is
bounded, and (λ1 − λ2)(λ1 − 1)−1 → 0. Recall from (2) that we further assume that

N(λ1 − λ2)
3(λ1 − 1)−1/ log log

(
N(λ1 − λ2)

2) → ∞.
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We believe the last condition is not best possible, and we only need N(λ1 − λ2)
2 → ∞ for

Theorem 3 to hold—see Section 7.1.
Note that under our assumptions (λ2 − 1)(λ1 − 1)−1 → 1. Also, the quantity a defined

in (8) satisfies 0 < a < 1 for N large enough, and converges to 1 as N → ∞. As before, we
assume that xN,1(0) = N−1XN,1(0) = αN , xN,2(0) = N−1XN,2(0) = βN , where αN → α >

0 and βN → β > 0.
The idea of the proof is as follows. The sum XN,1(t) + XN,2(t) behaves approximately

like a single stochastic SIS logistic epidemic process with recovery rate 1 and infection
rate somewhere between λ2 and λ1. (The difference between λ2 and λ1 is smaller than
the difference between either λ1 or λ2 and the recovery rate 1.) Initially, we track the sum
XN,1(t) + XN,2(t) by sandwiching it between two SIS logistic epidemics, until it reaches
near (λ1 − 1)/λ1; it will then stay near there for a very long time with high probability. Si-
multaneously, we track the ratio XN,1(t)/XN,2(t), which has a positive but slow drift and
stays close to XN,1(0)/XN,2(0) for a time almost as long as (λ1 − λ2)

−1.
Subsequently, we show that the transformed variables x̃N,1(t) = xN,1(t) − λ1−1

λ1
+

1
a
xN,2(t), x̃N,2(t) = xN,2(t) follow closely the deterministic process for a long time, until

x̃N,2(t) = N−1XN,2(t) is o(λ1 −λ2) and N−1XN,1(t) = x̃N,1(t)+ λ1−1
λ1

− 1
a
x̃N,2(t) is within

distance o(λ1 − λ2) of its carrying capacity (λ1 − 1)/λ1. From then on until extinction, we
approximate XN,2(t) by a linear birth-and-death chain with birth rate λ2/λ1 and death rate 1.

The first lemma compares XN,1(t) + XN,2(t) to single stochastic SIS logistic epidemic
processes with suitable parameter values.

LEMMA 10. Let YN(t) denote the number of infectives in a stochastic logistic SIS epi-
demic with infection rate λ2 and recovery rate 1. If XN,1(0) + XN,2(0) ≥ YN(0), then
XN,1(t) + XN,2(t) stochastically dominates YN(t).

Let ZN(t) denote the number of infectives in a stochastic SIS logistic epidemic with infec-
tion rate λ1 and recovery rate 1. If XN,1(0) + XN,2(0) ≤ ZN(0), then XN,1(t) + XN,2(t) is
stochastically dominated by ZN(t).

PROOF. The process XN,1(t)+XN,2(t) jumps by +1 at rate at least λ2(XN,1 +XN,2) ×
(1 − XN,1 − XN,2) and jumps by −1 at rate XN,1 + XN,2. Thus we can couple XN,1 + XN,2
and YN(t) so they always jump down together as much as possible, and jump up together
as much as possible, and otherwise each jumps on its own with any excess rate in either
direction. With this coupling, XN,1(t) + XN,2(t) ≥ YN(t). The second part can be proved
analogously. �

Next, we establish concentration of measure for the supercritical stochastic SIS logistic
epidemic, showing that it follows the deterministic epidemic for a long time. We will use
this to show that XN,1(t) + XN,2(t) rapidly arrives near the carrying capacity of the stronger
species.

LEMMA 11. Let YN(t) be the number of infectives in a stochastic SIS logistic epidemic
with infection rate λ = λ(N) and recovery rate μ = μ(N), where λ > μ > 0. Let y(t) denote
the proportion of infectives in the corresponding deterministic SIS logistic epidemic. Suppose
that λ,μ are bounded, and (λ − μ)2N → ∞ as N → ∞. Let ω = ω(N) > 0 be such that
N(λ − μ)2/ω → ∞ as N → ∞.

We assume that 0 < y(0) ≤ 2(λ − μ)/λ, and that |N−1YN(0) − y(0)| ≤ 1
2

√
2ω(λ+μ)

Nλ
. If

y(0) ≥ (λ − μ)/λ, then, for N sufficiently large,

P

(
sup

t≤(λ−μ)−1eω/8

∣∣N−1YN(t) − y(t)
∣∣ > 4e2

√
2ω(λ + μ)

Nλ

)
≤ 4e−ω/8.
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If y(0) < (λ − μ)/λ, then, for N sufficiently large,

P

(
sup

t≤(λ−μ)−1eω/8

∣∣N−1YN(t) − y(t)
∣∣ > 4e

2(λ−μ)
λy(0)

√
2ω(λ + μ)

Nλ

)
≤ 4e−ω/8.

PROOF. Since λ > μ, the solution y(t) to

(18)
dy(t)

dt
= λy(t)

(
1 − y(t)

) − μy(t),

converges to (λ − μ)/λ as t → ∞.
Let ỹ(t) = y(t) − (λ − μ)/λ and let ỹN (t) = N−1YN(t) − (λ − μ)/λ. Then

ỹ(t) = ỹ(0) − (λ − μ)

∫ t

0
ỹ(s) ds − λ

∫ t

0
ỹ(s)2 ds

and

ỹN (t) = ỹN (0) − (λ − μ)

∫ t

0
ỹN (s) ds − λ

∫ t

0
ỹN (s)2 ds + mN(t),

where (mN(t)) is a zero-mean martingale. Treating this equation as a perturbation of a linear
equation, see Chapter 6 of Pazy [22], cf. Section 2.2 and equation (14) in the present paper,
it follows that

ỹ(t) = e−(λ−μ)t ỹ(0) − λ

∫ t

0
e−(λ−μ)(t−s)ỹ(s)2 ds

and

ỹN (t) = e−(λ−μ)t ỹN (0) − λ

∫ t

0
e−(λ−μ)(t−s)ỹN (s)2 ds +

∫ t

0
e−(λ−μ)(t−s) dmN(s).

Letting fN(t) = |ỹ(t) − ỹN (t)| = |y(t) − N−1YN(t)|, we thus have

fN(t) ≤ fN(0)e−(λ−μ)t + λ

∫ t

0
e−(λ−μ)(t−s)(fN(s)

)2
ds

+ 2λ

∫ t

0
e−(λ−μ)(t−s)fN(s)

∣∣ỹ(s)
∣∣ds +

∣∣∣∣
∫ t

0
e−(λ−μ)(t−s) dmN(s)

∣∣∣∣.
Let yN(t) = N−1YN(t), and T1 = inf{t : yN(t) > 2y(t)}. To estimate the deviations of the
martingale transform

∫ t
0 e−(λ−μ)(t−s) dmN(s), let v(y,u) = e−2(λ−μ)uN−1(λy(1 − y)+μy),

and note that, on the event t < T1,∫ t

0
v
(
ỹN (s), t − s

)
ds = λ

N

∫ t

0
yN(s)

(
1 − yN(s)

)
e−2(λ−μ)(t−s) ds

+ μ

N

∫ t

0
yN(s)e−2(λ−μ)(t−s) ds

≤ 2(λ + μ)

N

∫ t

0
e−2(λ−μ)(t−s)y(s) ds.

As is well known, the solution y(t) to (18) above satisfies

(19) y(t) = y(0)(λ − μ)

λy(0) + λe−(λ−μ)t (
λ−μ

λ
− y(0))

,

and so ỹ(t) = y(t) − (λ − μ)/λ satisfies

(20) ỹ(t) = ỹ(0)e−(λ−μ)t

y(0) λ
λ−μ

(1 − e−(λ−μ)t ) + e−(λ−μ)t
.
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Assuming first y(0) ≥ (λ−μ)/λ, we have (λ−μ)/λ ≤ y(t) ≤ y(0) ≤ 2(λ−μ)/λ. It follows
that, on the event t < T1, ∫ t

0
v
(
ỹN (s), t − s

)
ds ≤ 2(λ + μ)

Nλ
.

Given ω = ω(N) > 0, let T2 be the infimum of times t such that

∣∣∣∣
∫ t

0
e−(λ−μ)(t−s) dmN(s)

∣∣∣∣ > 3

√
2ω(λ + μ)

Nλ
.

By Lemma 7 applied to (ỹN (t)), with k = 1, B = 1/N , Ã = −(λ − μ), D = 1, σ = 1
λ−μ

,

η = λ − μ, K = 2(λ+μ)
Nλ

, we see that, if ω ≤ 8(log 2)2N(λ + μ)/λ (which holds for N large
enough if N(λ − μ)2/ω → ∞) and t0(N) ≤ �eω/8/(λ − μ), then

P(T2 ≤ T1 ∧ t0) ≤ 4e−ω/8.

Also, by the above, and using the assumption that fN(0) ≤ 1
2

√
2ω(λ+μ)

Nλ
, on the event t <

T1 ∧ T2,

fN(t) ≤ λ

∫ t

0
e−(λ−μ)(t−s)(fN(s)

)2
ds + 2λ

∫ t

0
e−(λ−μ)(t−s)fN(s)

∣∣ỹ(s)
∣∣ds

+ 7

2

√
2ω(λ + μ)

Nλ
.

Let T3 be the infimum of times t such that fN(t) > 5e4
√

2ω(λ+μ)
Nλ

. Then, if N is large enough,
on the event t < T1 ∧ T2 ∧ T3,

fN(t) ≤ λ

λ − μ

50e8ω(λ + μ)

Nλ
+ 2λ

∫ t

0
e−(λ−μ)(t−s)fN(s)

∣∣ỹ(s)
∣∣ds + 7

2

√
2ω(λ + μ)

Nλ
.

Since N(λ − μ)2/ω → ∞, then, for N large enough,

λ

λ − μ

50e8ω(λ + μ)

N
≤ 1

2

√
2ω(λ + μ)

Nλ
,

and so, for N large enough, on the event t < T1 ∧ T2 ∧ T3,

fN(t)e(λ−μ)t ≤ 2λ

∫ t

0
e(λ−μ)sfN(s)

∣∣ỹ(s)
∣∣ds + 4e(λ−μ)t

√
2ω(λ + μ)

Nλ
.

From (20), ỹ(t) ≤ e−(λ−μ)t ỹ(0) ≤ e−(λ−μ)t (λ − μ)/λ, so, by Grönwall’s inequality, for t <

T1 ∧ T2 ∧ T3,

fN(t) ≤ 4

√
2ω(λ + μ)

Nλ
e2.

Hence, if T4 is the infimum of t such that fN(t) > 4
√

2ω(λ+μ)
Nλ

e4, then

P(T4 ≤ t0) ≤ P(T1 ∧ T2 ∧ T3 ≤ T4 ∧ t0),

and so, since P(T3 ≤ T4) = 0 and P(T1 ≤ T4) = 0 for N large enough,

P(T4 ≤ t0) ≤ P(T1 ≤ T4) + P(T3 ≤ T4) + P(T2 ≤ T1 ∧ t0) ≤ 4e−ω/8,
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and so, as claimed, for N large enough,

P

(
sup

t≤(λ−μ)−1�eω/8

∣∣N−1YN(t) − y(t)
∣∣ > 4e4

√
2ω(λ + μ)

Nλ

)
≤ 4e−ω/8.

The case 0 < y(0) ≤ λ−μ
λ

is similar. Here we use that, from (19), y(0) ≤ y(t) ≤ λ−μ
λ

, and,
from (20),

∣∣ỹ(t)
∣∣ ≤ |ỹ(0)|(λ − μ)

y(0)λ
e−(λ−μ)t . �

LEMMA 12. Let YN(t) denote the number of infective individuals in a stochastic SIS lo-
gistic epidemic with infection rate λ = λ(N) and recovery rate μ = μ(N). Let y(t) denote the
proportion of infectives in the corresponding deterministic SIS logistic epidemic. We assume
that λ = λ(N) and μ = μ(N), where λ,μ are bounded, λ > μ > 0, and (λ − μ)2N → ∞ as
N → ∞.

Let yN(t) = N−1YN(t), and assume that yN(0) > 2(λ − μ)/λ and y(0) = yN(0). Let
τ = τ(N) be such that y(τ) = 2(λ − μ)/λ. Then, for large N ,

P

(
sup
t≤τ

∣∣yN(t) − y(t)
∣∣ > 4

(
N(λ − μ)2)1/16

√
yN(0)(λ + μ)

N(λ − μ)

)
≤ 2e−(N(λ−μ)2)1/8/8.

PROOF. We have

yN(t) − y(t) = (
yN(0) − y(0)

) − λ

∫ t

0

(
yN(s) − y(s)

)(
yN(s) + y(s) − λ − μ

λ

)
ds + mN(s).

For all s, y(s) ≥ (λ−μ)/λ, so yN(s)+y(s)−(λ−μ)/λ ≥ 0. By Lemma 3.2 in Brightwell,
House and Luczak [6],

sup
t≤τ

∣∣yN(t) − y(t)
∣∣ ≤ 2

∣∣yN(0) − y(0)
∣∣ + 2 sup

t≤τ

∣∣mN(s)
∣∣ = 2 sup

t≤τ

∣∣mN(s)
∣∣.

From (19),

e(λ−μ)τ − 1 = 1 − 2(λ − μ)

λy(0)
.

Arguing as in the proof of Lemma 3.1 in Brightwell, House and Luczak [6], using standard
martingale techniques (as in the proof of Lemma 5), and the fact that∫ t

0
y(s) ds = 1

λ
log

(
λy(0)

(
e(λ−μ)t − 1

) + (λ − μ)
) − 1

λ
log(λ − μ),

we see that, if φ = φ(N) ≤ N1/2, then

P

(
sup
t≤τ

∣∣yN(t) − y(t)
∣∣ > 4

√
yN(0)φ(λ + μ)/N(λ − μ)

)
≤ 2e−φ/8,

and so, taking φ = (N(λ − μ)2)1/8,

P

(
sup
t≤τ

∣∣yN(t) − y(t)
∣∣ > 4

(
N(λ − μ)2)1/16

√
yN(0)(λ + μ)

N(λ − μ)

)
≤ 2e−(N(λ−μ)2)1/8/8. �

Next we consider the ratio Q(XN(t)) = XN,1(t)/XN,2(t). We will show that the value
of Q(XN(t)) does not change very much over a time period of length “nearly” (λ1 − λ2)

−1.
Recall that N−1XN,1(0) = αN and N−1XN,2(0) = βN , where αN → α and βN → β as N →
∞.
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LEMMA 13. Suppose that XN,2(0) ≥ 2N(λ1 − λ2). Let ψ = ψ(N) → ∞ in such a way
that (λ1 − λ2)ψ → 0 as N → ∞. Let t0 = (λ1 − λ2)

−1ψ−1. Then, for N large enough,

P

(
sup
t≤t0

∣∣∣∣XN,1(t)

XN,2(t)
− XN,1(0)

XN,2(0)

∣∣∣∣ > 2ψ−1/4
)

≤ 2e
− ψ1/2β2

128α(α+β) + 4e−√
N(λ2−1).

PROOF. Let T0 = inf{t ≥ 0 : XN,2(t) ≤ 1}. Given a vector X = (X1,X2)
T with integer

components, such that X1 ≥ 0, X2 > 1 and X1 + X2 ≤ N , the drift gN(X) in Q(X) is

1

X2
λ1X1

(
1 − X1

N
− X2

N

)
− X1

X2

+ X1

(
1

X2 + 1
− 1

X2

)
λ2X2

(
1 − X1

N
− X2

N

)
+ X1

(
1

X2 − 1
− 1

X2

)
X2

=
(

1 − X1

N
− X2

N

)(
λ1X1

X2
− λ2X1

X2 + 1

)
− X1

X2
+ X1

X2 − 1
.

Clearly, we see that gN(XN(t)) ≥ 0 for all t < T0. Also,

gN(X) = X1

X2
(λ1 − λ2) + λ2X1

(
1

X2
− 1

X2 + 1

)
− X1

(
1

X2
− 1

X2 − 1

)

+
(

X1

N
+ X2

N

)
X1

(
λ2

X2 + 1
− λ1

X2

)

≤ X1

X2
(λ1 − λ2) + λ2X1

(
1

X2
− 1

X2 + 1

)
− X1

(
1

X2
− 1

X2 − 1

)

= X1

X2

(
λ1 − λ2 + λ2

X2 + 1
+ 1

X2 − 1

)
.

Let T1 = inf{t ≥ 0 : XN,2(t) − 1 < N(λ1 − λ2)}. Then, since N(λ1 − λ2)
2 → ∞, we have

0 ≤ gN(XN(t)) ≤ 3Q(XN(t))(λ1 − λ2) for t < T0 ∧ T1, if N is large enough.
We write Q(XN(t)) = Q(XN(0))+ ∫ t

0 gN(XN(s)) ds +MN(t), where MN(t) is a martin-
gale. Let RN(X) be given by

λ1X1

X2
2

(
1 − X1

N
− X2

N

)
+ X1

X2
2

+ X2
1

(
1

X2 + 1
− 1

X2

)2
λ2X2

(
1 − X1

N
− X2

N

)

+ X2
1

(
1

X2 − 1
− 1

X2

)2
X2.

We denote q0 := Q(XN(0)) = αN/βN . Let T2 be the infimum of times t such that
Q(XN(t)) > 2q0. It is easily seen that, for t < T0 ∧ T1 ∧ T2, if N is large enough,

RN

(
XN(t)

) ≤ 4q0(1 + q0)(λ1 − λ2).

Letting T (δ) = inf{t ≥ 0 : |MN(t)| > δ}, a standard exponential martingale argument, as in
the proof of Lemma 5, shows that, if δ ≤ t0 and N is large enough, then

P
(
T (δ) ≤ t0 ∧ T0 ∧ T1 ∧ T2

) ≤ 2e−δ2/16t0q0(1+q0)(λ1−λ2).

By Grönwall’s inequality, on the event t0 < T0 ∧ T1 ∧ T2 ∧ T (δ),

sup
t≤t0

Q
(
XN(t)

) ≤
(
q0 + sup

t≤t0

∣∣MN(t)
∣∣)e3(λ1−λ2)t0 ≤ (q0 + δ)e3(λ1−λ2)t0 .
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Furthermore, on the event t0 < T0 ∧ T1 ∧ T2 ∧ T (δ), inft≤t0 Q(XN(t)) ≥ q0 − δ. In other
words, on the event t0 < T0 ∧ T1 ∧ T2 ∧ T (δ),

sup
t≤t0

∣∣Q(
XN(t)

) − q0
∣∣ ≤ δe3(λ1−λ2)t0 + q0

(
e3(λ1−λ2)t0 − 1

)
.

Let δ = ψ(N)−1/4, so δ ≤ t0 for N sufficiently large. It follows that, for N sufficiently large,
on the event t0 < T0 ∧ T1 ∧ T2 ∧ T (ψ−1/4),

sup
t≤t0

∣∣Q(
XN(t)

) − q0
∣∣ ≤ 2ψ−1/4.

Let T3 = inf{t ≥ 0 : |Q(XN(t)) − q0| > 2ψ(N)−1/4}. Clearly, P(T2 ≤ T3) = 0 and P(T0 ≤
T1) = 0 for large N . Then, from the above,

P(T3 ≤ t0) ≤ P
(
T0 ∧ T1 ∧ T2 ∧ T

(
ψ−1/4) ≤ t0 ∧ T3

)
≤ P

(
T

(
ψ−1/4) ≤ t0 ∧ T0 ∧ T1 ∧ T2

) + P(T1 ≤ t0 ∧ T3)

≤ 2e−ψ(N)1/2/(16q0(1+q0)) + P(T1 ≤ t0 ∧ T3).

Let T4 = inf{t ≥ 0 : XN,1(t) + XN,2(t) < N(λ1 − 1)/4}. Then, if N is sufficiently large,
P(T1 ≤ t0 ∧ T3) ≤ P(T4 ≤ t0), since α/2β ≤ q0 ≤ 2α/β . We will use Lemma 10, and

Lemma 11, with λ = λ2, μ = 1, ω = 8
√

N(λ2 − 1)2. Note (λ2 − 1)−1e
√

N(λ2−1)2 ≥ (λ1 −
λ2)

−1 ≥ t0 for large N , since

e

√
N(λ2−1)2 ≥ e

(
N(λ2−1)2

N(λ1−λ2)2
)1/2

≥
(

N(λ2 − 1)2

N(λ1 − λ2)2

)1/2
= λ2 − 1

λ1 − λ2
.

Hence P(T4 ≤ t0) ≤ 4e−√
N(λ2−1), and the result follows. �

After time (λ1 − λ2)
−1ψ−1, we approximate vector x̃N (t) by the solution x̃(t) to (9).

When μ1 = μ2 = 1, equation (9) takes the form:

dx̃1(t)

dt
= −(λ1 − 1)x̃1(t) − λ1x̃1(t)

2 − (λ1 − λ2)
2

λ1(λ1 − 1)

(
x̃2(t)

a

)2

+ (λ1 − λ2)λ1

λ1 − 1
x̃1(t)

x̃2(t)

a
,

dx̃2(t)

dt
= −λ1 − λ2

λ1
x̃2(t) − λ2x̃2(t)x̃1(t) + λ2

λ1a

λ1 − λ2

λ1 − 1
x̃2(t)

2.(21)

The next lemma gives what seems to be the best possible error for x̃N,1(t), with magnitude
close to the corresponding martingale transform.

LEMMA 14. Assume that

N(λ1 − 1)/λ1 − NhN ≤ XN,1(0) + XN,2(0) ≤ 2N(λ1 − 1)/λ1

for some function hN such that hN/(λ1 − 1) → 0, and that XN,1(0)/XN,2(0) = α/β + εN ,
where εN → 0 as N → ∞. Let xi(0) = N−1XN,i(0) for i = 1,2. Let ω(N) → ∞ be such
that N(λ1 − λ2)

2/ω(N) → ∞ as N → ∞. Let

fN(t) = max
{

λ1 − 1

λ1 − λ2

∣∣x̃N,1(t) − x̃1(t)
∣∣, ∣∣x̃N,2(t) − x̃2(t)

∣∣}, t ≥ 0.

Then, for N large enough,

P

(
sup

t≤(λ1−1)−1eω/8
fN(t) > 9

λ1 − 1

λ1 − λ2

√
ω

N
e32(λ1

β
α
+1)

)
≤ 12e−ω/8.
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PROOF. From the integral form of (21) and its stochastic analogue, noting that η1 =
λ1 − 1, η2 = (λ1 − λ2)/λ1 and that η1 > η2 for large N , we obtain

∣∣x̃N,1(t) − x̃1(t)
∣∣ ≤ ∣∣x̃N,1(0) − x̃1(0)

∣∣e−tη1 +
∣∣∣∣
∫ t

0
e−η1(t−s) dMN,1(s)

∣∣∣∣
+ λ1

∫ t

0
e−η1(t−s)

∣∣x̃N,1(s) − x̃1(s)
∣∣∣∣x̃N,1(s) + x̃1(s)

∣∣ds

+ (λ1 − λ2)
2

λ1(λ1 − 1)a2

∫ t

0
e−η1(t−s)

∣∣x̃N,2(s) − x̃2(s)
∣∣(x̃N,2(s) + x̃2(s)

)
ds

+ (λ1 − λ2)λ1

a(λ1 − 1)

∫ t

0
e−η1(t−s)

∣∣x̃N,1(s) − x̃1(s)
∣∣x̃N,2(s) ds

+ (λ1 − λ2)λ1

a(λ1 − 1)

∫ t

0
e−η1(t−s)

∣∣x̃N,2(s) − x̃2(s)
∣∣∣∣x̃1(s)

∣∣ds

and
∣∣x̃N,2(t) − x̃2(t)

∣∣
≤ ∣∣x̃N,2(0) − x̃2(0)

∣∣e−tη2 + λ2

∫ t

0
e−(t−s)η2

∣∣x̃N,2(s) − x̃2(s)
∣∣∣∣x̃N,1(s)

∣∣ds

+ λ2

∫ t

0
e−(t−s)η2

∣∣x̃N,1(s) − x̃1(s)
∣∣x̃2(s) ds +

∣∣∣∣
∫ t

0
e−(t−s)η2 dMN,2(s)

∣∣∣∣
+ λ2

λ1a

λ1 − λ2

λ1 − 1

∫ t

0
e−(t−s)η2

∣∣x̃N,2(s) − x̃2(s)
∣∣(x̃N,2(s) + x̃2(s)

)
ds.

Letting gN(t) = etη2fN(t), we now have

λ1 − 1

λ1 − λ2

∣∣x̃N,1(t) − x̃1(t)
∣∣etη2

≤ gN(0) + λ1

∫ t

0
gN(s)

∣∣x̃N,1(s) + x̃1(s)
∣∣ds

+ λ1 − λ2

λ1a2

∫ t

0
gN(s)

(
x̃N,2(s) + x̃2(s)

)
ds

+ (λ1 − λ2)λ1

a(λ1 − 1)

∫ t

0
gN(s)x̃N,2(s) ds + λ1

a

∫ t

0
gN(s)

∣∣x̃1(s)
∣∣ds

+ λ1 − 1

λ1 − λ2
etη2

∣∣∣∣
∫ t

0
e−η1(t−s) dMN,1(s)

∣∣∣∣
and

∣∣x̃N,2(t) − x̃2(t)
∣∣etη2

≤ gN(0) + λ2

∫ t

0
gN(s)

∣∣x̃N,1(s)
∣∣ds + λ2

λ1 − λ2

λ1 − 1

∫ t

0
gN(s)x̃2(s) ds

+ λ2

λ1a

λ1 − λ2

λ1 − 1

∫ t

0
gN(s)

(
x̃N,2(s) + x̃2(s)

)
ds

+ etη2

∣∣∣∣
∫ t

0
e−(t−s)η2 dMN,2(s)

∣∣∣∣.
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It follows that

λ1 − 1

λ1 − λ2

∣∣x̃N,1(t) − x̃1(t)
∣∣etη2

≤ gN(0) + 2λ1

∫ t

0
gN(s)

∣∣x̃1(s)
∣∣ds + λ1(λ1 − λ2)

λ1 − 1

∫ t

0
gN(s)2e−sη2 ds

+ 2(λ1 − λ2)

λ1a2

∫ t

0
gN(s)x̃2(s) ds + λ1 − λ2

λ1a2

∫ t

0
gN(s)2e−sη2 ds

+ (λ1 − λ2)λ1

a(λ1 − 1)

∫ t

0
gN(s)x̃2(s) ds + (λ1 − λ2)λ1

a(λ1 − 1)

∫ t

0
gN(s)2e−sη2 ds

+ λ1

a

∫ t

0
gN(s)

∣∣x̃1(s)
∣∣ds + λ1 − 1

λ1 − λ2
etη2

∣∣∣∣
∫ t

0
e−η1(t−s) dMN,1(s)

∣∣∣∣
and

∣∣x̃N,2(t) − x̃2(t)
∣∣etη2 ≤ gN(0) + λ2

∫ t

0
gN(s)

∣∣x̃1(s)
∣∣ds + λ2

λ1 − λ2

λ1 − 1

∫ t

0
gN(s)2e−sη2 ds

+ λ2
λ1 − λ2

λ1 − 1

∫ t

0
gN(s)x̃2(s) ds + 2λ2(λ1 − λ2)

aλ1(λ1 − 1)

∫ t

0
gN(s)x̃2(s) ds

+ λ2

λ1a

λ1 − λ2

λ1 − 1

∫ t

0
gN(s)2e−sη2 ds + etη2

∣∣∣∣
∫ t

0
e−(t−s)η2 dMN,2(s)

∣∣∣∣.
So, since a → 1 as N → ∞, for N large enough,

λ1 − 1

λ1 − λ2

∣∣x̃N,1(t) − x̃1(t)
∣∣etη2

≤ gN(0) + 4λ1

∫ t

0
gN(s)

∣∣x̃1(s)
∣∣ds + 2λ1(λ1 − λ2)

λ1 − 1

∫ t

0
gN(s)x̃2(s) ds

+ 4λ1(λ1 − λ2)

λ1 − 1

∫ t

0
gN(s)2e−sη2 ds + λ1 − 1

λ1 − λ2
etη2

∣∣∣∣
∫ t

0
e−η1(t−s) dMN,1(s)

∣∣∣∣
and

x̃N,2(t) − x̃2(t)|etη2

≤ gN(0) + λ2

∫ t

0
gN(s)

∣∣x̃1(s)
∣∣ds + 4λ2(λ1 − λ2)

λ1 − 1

∫ t

0
gN(s)x̃2(s) ds

+ 4λ2(λ1 − λ2)

λ1 − 1

∫ t

0
gN(s)2e−sη2 ds + etη2

∣∣∣∣
∫ t

0
e−(t−s)η2 dMN,2(s)

∣∣∣∣.
Hence, if N is large enough,

gN(t) ≤ gN(0) + 4λ1

∫ t

0
gN(s)

∣∣x̃1(s)
∣∣ds + 4λ1(λ1 − λ2)

λ1 − 1

∫ t

0
gN(s)x̃2(s) ds

+ 4λ1(λ1 − λ2)

λ1 − 1

∫ t

0
gN(s)2e−sη2 ds + etη2M,

where

M = max
(

λ1 − 1

λ1 − λ2

∣∣∣∣
∫ t

0
e−η1(t−s) dMN,1(s)

∣∣∣∣,
∣∣∣∣
∫ t

0
e−(t−s)η2 dMN,2(s)

∣∣∣∣
)
.
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Let T1 = inf{t ≥ 0 : xN,1(t) + xN,2(t) > 4(λ1 − 1)/λ1}. Analogously to the proof of
Lemma 6, on the event t < T1, for N large enough,∫ t

0

∑
y

q
(
x̃N (s), x̃N(s) + y

)(
eÃ(t−s)y

)2
1 ds

≤ 8(λ1 + 1)

N

∫ t

0

λ1 − 1

λ1
e−2(t−s)η1 ds ≤ 4(λ1 + 1)

λ1N
≤ 8

N

and ∫ t

0

∑
y

q
(
x̃N (s), x̃N(s) + y

)(
eÃ(t−s)y

)2
2 ds

≤ 4(λ1 + 1)(λ1 − 1)

N(λ1 − λ2)

∫ t

0

λ1 − λ2

λ1
e−2(t−s)η2 ds ≤ 4λ1(λ1 − 1)

N(λ1 − λ2)
.

Let T2 be the infimum of times t such that∣∣∣∣
∫ t

0
e−(λ1−1)(t−s) dMN,1(s)

∣∣∣∣ > 8
√

ω

N

or ∣∣∣∣
∫ t

0
e
−(t−s)

λ1−λ2
λ1 dMN,2(s)

∣∣∣∣ > 6

√
ωλ1(λ1 − 1)

N(λ1 − λ2)
.

Then on the event t < T1 ∧ T2, for N large enough,

gN(t) ≤ gN(0) + 4λ1

∫ t

0
gN(s)

∣∣x̃1(s)
∣∣ds + 4λ1(λ1 − λ2)

λ1 − 1

∫ t

0
gN(s)x̃2(s) ds

+ 4λ1(λ1 − λ2)

λ1 − 1

∫ t

0
gN(s)2e−sη2 ds + 8etη2

λ1 − 1

λ1 − λ2

√
ω

N
.

Let T3 be the infimum of times t such that

gN(t) > 10e32(λ1β/α+1)etη2
λ1 − 1

λ1 − λ2

√
ω

N
.

On the event t < T1 ∧ T2 ∧ T3, for N large enough,

4λ1(λ1 − λ2)

λ1 − 1

∫ t

0
gN(s)2e−sη2 ds ≤ 400λ2

1e
64(λ1β/α+1) (λ1 − 1)

(λ1 − λ2)2

ω

N
etη2

≤ etη2
λ1 − 1

λ1 − λ2

√
ω

N
,

since we have assumed that N(λ1 −λ2)
2/ω → ∞. It follows that, for N large enough, on the

event t < T1 ∧ T2 ∧ T3,

gN(t) ≤ gN(0) + 4λ1

∫ t

0
gN(s)

∣∣x̃1(s)
∣∣ds + 4λ1(λ1 − λ2)

λ1 − 1

∫ t

0
gN(s)x̃2(s) ds

+ 9etη2
λ1 − 1

λ1 − λ2

√
ω

N

≤ 9etη2
λ1 − 1

λ1 − λ2

√
ω

N
+ 4λ1

∫ t

0
gN(s)

∣∣x̃1(s)
∣∣ds + 4λ1(λ1 − λ2)

λ1 − 1

∫ t

0
gN(s)x̃2(s) ds,
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since, by assumption, gN(0) = 0. By Grönwall’s inequality, on the event t < T1 ∧ T2 ∧ T3,
for N large enough,

gN(t) ≤ 9etη2
λ1 − 1

λ1 − λ2

√
ω

N
e

4λ1
∫ t

0 |x̃1(s)|ds+ 4λ1(λ1−λ2)

λ1−1

∫ t
0 x̃2(s) ds

.

Now, by (5),

x̃2(t) = x2(t) = (
x1(t)/x1(0)

)λ2/λ1x2(0)e
−t

λ1−λ2
λ1

≤ (
x2(0)/x1(0)

)λ2/λ1x1(t)
λ2/λ1e

−t
λ1−λ2

λ1(22)

=
(

β

α

(
1 + o(1)

))λ2/λ1

x1(t)
λ2/λ1e

−t
λ1−λ2

λ1 ≤ 4(β/α)
λ1 − 1

λ1
e
−t

λ1−λ2
λ1 ,

where we have also used the facts that x1(0) + x2(0) ≤ 2(λ1 − 1)/λ1 implies x1(t) + x2(t) ≤
2(λ1 − 1)/λ1 for all t , and that (λ1 − λ2) log(λ1 − 1) → 0 (and so x1(t)

λ2/λ1 ≤ 3(λ1 − 1)/λ1
for N large enough). Thus

4λ1(λ1 − λ2)

λ1 − 1

∫ t

0
x̃2(s) ds ≤ 16λ1(β/α).

Also, while x̃1(t) ≥ 0, using (21), we have for N large enough,

dx̃1(t)

dt
≤ −x̃1(t)

(
(λ1 − 1) − (λ1 − λ2)λ1

(λ1 − 1)a
x̃2(t)

)
≤ −λ1 − 1

2
x̃1(t),

since x̃2(t) = x2(t) ≤ 2(λ1 − 1)/λ1 for all t . On the other hand, if and when x̃1(t) be-
comes negative, and while |x̃1(t)| ≤ (λ1 − 1)/4λ1, then for N large enough, using x2(t) ≤
4(β/α)λ1−1

λ1
e−t (λ1−λ2)/λ1 ,

dx̃1(t)

dt
≥ −λ1 − 1

2
x̃1(t) − (λ1 − λ2)

2

λ1(λ1 − 1)

(
x̃2(t)

a

)2
,

so, since −x̃1(0) = o(λ1 − 1) (as x1(0) + x2(0) ≥ (λ1 − 1)/λ1 − hN ),

x̃1(t) ≥ − 32β2

α2a2λ2
1

(λ1 − λ2)
2e−2t (λ1−λ2)/λ1 .

Since x̃1(0) ≤ 4(λ1 − 1)/λ1 for N large enough, we see that, if N is large enough, then
4λ1

∫ t
0 |x̃1(s)|ds ≤ 32.

It follows that if N is large enough, then on the event t < T1 ∧ T2 ∧ T3,

gN(t) ≤ 9et(λ1−λ2)/λ1
λ1 − 1

λ2 − λ1

√
ω

N
e32(λ1β/α+1),

and so

fN(t) ≤ 9
λ1 − 1

λ1 − λ2

√
ω

N
e32(λ1β/α+1).

Let T4 = inf{t : fN(t) > 9 λ1−1
λ2−λ1

√
ω
N

e32(λ1β/α+1)}. Let t0 = t0(N) = (λ1 − 1)−1eω/8. By
the above, and since P(T3 ≤ T4) = 0 for N large enough,

P(T4 ≤ t0) ≤ P(T1 ∧ T2 ∧ T3 ≤ T4 ∧ t0) ≤ P(T1 ≤ t0) + P(T2 ≤ T1 ∧ t0).

By Lemma 10, and by Lemma 11 with λ = λ1 and μ = 1, P(T1 ≤ t0) ≤ 4e−ω/8 if N is large
enough. By Lemma 7 applied to (x̃N (t)), this time taking σ = (λ1 − 1)−1, K1 = 8/N , K2 =
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4λ1(λ1 − 1)/N(λ1 −λ2), P(T2 ≤ T1 ∧ t0) ≤ 8e−ω/8. It follows that P(T4 ≤ t0) ≤ 12e−ω/8, as
required. �

The next lemma improves the upper bound on the approximation error |x̃N,2(t)− x̃2(t)| by
a factor

√
(λ1 − λ2)(λ1 − 1)−1, which allows us to get closer to criticality. (There is a second

term in our bound below, but it is always of order smaller than x2(t).)

LEMMA 15. Let ω1 = ω1(N) → ∞ as N → ∞. Let the assumptions of Lemma 14 on
XN(0) and x(0) be satisfied. Assume further that

N(λ1 − λ2)
2

log( λ1−1
λ1−λ2

)eω1/2
→ ∞.

For t ≥ 0, let fN(t) = |x̃N,2(t) − x̃2(t)|. Set

δN(t) =
(

2(λ1 − λ2)
−1 log1/2

(
λ1 − 1

λ1 − λ2

)
eω1/8x2(t) + 8

√
λ1(λ1 − 1)

λ1 − λ2

)√
ω1

N
e16(1+β/α).

Then, for N large enough,

P

(
sup

t≤ λ1
λ1−λ2

eω1/8

(
fN(t)/δN(t)

)
> 1

)
≤ 16e−ω1/8.

PROOF. Let ω2 = log(λ1(λ1−1)
λ1−λ2

) + ω1, and note that N(λ1 − λ2)
2/ω2 → ∞.

As in the proof of Lemma 14, with η2 = (λ1 − λ2)/λ1,

fN(t) = ∣∣x̃N,2(t) − x̃2(t)
∣∣

≤ ∣∣x̃N,2(0) − x̃2(0)
∣∣e−tη2 + λ2

∫ t

0
e−(t−s)η2

∣∣x̃N,2(s) − x̃2(s)
∣∣∣∣x̃N,1(s)

∣∣ds

+ λ2

∫ t

0
e−(t−s)η2

∣∣x̃N,1(s) − x̃1(s)
∣∣x̃2(s) ds +

∣∣∣∣
∫ t

0
e−(t−s)η2 dMN,2(s)

∣∣∣∣
+ λ2

λ1a

λ1 − λ2

λ1 − 1

∫ t

0
e−(t−s)η2

∣∣x̃N,2(s) − x̃2(s)
∣∣(x̃N,2(s) + x̃2(s)

)
ds.

Let gN(t) = fN(t)etη2 . Let T1 be the infimum of times t such that

∣∣x̃N,1(t) − x̃1(t)
∣∣ > 9

√
ω2

N
e32(λ1β/α+1).

Let T2 be the infimum of times t such that∣∣∣∣
∫ t

0
e−(t−s)η2 dMN,2(s)

∣∣∣∣ > 6

√
ω1λ1(λ1 − 1)

N(λ1 − λ2)
.

Then for t < T1 ∧ T2, if N is large enough,

gN(t) ≤ gN(0) + λ2

∫ t

0
gN(s)

∣∣x̃N,1(s)
∣∣ds

+ 9λ2

√
ω2

N
e32(λ1β/α+1)

∫ t

0
esη2 x̃2(s) ds + 6etη2

√
ω1λ1(λ1 − 1)

N(λ1 − λ2)

+ 4(λ1 − λ2)

λ1 − 1

∫ t

0
gN(s)x̃2(s) ds + 2(λ1 − λ2)

λ1 − 1

∫ t

0
gN(s)2e−sη2 ds.
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Now, by (22),

x2(t) ≤ 4(β/α)
λ1 − 1

λ1
e−tη2,

and, by (5) and (22), the fact that, for all t , x1(t) + x2(t) ≥ 1
2

λ1−1
λ1

if N is large enough, and
the fact that x1(t)/x2(t) is increasing, also

(23) x2(t) ≥ 1

4

β

α + β

λ1 − 1

λ1
e−tη2 .

Let T3 be the infimum of times t such that

gN(t) > 10

√
λ1(λ1 − 1)

λ1 − λ2

√
ω1

N
e16(1+β/α)etη2

+ 4

√
ω1

N(λ1 − λ2)2 log1/2
(

λ1 − 1

λ1 − λ2

)
e16(1+β/α)eω1/8x2(t)e

tη2 .

Then for t < T3, if N is large enough,

2(λ1 − λ2)

λ1 − 1

∫ t

0
gN(s)2e−sη2 ds

≤ 200ω1λ
2
1

(λ1 − λ2)N
e32(1+β/α)etη2 + 1024(β/α)2(λ1 − 1)ω1

N(λ1 − λ2)2 e32(1+β/α) log
(

λ1 − 1

λ1 − λ2

)
eω1/4

≤ etη2

√
ω1λ1(λ1 − 1)

N(λ1 − λ2)
+

√
ω1

N(λ1 − λ2)2 log1/2
(

λ1 − 1

λ1 − λ2

)
eω1/8x2(t)e

tη2,

since our assumptions imply that

N(λ1 − 1)(λ1 − λ2)/ω1 → ∞,

N(λ1 − λ2)
2/ log

(
λ1 − 1

λ1 − λ2

)
eω1/4 → ∞.

So, for t < T1 ∧ T2 ∧ T3, if N is large enough and since gN(0) = 0,

gN(t) ≤ λ2

∫ t

0
gN(s)

∣∣x̃1(s)
∣∣ds + 4(λ1 − λ2)

λ1 − 1

∫ t

0
gN(s)x̃2(s) ds

+ 36
√

ω2

N
e32(λ1β/α+1) β

α
(λ1 − 1)t + 8etη2

√
ω1λ1(λ1 − 1)

N(λ1 − λ2)

+
√

ω1

N(λ1 − λ2)2 log1/2
(

λ1 − 1

λ1 − λ2

)
eω1/8x2(t)e

tη2 .

By Grönwall’s lemma, on the event t < T1 ∧ T2 ∧ T3,

gN(t) ≤
(

36
√

ω2

N
e32(λ1β/α+1) β

α
(λ1 − 1)t + 8etη2

√
ω1λ1(λ1 − 1)

N(λ1 − λ2)

+
√

ω1

N(λ1 − λ2)2 log1/2
(

λ1 − 1

λ1 − λ2

)
eω1/8x2(t)e

tη2

)
eHN(t),

where

HN(t) = λ2

∫ t

0

∣∣x̃1(s)
∣∣ds + 4(λ1 − λ2)

λ1 − 1

∫ t

0
x̃2(s) ds ≤ 16

(
1 + β

α

)
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for N large enough, since, as in the proof of the previous lemma, λ2
∫ t

0 |x̃1(s)|ds ≤ 8. It
follows that for large N , on the event t < T1 ∧ T2 ∧ T3,

fN(t) ≤
(

36
√

ω2

N
e32(λ1β/α+1) β

α
(λ1 − 1)te−tη2 + 8

√
ω1λ1(λ1 − 1)

N(λ1 − λ2)

+
√

ω1

N(λ1 − λ2)2 log1/2
(

λ1 − 1

λ1 − λ2

)
eω1/8x2(t)

)
e16(1+ β

α
).

Hence, from (22) and (23), for N large enough, on the event t < T1 ∧ T2 ∧ T3,

fN(t) ≤
(

144
α + β

α

√
ω2

N
e32(λ1β/α+1)λ1x2(t)t + 8

√
ω1λ1(λ1 − 1)

N(λ1 − λ2)

+
√

ω1

N(λ1 − λ2)2 log1/2
(

λ1 − 1

λ1 − λ2

)
eω1/8x2(t)

)
e16(1+ β

α
).

Hence, if also t ≤ t0(N) := λ1
λ1−λ2

eω1/8, then fN(t) ≤ δN(t), where

δN(t) =
(

2

λ1 − λ2
log1/2

(
λ1 − 1

λ1 − λ2

)
eω1/8x2(t) + 8

√
λ1(λ1 − 1)

λ1 − λ2

)√
ω1

N
e16(1+ β

α
).

Letting T4 = inf{t : fN(t) > δN(t)}, P(T4 ≤ t0) is at most P(T1 ∧ T2 ∧ T3 ≤ T4 ∧ t0), which
is bounded above by P(T1 ≤ t0) + P(T2 ≤ T1 ∧ t0) + P(T3 ≤ T4). By Lemma 14, P(T1 ≤
t0) ≤ 12e−ω2/8. By Lemma 7 applied to (x̃N (t)), this time taking σ = (λ1 − λ2)

−1, K2 =
4λ1(λ1 − 1)/N(λ1 − λ2), and η = η2, P(T2 ≤ T1 ∧ t0) ≤ 4e−ω1/8. Also, clearly, for N large
enough, P(T3 ≤ T4) = 0. It follows that P(T4 ≤ t0) ≤ 16e−ω1/8, as required. �

We are now ready to prove the formulae for the distribution of the extinction times of the
two species.

PROOF OF THEOREM 3. Let t1 = t1(N) = (λ1 − 1)−1/2(λ1 − λ2)
−1/2. By Lemma 13

with ψ = (λ1 − 1)1/2(λ1 − λ2)
−1/2, for N large enough,

P

(∣∣∣∣XN,1(t1)

XN,2(t1)
− XN,1(0)

XN,2(0)

∣∣∣∣ > 2
(

λ1 − λ2

λ1 − 1

)1/8)
≤ 4e−√

N(λ2−1) + e
−(

λ1−1
λ1−λ2

)1/8

.

Let x = min{xN,1(0) + xN,2(0),N−1�N(λ2 − 1)(N(λ2 − 1)2)1/8�}, and let T be the in-
fimum of times t such that xN,1(t) + xN,2(t) = x. Note that T = 0 if xN,1(0) + xN,2(0) ≤
N−1�N(λ2 − 1)(N(λ2 − 1)2)1/8� = N−1�N9/8(λ2 − 1)5/4�, which is an initial state up to
“just above” the approximate carrying capacity λ2 − 1 of the single stochastic SIS logistic
epidemic process approximating xN,1(t) + xN,2(t).

Lemma 4.1 in Brightwell, House and Luczak [6] is still valid for a supercritical stochastic
SIS logistic epidemic (YN(t)), stating that N−1

EYN(t) ≤ y(t), where y(t) solves (18), pro-
vided that N−1YN(0) = y(0). So, by that lemma, combined with Lemma 10 in the present
paper and Markov’s inequality, for N large enough,

P
(
xN,1(t1/4) + xN,2(t1/4) > x

) ≤ 2
(
N(λ2 − 1)2)−1/8

,

and so T ≤ t1/4 with probability at least 1 − 2(N(λ2 − 1)2)−1/8.
Let y(t) solve equation (18) with λ = λ1 and μ = 1, y(T ) = x, and let z(t) solve equa-

tion (18) with λ = λ2 and μ = 1, and z(T ) = x. Let YN(t) and ZN(t) be the corresponding
stochastic SIS logistic epidemics satisfying YN(T ) = Nx and ZN(T ) = Nx respectively. It is
easily seen from (20) that, if N is sufficiently large and T ≤ t1/4, then y(t1/2) ≤ 2(λ1 −1)/λ1
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and z(t1/2) ≤ 2(λ2 − 1)/λ2. Furthermore, using (20) over the time-interval [t1/2, t1], we see
that in that case

∣∣y(t1) − (λ1 − 1)/λ1
∣∣ ≤ λ1 − 1

λ1
e
− 1

2

√
λ1−1
λ1−λ2

and

∣∣z(t1) − (λ2 − 1)/λ2
∣∣ ≤ λ2 − 1

λ2
e−(λ2−1)t1/2 ≤ λ2 − 1

λ2
e
− 1

4

√
λ1−1
λ1−λ2 .

We will now apply Lemma 12 twice, both starting at time T , once with λ = λ1, μ = 1,
ending at time τ1 = inf{t ≥ T : y(t) ≤ 2(λ1 − 1)/λ1}, and the second time with λ = λ2,
μ = 1, ending at time τ2 = inf{t ≥ T : z(t) ≤ 2(λ2 − 1)/λ2}. We further apply Lemma 11
twice, once to YN(t), starting at time τ1, with λ = λ1, μ = 1 and ω = √

N(λ1 − 1)2, and
once to ZN(t), starting at time τ2, with λ = λ2, μ = 1 and ω = √

N(λ2 − 1)2. Additionally
applying Lemma 10, we see that, for N sufficiently large,

P

(∣∣∣∣xN,1(t1) + xN,2(t1) − λ1 − 1

λ1

∣∣∣∣ > 6e4 (N(λ1 − 1)2)1/4√λ1 + 1√
N

+ λ1 − λ2

)

≤ 12e−(N(λ2−1)2)1/8/8 + 2
(
N(λ2 − 1)2)−1/8 ≤ 3

(
N(λ2 − 1)2)−1/8

.

In particular, we see that, with probability 1 − δN , event EN,1 holds that (λ1 − 1)/λ2 − hN ≤
xN,1(t1)+xN,2(t1) ≤ 2(λ1 −1)/λ1, for some hN = o(λ1 −1), and xN,1(t1)/xN,2(t1) = α/β+
εN , where δN, εN → 0 as N → ∞.

Let ω1 = ω1(N) → ∞ be such that ω1 ≤ log( λ1−1
λ1−λ2

) and let ω2 = 16 log( λ1−1
λ1−λ2

). Let t2 =
t2(N) = t1(N) + λ1

λ1−λ2
eω1/8, and note that t2 − t1 ≤ (λ1 − 1)−1eω2/8.

Consider the solution x(t) = (x1(t), x2(t))
T to (1) subject to the condition x1(t1) =

N−1XN,1(t1), x2(t1) = N−1XN,2(t1). Let also x̃(t) = (x̃1(t), x̃2(t))
T be the corresponding

solution to (9). For N large enough, by (22),

x2(t2) ≤ 4(β/α)
λ1 − 1

λ1
e−(t2−t1)(λ1−λ2)/λ1,

and by (23)

x2(t2) ≥ 1

4

β

α + β

λ1 − 1

λ1
e−(t2−t1)(λ1−λ2)/λ1 .

Note that ω1 can be chosen in such a way that (λ1 − λ2)
−1x2(t2) → 0: for instance, we

choose ω1 satisfying eω1/8 = log( λ1−1
λ1−λ2

) + φ for a suitable φ = φ(N) → ∞ such that φ ≤
log( λ1−1

λ1−λ2
). Since then x2(t2) ≥ 1

4λ1

β
α+β

(λ1 −λ2)
2(λ1 − 1)−1, we further have Nx2(t2)(λ1 −

λ2) → ∞.
Note that, since N(λ1 − λ2)

3(λ1 − 1)−1 → ∞, conditions of Lemmas 14 and 15 are
satisfied. By Lemma 14 with ω = ω2 and by Lemma 15 with the value of ω1 above, with
XN,1(t1),XN,2(t1) as initial values, with probability at least 1 − 16e−ω1/8 − 12e−ω2/8 → 1
as N → ∞, the event EN,2 holds that

∣∣x̃N,1(t2) − x̃1(t2)
∣∣ ≤ 9

√
ω2

N
e32(λ1β/α+1)

and

∣∣x̃N,2(t2) − x̃2(t2)
∣∣ ≤

[
2(λ1 − λ2)

−1 log1/2
(

λ1 − 1

λ1 − λ2

)
eω1/8x2(t2) + 8

√
λ1(λ1 − 1)

λ1 − λ2

]

×
√

ω1

N
e16(1+β/α).
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Hence, also using bounds on |x̃1(t)| in the proof of Lemma 14, there exists a constant c1 such
that, for N large enough, on EN,2,

∣∣∣∣xN,1(t2) − λ1 − 1

λ1

∣∣∣∣ ≤
[
2(λ1 − λ2)

−1 log1/2
(

λ1 − 1

λ1 − λ2

)
eω1/8x2(t2) + 10

√
λ1(λ1 − 1)

λ1 − λ2

]

×
√

ω1

N
e32(1+β/α) + c1(λ1 − 1)e−(t2−t1)(λ1−λ2)/λ1 .

Note that

N(λ1 − λ2)
3(λ1 − 1)−1/ log log

(
N(λ1 − λ2)

2) → ∞
implies that

N(λ1 − λ2)
3(λ1 − 1)−1/ log log

(
λ1 − 1

λ1 − λ2

)
→ ∞,

and so we can choose φ satisfying eω1/8 = log( λ1−1
λ1−λ2

) + φ so that

N(λ1 − λ2)
3(λ1 − 1)−1/ω1e

2φ → ∞.

With such a choice of φ, it follows that

(λ1 − 1)e
−(t2−t1)

λ1−λ2
λ1 �

√
λ1 − 1

λ1 − λ2

√
ω1

N
,

and so, on the event EN,2, both xN,1(t2) and xN,2(t2) are concentrated around (λ1 − 1)/λ1
and x2(t2) respectively, xN,1(t2) with error of size o(λ1 − λ2) and xN,2(t2) with error of size
o(x2(t2)) = o(λ1 − λ2).

Let

t3 = t2 + 10λ1

λ1 − λ2
log

(
N(λ1 − λ2)

2) ≤ t1 + (λ1 − 1)−1eω3/8,

where ω3 = 32 log((λ1 − 1)/(λ1 − λ2)) + 32 log log(N(λ1 − λ2)
2). Note that ω3 satisfies the

condition of Lemma 14, so we can apply this lemma on the interval [t1, t3].
For t ≥ t2, let EN(t) be the event that, for all s ∈ [t2, t],∣∣∣∣xN,1(s) − λ1 − 1

λ1

∣∣∣∣ ≤
[
4(λ1 − λ2)

−1 log
(

λ1 − 1

λ1 − λ2

)1/2
eω1/8x2(t2) + 20

√
λ1(λ1 − 1)

λ1 − λ2

]

×
√

ω4

N
e32(1+β/α) + (c1 + 16β/α)(λ1 − 1)e−(t2−t1)(λ1−λ2)/λ1,

and xN,2(s) ≤ 2xN,2(t2). Note that on the event EN(t), for all t2 ≤ s ≤ t , xN,1(s) is concen-
trated around (λ1 − 1)/λ1 with an o(λ1 − λ2) error.

On the event EN,2, and while EN(t) holds, using a standard argument similar to the proof
of Lemma 8 and the proof of Lemma 2.1 in Brightwell, House, and Luczak [6], we couple
the subsequent evolution of XN,2(t) with two linear birth-and-death chains, each with birth
rate λ2

λ1
+ o(λ1 − λ2), and death rate 1, so as to sandwich it between two such chains. The

next event after time t ≥ t2 in each of the three chains can be coupled together, as long as
event EN(t) holds. Since N(λ1 − λ2)x2(t2) → ∞, we have XN,2(t2)(λ1 − λ2) → ∞ and so
Lemma 9 can be applied to show that the randomness in the duration of the final phase after
t2 is approximately Gumbel distributed.
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If event EN(κN) holds, then the length of the final phase is

λ1

λ1 − λ2

(
logN + logx2(t2) + log

λ1 − λ2

λ1
+ o(1) + GN

)

= λ1

λ1 − λ2

(
logN(λ1 − λ2)

2 − φ(N) + O(1)
)
,

with high probability, where GN converges to a Gumbel random variable G as N → ∞.
Event EN(κN) holds with high probability by Lemma 14 and by Lemma 2.2 in Brightwell,
House and Luczak [6], as extinction occurs before t3 with high probability. The details are as
in the proof of Lemma 8.

The length of the “fluid-limit” phase can be expressed as

λ2

λ1 − λ2
log

(
x1(t2)/x1(t1)

) − λ1

λ1 − λ2
log

(
x2(t2)/x2(t1)

)
,

and the length of the first phase is t1 = (λ1 − λ2)
−1√(λ1 − λ2)/(λ1 − 1) = o((λ1 − λ2)

−1).
Hence, using the fact that (λ1 − λ2) log(λ1 − 1) → 0, the total time to extinction is, with

high probability,

λ1

λ1 − λ2

(
log

(
N(λ1 − 1)(λ1 − λ2)β

λ2
1α

+ o(1) + GN

))
,

thus proving the first part of Theorem 3.
The second part follows from Theorem 1 and its extension to the barely supercritical

regime due to Foxall [9]—see comments following the statement of that theorem. Also, our
assumptions imply that κN , which is of order (λ1 − λ2)

−1 log(N(λ1 − 1)(λ1 − λ2)), is neg-
ligible compared to exp(N(λ1 − 1)2)N−1/2(λ1 − 1)−2, and so also compared to κ̃N ; this
follows from the fact that, as N → ∞, N−1(λ1 − 1)−2 exp(N(λ1 − 1)2) → ∞, and hence is
much larger than N−1/2(λ1 − λ2)

−1, which tends to 0. �

7.1. Relaxing the assumption on separation from criticality. As stated above, we believe
Theorem 3 is in fact valid under the weaker condition N(λ1 − λ2)

2 → ∞ (still assuming
μ1 = μ2 = 1 and (λ1 − λ2)(λ1 − 1)−1 → ∞). Here is a sketch of how one might go about
proving such an extension. The differential equation approximation phase can be split into a
number of subphases, each corresponding to a refined version of Lemma 15 with a smaller
value of xN,2(0) and thus a smaller bound on the deviation of the martingale transform term.
Roughly speaking the first subphase would have xN,2(0) of order λ1 − 1 and the martin-
gale transform term of order N−1/2(λ1 − λ2)

−1/2(λ1 − 1)1/2. The first subphase would last
until xN,2(t) is of size about N−1/2(λ1 − λ2)

−1/2(λ1 − 1)1/2ω, for a suitable ω(N) → ∞,
and would thus take time just slightly less than (λ1 − λ2)

−1 log
√

N(λ1 − 1)(λ1 − λ2). The
second subphase would have xN,2(0) of order N−1/2(λ1 − λ2)

−1/2(λ1 − 1)1/2ω and the
martingale transform term of order N−3/4(λ1 − λ2)

−3/4(λ1 − 1)1/4ω1/2. It would last un-
til xN,2(t) is of size about N−3/4(λ1 − λ2)

−3/4(λ1 − 1)1/4ω, and would thus take time just
slightly less than (λ1 − λ2)

−1 log(N(λ1 − 1)(λ1 − λ2))
1/4. In the third subphase, xN,2(0)

would be of order N−3/4(λ1 − λ2)
−3/4(λ1 − 1)1/4ω and the martingale transform term

would be of order N−7/8(λ1 − λ2)
−7/8(λ1 − 1)1/8ω1/2. It would last until xN,2(t) is of size

about N−7/8(λ1 − λ2)
−7/8(λ1 − 1)1/8ω, and would thus take time just slightly less than

(λ1 − λ2)
−1 log(N(λ1 − 1)(λ1 − λ2))

1/8. And, in principle, one should be able to carry on
this process. The phases would be joined together using the end value of xN,2(t) from the
previous phase as initial condition for the differential equation in the next phase, and the
various deterministic solutions with different random initial conditions can be shown to get
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closer and closer together over time, using techniques similar to those already used in this
paper.

As many phases would be used as needed to “reach” xN,2(t) of order o(λ1 − λ2), while
keeping the deviation smaller than the mean. Since the “limiting” error size in the above
process is N−1(λ1 −λ2)

−1, this should in principle be possible as long as N(λ1 −λ2)
2 → ∞,

and as N(λ1 − λ2)
2 tends to infinity more and more slowly, the time spent in the differential

equation phase becomes closer and closer to (λ1 − λ2)
−1 log(N(λ1 − 1)(λ1 − λ2)).

After the condition N(λ1 −λ2)
2 → ∞ fails, one can still carry out the differential equation

phase from the time when xN,2 is of order λ1 −1 through the various phases until it is of order
N−1(λ1 −λ2)

−1, which takes time of order about (λ1 −λ2)
−1 log(N(λ1 −1)(λ1 −λ2)). After

that, the fluctuations dominate, and the remaining time is about (λ1 −λ2)
−2 steps, translating

to a time of order N−1(λ1 − λ2)
−2 = o((λ1 − λ2)

−1), and the randomness is not Gumbel
distributed.

A differential equation approximation phase is possible as long as the order of the initial
martingale transform deviation, N−1/2(λ1 − λ2)

−1/2(λ1 − 1)1/2, is o(λ1 − 1), which is as
long as N(λ1 −1)(λ1 −λ2) → ∞. Our formulae above would suggest a critical window with
|N(λ1 −1)(λ1 −λ2)| = O(1), or |N(λ1 −λ2)| = O(1) if λ1 −1 is positive and bounded away
from 0. This would join up our result nicely with that of Kogan et al. [12], showing that when
the two basic reproductive ratios are equal (but not close to 1), then the time to extinction
is of order N . We expect all the details above, while somewhat tedious, can be filled in to
yield a complete proof of the behaviour away from criticality. However, we leave this till a
subsequent paper, along with analysis of the behaviour inside the critical window.
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