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Tick-by-tick asset price data exhibit a number of empirical regularities,
including discreteness, long periods where prices are flat, periods of price
moves of alternating plus and minus one tick, periods of rapid successive
price moves of the same sign, and others. This paper proposes a framework
to examine whether and how these microscopic features of the tick data are
compatible with the typical macroscopic continuous-time models, based on
Itô semimartingales, that are employed to represent asset prices. We con-
struct in particular tick-by-tick models that deliver by scaling macroscopic
semimartingale models with stochastic volatility and jumps.

1. Introduction. In recent years, the literature about modeling stock prices at high fre-
quency has split into two main trends:

1. Starting with the work of Samuelson and Merton in the 1960s (see, e.g., Merton
(1992)), one approach consists in modeling the price as a continuous time process, often
driven by a Brownian motion and later a stochastic volatility process, or by a Brownian mo-
tion plus a purely discontinuous process of various types: a compound Poisson process in
the case of finite activity jumps, or one or several stable or tempered stable processes, or
more generally a Poisson random measure. The processes used to describe the evolution of
the price or the log-price belong to the class of Itô semimartingales, and pretty much any
member of this class a priori is a reasonable candidate for describing a price (see Delbaen
and Schachermayer (1994)). When employed for derivative pricing or portfolio optimization,
these models are used to infer the risk and return characteristics of assets over time scales
that typically range from a day to a few years, so it is natural to think of them as macroscopic
models. From the statistical standpoint, the “financial econometrics” literature has developed
methods that apply to high frequency data assumed to have been produced by sampling a
macroscopic model at discrete time intervals (see, e.g., Aït-Sahalia and Jacod (2014) for an
overview.)

2. An alternative approach made feasible by the availability of tick-by-tick data is to model
the succession of transaction prices, usually together with the corresponding sequence of
transaction times. Because of the minimum tick size, these transaction prices evolve on a
discrete grid, and are thus naturally modeled as a point or marked point process (see, e.g.,
Clark (1973), Engle and Russell (1998) and Hautsch (2012) for an overview.) In this situation,
the modeling can be reduced-form (and capture detailed features of the transactions data) or
take into consideration microeconomic features such as the behavior of optimizing agents
(which often entails an inevitable loss of realism in terms of fitting the data). The typical
time scale is a fraction of a second between successive transactions, depending, of course,
on the liquidity of the asset. We call these models microscopic, or tick-by-tick. Tick-by-
tick models are typically employed in the “empirical microstructure” literature (see, e.g.,
Hasbrouck (2007) for an overview.)
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In this paper, we ask whether and how the two viewpoints, micro and macroscopic, can be
connected. We ask the question in both directions, taking successively each one of the two
viewpoints as describing reality and asking how the other can be reconciled (in a sense to be
made precise) with it. Before proceeding, is it useful to briefly describe some stylized facts
regarding transaction prices that can be observed at the microscopic level:

1. Transaction prices are positive due to limited liability, and are also multiples of a fixed
tick size, so they evolve on a discrete equally spaced grid. Consequently, the price at which a
transaction occurs is a discrete random variable.

2. From one transaction to the next, the price either does not change (this happens quite
often, and typically there are successions of zero returns), or when it changes it does so by a
few ticks up or down, quite often by just one tick (unless the stock price is fairly high): see
Figure 1 for an illustration of a typical sequence of successive transactions.

3. One also observes very quick successions of transactions, each one being executed at a
price one tick, or a few ticks, above than the previous one, giving rise to a form of “upward
ladder”. There are similar downward ladders, after which the price has increased or decreased
by a relatively large number of ticks in a short amount of time. The corresponding transaction
times are often nearly regularly spaced, in contrast with most inter-transaction times which
are typically fairly irregularly spaced: see Figure 2 for a typical example. One explanation
for ladders can be traced to the market mechanism: the order book typically contains quotes
at each tick level inside a relatively large price interval around the current price, so a large
price change is executed by walking along the order book, featuring a quick succession of
increases or decreases which increment the transaction price by one tick. Furthermore, quotes
are often placed in the order book by high frequency firms, which are quick to move them
ahead of the incoming orders whose direction they try to anticipate. More complex patterns
occur: after a “quiet” period we often observe a quick succession of upward and downward
ladders, until another quiet period begins.

4. There are also relatively periods of time during which the price fluctuates seemingly
randomly, while exhibiting overall a noticeable trend upwards or downwards: see Figure 3
for such an example.

These empirical regularities put strong constraints on the tick-by-tick models if they are
to be realistic representations of what is actually observed. A priori, the sample paths ex-
hibited in these figures do not look at all like what we expect from the typical macroscopic
semimartingale model. (This is, in fact, how our initial interest in this topic started: we were
puzzled by the apparent disconnect between the features of the tick-by-tick data and the im-
plications for the discrete data of the semimartingale model we were assuming.) Starting with
a given tick-by-tick model, the objective of this paper is to determine whether and how those
stylized features of the tick-by-tick model can nevertheless be reconciled with an Itô semi-
martingale macroscopic model. A related problem with a different set of empirical constraints
occurs in physics, where one wishes to relate the microscopic state of a system such as a fluid
or a gas with its macroscopic thermodynamic characteristics such as the temperature, density,
pressure, etcetera (see, e.g., Kipnis and Landim (1999) and Presutti (2009)).

Starting from a given macroscopic model, we will see that the mathematical question of
compatibility is in principle solvable. In the reverse direction, for a given tick-by-tick model,
by rescaling time and space, one can typically recover a macroscopic model. This is, in fact,
the approach originally proposed by Bachelier (1900), who used as a tick-by-tick model a
Bernoulli random walk (there were of course no record of individual transaction prices and
times at that time, but the spirit was the same) and as a macroscopic model the Brownian mo-
tion, which is the scaling limit of the random walk. But beyond the Bachelier rescaling idea,
it has been difficult to obtain more precise statements about the required conditions or the
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FIG. 1. Flat prices.

possible macroscopic models that can be achieved beyond Brownian motion. Some notable
exceptions are Feller’s diffusion which is the scaling limit of critical Galton–Watson branch-
ing processes (see Feller (1951)) and generalizations (see Kawazu and Watanabe (1971)),
the model of Black and Scholes (1973) which can be obtained by rescaling a binomial tree,
that is, a random walk, by adjusting the probability and sizes of the moves (see Cox, Ross
and Rubinstein (1979)), the continuous-time limits of specific (G)ARCH models as shown
by Nelson (1990) (see also Fornari and Mele (1997) and Corradi (2000)).

In these cases, however, the starting point of the analysis is either a discrete-time model
or a discretized version of the macroscopic model, as opposed to a tick-by-tick model satis-
fying such empirical constraints as, for instance, living on the grid of tick values. The latter
case however is the focus of Bacry et al. (2013a) and Bacry et al. (2013b) who established
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FIG. 2. Price ladders.

a Brownian limit for a tick-by-tick model driven by Hawkes processes. Jaisson and Rosen-
baum (2015) obtain Feller’s square root process as the limit of a sequence of nearly unstable
Hawkes processes. In these Hawkes models, however, positivity of the prices is not guaran-
teed and furthermore the limits identified so far are continuous.

At an even higher frequency, and with substantially larger amounts of data than required
from just transaction prices, it is possible to model the dynamics of the quotes in the order
book. This can involve an elaborate analysis of the optimizing behavior of various types of
agents, or more often exogenous assumptions or order arrivals and withdrawals, various al-
gorithms of automated trading, and how they interact with institutional features of the limit
order book such as priority rules, types of limit orders, allowed order placement strategies,
etcetera. The typical time scale at which quotes are updated is measured in milliseconds.
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FIG. 3. Price drift.

These microscopic limit order book models have been studied and their macroscopic lim-
its derived (see, e.g., Cont, Stoikov and Talreja (2010), Cont and de Larrard (2013), Bayer,
Horst and Qiu (2017), Huang and Rosenbaum (2017), Horst and Kreher (2019) and Almost,
Lehoczky and Shreve (2016)). These models rely on quotes data, which at each point in time
are cross-sectionally high-dimensional, as opposed to transaction prices, which involve only
the time series dimension and are univariate for a given asset. Furthermore, quotes are subject
to empirical regularities that are quite different from those of transaction prices. Although it
does also give rise to microscopic (the dynamics of the market and limit orders) and macro-
scopic (the eventual limit of the book) perspectives, the limit order book approach is therefore
quite different from the one we pursue here.
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In econophysics, scaling properties and limits play an important role. They are often em-
ployed to derive or justify specific macroscopic models (see, e.g., Mantegna and Stanley
(2007), Gorenflo et al. (2001), Becker-Kern, Meerschaert and Scheffler (2004), Meerschaert
and Scalas (2006), di Matteo (2007)) but generally without satisfying the constraints im-
posed by the specific nature of tick-by-tick data. Scaling limits also play a role in engineering
when analyzing networks using queueing processes (see, e.g., Willinger, Leland and Wilson
(1995)). In probability theory, the domain of scaling limits for processes is a classical topic,
most often resulting in diffusive limits (see, e.g., Billingsley (1999) and Ethier and Kurtz
(1986)), whereas Whitt (2002) focuses on limits that include jumps.

Employing scaling limits in the context of linking tick-by-tick and macroscopic models for
asset prices raises many new issues and requires some new scaling procedures. In particular,
whether tick-by-tick models that are realistic in the sense of fitting the fairly constraining
empirical properties of the tick data described above can generate a relatively unconstrained
semimartingale is so far an open question. So the main aim of this paper is to propose a con-
struction at the tick level that is compatible with the empirical features of tick data and yet
results in macroscopic models that contain the features of Itô semimartingales that have be-
come commonplace in continuous-time modelling, including stochastic volatility and jumps.

The paper is organized as follows. We establish the notation regarding the tick-by-tick and
macroscopic models and provide a few general comments about the problem in Section 2.
We examine the passage from macroscopic to tick-by-tick in Section 3, concluding that al-
though it can be done, it gives rise to highly arbitrary tick-by-tick models, which are not
very likely to pass a statistical specification test based on empirical tick-by-tick data. We then
turn to the reverse problem, upscaling from tick-by-tick to macroscopic, in Section 4 and
discuss the reversibility, or compatibility, between the two procedures in Section 5. The rest
of the paper studies more specifically the upscaling problem. Sections 6, 7, 8 and 9 construct
progressively more complex tick-by-tick models resulting in progressively more complex
compatible macroscopic models: Markovian models, models with stochastic volatility, Lévy
models and finally fairly general semimartingale models with jumps. Section 10 shows how
further generalizations can be achieved by mixing together the previous results. Proofs are in
Section 11, and Section 12 concludes.

2. Tick-by-tick vs. macroscopic models. A macroscopic model for a single asset de-
scribes the dynamics of the price St evolving with time t ≥ 0, which is thought of as the
“efficient” or “correct” price, although it clearly is a kind of abstract idealization. For in-
stance, the settled price for a transaction occurring at some time T is often different from ST ,
the difference being interpreted as a form of “market microstructure noise”. For simplicity,
the initial price S0 is assumed to be nonrandom.

As said before, any positive semimartingale admitting an equivalent local martingale mea-
sure (to ensure no-arbitrage) is eligible as a macroscopic price, but models used in practice
are almost always Itô semimartingales driven by a Brownian motion and a positive volatility,
plus possibly jumps, or (rarely) prices driven by a pure jump process (mostly stable or tem-
pered stable processes), or in some cases a time-changed process of this type. In any case,
macroscopic models are the starting point for most financial applications, including deriva-
tive pricing, portfolio optimization, etcetera. A macroscopic model is described by its drift,
volatility and jump characteristics, which can themselves be stochastic.

On the other hand, a tick-by-tick model describes the joint law (or dynamics) of the suc-
cessive times Ti and prices Pi at which transactions occur. From a high frequency database,
such as the NYSE’s TAQ, one can directly obtain tick-by-tick data (Ti,Pi)i∈N∗ , to be viewed
as realizations of the tick-by-tick model of interest, and thus such models can in principle be
matched directly to the high frequency transactions data.
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By convention, T0 = 0 and P0 is again a nonrandom initial price. Discreteness is an essen-
tial feature of tick prices. The tick size is a > 0; in most cases, we take a = 1, representing
one cent, without loss of generality. The prices Pi , including the initial value P0, can only
take the values na for n ∈ N

∗.
Macroscopic models are usually written for the real-valued log-price Xt = logSt rather

than for the price itself. Analogously, let Qi = logPi be the log-price of the ith transaction.
Modeling St or Xt , resp. Pi or Qi , is of course equivalent. However, for tick-by-tick models,
Qi takes its values in the set {log(an) : n ∈ N

∗}, which is not a regular grid, hence it is very
difficult to model in a reasonable way. Alternatively, having a log-price restricted to be an
integral multiple of a fixed a implies that the price itself takes its values on the “exponential”
grid {ean : n ∈ N

∗}, which does not agree with the real data. We thus need to consider the
prices themselves rather than the log-prices. At the macroscopic level, this is a simple adjust-
ment by Itô’s formula. But at the microscopic level, the requirements Pi > 0 for the prices
turn out to be a serious source of complications, as we will see below.

So we define the two types of models as follows:

DEFINITION 1. A tick-by-tick model is a sequence (Ti,Pi)i∈N∗ starting from a given
T0 ≥ 0 and P0 > 0, where the transaction times Ti are a nondecreasing sequence of random
variables and the transaction prices Pi take values on a grid G = {an : n ∈ N

∗}, where a > 0 is
the fixed tick size. A macroscopic model is a stochastic process (St )t≥0 which is a nonnegative
semimartingale, starting from a given S0 > 0, that can be transformed into a local martingale
by an equivalent change of measure.

There is a priori a very simple way to reconcile the two viewpoints and, as a bonus, to
get rid of the microstructure noise. Namely, first specify (or model) the transaction times Ti

starting from T0 = 0, and then:

Starting with (St )t≥0: put Pi = STi
,(1)

Starting with (Pi)i≥0: put St = Pi if Ti ≤ t < Ti+1.(2)

These two ways are reversible, in the sense that if one starts with a tick-by-tick model and
carries out (2) and then (1), one recovers the initial model. If one starts with a macroscopic
model and carries out (1) and then (2) one does not exactly recover the initial model, but a
time-discretized version of it.

This looks appealing, but is unfeasible for two reasons. First, applying (1) with any of
the standard macroscopic models gives rise to successive transaction prices that never enjoy
the stylized features described above: in particular they typically do not belong to a discrete
grid, do not feature a high proportion of zero returns, and do not exhibit ladders. Second,
applying (2) seems to pose no problem a priori, since indeed any tick-by-tick model with
no-arbitrage gives rise to an eligible macroscopic semimartingale. However, it is difficult to
come up with a realistic tick-by-tick model. But the worst aspect is that even for the simplest
models, computing any quantity of interest at the scale of one day or month or year (such
as option prices, even European options, for example) using standard mathematical finance
arguments is simply impossible.

The limitation described in the last statement is already visible for the simplest possible
case: forgetting about the positiveness requirement, take regularly spaced transaction times
Ti and, for Pi , a Bernoulli random walk. There is no closed form for an option price, for
example: an option price with maturity of one month involves more than 500,000 values of
Pi if transactions occur every second. To approximate the option price, the best option is
obviously to resort to a Brownian approximation of the random walk: it is no wonder that,
120 years ago, Bachelier (1900) used this approximation and simultaneously introduced the
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mathematical Brownian motion; see, for example, Davis and Etheridge (2007). And, in fact,
we will use the same scaling method as Bachelier did for deriving a macroscopic model from
the tick-by-tick model.

The conclusion from these considerations is that one must be more sophisticated than in
(1)–(2) when we attempt to reconcile the two viewpoints. However, as in (1)–(2), the problem
is twofold:

1. Downscaling: Start with a given macroscopic model. How can we construct a tick-by-
tick model with P0 = S0, which is “compatible” with St? To begin, how should the notion of
compatibility be defined?

2. Upscaling: Start with a given tick-by-tick model. We want to construct a compatible
macroscopic model. Again, the appropriate notion of compatibility is something we will need
to define.

3. Downscaling: From macroscopic to tick-by-tick. In the downscaling problem, the
macroscopic price process (St )t≥0 is given, and we recall that for the tick-by-tick model the
price should live on the grid G. We suppose that the initial price S0 belongs to this grid. Apart
from the method (1), which quickly breaks down, there are a number of approaches that one
can possibly consider:

1. The white noise approach: Assume that the transaction times are given, in a basically
arbitrary fashion. This approach consists in assuming that the price Pi are a noisy version of
STi

, that is, Pi = STi
+ εi , where εi represents what is usually called “market microstructure

noise”. So, specifying the law of the sequence Pi amounts to specifying the law of the se-
quence εi . In the financial econometrics literature, a standard assumption is that the εi are
i.i.d. independent of S and of the Ti’s, and centered. However, in this setting the Pi ’s have no
chance of living on the grid G.

2. The hitting times approach: The transaction times are hitting times of the grid G, in
the sense that either Ti = inf(t > Ti−1 + α : St ∈ G) for some α > 0 (taking α = 0 would
typically lead to Ti+1 = Ti ), or Ti = inf(t > Ti−1 : |St − STi

| ≥ a). The corresponding prices
are Pi = STi

. Since S0 ∈ G, and as soon as St is continuous, by construction we have Pi ∈ G.
However, also by construction, we will never have Pi+1 = Pi with the second construction,
and when the process St has jumps then again Pi typically will no longer belong to G. These
two drawbacks could be alleviated by using more sophisticated definitions for the times Ti ,
although in the case of a jumping process St it seems impossible to obtain ladders for the tick-
by-tick prices. But the main problem with this method is that it basically determines the law
of the sequence of transaction times Ti , quite far from being regularly spaced or Poissonian:
for instance, for a usual model where St is continuous and driven by a Brownian motion and
when the tick size a is small, the time separating observations �i = Ti − Ti−1 are basically
independent and �i is distributed as the hitting time H = inf(t : |Wt | = a/|σTi−1 |) for W a
standard Brownian motion and with σt the volatility. So one would have very little flexibility,
as far as fitting such a model to data on transaction times is concerned.

3. The rounding approach: The transaction times are again basically arbitrary, and the
tick-by-tick prices are Pi = a[STi

/a], where [x] denotes the integer part of x ∈ R. Perhaps a
better choice would be Pi = a[STi

/a + 1/2] or, even better, Pi = a[STi
/a + εi] where εi is a

sequence of i.i.d. variables, uniform on [0,1] and independent of S. By construction, Pi ∈ G

and the tick-by-tick returns vanish with a positive probability. However, when St experiences
a big jump, the corresponding return of Pi is also large and there are no price ladders.

4. Rounding plus ladders: Here we start with a preliminary tick-by-tick model (T ′
i , P

′
i )

as defined in the previous approach (any of the versions would do); then the (Ti,Pi)’s are
defined by induction as follows: suppose that Ti = T ′

j and Pi = P ′
j for some j ≥ 0; if
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|P ′
j+1 − Pj | ≤ a we set Ti+1 = T ′

j+1 and Pi+1 = P ′
j+1, otherwise we introduce k = |P ′

j+1 −
P ′

j |/a additional transaction times Ti+m = T ′
j + m

k
(T ′

j+1 − T ′
j ) for m = 1, . . . k and the asso-

ciated prices Pi+m = Pj +ma sign(P ′
j+1 −Pj ), so Pi+k = P ′

j+1. This gives us a tick-by-tick
model and all stylized features will occur for this model, at least when S has jumps of size
bigger than a.

The conclusion one can draw from these considerations is that the downscaling problem
is theoretically possible to solve, but up to fairly ad hoc procedures resulting in a highly
constrained and quite arbitrary tick-by-tick model even when starting from a simple macro-
scopic model. All these approaches give a discrepancy between Pi and STi

, and the difference
εi = Pi − STi

can only be reconciled by appealing to some form of microstructure “noise”
or measurement error. And of course it would remain to see whether a macroscopic model
deemed to be a reasonable representation of the reality at its macro scale gives rise to a tick-
by-tick model which is also a reasonable representation of the reality at the tick scale. Given
these inherent limitations, we set aside the downscaling approach in the rest of the paper and
focus instead on the opposite viewpoint.

4. Upscaling: From tick-by-tick to macroscopic models. The upscaling approach is
the reverse of the preceding one: we take for granted a tick-by-tick model (Ti,Pi)i∈N∗ , and
attempt to construct a compatible macroscopic model (St )t≥0.

As stated above, we cannot rely on the method (2). A better approach, as in Bachelier
(1900), consists in constructing the macroscopic model (St )t≥0 as a scaling limit of the tick-
by-tick model: the latter describes a microscopic reality with a tick size a, which we can take
equal to 1 but is small by comparison with the typical monthly or yearly returns, whereas the
former describes the long term behavior (meaning: for days, weeks, or years). Starting from
S0 = P0, we stretch out the time and shrink the size of returns by setting

(3) Nt = ∑
i≥1

1{Ti≤t}, Sn
t = S0 + 1

n
(PNunt − S0)

for a suitable sequence un > 0 of numbers going to ∞ as n goes to ∞. At the macroscopic
level, we then have that the resulting tick size an = a/n is shrinking to 0, whereas the initial
value S0 is fixed and strictly positive. If, for some appropriate choice of un the processes Sn

converge to a nontrivial limiting process S, we can think of (St )t≥0 as the macroscopic model
compatible with the tick-by-tick model (Ti,Pi)i∈N∗ .

Notice that if we were letting the tick size go to 0 without stretching out the time, which
would correspond to taking un = 1 above, the processes Sn

t would simply converge to the
constant S0, which is not really what we are looking for.

Consider first the Bachelier example with tick size a = 1:

EXAMPLE 1. The tick-by-tick model is as follows: Take Ti = i and, starting with P0 > 0,
for Ui an i.i.d. sequence of centered Bernoulli variables, define Pi = Pi−1 + Ui for i ∈ N

∗.
Then with un = n2, we have from (3)

(4) Sn
t = S0 + 1

n

[n2t]∑
j=1

Ui,

and by Donsker’s theorem (see Donsker (1951)), the processes Sn converge (functionally) in
law to a standard Brownian motion Wt as n → ∞.

Bachelier’s setting can easily be extended. For example, take the Ui ’s be i.i.d. Z-valued
centered with variance σ 2, and the inter-transactions times �i = Ti −Ti−1 to be i.i.d. positive
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with mean 1 and independent of the Ui ’s. Then S0 + 1
n

∑
i:Ti≤n2t Ui converges, functionally

in law, to σWt . Further extensions are clearly available as well.
As the next example shows, however, attempting to extend the method further quickly runs

into problems:

EXAMPLE 2. If we tilt the distribution of the variables Ui so that, although still Z-valued,
they have a mean μ 	= 0, then the processes Sn with un = n2 would diverge, and the only
possibility to get a nontrivial limit is to take un = n, in which case the limit is St = μt .
Therefore, this method cannot possibly allow for a limiting process which exhibits a nonzero
drift plus a Brownian motion. The way out of this difficulty is to let the tick-by-tick model
depend on n, that is, in the formulation (4), to let the law of the i.i.d. sequence (Ui) to depend
on n, for example with a mean μ/n and a constant variance σ 2: in this case Sn converges
in law to the process μt + σWt . (Note that the binomial tree of Cox, Ross and Rubinstein
(1979) proceeds as above, but its microscopic returns (each increment on the tree) are not
compatible with a grid.)

These examples lead to a few remarks outlining some difficulties and limitations inherent
in the method, say in the setting (4) with i.i.d. variables Ui (hence Ti = i):

REMARK 1. The convergence of the sequence Sn cannot be anything else than conver-
gence in law: except in fairly trivial cases, pathwise convergence is excluded.

REMARK 2. As seen in Example 2, if we want a scaling limit with a nonvanishing drift,
it is necessary to allow the law of the tick-by-tick model at stage n to depend on n, and we
will see later that the same is necessary when the scaling limit has jumps. In other words,
taking scaling limits of a fixed tick-by-tick model will not be sufficient to achieve the types
of macroscopic limits we wish for, and we are led to consider instead a sequence of tick-
by-tick models indexed by some n. In the case of a drift for example, the dependence on
n makes sense for the following reason: the drift is the mathematical expression of a trend,
which is only apparent at the macro level; if this trend has size b over a day, for returns
over time intervals of length 1/un (fraction of a day) it manifests itself through a drift with
size b/un; so, when we rescale the prices according to (3), the trend for the re-scaled price
(1/n)(PNunt − S0) is close to b, whereas the drift for individual returns of the tick-by-tick
model should rather be bn/un. And indeed, going back to Example 2 (with un = n2), the
i.i.d. variables (Ui = Un

i : i ≥ 1) at stage n have a constant variance σ 2 and an n-dependent
mean bn = b/n.

REMARK 3. Prices above are not always positive. So this kind of model can only be em-
ployed for the log-price as in the case for the geometric Brownian motion (a.k.a. the Black–
Scholes model). However, if the log-price takes its values on the grid Z, the price itself lives
on the grid {ek : k ∈ Z}, which is then not regular. When the macroscopic model describes the
behavior within a day this may be not too unreasonable because the grid {ek : k ∈ Z} restricted
to the interval in which the price varies during that day may perhaps be close enough to being
regular. For longer periods of time, though, this becomes unreasonable, and we furthermore
need to worry about the positiveness of the price.

As a consequence of the previous discussion, in the remainder of the paper we adopt the
following conventions. First, without loss of generality, we suppose that the tick size is a = 1
and, for simplicity, that the returns of the tick-by-tick models take their values in the set
E = {−1,0,1} (returns with values in all of Z can be dealt with in a similar way). Since
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the law of the returns may depend on n, it is convenient to use the notation (T n
i ,P n

i ) for
the ith transaction time and price, with the convention T n

0 = 0. Equivalently, the sequence of
tick-by-tick models is a specification for (Un

i ,�n
i ), where

(5) Un
i = P n

i − P n
i−1, �n

i = T n
i − T n

i−1.

Here the �n
i ’s are positive random variable and the Un

i ’s are E-valued random variable.
Since we allow the law of the tick-by-tick model at stage n to depend on n, it is no restric-

tion to assume that the time-stretching factor un in (3) is un = n2. In order to be consistent,
the initial price P n

0 should be independent on n and integer-valued, hence we assume below
that P n

0 = S0 for some (nonrandom) given positive integer.
We also define

Nn
t = ∑

i≥1

1{T n
i ≤t}, An

t = 1

n2 Nn
n2t

,

Dn
t = 1

n2 T n
[n2t], Sn

t = S0 + 1

n

(
P n

Nn

n2t

− S0
)
.

(6)

so Sn
t is the re-scaled tick-by-tick model. The connection between An and Dn is that one is

the right-continuous inverse of the other.
In light of this construction, the formal definition of compatibility we propose is the fol-

lowing.

DEFINITION 2. The tick-by-tick model Sn constructed from (T n
i ,P n

i )i∈N by rescaling
time and space as in (6) are compatible with a macroscopic model S if Sn converges func-

tionally in law to S, denoted as Sn L−→ S.

In this definition, “functionally” means that we consider Sn and S as random variables with
values in the functional space D of all right continuous and left limited functions, endowed
with the M1 Skorokhod topology (see Skorohod (1956)). Since this topology is less familiar
than the J1 Skorokhod topology, we recall its definition here. First, if y ∈ D and t > 0, we
call �t,y the “complete graph” of the restriction of the function y to [0, t], that is the set of
all (s, x) ∈ [0, t] ×R such that x = y(0) if s = 0 and x is an arbitrary convex combination of
y(s−) and y(s) when s ∈ (0, t]. For any z > 0 we call �z

t,y the z –dilation of �t,y , that is, the
set of all (s, x) of [0, t] ×R at a Euclidean distance from �t,y not more than z. Then the M1

topology is defined by the distance (for any two y, y′ ∈ D):

dM1

(
y, y′) =

∫ ∞
0

e−sδs

(
y, y′)ds, δt

(
y, y′) = 1 ∧ inf

(
z : �t,y ⊂ �z

t,y′ and �t,y′ ⊂ �z
t,y

)
.

(This slightly differs from the classical definition because here we consider functions on the
time interval [0,∞) instead of [0,1] in Skorohod (1956); see Chapter 3 in Whitt (2002) for
more details.)

The M1 topology is weaker than the more commonly used J1 topology, which in turn is
weaker than the local uniform topology. However, when the limiting process is continuous,
the convergences for M1, for S1, and for the local uniform topology are equivalent. Moreover,

exactly as for the J1 topology, Sn L−→ S implies the finite-dimensional convergence in law,
as soon as the limiting process has no fixed times of discontinuity. The reason for using M1

instead of J1 is that a sequence of processes whose jumps at stage n have size ±1/n, as is Sn

here, cannot converge in law to a discontinuous process S for J1, whereas it can for M1.
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5. Reversibility between upscaling and downscaling. Despite the conclusion of Sec-
tion 3 regarding the downscaling approach, a natural question to ask is whether, if one succes-
sively upscales and downscales, or the other way around, one recovers the original starting
model. This can be considered as a reversibility, or consistency, property between the two
procedures.

5.1. First upscaling, then downscaling. We upscale a tick-by-tick model (T n
i ,P n

i ) to get
a sequence Sn converging to S. If we now downscale S, do we recover (T n

i ,P n
i )? The answer

of course depends on the downscaling procedure, and in particular on the transaction times
T ′n

i that are used for downscaling at stage n. If they are chosen arbitrarily, according to
one of the procedures described in Section 4 for example, the answer is obviously negative.
On the other hand, using Skorokhod’s lemma (more details in the proof of Theorem 1 in
Section 11) we can define S and all T n

i ,P n
i on the same probability space (without changing

the law of each sequence (T n
i ,P n

i ), but introducing strong dependencies between them), we
can suppose that Sn(ω) → S(ω) for the M1 topology, for almost all ω. Then if we use the
(macroscopic) transaction times T ′n

i = T n
i /n2 at stage n, the consistency is ensured and the

differences P n
i − ST ′n

i
= Sn

T ′n
i

− ST ′n
i

can be viewed as the microstructure noise.

5.2. First downscaling, then upscaling. We start with a macroscopic model S, contin-
uous for simplicity, and downscale it according to, say, the rounding procedure with noise
(without ladders, with a = 1) of Section 3. We obtain a tick-by-tick model, but of course, in
order to have a chance for consistency when we upscale again, we need to first consider trans-
action times T ′n

i which become denser when n increases, and second to multiply the returns
by a “large” constant when n is large (otherwise the proportion of returns equal to 0 would
tend to 1, which does not fit microscopic data). In other words, the downscaling at stage n

uses a (more or less arbitrary, except for T ′n
0 = 0) sequence T ′n

i with a mesh size of order 1/n2

(to be coherent with the normalization in (6)) and the returns are multiplied by n. We then
obtain a tick-by-tick model (T n

i ,P n
i ) with T n

i = n2T ′n
i and P n

i = S0 + [n(ST ′n
i

− S0) + εi].
When we upscale again, we obtain for t ∈ [T ′n

i , T ′n
i+1):

Sn
t = S0 + 1

n

(
P n

i − S0
) = St + ηn

t where ηn
t = 1

n

[
n(ST ′n

i
− S0) + εi

] − (St − S0).

Since S is continuous, ηn
t → 0 in probability and thus Sn actually converges to S in proba-

bility for all t (one could prove indeed the functional convergence, and the same would hold
when S is discontinuous, upon using ladders in the downscaling part. Therefore, we again
get the consistency of the two procedures; note that the normalization in the downscaling
part more or less amounts to assuming that at stage n the tick size is 1/n instead of a = 1.

We now proceed to detail how one can specify reasonable and realistic tick-by-tick models
in light of what is observed in high frequency transactions data, yet give rise to a compatible
macroscopic model (St )t≥0 with classical dynamics. So even though we are proceeding by
upscaling, we do so with an objective in mind, that of achieving specific dynamics for the
macroscopic model. Let us note from the onset that in all cases below there is no unicity
of the construction: many different tick-by-tick models give rise to the same St , exactly as a
Bernoulli random walk, but also any other square-integrable centered random walk and many
other triangular arrays of variables, will converge after normalization to the Brownian motion.
So below we try to come up with what appears to be the simplest possible tick-by-tick model
that is both realistic and achieves the desired limit.
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6. Macroscopic continuous Markov models. In this section, the objective is to obtain
from a tick-by-tick model the compatible macroscopic model (St )t≥0 satisfying the following
stochastic differential equation:

(7) dSt = b(t, St )St dt + σ(t, St )St dWt ,

where W is a standard Brownian motion. The drift and diffusion functions b and σ are defined
on [0,∞) × R and σ is positive. For simplicity, we also assume that they are bounded and
Lipschitz continuous, so (7) has a unique strong (nonexploding) solution. This in particular
includes the Black–Scholes model, and its nonhomogeneous Markov generalizations, and
indeed many macroscopic models take the form (7).

We need to construct the dynamics of the double sequence (�n
i ,U

n
i ) in a way that yields

Sn L−→ S with S following (7). There are two main difficulties: one is due to the fact that
we need all P n

i to be positive (here S is positive by construction); another one is that the
coefficients in (7) depend on t and St . So we start with the following simple case, which
illustrates how the first difficulty can be resolved.

6.1. Black–Scholes model with no drift. Suppose that b(x) = 0 and σ(x) = σ > 0 in
(7). We specify the tick-by-tick model as follows: we start with a sequence (Vi)i≥1 of E-
valued variables describing the returns, and another sequence (
i)i≥1 of positive variables
accounting for the inter-transaction times. We make the following assumptions on the partial
sums V j = ∑j

i=1 Vi and 
j = ∑j
i=1 
i :

(8)
(

1√
n
V [nt]

)
t≥0

L−→ √
vB,

1

n

[nt]

P−→ t

for some v ∈ (0,1] and a Brownian motion B . In other words, we require V to satisfy the
central limit theorem and 
 the law of large numbers.

For example, we can take the Vi ’s to be i.i.d. centered with variance v (then P(Vi = ±1) =
v/2 and P(Vi = 0) = 1 − v), and the 
i ’s to be i.i.d. with mean 1 (for instance, 
i ≡ 1). By
construction, the parameter v controls the proportion of zero returns in the tick-by-tick model.
But of course many other sequences Vi and 
i satisfy (8), giving a large degree of flexibility
for the tick-by-tick model. In particular, a degree of autocorrelation can be built into the series
of Vi’s as long as V continues to satisfy the central limit theorem. For example, the Vi’s could
be a Markov chain with a stationary distribution with mean 0 and variance v in order for the
tick-by-tick model to generate sequences of constant transaction prices, and sequences of ±1
price increments, as observed in the tick data.

We also set

(9) Zn
t = S0 + 1

n
V [n2t].

This process is designed to represent the (normalized) price, along a (normalized) tick-time,
that is, if the inter-transaction times where constant. However Zn, which is a càdlàg process
with jumps ±1/n, can take negative values. To eliminate this problem, we stop it when it
reaches 1/n and define the tick-by-tick model as follows, for i ≥ 1:

(10) Un
i = Vi, �n

i =
⎧⎪⎨
⎪⎩

v

(Zn
(i−1)/n2)

2σ 2 
i if Zn
(i−1)/n2 ≥ 2

n
,

∞ otherwise.

The interpretation could be that at stage n the firm defaults when the price reaches the smallest
possible positive value 1/n, and after that no transaction occurs (and the subsequent returns
are irrelevant).
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The rescaled price process in (6) is then

(11) Sn
t = Zn

An
t ∧τn

where τn = inf
(
t : Zn

t = 1/n
)
,

and the next result establishes the compatibility of the tick-by-tick model as constructed
above with the desired macroscopic model, and implies that the time of default for the tick-
by-tick models goes to ∞ as n → ∞:

THEOREM 1. Under (8) the rescaled processes Sn are compatible with the Black–
Scholes process without drift, that is the solution of (7) when b(t, x) = 0 and σ(t, x) = σ > 0:

(12) St = S0 exp
(
σWt − σ 2t/2

)
.

REMARK 4. Note the form of �n
i in (10): when σ increases or when the price increases,

the frequency of transactions increases. Indeed, in (7) the “genuine” volatility is σ(t, St )
2S2

t

rather than σ(t, S2
t ). In the tick-by-tick model the frequency of trades is roughly proportional

to the genuine volatility, in accordance with a stylized fact about volatility and in particular
with the fact that the trading frequency can be used as a proxy for the volatility.

REMARK 5. The volatility σ of returns is generated in this approach by the randomness
of the times between transactions, as opposed to being generated by the distribution of the
increments of the tick-by-tick prices. This is necessary to maintain the price increments on
the tick grid G.

6.2. General continuous Markov models as macroscopic limits. We consider now the
general form of (7), with the stated conditions on the function b,σ . As already discussed,
because of the presence of a drift in the macroscopic model, we must consider a sequence of
tick-by-tick models indexed by n. We still choose some v ∈ (0,1] and set for (t, x) ∈ R+ ×R:

(13)

f (t, x) = v

x2σ(t, x)2 1{x>0} + 1{x≤0}, g(t, x) = xb(t, x)f (t, x)1{x>0},

w = v ∧ (2 − v), gn(t, x) = g(t, x)

n
1{|g(t,x)|≤nw}.

The inter-transactions times are driven by an i.i.d. sequence 
i of positive variables with
mean 1 and finite second moment. For the returns, for each n we take a sequence (V n

i )i≥1 of
E-valued variables, whose law will be specified later.

First, we define the process Zn by (9). Second, we set T̂ n
i = 1

n2

∑n
j=1 �̂n

j (so T̂ n
0 = 0), with

the �̂n
i defined by induction on i ≥ 1 as follows:

(14) �̂n
i = f

(
T̂ n

i−1,Z
n
(i−1)/n2

)

i.

Third, introducing the σ -fields Gn
i = σ(V n

j ,
j : j ≤ i), the law of the sequence V n
i is char-

acterized by the successive conditional probabilities

(15) P
(
V n

i = ±1 | Gn
i−1

) = v

2
± 1

2
gn

(
T n

i−1,Z
n
(i−1)/n2

)
(the truncation in the definition of gn ensures that this defines a probability measure on E).
When i − 1 ≤ n2τn, this definition is, in fact, equivalent to having

(16) E
(
V n

i | Gn
i−1

) = gn

(
T̂ n

i−1,Z
n
(i−1)/n2

)
, Var

(
V n

i | Gn
i−1

) = v
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and v is again the proportion (as i varies) of variables V n
i which are not vanishing. Finally,

to ensure the positiveness, we define the model (Un
i ,�n

i ) by

(17) Un
i = V n

i , �n
i =

⎧⎨
⎩�̂n

i if Zn
(i−1)/n2 ≥ 2

n
,

∞ otherwise.

As in the Black–Scholes case, the rescaled process is given by (11), and the stopping time
τn retains its interpretation as the default time. The interpretation of the function f in (13)
and (14) is the same as in Remark 4. The reason for introducing the function g (or gn), in
connection with the drift b(t, x), is transparent from (16).

THEOREM 2. In the above setting, the rescaled processes Sn are compatible with the
unique solution S of (7).

7. Macroscopic stochastic volatility models. We now want the macroscopic model to
follow a continuous stochastic volatility model of the type

(18) St = S0 +
∫ t

0
Ss

√
cs dWs, ct = c0 +

∫ t

0
d(cs) ds +

∫ t

0
a(cs) dW ′

s,

where X0 and c0 > 0 are nonrandom and given, and W,W ′ are two Brownian motions with
correlation ρ. For simplicity we take for ct a homogeneous Markov process and do not intro-
duce a drift b(t,Xt ) in the log-price process, but it would be possible (by applying the same
procedure as in the previous Section) to accommodate a drift in X, and time-varying coeffi-
cients d(t, ct ) and a(t, ct ) in the equation for ct . But in this Section the novelty is stochastic
volatility, and for ease of exposition we focus on that aspect of the model. We assume that the
functions a and d are continuous on (0,∞) and that the second equation in (18) has a unique
strong solution, positive and nonexploding, so the same holds for the pair of two equations.
For instance, the model of Heston (1993) corresponds to a(x) = γ

√
x and d(x) = κ(x0 − x)

for some constants γ, κ, x0 > 0, and satisfies these assumptions.
As previously, we start with v ∈ (0,1] which once again stands for the average proportion

of nonzero returns in the tick-by-tick model. We introduce some functions on R
2:

f (x, y) = x2ey

v
1{x>0} + 1{x≤0},

g(x, y) = vd(y)e−y

x2 1{x 	=0},

h(x, y) =
√

va(y)e−y/2

|x| 1{x 	=0}.

We start with a sequence of two-dimensional i.i.d. centered variables (Vi, Ṽi), with Vi

taking its values in E = {−1,0,1} and

E(Vi) = E(Ṽi) = 0, E
(
V 2

i

) = v, E
(
Ṽ 2

i

) = 1,

E(ViṼi) = ρ
√

v, E
(
Ṽ 4

i

)
< ∞.

Set

Zn
t = S0 + 1

n

[n2t]∑
j=1

V n
j , τn = inf

(
t : Zn

t ≤ 1

n

)
,



FROM TICK DATA TO SEMIMARTINGALES 2755

and define the sequence (Ũn
i : i ≥ 0), starting with Ũn

0 = log c0, and using the induction
formula:

(19) Ũn
i+1 = Ũn

i + 1

n2 g
(
Zn

i/n2, Ũ
n
i

) + 1

n
h
(
Zn

i/n2, Ũ
n
i

)
Ṽi+1.

Then, at stage n we define the tick-by-tick model (Un
i ,�n

i ) as

(20)
i − 1 ≤ n2τn =⇒ Un

i = Vi, �n
i = 1/f

(
Zn

i/n2, Ũ
n
i

)
,

i − 1 > n2τn =⇒ Un
i = 0, �n

i = ∞
and the rescaled price process is thus Sn

t = Zn
An

t ∧τn
. The following shows that this construction

results in the desired macroscopic model.

THEOREM 3. The rescaled processes Sn are compatible with the process S defined by
(18).

Here again, the role of the function f is as in Remark 4, whereas h takes care of the
volatility of the volatility, and g is used for the drift of the volatility. In contrast with the
previous examples, we have the exponential ey coming up in the definition of those three
functions: this is due to the fact that, since we need ct > 0, we use the equation for the
process Yt = log ct instead of the second equation in (18) and thus the volatility becomes eYt .

8. Macroscopic models with jumps: The Lévy case. We now turn to the question of
obtaining macroscopic models with jumps, together with a Brownian part. In this Section,
we ignore the positiveness requirement for prices, and obtain a scaling limit which is a Lévy
process, that is a process with stationary independent increments: this is an extension of the
Bachelier model to a setting with jumps. The realistic case with positive prices and more
general limits will be considered in the next section.

In a first version, we consider the case of regularly spaced transaction times and returns
with arbitrary size, although prices take values in the grid G = Z here (so with a tick size
a = 1 again, say). At stage n, the transactions occur at times T i = i (independent of n), and
the returns (U

n

i )i≥1 are i.i.d. with some law Gn supported by Z, and we thus have no ladders
but “big” returns instead (so, besides the fact that prices may be negative, they do not fit the
ladder feature of realistic models). The rescaled prices are

(21) S
n

t = S0 + 1

n

[n2t]∑
i=1

U
n

i .

By classical results for row-wise i.i.d. triangular arrays, for any t > 0 the variables S
n

t con-
verge in law to a nontrivial limit if and only if we have the following three conditions, for
some continuous truncation function h (meaning, h(x) = x for |x| small enough and h(x) = 0
for |x| large enough) and all continuous bounded functions g vanishing on a neighborhood
of 0:

(22)

n2
∫

h(x/n)Gn(dx) → b,

n2
∫

h(x/n)2Gn(dx) → σ 2 +
∫

h(x)2H(dx),

n2
∫

g(x/n)Gn(dx) →
∫

g(x)H(dx),
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with H a Lévy measure (that is, a measure integrating the function x �→ x2 ∧ 1) and b ∈ R

and σ 2 ≥ 0. In this case, the processes S
n

converge functionally in law, for the J1 Skorokhod
topology, to a limit S which is Lévy process starting at S0 and with characteristic triplet
(b, σ 2,H).

As already mentioned, the previous tick-by-tick model does not exhibit ladders, but big
returns. In order to better fit the stylized features we now modify the previous model and
introduce ladders. With U

n

i as above, we now pretend that each U
n

i not equal to −1, 0 or 1 is
the size of a ladder, and construct the tick-by-tick model as follows, with εi = sign(Ui):

(23)
• if |Ui | ≤ 1 we have a transaction at time i, with return Ui ,
• if |Ui | = m > 1 we have m transactions occurring at times

i − j/m for j = 1,2, . . . ,m, each one with returns εi.

We then rearrange the successive transaction times and returns as T n
i and Un

i , and at stage n

the rescaled prices are

(24) Sn
t = S0 + 1

n

∑
j≥1,T n

j ≤n2t

Un
i ,

which is the same as (3). Note that (21) and (24) give us Sn
t = S

n

t if t = i/n2 for i = 0,1, . . . .
Then, under (22) again, the processes Sn converge in law for the M1 topology to the same
limit S as in the first case (this follows from Lemma 2 of Section 11 with S′n = S

n
).

At this juncture, it is worth noting that any Lévy process S is the scaling limit of a sequence
of tick-by-tick models of the above-described form. For example, if the macroscopic model is
a Lévy process S with characteristic triplet (b, σ 2,H), and if (for simplicity) we suppose that
the measure H is symmetrical, the previous tick-by-tick models associated with the measures
Gn on Z defined by (for some α ∈ (−1,1) and m ∈ N

∗ and a > 0 and vn ≥ 0):

(25) Gn({z}) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vn if z = 0,

a
(
1 ± α/n

)
if z = ±1,±2 . . . ,±m,

1

n2 H

([ |z| − 1)

n
,
|z|
n

))
if |z| > m

are compatible with S as soon as m and the numbers an, vn > 0 satisfy the following (which
holds for all n large enough if we properly choose α,a,m):

aαm(m + 1) = b,

am(m + 1)(2m + 1) = 3σ 2,

vn + 2am + 2

n2 H

([
m

n
,∞

))
= 1.

Now, of course, although they allow for jumps, the above models suffer from some of the
same limitations as the Bachelier model: the associated macroscopic model is a Lévy process,
and so the resulting prices do not remain positive in general. We fix these problems in the next
section.

9. Macroscopic Markov models with jumps. In this section, we construct a tick-by-
tick model that is compatible with a macroscopic model St of the form

(26)
St = S0 +

∫ t

0
b(s, Ss)Ss ds +

∫ t

0
σ(s, Ss)Ss dWs

+
∫
[0,t]×H

Ss−γ (s, Ss−, z)μ(ds, dz).
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As before, W is a Brownian motion, and μ is a Poisson random measure on R+ ×H (with H
an arbitrary Polish space) independent of W , with intensity measure ν(dt, dz) = dt ⊗F(dz),
where F is a σ -finite measure on H. As in Section 6, we suppose that the coefficients b,σ

are bounded and Lipschitz continuous, with σ > 0 identically, whereas γ (t, x, z) is jointly
measurable and satisfies, for some F -integrable and bounded function � on H,

γ (t, x, z) > −1,∣∣γ (t, y, z)
∣∣ ≤ �(z),(27) ∣∣γ (t + s, x + y, z) − γ (t, x, z)
∣∣ ≤ �(z)

(|s| + |y|).
Then (26) has a unique strong solution (nonexploding and positive, recall that S0 is positive

and nonrandom). The solution is also locally uniformly square-integrable, and may have
infinite activity jumps (if the measure F is infinite). However, in our setting the jumps of
logS are bounded and locally summable; we could indeed relax these assumptions (hence
single out the big jumps and compensate the small ones in (26)), at the price of a significantly
more complicated construction below. This setting covers, for instance, the Merton jump-
diffusion model

(28) dSt = Stμdt + Stσ dWt + St− dJt ,

where J is a compound Poisson process (i.e., jumps have finite activity) which is independent
of W . For the model of Merton (1976) stricto sensu, jumps in addition have a centered normal
distribution.

Because of the presence of a drift and also of jumps, the tick-by-tick model for the
double sequence (Un

i ,�n
i ) should depend on the stage n at which it is constructed. Be-

fore proceeding, we consider a sequence Hn of Borel subsets of H, increasing to H, with
hn = F(Hn) < ∞ and hn/n → 0 (if F(H) < ∞, we may take Hn = H for all n); we also
denote by Fn the restriction of F to Hn, divided by hn (so it is a probability measure on H,
supported by Hn). Below, we use the same function f,g, gn as in (13).

We call transactions that do not belong to a ladder “quiet” transactions. As previously,
we first construct a (normalized) price process Zn

t which is piecewise constant and right-
continuous: it jumps by ±1/n only, and at each time i/n2 it is the price at the end of the ith
quiet transaction or ladders (numbered successively), whereas �̂n

i is the (microscopic) time
between the (i − 1)th quiet transaction or ladder and the ith one (without loss of generality,
we suppose that n ≥ 2, hence S0 ≥ 2/n). The construction proceeds as follows.

Step 1: Auxiliary variables. First, apart for the ladders, the returns will be described by
the mean of a sequence V n

i of E-valued variables, whose law will be specified later. Second,
we have three independent sequences (
n

i ), (�n
i ) and (χn

i ) of i.i.d. variables which will be
used for describing respectively the inter-transaction times outside the ladders, the arrival of
a ladder, and its size. Each 
n

i has mean 1 and finite variance; each �n
i is uniform over (0,1);

each χn
i is Hn-valued with law Fn. We set Gn

i = σ(
n
j ,�

n
j ,χ

n
j ,V n

j : 1 ≤ j ≤ i).
Step 2: Construction of Zn and �̂n

i . We use below the functions f,g, gn of (13). We
construct �̂n

i and the restriction of Zn to the interval In
i = (i/n2, (i + 1)//n2] by induction

on i, starting with Zn
0 = S0 and T̂ n

0 = 0. We set (with sign(0) = 0)

(29)

�̂n
i+1 = f

(
T̂ n

i ,Zn
i/n2

)

n

i+1,

T̂ n
i+1 = T̂ n

i + 1

n2 �̂n
i+1,

Gn
i = {

�n
i+1 > e

−f (T̂ n
i ,Zn

i/n2 )hn/n2}
,

ζ n
i = Zn

i/n2γ
(
T̂ n

i ,Zn
i/n2, χ

n
i

)
1Gn

i
,

�n
i = [

n
∣∣ζ n

i

∣∣] ∨ 1, εn
i = sign

(
ζ n
i

)
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and

(30)

• on Gn
i : Zn

t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Zn
i/n2 + j

n
εn
i if

1

n2

(
i + j

�n
i

)
≤ t <

1

n2

(
i + j + 1

�n
i

)
for j = 0, . . . , �n

i − 1,

Zn
i/n2 + �n

i

n
εn
i if t = i + 1

n2 ,

• on
(
Gn

i

)c: Zn
t =

⎧⎪⎪⎨
⎪⎪⎩

Zn
i/n2 if

i

n2 < t <
i + 1

n2 ,

Zn
i/n2 + 1

n
V n

i+1 if t = i + 1

n2 .

Then we define the law of the sequence (V n
i )i≥1 by specifying the Gn

i -conditional law of
V n

i+1 as follows (as in (15)):

(31) P
(
V n

i+1 = ±1 | Gn
i

) = v

2
± 1

2
gn

(
T̂ n

i ,Zn
i/n2

)
.

In other words, on the set Gn
i we have a ladder of size �n

i , upward or downward according
to the sign of ζ n

i , whereas on the complement (Gn
i )

c we have a quiet transaction. The time
between two quiet transactions, or between a quiet transaction and a ladder, or the total du-
ration of a ladder, all are the successive lags �̂n

i . The process Zn takes only the values p/n

for p ∈ Z and is piecewise constant with jumps of size ±1/n. The properties V n
i+1 ∈ E and

γ > −1 imply

(32) Zn
i/n2 ≥ 2

n
⇒ Zn

t ≥ 2

n
for t ∈

[
i

n2 ,
i + 1

n2

)
,Zn

(i+1)/n2 ≥ 1

n
,

hence the time τn = inf(t : Zn
t = 1/n) occurs either at a quiet transaction or at the end of

a ladder, but never strictly within a ladder. To ensure positiveness, the tick-by-tick model is
then defined as follows, with Rn

i denoting the ith jump time of Zn, and Rn
0 = 0:

Un
i = n

(
Zn

Rn
i
− Zn

Rn
i−1

)
,(33)

�n
i =

⎧⎨
⎩�̂n

k+1/�
n
k if

k

n2 ≤ Rn
i−1 <

k + 1

n2 and Zn
k/n2 ≥ 2/n,

∞ otherwise.
(34)

The rescaled process is again given by (11), and we obtain the following theorem.

THEOREM 4. In the above setting, the rescaled processes Sn are compatible with the
unique solution S of (26).

REMARK 6. If μ ≡ 0, (26) coincide with (7), whereas in the previous construction Gn
i =

∅: so in that special case the construction is the same as in Section 6.2, and Theorem 2 is a
special case of Theorem 4.

10. Generalizations. It is possible to define tick-by-tick models which qualitatively re-
semble actual data even more accurately than the previous ones by mixing different types of
regimes. Toward this aim, we consider the following construction. At each stage n we have a
succession of blocks of transactions, each block belonging to a specific regime. For instance,
we may have 3 regimes: (1) a quiet period with low volatility; (2) a quiet period with high
volatility; (3) a (short) succession of ladders.

The system then switches from one regime to another according to a (continuous-time)
Markov chain, with the Q-matrix qn

ij at stage n; typically qn
jj would be close to 1 for j = 1,2
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and qn
33 would be close to 0. Then, within a block of type 1 or 2 the model is the same

as in the case of a Black–Scholes limits, with two volatilities σ 1 < σ 2, whereas within a
block of type 3 we have a ladder, or a succession of alternate ladders. Of course, one might
imagine other/additional regimes, accounting for periods with a positive or a negative drift,
for instance, or other specific features of the data.

We will not describe this type of model completely, since its analysis follows from the
analysis above only with more complicated notation, but one can easily come up with a set
of assumptions (concerning in particular the way ladders occur in a block of type 3, and also
the qn

ij ’s) implying that we have convergence toward a scaling limit satisfying, for instance,
the following generalization of the martingale part of (28):

(35) dSt = Stσt dWt + St− dJt ,

where σt is a Markov process with values in {σ 1, σ 2} independent of W and J . And this
scheme can be completed with additional regimes using the method of the previous sections,
with a Markov dependency of the price, a drift, and so on.

Another interesting extension would be to study the case of two (or more) assets. However,
apart from the trivial case where the two assets behave independently, this calls for a different
modeling approach. Indeed, an essential new feature to incorporate at the tick level is the
asynchronicity of trading (hence, observations of the respective asset prices). To understand
why, consider the simplest Black–Scholes setting of Section 6.1, adding the superscript (j) for
j = 1,2 to specify the asset, for example V

(j)
i or 


(j)
i , and T

(j),n
i is the ith transaction time

for asset j . In order to model a correlation between the two assets returns, one should indeed
specify a correlation between the return V

(1)
i and V

(2)
i′ when T

(1),n
i and T

(2),n
i′ are “almost”

equal (typically, the two assets have no common transaction times), rather than for i′ = i, and
this is clearly a difficult task. Even more challenging: if the transaction frequency of asset 1
is significantly higher than that of asset 2, it might be more sensible to specify a correlation
between V

(2)
i′ and the sum of all returns V

(1)
i for i such that T

(2),n
i′−1 ≤ T

(1),n
i ≤ T

(2),n
i′ , a task

which looks even more demanding. Hence, this topic clearly goes far beyond the scope of the
present paper.

11. Proofs. We begin with a lemma. Let Z = S0 + aB , where B is a Brownian motion
and a > 0, and set θ = inf(t : Zt = 0) and Dt = ∫

[0,t∧θ)(1/Z2
s ) ds. Note that D is continuous

(as a [0,∞]-valued process), strictly increasing on [0, θ) and constant on [θ,∞).

LEMMA 1. We have θ < ∞ and Dθ = ∞ a.s.

PROOF. That θ < ∞ a.s. is obvious. Set At = inf(s : Ds > t) (the right continuous in-
verse of D) and Yt = ZAt∧θ , hence At = ∫ t

0 Y 2
s ds when t < Dθ and At = ∞ if Dθ ≤ t < ∞.

Since each At is a stopping time and the stopped process Zt∧θ is a martingale, Y is a (con-
tinuous) local martingale for the time-changed filtration, with quadratic variation

a2(At ∧ θ) = a2
∫ t∧Dθ

0
Y 2

s ds.

Up to enlarging the probability space, there is thus another Brownian motion W such that
Yt = S0 +a

∫ t∧Dθ

0 Ys dWs , implying Yt = S0 exp(aWt∧Dθ − a2

2 (t ∧Dθ)). Thus YDθ > 0 on the
set {Dθ < ∞}, whereas by construction YDθ = Zθ = 0 on this set: we deduce that D∞ = ∞
a.s. �

For proving the convergence in law for the M1 topology in Theorem 4 we need another
lemma, in the following setting. We have two right-continuous piecewise constant (in time)
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processes Sn and S′n defined on the same probability space, with successive jump times
Rn

0 = 0 < Rn
1 < · · · and R′n

0 = 0 < R′n
1 < · · · , and for each n a (possibly random) sequence

of integers k(n, i) with k(n,0) = 0, increasing with i and such that, for all i ≥ 0,

(36) R′nni = Rn
k(n,i), S′n

R′n
i

= Sn
Rn

k(n,i)
,

and for all t ∈ [R′n
i ,R′n

i+1] the variable Sn
t belongs to the closed interval with end-points S′n

R′n
i

and S′n
R′n

i+1
.

We use both the M1 and the J1 topologies below, so to be clear we write
L−M1−→ and

L−J1−→
to denote the functional convergence in law for these topologies, and also

L−f−→ for the finite
dimensional convergence in law.

LEMMA 2. In the previous setting, suppose that S′nn L−J1−→ S for some limiting process S.
If further S has no fixed times of discontinuities and we have the convergence in probability

(37) sup
(
R′n

i+1 − R′n
i : i ≥ 0,R′n

i ≤ N
) P−→ 0

as n → ∞, for all integers N , then we have Sn L−M1−→ S.

PROOF. If x1, x2, x3 are three reals, we call d(x2;x1, x3) the distance between x2 and the
interval with end-points x1 and x3 (we may have x1 ≤ x3 or x1 > x3). For any integer N ≥ 1
and real δ > 0 and any càdlàg function y on R+ we introduce the quantity

wN,δ(y) = sup
(
d
(
y(t2);y(t1), y(t3)

) : 0 ≤ t1 < t2 < t3, t2 ≤ N, t3 − t1 ≤ δ
)
.

Then Skorohod (1956) proved that, if Sn L−M1−→ S, we have for all ε > 0 and N ≥ 1

(38) lim
δ→0

lim sup
n→∞

P
(
wN,δ

(
Sn)

> ε
) = 0,

and conversely if this holds together with Sn L−f−→ S, then S′n L−M1−→ S (actually, he proved this
when the time interval is [0,1], so N was not needed, but the extension to R+ is straightfor-
ward with the modified version of wN,δ(y) given above).

Let �n
N denote the left-hand side of (37). Since S′n L−J1−→ S implies S′n L−M1−→ S, the pro-

cesses S′n satisfy (38). Moreover, it easily follows from (36) that, as soon as �n
N < δ/2, we

have wN,δ(S
n) ≤ wN,δ(S

′n). Therefore, (37) readily implies (38) for Sn.

Since S has no fixed time of discontinuity, S′n L−J1−→ S implies S′n L−f−→ S, hence to obtain

Sn L−f−→ S it is enough to show that, for any t fixed, Sn
t − S′n

t

P−→ 0. For this, observe that by
(36) again we necessarily have |Sn

t − S′n
t | ≤ |�Sn

ξn
|, where ξn is the smallest jump time of Sn

after time t . By a well-known property of the J1 topology, since S is continuous at time t , we

have �Sn
ξn

P−→ 0, implying the claim, and the proof is complete. �

PROOF OF THEOREM 1. (1) We define f as in (13), with σ(t, x) = σ . (8) implies, with
�n

t = 1
n2 
[n2t],

(39)
(
�n,Zn) L−→ (�,Z) where �t = t,Zt = S0 + √

vBt .

Let τ = inf(t : Zt = 0), which is a.s. finite, and Dt = ∫
[0,t∧τ) f (Zs) ds. By virtue of

Lemma 1, the process D equals +∞ on [τ,∞) and is continuous strictly increasing on [0, τ ].
Its right-continuous inverse A is thus At = ∫ t

0
1

f (ZAs )
ds and is finite valued.
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Next, as in the proof of Lemma 1 again, the process St = ZAt is a continuous local mar-
tingale with quadratic variation vAt = v

∫ t
0

1
f (Ss)

ds. It can thus be written as

St = S0 +
∫ t

0

√
v√

f (ZAs )
dW ′

s = S0 +
∫ t

0
Ssσ dW ′

s

for another Brownian motion W ′. Therefore, S has the same law as S, and we are left to
proving that

(40) Sn L−→ S.

(2) We are now going to show that (39) implies (40). By the subsequence principle for

convergence in law, plus the Skorokhod’s lemma asserting that if Xn
L−→ X we can find

variables X′
n,X, all defined on the same probability space, with the same laws as Xn,X, and

a subsequence nk , such that X′
nk

→ X′ pointwise, it is enough to show that if (�n,Zn)(ω) →
(�,Z)(ω) for some ω (in the functional sense, for either M1 or J1 or the local uniform
topology, since the limit is continuous in time), then Sn(ω) → S(ω).

Hence below we fix ω and argue pathwise. We assume (�n,Zn) → (�,Z), hence obvi-
ously τn → τ . Next, with Dn as in (6), the process D′n

t = Dn
t∧τn

takes the form

(41) D′n
t = 1

n2

[n2t]∧(n2τn)∑
i=1

f
(
Zn

(i−1)/n2

)

i =

∫ t∧τn

0
f

(
Zn

s−
)
d�n

s .

Since �n and � are nondecreasing we deduce (Zn,D′n) → (Z,D) from (�n,Zn) → (�,Z)

and τn → τ . Recall also that in Step 1 we have proved Dτ = ∞. Then, since D is continuous
strictly increasing on [0, τ ] and A is continuous strictly increasing on [0,∞), with A∞ =
Dτ = ∞, we readily deduce Sn → S from Sn

t = Zn
An

t ∧τn
and St = ZAt , and the claim is

proved. �

PROOFS OF THEOREMS 2 AND 4. (1) In view of Remark 6 we prove Theorem 4 only,
in the setting of Section 9. Throughout, K is a constant which may change from line to line.

We will, in fact, replace Un
i and �n

i by U ′n
i = Zn

i/n2 − Zn
(i−1)/n2 and �′n

i = �̂n
i , so

Z′n
t = S0 + 1

n

∑[n2t]
i=1 U ′n

i coincides with Zn at each time i/n2 and is constant on each in-
terval [i/n2, (i + 1)/n2). This indeed amounts to replacing the ladders by a jump of the
same global size at the end of the ladder. Note that τn = inf(t : Zn

t = 1/n) is also equal to
inf(t : Z′n

t = 1/n), because of (32). We associate by (6) the processes N ′n
t ,A′n

t ,D′n
t , S′n

t .
(2) The function f (t, x) explodes when x approaches 0, whereas γ (x, t, z) = xγ (t, x, z)

might explode when x → ∞. To alleviate these problems, for any integer m ≥ 1 we consider
two functions f m and gm which coincide with f and g for all (t, x) with 1

m
≤ x ≤ m and are

Lipschitz and bounded, as well as 1/f m; the function gm
n associated with gm by (13) is gm/n

for all n large enough. Let also γ m be a function which coincide with γ when 1
m

≤ x ≤ m,
with γ m(t, x, z)/�(z) bounded and Lipschitz in (t, x), uniformly in z. Below we assume that
m is large enough to have S0 ∈ Im := ( 2

m
, m

2 ).
For each m, we repeat the construction of the tick-by-tick model, as described in Sec-

tion 9 with f m,gm
n and γ m instead of f,gn and γ (the latter occurs in the definition of ζ n

i in
(29)), and add the superscript “m” to account for that. We do this with the same sequences

n

i ,�
n
i , χn

i , whereas a priori we need sequences V
n,m
i depending on m: we get a process

Zn,m, σ -fields Gn,m
i , sets G

n,m
i and variables ζ

n,m
i , �

n,m
i , T̂

n,m
i , �̂

n,m
i , as well as the process

Zn,m and a new tick-by-tick model (U
n,m
i ,�

n,m
i ). Moreover, as in Step 1, we consider the
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process Z′n,m which coincides with Zn,m at each time i/n2 and is constant on each interval
[i/n2, (i + 1)/n2), and the associated U

′n,m
i ,�

′n,m
i and τm

n and N
′n,m
t ,A

′n,m
t ,D

′n,m
t , S

′n,m
t .

Let us come back to the variable V
n,m
i and (31). Since gm

n (0, S0) = gn(0, S0) we can of
course take V

n,m
1 = V n

1 . Then, setting

θn
m = inf

(
t : Z′n

t /∈ Im

)
, θn,m

m = inf
(
t : Z′n,m

t /∈ Im

)
,

and as soon as n > 2m, by induction on i it is easy to show that one may take V
n,m
i = V n

i on
the set {n2θn

m ≥ i − 1}. With this choice, we then have

(42) θn,m
m = θn

m, t ≤ θn
m ⇒ Z

′n,m
t = Z′n

t .

(3) We denote by Yn,m the two-dimensional process (D′n,m,Z′n,m). For any Lipschitz
function φ on R we set, for y ∈ R × R+,

φm(y) =
∫
H

φ(γ m(y, z)F (dz), φm
n (y) =

∫
Hn

φ(γ m(y, z)F (dz).

These functions are bounded and Lipschitz because of the boundedness and Lipschitz (in y)
properties of γ m(y, z)/�(z) and

∫
�(z)F (dz) < ∞, which also implies as n → ∞ (because

Hn ↑H):

(43) sup
y∈R2

∣∣φm
n (y) − φm(y)

∣∣ → 0.

Since hn/n → 0, we see that

P
(
G

n,m
i | Gn,m

i

) = hn

n2 f m(
Y

n,m

i/n2

)(
1 + O(1/n)

) = o
(
1/n2)

,

and G
n,m
i is independent of (V

n,m
i+1 , χn

i+1), conditionally on Gn,m
i . Thus, since (29) implies

|�n,m
i ε

n,m
i /n − ζ

n,m
i | ≤ 2/n on the set G

n,m
i , we obtain (recall U

′n,m
i = Z

′n,m

i/n2 − Z
′n,m

(i−1)/n2 ):

E
(
φ

(
U

′n,m
i+1

) | Gn,m
i

) = E
(
φ

(
V

n,m
i+1

)
1(G

n,m
i )c + φ

(
�
n,m
i+1ε

n,m
i+1/n

)
1G

n,m
i

| Gn,m
i

)
= E

(
φ

(
V

n,m
i+1

) | Gn,m
i

) + 1

n2 f m(
Y

n,m

i/n2

)
φm

n

(
Y

n,m

i/n2

) + o
(
1/n2)

.

Therefore, for the function ψ(x) = x and any Lipschitz bounded function φ on R vanishing
on a neighborhood of 0 and n large enough, we obtain

(44)

E

(
1

n2 �̂
n,m
i+1

∣∣∣ Gn
i

)
= 1

n2 f m(
Y

n,m

i/n2

)
,

E

((
1

n2 �̂
n,m
i+1

)2 ∣∣∣ Gn
i

)
≤ K

n4 ,

E
(
U

′n,m
i+1 | Gn

i

) = 1

n2 gm(
Y

n,m

i/n2

) + 1

n2 f m(
Y

n,m

i/n2

)
ψm

n

(
Y

n,m

i/n2

) + o
(

1

n2

)
,

E
((

U
′n,m
i+1

)2 | Gn
i

) = v

n2 + 1

n2 f m(
Y

n,m

i/n2

)
ψm

n

(
Y

n,m

i/n2

) + o
(

1

n2

)
,

E
(
φ

(
U

′n,m
i+1

) | Gn
i

) = 1

n2 f m(
Y

n,m

i/n2

)
φm

n

(
Y

n,m

i/n2

) + o
(

1

n2

)
.

(4) Let us fix m. Recall that the two components of Y
n,m
t are respectively 1

n2

∑[n2t]
i=1 �̂

n,m
i

and S0 + ∑[n2t]
i=1 U

′n,m
i . From Theorem IX.3.39 of Jacod and Shiryaev (2003) and its proof,

we deduce the following consequences of (43) and (44):
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(a) First, the sequence Yn,m of two-dimensional processes is tight for the J1 Skorokhod
topology as n varies, the first component being even C-tight.

(b) Let � be any Lipschitz function on R × R+. The tightness of Yn,m and standard
arguments yield, for all t ,

sup
s≤t

∣∣∣∣∣ 1

n2

[n2s]−1∑
i=0

�
(
Y

n,m

i/n2

) −
∫ s

0
�

(
Yn,m

r

)
dr

∣∣∣∣∣ P−→ 0.

This property and (43) and (44) give us, for φ and ψ as above,

sup
s≤t

∣∣∣∣∣
[n2s]∑
i=0

E

(
1

n2 �̂
n,m
i

∣∣∣ Gn
i−1

)
−

∫ s

0
f m(Y n,m

r ) dr

∣∣∣∣∣ P−→ 0,

[n2t]∑
i=1

E

((
1

n2 �̂
n,m
i

)2 ∣∣∣ Gn
i−1

)
P−→ 0,

[n2t]∑
i=1

E
(
U

′n,m
i | Gn

i−1
) −

∫ t

0
gm(

Yn,m
s

)
ds

P−→ 0,

[n2t]∑
i=1

E
((

U
′n,m
i

)2 | Gn
i−1

) − vt −
∫ t

0
f m(

Yn,m
s

)
ψm(

Yn,m
s

)
ds

P−→ 0,

[n2t]∑
i=1

E
(
φ

(
U

′n,m
i

) | Gn
i−1

) −
∫ t

0
f m(

Yn,m
s

)
φm(

Yn
s

)
ds

P−→ 0.

(c) As a consequence, any limiting process Ym = (D̃m, Z̃m) for the sequence Yn,m must
satisfy the following system of SDEs, where H′ = H× R+:

D̃m
t =

∫ t

0
f m(

Ym
s

)
ds,

Z̃m
t = S0 +

∫ t

0
gm(

Ym
s

)
ds + √

vBt(45)

+
∫
[0,t]×H′

γ m(
Ym

s−, z
)
1{x<f m(Ym

s−)}μ̃(ds, dz, dx),

where B is a Brownian motion and μ̃ is an independent Poisson measure on R+ × H′ with
intensity measure dt ⊗ F(dz) ⊗ dx.

The system (45) has Lipschitz coefficients, except for the indicator function in the last
term. However, it is easy to check that they satisfy the “integrated” local Lipschitz property
(and even a global one, here) stated as (14.14) of Jacod (1979), as well as (14.15) and (15.22),
hence by Theorems (14.21) and (14.23) of that reference, (45) admits a unique solution.

Consequently, Yn,m L−J1−→ Ym, where Ym is the unique solution (45). Since 1
K

≤ f m ≤ K ,
the process D̃m is continuous strictly increasing with limit ∞ at infinity, hence its inverse
Ãm has the same properties. Since A′n,m is the right-continuous inverse of D′n,m, we deduce

from Yn,m L−J1−→ Ym that

(46) Z̃′n,m L−J1−→ Z̃′m where Z̃′m
t = Z̃m

Ãm
t
, Z̃

′n,m
t = Z

′n,m

A
′n,m
t

.



2764 Y. AÏT-SAHALIA AND J. JACOD

(5) In this step we study Z̃′m. With B̃m
t = BÃm

t
and the random measure μm on R+ × H

defined by

μm([0, t] × C
) =

∫
[0,Ãm

t ]×H′
1C(z)1{x<f m(Ym

s−)}μ̃(ds, dz, dx)

for any Borel subset C of H, a standard time-change argument and (45) show us that

Ãm
t =

∫ t

0

1

f m(s, Z̃′m
s )

ds,

Z̃′m
t = S0 +

∫ t

0

gm(s, Z̃′m
s )

f m(s, Z̃′m
s )

ds + √
vB̃m

t +
∫
[0,t]×H

γ m(
s, Z̃m

s−, z
)
μ̃m(ds, dz).

On the one hand, B̃m is a continuous local martingale started at 0, with quadratic variation
Ãm, hence it can be written as

∫ t
0

1√
f m(s,Z

′m
s )

dWs for some Brownian motion W . On the

other hand, μ̃m is an integer-valued random measure adapted to the filtration (FÃm
t
)t≥0 (with

(Ft )t≥0 the filtration generated by B and μ̃), with predictable compensator

ν̃m([0, t] × C
) =

∫
[0,Ãm

t ]×H′
1C(z)1{x<f m(Ỹm

s )} dsF (dz) dx

= F(C)

∫ Ãm
t

0
f m(

Ỹ m
s

)
ds = F(C)D̃m

Ãm
t

= tF (C).

Therefore, μ̃m is a Poisson measure with the same law as μ in (26), independent of W , and
upon using the same W,μ as in (26) we can indeed realize the limit Z̃′m in (46) as the unique
solution of the following stochastic differential equation:

Z̃′m
t = S0 +

∫ t

0

gm(s, Z̃′m
s )

f m(s, Z̃′m
s )

ds +
∫ t

0

√
v√

f m(s,Z
′m
s )

dWs

+
∫
[0,t]×H

γ m(
s, Z̃m

s−, z
)
μ(ds, dz).

(47)

(6) Now, we will let m → ∞. With S the solution of (26), we set

ρm = inf(t : St /∈ Im), ρ̃m = inf
(
t : Z̃′m

t /∈ Im

)
.

Recalling that gm(t,x)
f m(t,x)

= b(t, x) and
√

v√
f m(t,x)

= σ(t, x) and γ m(t, x, z) = γ (t, x, z) when
1
m

≤ x ≤ m, and because of the uniqueness of the solutions of (26) and (47), we see that
indeed ρ̃m = ρm and Z̃′m

t = St for all t ≤ ρm. Since S takes its values in (0,∞), we also
have ρm ↑ ∞ as m → ∞.

Recall S′n
t = Z′n

A′n
t ∧τn

and set θ ′n
m = m ∧ inf(t : S′n

t /∈ (1/m,m)), so A′n
θ ′m
n

≤ τn if n ≥ m2.

Thus, as long as i ≤ nθ ′n
m , in (14) and (16) we can use indifferently the functions f,g or

f m,gm. It follows that in Step 2 above we can take �
′n,m
i = �′n

i and V
n,m
i = V n

i when
i ≤ kθ ′m

n . In turn, this implies A′n
t = A

′n,m
t , hence S′n

t = Z̃
′n,m
t when t ≤ θn

m, and also θ ′n
m = θn

m

(when n ≥ m2). Therefore, it follows from (46) that(
S′n·∧θn

m
, θn

m

) L−→ (S·∧θm, θm) as n → ∞,

where for the first component above we use the J1 topology. Since θm → ∞ a.s. as m → ∞,
we readily deduce

(48) S′n L−J1−→ S.
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(7) It remains to deduce that, coming back to our true model with ladders, we have

Sn L−M1−→ S. Observe that, by construction, the pair (Sn, S′n) satisfies (36), with the jump
times of S′n being R′n

i = T n
i /n2 = Dn

i/n2 when i ≤ n2τn and R′n
i = ∞ otherwise. Exactly

the same argument as in the previous step shows us that Dn
t = D

n,m
t when t ≥ θn

m, whereas

Yn,m L−J1−→ Ym implies that Dn,m converges in law for the local uniform convergence to the

continuous process D̃m. Using again θn
m

L−→ θm and θm → ∞, we deduce that the processes
Dn converge in law for the local uniform convergence to the process, and in view of the form
of R′n

i we see that (38) holds.
This and (48) allow us to use Lemma 2, and the proof is complete. �

PROOF OF THEOREM 3. (1) We start by rewriting (18) in a different form, using Ut =
log(ct ):

(49)
St = S0 +

∫ t

0
Sse

Us/2 dWs,

Ut = U0 +
∫ t

0
d ′(Us) ds +

∫ t

0
a′(Us) dW ′

s,

where

U0 = log c0,

a′(x) = e−xa
(
ex)

,

d ′(x) = e−xd
(
ex) − e−2x

2
a
(
ex)2

,

so a′, d ′ are continuous functions on R, and we still have existence and uniqueness of the
strong solution for Ut above (note that U0 = log(c0) is nonrandom). The quadratic variation
of S is

(50) At =
∫ t

0
S2

s cs ds = v

∫ t

0
f (Ss,Us) ds,

which is continuous strictly increasing. Then we consider the time-changed processes Zt =
SLt and Ut = ULt along the inverse process Lt = inf(s : As > t), and also

Mt =
∫ Lt

0

√
f (Ss,Us) dWs, M ′

t =
∫ Lt

0

√
f (Ss,Us) dW ′

s .

The two processes M,M ′ start from 0 and are continuous local martingales for the time-
changed filtration (FLt )t≥0, with quadratic variation ALt = t and covariation ρALt = ρt , so
they are two Brownian motion with correlation ρ. Moreover, we have Lt = ∫ t

0
1

f (Zs,Us )
ds,

hence we obtain

Zt = S0 +
∫ Lt

0
Sse

Us/2 dWs = S0 +
∫ Lt

0

√
vf (Ss,Us) dWs = S0 + √

vMt,

Ut = U0 +
∫ Lt

0
b′(Us) ds +

∫ Lt

0
a′(Us) dW ′

s

= U0 +
∫ Lt

0
f (Ss,Us)g(Ss,Us) ds +

∫ Lt

0

√
f (Ss,Us)g(Ss,Us) dW ′

s

= U0 +
∫ t

0
g(Zs,Us) ds +

∫ t

0
g(Zs,Us) dM ′

s .
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In other words, the pair (Z,U) solves the system

(51) Zt = S0 + √
vMt, Ut = U0 +

∫ t

0
g(Zs,Us) ds +

∫ t

0
g(Zs,Us) dM ′

s .

Conversely, suppose that (Z′,U ′) solves (51), with possibly a finite explosion time
T = limn inf(t : |U ′

t | ≥ n) for the second component. Set L′
t = ∫ t

0
1

f (Z′
s ,U ′

s )
ds and A′

t = inf(s :
L′

s > t) and S
′(n)
t = Z′

n∧A′
t

and U
′(n)
t = U ′

n∧A′
t
. Then the same argument as before, in the

reverse order, shows us that the pair (S′(n),U ′(n)) satisfies (49) for all t ≤ Rn = inf(t :
A′

t ≥ n), and also A′
t = ∫ t

0 f (S
′(n)
s ,U

′(n)
s ) ds for t ≤ Rn. The strong uniqueness postulated

for (49) implies that S
′(n)
t = Zt∧Rn and U

′(n)
t = Ut∧Rn , hence A′

t = At for t ≤ Rn, hence
Rn = inf(t : At ≥ n) indeed increases to ∞. In turn, this implies that L′

t = Lt and thus
Z′

t = SLt = Zt and U ′
t = ULt = Ut for all t . We thus conclude that the system (51) has a

unique solution, which further is non-explosive and equal to (Z,U).
2) By Donsker’s theorem, and with Z̃n

t = 1√
n

∑[nt]
j=1 Ṽ n

j , we have the following functional
joint convergence in law:

(52)
(
Zn, Z̃n, τn

) L−→ (
Z,M ′, τ

)
,

with Z,M ′ as above and using the local uniform topology for the first two component above.
Recalling (19), we see that Un

t = Ũn[nt] satisfies the following (elementary) SDE:

Un
t = U0 +

∫ t

0
g
(
Zn

s−,Un
s−

)
ds +

∫ t

0
h
(
Zn

s−,Un
s−

)
dZ̃n

s .

Since g,h are continuous and (51) has a unique solution, we then deduce from (52) and a
“discrete-time Markov” version of Theorem IX.4.8 of Jacod and Shiryaev (2003) that, with
Ln

t = 1
n
T[nt] and Lt as after (50),

(
Zn, Z̃n,Un,Ln, τn

) L=⇒ (Z, Z̃,U,L, τ ).

Since An is the right-continuous inverse of Ln, we deduce that Sn = Zn
An·

L=⇒ ZA· = S. �

12. Conclusions. Different strands of the literature have adopted either the micro or the
macroscopic models as their main building block. While a tick-by-tick model is a direct
description of the prices and times at which the successive transactions take place, and as
such can be matched directly to the high frequency data, the macroscopic model is the starting
point for most financial applications. Even if one adopts the viewpoint that the reality is best
described by the tick-by-tick model, the interest in the macroscopic model is motivated by
the vast body of finance theory supporting the decisions taken by investors (pricing, hedging,
portfolio optimization, etc.) Such decisions over long horizons rely on a macroscopic model,
including, in fact, deciding whether a given model is even admissible (hence the relevance of
the class of semimartingales in this context).

The objective of the paper was to examine whether the tick-by-tick and semimartingale
modeling approaches that are respectively employed in the empirical microstructure and fi-
nancial econometrics literatures were compatible in some sense, or mutually exclusive. We
showed that while downscaling from macroscopic to microscopic is possible, it necessitates
some rather ad hoc constructions. On the other hand, we also showed that it is possible to
construct microscopic models that respect the main empirical features of the tick-by-tick data
and are compatible with macroscopic models containing desirable features such as stochastic
volatility and jumps.
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As one can see from the progressively more complex construction of the models, specify-
ing a tick-by-tick model compatible with a fairly general semimartingale is far from trivial.
Such a construction is also not unique, but the main conclusion from the paper is that it is fea-
sible, so that we can answer in the positive the question of whether the empirical regularities
of tick data are compatible with a semimartingale at the macroscopic level.

Acknowledgements. The authors are grateful for the comments and suggestions of the
Editor, Associate Editor and two referees.
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