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We analyze the Markov property of solutions to the compressible
Navier–Stokes system perturbed by a general multiplicative stochastic forc-
ing. We show the existence of an almost sure Markov selection to the as-
sociated martingale problem. Our proof is based on the abstract framework
introduced in Flandoli and Romito (Probab. Theory Related Fields 40 (2008)
407–458). A major difficulty arises from the fact, different from the incom-
pressible case, that the velocity field is not continuous in time. In addition, it
cannot be recovered from the variables whose time evolution is described by
the Navier–Stokes system, namely, the density and the momentum. We over-
come this issue by introducing an auxiliary variable into the Markov selection
procedure.

1. Introduction. In this paper we are concerned with the problem of Markov selection
for the compressible Navier–Stokes system driven by a stochastic forcing

d� + div(�u)dt = 0,(1.1)

d(�u) + div(�u ⊗ u)dt + ∇p(�)dt = divS(∇u)dt +G(�,�u)dW,(1.2)

S(∇u) = μ

(
∇u + ∇ tu − 2

N
div uI

)
+ λdiv uI, μ > 0, λ ≥ 0,(1.3)

supplemented with space-periodic boundary conditions, that is, the spatial variable x be-
longs to the torus TN = [−1,1]N , N = 2,3, and the system is complemented with periodic
boundary conditions. This system governs the time evolution of density � and velocity u of
a compressible viscous fluid, p(�) denotes the pressure and μ,λ are viscosity coefficients.
The system is perturbed by a stochastic forcing driven by a cylindrical Wiener process W

with a possibly nonlinear dependence on the density � and momentum �u, cf. Section 3.1
for details. A significant progress has been made recently on the system (1.1)–(1.3) and we
refer the reader to the monograph [4] for a detailed exposition and further references. Here,
we would only like to give a brief account of the current state of the art, which has led us to
writing the present article.

Many fundamental problems in modern continuum mechanics remain largely open and the
situation is not different when it comes to the compressible Navier–Stokes system. In fact, in
contrast to the incompressible counterpart the situation is even more challenging as unique-
ness is unknown already in space dimension 2. The only available framework for global
existence of (1.1)–(1.3) is the concept of the so-called dissipative martingale solutions estab-
lished in [2, 6]. These solutions are weak in both PDE and probabilistic sense and in addition
they satisfy a suitable version of the energy inequality. This way they preserve an important
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part of information that would be otherwise lost within the construction of ordinary weak
solutions. The energy inequality is the cornerstone for further applications and in particular
it allows to prove weak–strong uniqueness; see [2]. In [3] it was shown that strong solutions
exist locally in time. As these solutions possess sufficient space regularity, they are unique
and as a consequence they are also strong in the probabilistic sense. Nevertheless, there is
still a significant gap in the above theory, namely, the global existence of unique solutions
is still missing. The situation is the same in the deterministic setting (see [10, 16]) and, as a
matter of fact, also for the incompressible Navier–Stokes system in space dimension 3.

An important feature of systems with uniqueness is their memoryless property called
Markovianity: Letting the system run from time 0 to time s and then restarting and letting
it run from time s to time t gives the same outcome as letting it run directly from time 0
to time t . In other words, the knowledge of the whole past up to time s provides no more
useful information about the outcome at time t than knowing the state of the system at time
s only. For systems where the uniqueness is unknown, a natural question is whether there
exists a Markov selection. Roughly speaking, for every initial condition the system possesses
possibly multiple solutions and each of them generates a probability measure on the space
of trajectories, the associated law. Markov selection then chooses one law for every initial
condition in such a way that the above explained “gluing” property holds. In this way, it is a
step in the direction of uniqueness but it shall be stressed that uniqueness still remains out of
reach (see the discussion in [7, 12]).

It is worth noting that this approach can be applied also to the standard deterministic
fluid model without explicit stochastic terms. The associated measures are then supported
on the set of all global solutions emanating from given initial data and Markovianity may be
interpreted in the same way as above.

Existence of a Markov selection for a class of stochastic differential equations has been
proven by Krylov [15]. The crucial observation is that that Markovianity can be deduced from
the disintegration property (stability with respect to building conditional expectations) and the
reconstruction property (stability with respect to the operation of “gluing” two solutions to-
gether) of a family of probability laws. The method has been presented by Stroock–Varadhan
[17] and generalized to an infinite dimensional setting by Flandoli–Romito [12] and further
by Goldys–Röckner–Zhang [13]. Application to a surface growth model has been given by
Blömker–Flandoli–Romito [1]. In particular, the work by Flandoli–Romito [12] established
the existence of a Markov selection for the 3D incompressible Navier–Stokes system under
general additive noise perturbation. In addition, the strong Feller property was shown under
stronger assumptions on the noise. Regularity with respect to initial conditions was proved
by Flandoli–Romito [11]. Another approach towards existence of Markov solutions and er-
godicity for the 3D incompressible Navier–Stokes system based on Galerkin approximations
has beed presented by Da Prato–Debussche [7] and Debussche–Odasso [9].

Our paper follows the approach of [12] and we show the existence of a Markov selec-
tion for the system (1.1)–(1.3) (in fact, we have to use the generalization from [13] to Polish
spaces due to the complicated structure of the compressible system). Even though the over-
all structure of the proof is rather similar, we have discovered several interesting challenges
along the way. They originate in the significantly more involved structure of the compress-
ible model (1.1)–(1.3) in comparison to the incompressible one considered in [12]. The most
striking point with various unpleasant consequences is that (1.1)–(1.3) is a mixed system
whose solution consists of a couple of density and velocity [�,u], but the time evolution is
only described for density and momentum [�,�u]. Furthermore, since the so-called vacuum
regions, where the density vanishes, cannot be excluded, it is impossible to gain any informa-
tion on the time regularity of the velocity. As a consequence, it is only an equivalence class
in time and not a stochastic process in the classical sense.
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Therefore, it seems that the natural variables for the desired Markov property is the couple
of density and momentum. However, and again due to the presence of the vacuum states,
the velocity cannot be recovered from these variables. In other words, the velocity is not a
measurable function of [�,�u]. This fact has already been observed in the proof of existence
in [6], where the filtration associated to a martingale solution was generated by the density
and the velocity. This is sufficient to recover the momentum �u as it is a measurable function
of � and u. Let us point out that if the equation was deterministic, that is the forcing was
of the form �f dt for some deterministic function f, then (at least under certain boundary
conditions) the velocity is a measurable function of [�,�u]. In fact, all the terms on the left
hand side of the momentum equation (1.2) as well as the forcing can be written as functions
of [�,�u] and, as a consequence, also the dissipative term on the right hand side is a function
of [�,�u]. Nevertheless, under the presence of the stochastic perturbation we can only deduce
that the right-hand side of (1.2), that is, the sum of the dissipative and the stochastic term, is
a measurable function of [�,�u]. This is not enough in order to recover the structure of the
stochastic integral.

In order to overcome this issue, we introduce an auxiliary variable U together with an
auxiliary equation

dU = u dt, U(0) = U0,

and we establish the existence of a Markov selection for the triple [�,�u,U]. Note that
this step indeed solves the problem discussed above: since the velocity u belongs a.s. to
L2

loc(0,∞;W 1,2(TN)), the new variable U is a continuous stochastic process with trajecto-

ries a.s. in W
1,2
loc (0,∞;W 1,2(TN)). In addition, u is a measurable function of U and thus

we recover all the quantities in our system from the knowledge of [�,�u,U]. Under suitable
boundary conditions we may have alternatively included an auxiliary variable corresponding
to the stochastic integral, which would also provide us with the missing piece of information.
Nevertheless, we shall mention that the initial condition U0 is rather superfluous. More pre-
cisely, for the Markov selection it is necessary to vary the initial condition for the whole triple
[�,�u,U] and that is the reason why we included an arbitrary initial condition U0. However,
for the recovery of u, this is not needed and, on the other hand, U is not a function of u due
to the missing initial datum.

We remark that as an alternative one may establish the existence of a Markov selection for
the couple [�,U] which would in turn imply the same result for [�,�u,U] since for a.e. time
the momentum can be recovered from [�,U]. However, this would require a modified defini-
tion of a solution to the martingale problem and the proofs would not simplify. Therefore we
chose to work directly with the triple [�,�u,U].

The paper is organized as follows. In Section 2 we collect some known concepts for proba-
bility measures on Polish spaces. The bulk is the abstract Markov selection in Theorem 2.6. It
is a slight modification of the Markov selection for Polish spaces from [13]. Section 3 is con-
cerned with martingale solutions to the compressible Navier–Stokes system (1.1)–(1.3). We
show the equivalence of the concept of dissipative martingale solutions (existence of which
has been shown in [6] and [2]) and a solution to the associated martingale problem. The latter
one is a probability law on the space of trajectories, cf. Definition 3.7 for the precise formu-
lation. Our main result is contained in Section 4: In Theorem 4.1 we show the existence of a
Markov selection for the system (1.1)–(1.3).

2. Probability framework. Let X be a topological space. The symbol B(X) denotes
the σ -algebra of Borel subsets of X. If U is a Borel measure on X, we denote by B(X)

the σ -algebra of all Borel subsets of X augmented by all zero measure sets. The symbol
Prob[X] denotes the set of all Borel probability measures on a topological space X. In ad-
dition, ([0,1],B[0,1],L) denotes the standard probability space, where L is the Lebesgue
measure.



2550 D. BREIT, E. FEIREISL AND M. HOFMANOVÁ

2.1. Trajectory spaces. Let (X,dX) be a Polish space. For T > 0 we introduce the tra-
jectory spaces

�
[0,T ]
X = C

([0, T ];X), �
[T ,∞)
X = Cloc

([T ,∞);X), �
[0,∞)
X = Cloc

([0,∞);X),

and denote BT = B(�
[0,T ]
X ). Note that all the above trajectory spaces are Polish as long as

X is Polish. For ξ ∈ �
[T ,∞)
X we define a time shift,

Sτ : �[T ,∞)
X → �

[T +τ,∞)
X , Sτ [ξ ]t = ξt−τ , t ≥ T + τ.

Obviously, the mapping Sτ is an isometry from �
[T ,∞)
X to �

[T +τ,∞)
X . For a Borel measure V

on �
[T ,∞)
X , the time shift S−τ [V] is a Borel measure on the space �

[T −τ,∞)
X given by

S−τ [V](B) = V
(
Sτ (B)

)
, B ∈ B

(
�

[T −τ,∞)
X

)
.

2.2. Disintegration. A conditional probability corresponds to disintegration of a prob-
ability measure with respect to a σ -field. We report the following result, cf. [17], Theo-
rem 1.1.6.

THEOREM 2.1. Let X be a Polish space. Let U ∈ Prob[�[0,∞)
X ] and T ≥ 0. Then there

exists a unique family of probability measures

U |ω̃BT
∈ Prob

[
�

[T ,∞)
X

]
for U-a.a.ω̃

such that the mapping

�
[0,∞)
X � ω̃ 	→ U |ω̃BT

∈ Prob
[
�

[T ,∞)
X

]
is BT -measurable and the following properties hold:

(a) For ω ∈ �
[T ,∞)
X we have U |ω̃

BT
-a.s.

ω(T ) = ω̃(T );
(b) For any Borel set A ⊂ �

[0,T ]
X and any Borel set B ⊂ �

[T ,∞)
X ,

U(ω|[0,T ] ∈ A,ω|[T ,∞) ∈ B) =
∫
ω̃|[0,T ]∈A

U |ω̃BT
(B)dU(ω̃).

2.3. Reconstruction. Reconstruction can be understood as the inverse procedure to dis-
integration, some sort of “gluing together” procedure. We report the following result, see
Lemma 6.1.1 and Theorem 6.1.2 in [17].

THEOREM 2.2. Let X be a Polish space. Let U ∈ Prob[�[0,∞)
X ]. Suppose that Qω is a

family of probability measures, such that

�
[0,∞)
X � ω 	→ Qω ∈ Prob

[
�

[T ,∞)
X

]
,

is BT -measurable. Then there exists a unique probability measure U ⊗T Q such that:

(a) For any Borel set A ⊂ �
[0,T ]
X we have

(U ⊗T Q)(A) = U(A);
(b) For ω̃ ∈ � we have U -a.s.

(U ⊗T Q)|ω̃BT
= Qω̃.
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2.4. Markov processes. In this subsection we present the abstract framework of almost
sure Markov processes as well as the Markov selection theorem. We follow the framework
of [13] which generalizes the theory from [12] to Polish spaces. Let (X,dX) and (H,dH ) be
two Polish spaces, where the embedding H ↪→ X is continuous and dense. Furthermore, let
Y be a Borel subset of H . As (Y, dH ) is not necessarily complete and the embedding Y ↪→ X

is not assumed to be dense the situation sightly differs form [13]. A family of probability
measures {Uy}y∈Y on �

[0,∞)
X is called Markovian if we have for any y ∈ Y that

Uω(τ) = S−τUy |ωBτ
for Uy-a.a. ω ∈ �

[0,∞)
X and all τ ≥ 0.

The following definition is inspired by [13], Definition 2.3. It is concerned with probability
measures which are supported only on a certain subset of a Polish space.

DEFINITION 2.3. Let Y be a Borel subset of H and let U ∈ Prob[�[0,∞)
X ]. We say that

U is concentrated on the paths with values in Y if there is some A ∈ B(�
[0,∞)
X ) such that

U(A) = 1 and A ⊂ {ω ∈ �
[0,∞)
X : ω(τ) ∈ Y∀τ ≥ 0}. We write U ∈ ProbY [�[0,∞)

X ].
The following definition is inspired by [12], Definition 2.4, (see also [13] for a version

on Polish spaces). It generalizes the classical Markov property to the situation, where the
Markov property only holds for a.e. time-point. It has been introduced for the Navier–Stokes
system, where the energy inequality does not hold for all times.

DEFINITION 2.4 (Almost sure Markov property). Let y 	→ Uy be a measurable map

defined on a measurable subset Y ⊂ H with values in ProbY [�[0,∞)
X ]. The family {Uy}y∈Y

has the almost sure Markov property if for each y ∈ Y there is a set T ⊂ (0,∞) with zero
Lebesgue measure such that

Uω(τ) = S−τUy |ωBτ
for Uy-a.a. ω ∈ �

[0,∞)
X

for all τ /∈ T.

The following definition is inspired by [12], Definition 2.5 (see also [13] for a version on
Polish spaces). It is motivated by the crucial observation by Krylov [15] that Markovianity
can be deduced from disintegration and reconstruction of a family of probability laws.

DEFINITION 2.5 (Almost sure pre-Markov family). Let Y be a Borel subset of H . Let C :
Y → Comp(Prob[�[0,∞)

X ]) ∩ ProbY [�[0,∞)
X ] be a measurable map, where Comp(·) denotes

the family of all compact subsets. The family {C(y)}y∈Y is almost surely pre-Markov if for
each y ∈ Y and U ∈ C(y) there is a set T⊂ (0,∞) with zero Lebesgue measure such that the
following holds for all τ /∈ T:

(1) The disintegration property holds, that is, we have

S−τU |ωBτ
∈ C

(
ω(τ)

)
for U-a.a. ω ∈ �

[0,∞)
X ;

(2) The reconstruction property holds, that is, for each Bτ -measurable map ω 	→ Qω :
�

[0,∞)
X → Prob(�

[τ,∞)
X ) with

S−τQω ∈ C
(
ω(τ)

)
for U-a.a. ω ∈ �

[0,∞)
X ;

we have U ⊗τ Q ∈ C(y).

The following theorem states the existence of a Markov selection. It is a slight modification
of [13], Theorem 2.7, which in turn originates from [12], Theorem 2.8.
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THEOREM 2.6. Let Y be a Borel subset of H . Let {C(y)}y∈Y be an almost sure pre-
Markov family (as defined in Definition 2.5) with nonempty convex values. Then there is a
measurable map y 	→ Uy defined on Y with values in ProbY [�[0,∞)

X ] such that Uy ∈ C(y) for
all y ∈ Y and {Uy}y∈Y has the almost sure Markov property (as defined in Definition 2.4).

PROOF. If Y = H the statement is exactly [13], Theorem 2.7. We aim to reduce the
general situation to this case. Define the map C̃ : H → Comp(Prob[�[0,∞)

X ]) by

C̃(h) :=
{
C(h), h ∈ Y,

{δh}, h /∈ Y.

Obviously, the map C̃ has the disintegration and reconstruction property (it is assumed if
y ∈ Y and trivial otherwise). So, we can apply [13], Theorem 2.7, to get an almost sure
Markov selection {Uh}h∈H which yields an almost sure Markov selection {Uy}y∈Y simply by
restricting to Y . �

2.5. Almost sure supermartingales. In this subsection we collect some results on almost
sure supermartingales (the supermartingale property only holds for a.a. time-point, see Def-
inition 2.7 below) from [12], where (�,B, (Bt )t≥0,U) denotes a stochastic basis. Almost
sure supermartingales have been invented in [12] in order to deal with the energy balance of
the Navier–Stokes system (which is only known to hold for a.a. time-point). The following
statements are generalizations of well-known statements for supermartingales (see, e.g, [17]).

DEFINITION 2.7 ([12], Definition 3.2). Let θ be an (Bt )-adapted real-valued stochastic
process on �. We call θ an almost sure ((Bt )t≥0,U)-supermartingale if we have

E
U [θt1A] ≤ E

U [θs1A](2.1)

for a.a. s ≥ 0, all t ≥ s and all A ∈ Bs . The time-points s for which (2.1) holds are called
regular times of θ . The time-points s for which (2.1) does not hold are called exceptional
times of θ .

The following two propositions are crucial for the behaviour of almost sure supermartin-
gales when it comes to disintegration and reconstruction of the underlying probability mea-
sure.

PROPOSITION 2.8 ([12], Proposition B.1). Let θ and ζ be two real-valued continuous
and (Bt )-adapted stochastic processes on � and let t0 ≥ 0. For U ∈ Prob[�] the following
conditions are equivalent.

(i) (θt )t≥0 is a ((Bt )t≥0,U)-square integrable martingale with quadratic variation
(ζt )t≥0.

(ii) For U -a.a. ω ∈ � the stochastic process (θt )t≥t0 is a ((Bt )t≥t0,U |ω
Bt0

)-square inte-

grable martingale with quadratic variation (ξt )t≥t0 and we have E
U [EU |·

Bt0 [ξt ]] < ∞ for all
t ≥ t0.

PROPOSITION 2.9 ([12], Proposition B.4). Let α and β be two real-valued adapted pro-
cesses on � such that β is nondecreasing and θ = α − β is left lower semicontinuous. Let
t0 ≥ 0. For U ∈ Prob(�) the following conditions are equivalent.

(i) (θt )t≥t0 is an almost sure ((Bt )t≥t0,U)-supermartingale and we have E
U [αt + βt ] <

∞ for all t ≥ t0.
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(ii) For U -a.a. ω ∈ � the process (θt )t≥t0 is an almost sure ((Bt )t≥0,U |ω
Bt0

)-

supermartingale and we have

E
U |ω

Bt0 [αt + βt ] < ∞, E
U [
E
U |·

Bt0 [αt + βt ]]< ∞,

for all t ≥ t0.

We finally mention a result which allows to obtain an estimate for the tail-probability of
an almost sure supermartingale.

PROPOSITION 2.10 ([12], Corollary B.3). Let θ be a real-valued, left lower semicontin-
uous and (Bt )-adapted processes on �. Assume that (θt )t≥0 is an almost sure ((Bt )t≥0,U)-
supermartingale. Assume further that we have θt = αt −βt , where αt and βt are positive and
(βt )t≥0 is nondecreasing. Let a be a regular time-point of θ and b > a. Then we have

λU
[

sup
a≤t≤b

αt ≥ λ
]
≤ 2

(
E
Uθa +E

U lim
t↗b

θt +E
Uβb

)
∀λ > 0.

3. The compressible Navier–Stokes system. In this section we are concerned with mar-
tingale solutions in the compressible Navier–Stokes system. We present the concept of dis-
sipative martingale solutions living on a complete probability space (O,F, (Ft )t≥0,P) with
a complete right-continuous filtration (Ft )t≥0. Furthermore, we introduce a solution to the
martingale problem associated with (1.1)–(1.3) which is a probability law on the space of
trajectories. In Proposition 3.8 we show that both concepts are equivalent.

3.1. Driving force. In this subjection we give the precise assumptions on the stochastic
forcing in the momentum equation (1.2). The stochastic process W is a cylindrical (Ft )-
Wiener process in a separable Hilbert space U. It is formally given by the expansion W(t) =∑∞

k=1 ekWk(t) where (Wk)k∈N is a sequence of mutually independent real-valued Wiener
processes relative to (Ft )t≥0 and (ek)k∈N is a complete orthonormal system in U. Accordingly,
the diffusion coefficient G is defined as a superposition operator G(�,q) : U → L1(TN,RN),

G(�,q)ek = Gk

(·, �(·),q(·)).
The coefficients Gk = Gk(x, �,q) : TN × [0,∞) × RN → RN are C1-functions such that
there exist constants (gk)k∈N ⊂ [0,∞) with

∑∞
k=1 g2

k < ∞ and uniformly in x ∈ T
N it holds∣∣Gk(x, �,q)

∣∣≤ gk

(
� + |q|),(3.1) ∣∣∇�,qGk(x, �,q)

∣∣≤ gk.(3.2)

Finally, we define the auxiliary Hilbert space U0 ⊃ U via

U0 =
{
v = ∑

k≥1

αkek;
∑
k≥1

α2
k

k2 < ∞
}
,

endowed with the norm

‖v‖2
U0

=∑
k≥1

α2
k

k2 , v =∑
k≥1

αkek.

Note that the embedding U ↪→ U0 is Hilbert–Schmidt. Moreover, trajectories of W are P-a.s.
in C([0, T ];U0) (see [8]).
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3.2. Dissipative martingale solution. In what follows, we assume that the pressure-
density state equation is given by

p(�) = a�γ , a > 0, γ >
N

2
,

and the corresponding pressure potential reads as

P(�) = �

∫ �

0

p(z)

z2 dz = a

γ − 1
�γ .

We give a rigorous definition of a solution to (1.1)–(1.3).

DEFINITION 3.1 (Dissipative martingale solution). The multiplet ((O,F, (Ft )t≥0,P),

�,u,W) is called a dissipative martingale solution to (1.1)–(1.3) provided:

(a) (O,F, (Ft )t≥0,P) is a stochastic basis with a complete right-continuous filtration;
(b) W is a cylindrical (Ft )-Wiener process;
(c) the density � ≥ 0 belongs to the space Cloc([0,∞); (Lγ (TN),w)) P-a.s. and is (Ft )-

adapted;

(d) the momentum �u belongs to the space Cloc([0,∞); (L 2γ
γ+1 (TN,RN),w)) P-a.s. and

is (Ft )-adapted;
(e) the velocity u belongs to L2

loc(0,∞;W 1,2(TN,RN)) P-a.s. and is (Ft )-adapted;
(f) the total energy

E(t) =
∫
TN

[
1

2

|�u(t)|2
�(t)

+ P
(
�(t)

)]
dx

belongs to the space L∞
loc(0,∞) P-a.s.;

(g) the equation of continuity[∫
TN

�ψ dx

]t=τ

t=0
−
∫ τ

0

∫
TN

�u · ∇ψ dx dt = 0

holds for all τ > 0, ψ ∈ C1(TN), P-a.s.;
(h) if b ∈ C1(R) such that there exists Mb > 0 with b′(z) = 0 for all z ≥ Mb, then[∫

TN
b(�)ψ dx

]t=τ

t=0

−
∫ τ

0

∫
TN

b(�)u · ∇ψ dx dt +
∫ τ

0

∫
TN

(
b′(�)� − b(�)

)
div uψ dx dt = 0

for all τ > 0, ψ ∈ C1(TN), P-a.s.;
(i) the momentum equation[∫

TN
�u · ϕ dx

]t=τ

t=0
−
∫ τ

0

∫
TN

[
�u ⊗ u : ∇ϕ + p(�)divϕ

]
dx dt

+
∫ τ

0

∫
TN

S(∇u) : ∇ϕ dx dt(3.3)

=
∞∑

k=1

∫ τ

0

(∫
TN

Gk(�,�u) · ϕ dx

)
dWk

holds for all τ > 0, ϕ ∈ C1(TN ;RN), P-a.s.;
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(j) the energy inequality

1

n

[
E
[
1VEn(t)

]]t=τ2
t=τ1

+E

[
1V

∫ τ2

τ1

En−1
∫
TN

S(∇u) : ∇u dx dt

]

≤ E

[
1V

∫ τ2

τ1

En−1
∞∑

k=1

∫
TN

�−1∣∣Gk(�,�u)
∣∣2 dx dt

]

+ n − 1

2
E

[
1V

∫ τ2

τ1

En−2
∞∑

k=1

(∫
TN

Gk(�,�u)dx

)2
dt

](3.4)

holds for any n = 0,1, . . . , any τ2 ≥ 0 and a.a. τ1, 0 ≤ τ1 ≤ τ2, including τ1 = 0, and any
V ∈ Fτ1 .

REMARK 3.2. It is worth noting that it is enough to require validity of the integral iden-
tities (g)–(i) for a countable family of test function that may be formed by the trigonometric
polynomials.

Note that unlike the density � and the momentum �u, the velocity field u is not a stochastic
process in the classical sense as it is only defined for a.a. times. Thus, adaptedness of u to the
filtration (Ft )t≥0 shall be understood in the sense of random distributions introduced in [4],
Section 2.2. Namely, the random variable∫ ∞

0

∫
TN

u · ϕ dx dt

is Fτ measurable whenever ϕ ∈ C∞
c ([0, τ ) × T

N,RN). This can be reformulated by means
of the following observation.

LEMMA 3.3. Let (�,F, (Ft )t≥0,P) be a stochastic basis. Then the following statements
are equivalent:

(a) u is an (Ft )-adapted random distribution taking values in L2
loc(0,∞;W 1,2(TN,RN))

P-a.s.;
(b) the stochastic process

U : t 	→
∫ t

0
u(s, ·)ds ∈ W 1,2(

T
N,RN )

is (Ft )-adapted and takes values in W
1,2
loc (0,∞;W 1,2(TN,RN)) P-a.s.

PROOF. The implication (a) ⇒ (b) is obvious. To show (a) ⇒ (b) we observe that∫ ∞
0

∫
TN

u · ϕ dx dt = −
∫ ∞

0

∫
TN

U · ∂tϕ dx dt

for any ϕ ∈ C∞
c ((0,∞)×T

N,RN) whence the desired conclusion follows from adaptedness
of U. �

We have the following existence result.

THEOREM 3.4. Let k > N
2 and let � be a Borel probability measure defined on the space

W−k,2(TN) × W−k,2(TN,RN) such that

�
{
L1(

T
N )× L1(

T
N,RN )}= 1, �{� ≥ 0} = 1,

�

{
0 < � ≤

∫
TN

� dx ≤ � < ∞
}

= 1,
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for some deterministic constants �, �, and∫
L1

x×L1
x

∣∣∣∣∫
TN

[
1

2

|q|2
�

+ P(�)

]
dx

∣∣∣∣n d� ≤ c(n)

for n = 1,2, . . . , where c(n) is positive constant depending on n. Let the diffusion coefficients
G= (Gk)k∈N be continuously differentiable satisfying (3.1) and (3.2). Then there is a dissipa-
tive martingale solution to (1.1)–(1.3) in the sense of Definition 3.1 with � = L[�(0), �u(0)].

PROOF. Theorem 3.4 is only a variant of [4], Theorem 4.0.2. The proof is based on a four
layer approximation scheme where on each layer the stochastic compactness method based
on the Jakubowski–Skorokhod representation theorem [14] is used. Since the formulation of
the energy inequality (3.4) is slightly different from that in [4], we discuss the main points of
the proof in the sequel.

We consider a suitable approximation of the diffusion coefficients. It is convenient to in-
troduce F= (Fk)k∈N by

Fk(�,u) = Gk(�,�u)

�
.

Note that, in accordance with hypotheses (3.1)–(3.2), the functions Fk satisfy the following

Fk : TN × [0,∞) × RN → RN, Fk ∈ C1(
T

N × (0,∞) × RN ),
and there exist constants (fk)k∈N ⊂ [0,∞) such that

∥∥Fk(·, ·,0)
∥∥
L∞

x,�
+ ‖∇uFk‖L∞

x,�,u
≤ fk,

∞∑
k=1

f 2
k < ∞.

Finally, we introduce a regularized noise coefficient Fε = (Fk,ε)k∈N by cutting off small val-
ues of the density and large values of the velocity. The basic approximate problem then reads
as

d� + χ
(‖u‖Hm − R

)
div

(
�[u]R)dt = ε�x� dt,

d�m[�u] + �m

[
χ
(‖u‖Hm − R

)
div(�u ⊗ u)

]
dt + �m

[
χ
(‖u‖Hm − R

)∇pδ(�)
]
dt

= �m

[
ε�x(�u) + divS(∇u)

]
dt + �m

[
��m

[
Fε(�,u)

]]
dW,

where we recognize the artificial viscosity terms ε�x�, ε�x(�u), pressure regularization
δ(� + ��) as well as the cut-off operators applied to various quantities using the function

χ ∈ C∞(R), χ(z) =

⎧⎪⎪⎨⎪⎪⎩
1 for z ≤ 0,

χ ′(z) ≤ 0 for 0 < z < 1,

χ(z) = 0 for z ≥ 1,

together with the operators

[v]R = χ
(‖v‖Hm − R

)
v, defined for v ∈ Hm,R ∈ N,

where Hm is a finite dimensional function space of dimension m. Finally, �m is a projection
operator onto Hm. The aim is to pass to the limits R → ∞, m → ∞, ε → 0 and δ → 0 (in
this order) using the stochastic compactness method.

There are now two principal differences to [4]: namely, we are dealing with an infinite
time-interval and the energy inequality in [4], Theorem 4.0.2, is only included for n = 1. The
first issue only requires a fine tuning of the stochastic compactness argument similar to [5],
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Section 4: If X is a reflexive separable Banach space and q ∈ (1,∞) then topological spaces
of the form

L
q
loc

([0,∞);X), (
L

q
loc

([0,∞);X),w), Cloc
([0,∞); (X,w)

)
,

belong to the class of the so-called sub-Polish spaces. That is, there exists a countable
family of continuous functions that separate points (see [4], Definition 2.1.3.). Indeed,
L

q
loc([0,∞);X) is a separable metric space with the metric given by

(f, g) 	→ ∑
M∈N

2−M(‖f − g‖Lq(0,M;X) ∧ 1
)
.

A set K ⊂ L
q
loc([0,∞);X) is compact provided the sets

KM := {f |[0,M];f ∈ K} ⊂ Lq(0,M;X)

are compact for every M ∈ N. On the other hand, the remaining two spaces are (generally)
nonmetrizable locally convex topological vector spaces, generated by the seminorms

f 	→
∫ M

0

〈
f (t), g(t)

〉
X dt, M ∈N, g ∈ Lq ′(

0,∞;X∗), 1

q
+ 1

q ′ = 1

and

f 	→ sup
t∈[0,M]

〈
f (t), g

〉
X, M ∈ N, g ∈ X∗,

respectively. As above, a set K is compact provided its restriction to each interval [0,M] is
compact in (Lq(0,M;X),w) and C([0,M]; (X,w)), respectively. So, in the spaces above
there exists a countable family of continuous functions that separate points. Consequently,
the Jakubowski–Skorokhod theorem [14], Theorem 2, applies.

Let us now discuss the energy inequality (3.4). On the basic level (with R,m,ε and δ

fixed), and in fact even in the limit R → ∞, we are dealing with finite dimensional function
spaces. Hence, the classical version of Itô’s formula applies and we obtain the following
energy balance arguing similarly to [4], Proposition 4.1.14,

−1

n

∫ ∞
0

∂tφEn
δ dt +

∫ ∞
0

φEn−1
δ

∫
TN

[
S(∇u) : ∇u + ε�|∇u|2 + εP ′′

δ (�)|∇�|2]dx dt

= 1

2

∞∑
k=1

∫ ∞
0

φEn−1
δ

∫
TN

�
∣∣�m

[
Fk,ε(�,u)

]∣∣2 dx dt

(3.5)

+
∞∑

k=1

∫ ∞
0

φEn−1
δ

∫
TN

��m

[
Fk,ε(�,u)

] · u dx dWk,

+ n − 1

2

∞∑
k=1

∫ ∞
0

φEn−2
δ

(∫
TN

��m

[
Fk,ε(�,u)

] · u dx

)2
dt + φ(0)

n
En

δ (0).

It holds for all φ ∈ C∞
c ([0,∞)) P-a.s. with the approximate pressure potential

Pδ(�) = �

∫ �

1

pδ(z)

z2 dz = P(�) + δ

(
� log(�) + 1

� − 1
��

)
and the total energy

Eδ(t) =
∫
TN

[
1

2

|�u(t)|2
�(t)

+ Pδ

(
�(t)

)]
dx.
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From (3.5) one can deduce the moment estimates

E

[
sup

τ∈[0,T ]
Enr

δ (τ )
]

+E

[∣∣∣∣∫ T

0
En−1

δ

∫
TN

[
S(∇u) : ∇u + ε�|∇u|2 + εP ′′

δ (�)|∇�|2]dx dt

∣∣∣∣r](3.6)

≤ c(T )
(
1 +E

[
Enr

δ (0)
])

whenever r ≥ 2

as in [4], Proposition 4.2.3, for all n ∈ N. The moment bounds from (3.6) can be used to show
tightness of the probability laws. Eventually, one uses the Jakubowski–Skorokhod theorem
to obtain compactness on a new probability space. Thanks to [4], Theorem 2.9.1, the energy
balance (3.5) continues to hold on the new probability space. The passage to the limit m → ∞
in (3.5) can still be done along the lines of [4], Lemma 4.3.16. It follows from the passage to
the limit in the stochastic integral (see [4], Proposition 4.3.14.) and the arbitrary high moment
estimates (3.6). The subsequent limits ε → 0 and δ → 0 follow along the lines of [4] with the
same modifications. Only the energy inequality (3.4) needs some further explanation (where
we follow [12], proof of Lemma A.3). So far, we have only shown that for any τ > 0 there is
a nullset Tτ such that1

E
[
1VSn[�,u]τ ]≤ E

[
1VSn[�,u]r](3.7)

for all r /∈ Tτ and all V ∈ Fr , where

Sn[�,u]τ = 1

n
En

τ +
∫ τ

0

(
En−1

t

∫
TN

S(∇u) : ∇u dx

)
dt

− 1

2

∫ τ

0

(
En−1

t

∞∑
k=1

∫
TN

|Gk(�,�u)|2
�

dx

)
dt

− n − 1

2

∫ τ

0

(
En−2

t

∞∑
k=1

(∫
TN

Gk(�,�u) · u dx

)2
)

dt,

En
t =

∫
TN

[
�(t)

∣∣u(t)
∣∣2 + P

(
�(t)

)]
dx.

Now we set T=⋃
t∈DTt where D ⊂ [0,∞) is a countable and dense set. We claim that (3.7)

holds for all r /∈ T and all τ > r which gives (3.4). In fact, for 0 < r < τ with r /∈ T there
is a sequence (τm) ⊂ D with τm → τ . Now, passing with m → ∞ in (3.7) and using lower
semicontinuity of the mapping

t 	→
∫
TN

[
1

2

|�u(t)|2
�(t)

+ P
(
�(t)

)]
dx

yields (3.4). �

REMARK 3.5.

(a) It can be seen from the proof of Theorem 3.4 that it is possible to show a much stronger
version of the energy inequality which reads as

−1

n

∫ ∞
0

∂tφEn dt − 1

n
φ(0)En(0) +

∫ ∞
0

φEn−1
∫
TN

S(∇u) : ∇u dx dt

1In (3.5), approximate χ[r,t] by a sequence of smooth functions φm, multiply by 1V and apply expectations. In
the limit procedures m → ∞, ε → 0 and δ → 0 we use lower semicontinuity on the left-hand-side for any time
and on the right-hand side strong convergence for a.a. time.
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≤ 1

2

∫ ∞
0

φEn−1
∞∑

k=1

∫
TN

�−1∣∣Gk(�,�u)
∣∣2 dx dt

+ n − 1

2

∫ ∞
0

φEn−2
∞∑

k=1

(∫
TN

Gk(�,�u) · u dx

)2
dt

+
∞∑

k=1

∫ ∞
0

φEn−1
∫
TN

Gk(�,�u) · u dx dWk

for all φ ∈ C∞
c ([0,∞)), φ ≥ 0 and all n = 1,2, . . . P-a.s. The reason why we decided for

(3.4) is that otherwise we are unable to show the equivalence of Definition 3.1 and Defini-
tion 3.7 (see Proposition 3.8).

(b) The energy inequality (3.4) and Proposition 2.10 imply

P
(

sup
0≤τ≤T

[∫
TN

|�u(τ )|2
�(τ)

+ P
(
�(τ)

)]
dx]n +

[∫ T

0

∫
TN

|∇u|2 dx dt

]n

< ∞
)

= 1

for all n ∈ N and all T > 0 provided we have

E

[∫
TN

[ |�u(0)|2
�(0)

+ P
(
�(0)

)]
dx

]n

< ∞.

REMARK 3.6. In view of the Skorokhod representation theorem, we may always assume
that (O,F,P) is the standard probability space with P being the Lebesgue measure on [0,1].

3.3. Martingale solutions as measures on the space of trajectories. As it can be seen in
the proof of Theorem 3.4, the natural filtration associated to a dissipative martingale solution
in the sense of Definition 3.1 is the joint canonical filtration of [�,u,W ]. Note that since we
cannot exclude vacuum regions where the density vanishes, this filtration differs from the
filtration generated by [�,�u,W ]. In other words, the velocity u is not a measurable function
of the density and momentum [�,�u]. However, as already mentioned above, the velocity is
a class of equivalence with respect to all the variables ω, t, x and is therefore not a stochastic
process in the classical sense. Consequently, it is not clear at first sight, how Markovianity
for the system (1.1)–(1.3) shall be formulated.

In order to overcome this issue, we introduce a new variable U which corresponds to the
time integral

∫ ·
0 u ds and we study the Markov selection for the joint law of [�,�u,U]. This

stochastic process has continuous trajectories and contains all the necessary information. In
particular, the velocity u is a measurable function of U. However, as the initial condition
for U is changing through the proof of the Markov selection (more precisely, we have Ut =
U0 + ∫ t

0 u ds), the mapping U 	→ u is not injective. Consequently, it crucially matters which
of the variables U or u we include in the selection procedure.

For future analysis, it is more convenient to consider martingale solutions as probability
measures U ∈ Prob[�], where

� = Cloc
([0,∞);W−k,2(

T
N,R2N+1)),

where k > N
2 . This refers is X = W−k,2(TN,R2N+1)) in the set-up of Section 2.4. To this

end, let B denote the Borel σ -field on �. Let ξ = (ξ1, ξ2, ξ3) denote the canonical process
of projections, that is,

ξ = (
ξ1, ξ2, ξ3) : � → �,

ξ t = (
ξ1
t , ξ2

t , ξ
3
t

)
(ω) = ωt ∈ W−k,2(

T
N,R2N+1) for any t ≥ 0,
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and let (Bt )t≥0 denote the associated canonical filtration given by

Bt := σ(ξ |[0,t]), t ≥ 0,

which coincides with the Borel σ -field on �[0,t] = C([0, t];W−k,2(TN,R2N+1)).
To a dissipative martingale solution ((O,F, (Ft )t≥0,P), �,u,W) in the sense of Defini-

tion 3.1 we may associate its probability law

U = L
[
�,q = �u,U =

∫ ·
0

u ds

]
∈ Prob[�].

We obtain a probability space (�,B,U). Finally, we introduce the space

H =
{
[�,q,U] ∈ H̃ |

∫
TN

|q|2
|�| dx < ∞

}
,

H̃ = Lγ (
T

N )× L
2γ

γ+1
(
T

N,RN )× W 1,2(
T

N,RN ).
We tacitly include points of the form (0,0,U) with U ∈ W 1,2(TN ;RN) in H . Hence it is a
Polish space together with the metric

dH (y, z) = dY

((
y1,y2,y3), (z1, z2, z3))= ‖y − z‖

H̃
+
∥∥∥∥ y2√

|y1|
− z2√

|z1|

∥∥∥∥
L2

x

.(3.8)

Note that although the first term already defines a metric, the second term is needed to pass
to the limit in the energy. Moreover, it is easy to see that the inclusion H ↪→ X is dense. We
also define the subset

Y =
{
[�,q,U] ∈ H̃ |� �≡ 0, � ≥ 0,

∫
TN

|q|2
�

dx < ∞
}
.

Note that (Y, dH ) is not complete (because of � �≡ 0) and the inclusion Y ↪→ X is not dense
(because of � ≥ 0).

The law U(t, ·) will be supported on Y which consequently also determines the set of ad-
missible initial conditions. This is a consequence of the energy inequality (recall Remark 3.5
(b)) and the continuity equation (which excludes trivial density states by the balance of mass).
The following is a rigorous definition.

DEFINITION 3.7. A Borel probability measure U on � is called a solution to the mar-
tingale problem associated to (1.1)–(1.3) provided:

(a) it holds

U
(
ξ1 ∈ Cloc

([0,∞); (Lγ (
T

N ),w)), ξ1 ≥ 0
)= 1,

U
(
ξ2 ∈ Cloc

([0,∞); (L 2γ
γ+1

(
T

N,RN ),w)))= 1,

U
(
ξ3 ∈ W

1,2
loc

([0,∞);W 1,2(
T

N,RN )))= 1;
(b) it holds ξ2 = ξ1∂tξ

3 U -a.s.;
(c) the total energy

Et =
∫
TN

[
1

2

|ξ2
t |2
ξ1
t

+ P
(
ξ1
t

)]
dx

belongs to the space L∞
loc(0,∞) U -a.s.;
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(d) it holds U -a.s. [∫
TN

ξ1
t ψ dx

]t=τ

t=0
−
∫ τ

0

∫
TN

ξ2
t · ∇ψ dx dt = 0

for any ψ ∈ C1(TN) and τ ≥ 0;
(e) if b ∈ C1(R) such that there exists Mb > 0 with b′(z) = 0 for all z ≥ Mb, then there

holds U -a.s.[∫
TN

b
(
ξ1
t

)
ψ dx

]t=τ

t=0

−
∫ τ

0

∫
TN

[
b
(
ξ1
t

)
∂tξ

3
t · ∇ψ + (

b
(
ξ1
t

)− b′(ξ1
t

)
ξ1
t

)
div ∂tξ

3
t ψ
]
dx dt = 0

for any ψ ∈ C1(TN) and τ ≥ 0.
(f) for any ϕ ∈ C1(TN,RN), the stochastic process

M (ϕ) : [ω, τ ] 	→
[∫

TN
ξ2

t · ϕ dx

]t=τ

t=0
−
∫ τ

0

∫
TN

[
ξ2

t ⊗ ξ2
t

ξ1
t

: ∇ϕ + p
(
ξ1
t

)
divϕ

]
dx dt

+
∫ τ

0

∫
TN

S
(∇∂tξ

3
t

) : ∇ϕ dx dt

is a square integrable ((Bt )t≥0,U)-martingale with quadratic variation

1

2

∫ τ

0

∞∑
k=1

(∫
TN

Gk

(
ξ1
t , ξ2

t

) · ϕ dx

)2
dt;

(g) for any n = 1,2, . . . the stochastic process

S n : [ω, τ ] 	→ 1

n
En

τ +
∫ τ

0

(
En−1

t

∫
TN

S
(∇∂tξ

3
t

) : ∇∂tξ
3
t dx

)
dt

− 1

2

∫ τ

0

(
En−1

t

∞∑
k=1

∫
TN

|Gk(ξ
1
t , ξ2

t )|2
ξ1
t

dx

)
dt

− n − 1

2

∫ τ

0

(
En−2

t

∞∑
k=1

(∫
TN

Gk

(
ξ1
t , ξ2

t

) · ∂tξ
3
t dx

)2
)

dt

is an almost sure ((Bt )t≥0,U)-supermartingale (in the sense of Definition 2.7) and s = 0 is
a regular time.

The relation between Definition 3.1 and Definition 3.7 is given by the following result.

PROPOSITION 3.8. The following statements hold true:

(1) Let ((O,F, (Ft )t≥0,P), �,u,W) be a dissipative martingale solution to (1.1)–(1.3) in
the sense of Definition 3.1. Then for every F0-measurable random variable U0 with values in
W 1,2(TN,RN) we have that

(3.9) U = L
[
�,q = �u,U = U0 +

∫ ·
0

u ds

]
∈ Prob[�]

is a solution to the martingale problem associated to (1.1)–(1.3) in the sense of Definition 3.7.
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(2) Let U be a solution to the martingale problem associated to (1.1)–(1.3) in the sense
of Definition 3.7. Then there exists ((O,F, (Ft )t≥0,P), �,u,W) which is a dissipative mar-
tingale solution to (1.1)–(1.3) in the sense of Definition 3.1 and an F0-measurable random
variable U0 with values in W 1,2(TN,RN) such that

(3.10) U = L
[
�,q = �u,U = U0 +

∫ ·
0

u ds

]
∈ Prob[�].

PROOF. Part 1. Let ((O,F, (Ft )t≥0,P), �,u,W) be a dissipative martingale solution to
(1.1)–(1.3) in the sense of Definition 3.1 and let U0 be an arbitrary F0-measurable random
variable with values in W 1,2(TN,RN). We shall show that the probability law given by (3.9)
is a solution to the martingale problem associated to (1.1)–(1.3) in the sense of Definition 3.7.

The point (a) in Definition 3.7 follows from (c), (d), (e) in Definition 3.1, Lemma 3.3 and
the definition of U as the pushforward measure generated by [�,q,U]. Similarly, we obtain
that

1 =P(q = �u) = P(q = �∂tU) = U
(
ξ2 = ξ1∂tξ

3),
so (b) in Definition 3.7 follows. Since the total energy as well as the left hand side of the
continuity equation and the renormalized equation are measurable functions on the subset of
� where the law U is supported, we deduce that the points (c), (d), (e) in Definition 3.7 hold.

Next, we recall that by definition of the filtration (Bt )t≥0, the canonical process ξ =
(ξ1, ξ2, ξ3) is (Bt )-adapted. Hence by Lemma 3.3, ∂tξ

3 is a (Bt )-adapted random distri-
bution taking values in L2

loc(0,∞;W 1,2(TN,RN)).
In order to show (f) and (g) we observe that all the expressions appearing in the definition

of M (ϕ) and S (ϕ) are also measurable functions on the subset of � where U is supported.
Moreover, from Lemma 3.3 we see that the left hand side of (3.3) is a martingale with respect
to the canonical filtration generated by [�,q,U]. This directly implies the desired martingale
property of M (ϕ) as follows. We consider increments Xt,s = Xt − Xs , s ≤ t , of stochastic
processes. Then we obtain for ϕ ∈ C∞(TN,RN) and a continuous function h : �[0,s] →
[0,1] that

E
U [h(ξ |[0,s])M (ϕ)s,t

]= E
P [h([�,q,U]|[0,s]

)
M(ϕ)s,t

]= 0,

where

M(ϕ)t =
∫
TN

�u(t) · ϕ dx −
∫
TN

�u(0) · ϕ dx −
∫ t

0

∫
TN

�u ⊗ u : ∇ϕ dx dr

−
∫ t

0

∫
TN

S(∇xu) : ∇xϕ dx dr + a

∫ t

0

∫
TN

�γ · divx ϕ dx dr.

Similarly, we obtain

E
U [h(ξ |[0,s])

([
M (ϕ)2]

s,t − N (ϕ)s,t
)]

= E
P[h([�,q,U]|[0,s]

)([
M(ϕ)2]

s,t −N(ϕ)s,t
)]= 0,

where

N(ϕ)t =
∫ t

0

∞∑
k=1

(∫
TN

Gk(�,�u) · ϕ dx

)2
dr,

N (ϕ)t =
∫ t

0

∞∑
k=1

(∫
TN

Gk

(
ξ1
t , ξ2

t

) · ϕ dx

)2
dr.

As a consequence we deduce that M (ϕ) is a (Bt )-martingale with quadratic variation N (ϕ).
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The proof of (g) is similar to (f). In fact, there holds for any regular time s and any t ≥ s

that

E
U [h(ξ |[0,s])S n

t

]= E
P[h([�,q,U]|[0,s]

)
Sn

t

]≤ E
P [h([�,q,U]|[0,s]

)
Sn

s

]
= E

U [h(ξ |[0,s])S n
s

]
using (3.4), where

Sn[�,u]t = 1

n
En

t +
∫ t

0

(
En−1

r

∫
TN

S(∇u) : ∇u dx

)
dr

− 1

2

∫ t

0

(
En−1

r

∞∑
k=1

∫
�

�(r)−1∣∣Gk

(
�(r), �u(r)

)∣∣2 dx

)
dr

− n − 1

2

∫ τ

0

(
En−2

t

∞∑
k=1

(∫
�

Gk

(
�(r), �u(r)

) · u(r)dx

)2
)

dr,

En
t =

∫
TN

[
�(t)

∣∣u(t)
∣∣2 + P

(
�(t)

)]
dx.

We have shown that S n
t is an a.s. supermartingale, that is, (g) holds. This finishes the first

part of the proof.
Part 2. Let U ∈ Prob[�] be a solution to the martingale problem in the sense of Defi-

nition 3.7. We have to find a stochastic basis (O,F, (Ft )t≥0,P), density �, velocity u and
a cylindrical (Ft )-Wiener process W such that ((O,F, (Ft )t≥0,P), �,u,W) is a dissipative
martingale solution in the sense of Definition 3.1.

In view of (f) in Definition 3.7 together with the standard martingale representation theo-
rem (see [8], Theorem 8.2) we infer the existence of an extended stochastic basis(

� × �̃,B⊗ B̃, (Bt ⊗ B̃t )t≥0,U ⊗ Ũ
)
,

and a cylindrical Wiener process W =∑∞
k=1 Wkek adapted to (Bt ⊗ B̃t )t≥0, such that

M (ϕ) =
∞∑

k=1

∫ t

0

(∫
TN

Gk(�,�u) · ϕ dx

)
dWk,

where

�(ω, ω̃) := ξ1(ω), u(ω, ω̃) := ∂tξ
3(ω), U(ω, ω̃) := ξ3(ω).

Choosing for (O,F, (Ft )t≥0,P) the above extended probability space with the corresponding
augmented filtration, then ((O,F, (Ft )t≥0,P), �,u,W) is a dissipative martingale solution
solution to (1.1)–(1.3) in the sense of Definition 3.1. Furthermore, it holds

U = L
[
�,q = �u,U = U0 +

∫ ·
0

u ds

]
∈ Prob[�],

where by definition U0(ω, ω̃) = ξ3
0(ω). �

In other words, to every dissipative martingale solution we may associate infinitely many
solutions to the martingale problem, which are parametrized by the initial condition U0, but
whose marginals corresponding to (ξ1, ξ2) coincide. On the other hand, as it can be seen from
the proof of Part 2 of the proof of Proposition 3.8 that having a solution to the martingale
problem already determines the initial condition U0 used in (3.10).
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4. Main result and proof. In this section we present our main result which is the ex-
istence of an almost sure Markov selection to the compressible Navier–Stokes (1.1)–(1.3).
In the following, if y ∈ Y is an admissible initial condition, we denote by Uy a solution to
the martingale problem associated to (1.1)–(1.3) starting from y at time t = 0. That is, the
marginal of Uy at t = 0 is δy .

THEOREM 4.1. Let

p(�) = a�γ , a > 0, γ >
N

2
.

Let the diffusion coefficients G= (Gk)k∈N be continuously differentiable satisfying (3.1) and
(3.2). Then there exists a family {Uy}y∈Y of solutions to the martingale problem associated
to (1.1)–(1.2) in the sense of Definition 3.7 with the a.s. Markov property (as defined in
Definition 2.4).

For each y = (y1,y2,y3) ∈ Y we denote by CNS(y) the set of probability laws Uy ∈
Prob[�] solving the martingale problem associated to (1.1)–(1.3) with the initial law δy .
In order to prove Theorem 4.1 we aim to apply the abstract result from Theorem 2.6 to the
family {CNS(y)}y∈Y of solutions to the martingale problem.

PROPOSITION 4.2. Let y = (y1,y2,y3) ∈ Y . Then CNS(y) is nonempty and convex.
Moreover, for every U ∈ CNS(y), the marginal at every time t ∈ (0,∞) is supported on Y .

PROOF. If y ∈ Y then the assumptions of Theorem 3.4 are satisfied for the initial law
� = δ(y1,y2) and existence of a dissipative martingale solution ((O,F, (Ft )t≥0,P), �,u,W)

in the sense of Definition 3.1 with initial law δ(y1,y2) follows. In view of Proposition 3.8 we
therefore deduce that for each y ∈ Y the set CNS(y) is not empty.

In order to check the convexity, let U1,U2 ∈ CNS(y) and let U = λU1 + (1 − λ)U2 for
some λ ∈ (0,1). Since all the points in Definition 3.7 involve integration with respect to the
measure U of measurable functions on the subset of � where the measure is supported and
we work with the canonical process ξ , the convexity follows immediately.

Finally, as a consequence of the energy inequality, see in particular Remark 3.5, the
marginal of U ∈ CNS(y) at every t ∈ (0,∞) is supported on Y . �

In order to apply Theorem 2.6 it remains to show compactness as well as the disintegration
and reconstruction property of the family {CNS(y)}y∈Y . We are going to do this in the follow-
ing subsections (see Proposition 4.3–4.5). Theorem 4.1 follows then from Theorem 2.6.

4.1. Compactness. The following proposition yields compactness of CNS(y) (choosing
ym constant) as well as measurability of the map y 	→ CNS(y) (using [17] for the metric space
(Y, dH , Theorem 12.1.8)).

PROPOSITION 4.3. Let (ym = (�m,0,qm,0,Um,0))m∈N ⊂ Y be a sequence converging to
some y = (�0,q0,U0) ∈ Y with respect to the metric dH given in (3.8). Let Um ∈ CNS(ym),
m ∈ N. Then (Um)m∈N has a subsequence that converges to some U ∈ CNS(y) weakly in
Prob[�].

PROOF. On account of Proposition 3.8 there is a sequence ((Om,Fm, (Fm
t )t≥0,P), �m,

um,Wm) of dissipative martingale solutions in the sense of Definition 3.1 and an Fm
0 -

measureable random variable Um,0 with values in W 1,2(TN,RN) such that

Um = L
[
�m,qm = �mum,Um = Um,0 +

∫ ·
0

um ds

]
.
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Choosing s = 0 in (3.4) we have for any t ∈ (0,∞)

1

n
E

[∫
TN

(
1

2
�m|um|2 + P(�m)

)
(t)dx

]n

+E

∫ t

0

([∫
TN

(
1

2
�m|um|2 + P(�m)

)
dx

]n−1 ∫
TN

S(∇um) : ∇um dx

)
dτ

≤ 1

2
E

∫ t

0

([∫
TN

(
1

2
�m|um|2 + P(�m)

)
dx

]n−1 ∞∑
k=1

∫
TN

�−1
m

∣∣Gk(�m,�mum)
∣∣2 dx

)
dτ

+ n − 1

2
E

∫ t

0

([∫
TN

(
1

2
�m|um|2 + P(�m)

)
dx

]n−2

×
∞∑

k=1

(∫
TN

Gk(�m,�mum) · um dx

)2
)

dτ

+ 1

n

[∫
TN

( |qm,0|2
2�m,0

+ P(�m,0)

)
dx

]n

.

By the assumption on the initial data and the definition of the metric dY in (3.8) the last term
stays bounded uniformly in m. The other two terms on the right-hand side, which we denote
by (I )m and (II)m, need to be estimated. By (3.1) we have

(I )m ≤ c

∫ T

0

([∫
TN

(
1

2
�m|um|2 + P(�m)

)
dx

]n−1 ∫
TN

(
�m + �m|um|2)dx

)
dt

≤ c(T ) + c

∫ T

0

[∫
TN

(
1

2
�m|um|2 + P(�m)

)
dx

]n

dt.

Similarly, we obtain

(II)m ≤ c

∫ T

0

[∫
TN

(
1

2
�m|um|2 + P(�m)

)
dx

]n−2

×
∞∑

k=1

∫
TN

�−1
m

∣∣Gk(�m,�mum)
∣∣2 dx

∫
TN

�m|um|2 dx dt

≤ c(T ) + c

∫ T

0

[∫
TN

(
1

2
�m|um|2 + P(�m)

)
dx

]n

dt.

By Gronwall’s lemma we get

sup
0≤t≤T

E

[[∫
TN

(
1

2
�m|um|2 + P(�m)

)
dx

]n]

+E

[∫ T

0

([∫
TN

(
1

2
�m|um|2 + P(�m)

)
dx

]n−1 ∫
TN

S(∇um) : ∇um dx

)
dτ

]
(4.1)

≤ c(n,T )

uniformly in m for all T > 0 and all n ∈ N. In order to swap supremum and expectation in
the first term on the left-hand side we apply the super-martingale inequality from Proposi-
tion 2.10. Setting

αn
τ = 1

n
[Em]nτ +

∫ τ

0

(
[Em]n−1

∫
TN

S(∇um) : ∇um dx

)
dt
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βn
τ = 1

2

∫ τ

0

(
[Em]n

∞∑
k=1

∫
TN

|Gk(�m,�mum)|2
�m

dx

)
dt

+ n − 1

2

∫ τ

0

(
[Em]n−2

∞∑
k=1

(∫
TN

Gk(�m,�mum) · um dx

)2
)

dt,

Em(t) =
∫
TN

[
1

2

|�m(t)um(t)|2
�m(t)

+ P
(
�m(t)

)]
dx,

we obtain

λP
[

sup
0≤t≤T

1

n
[Em]nt ≥ λ

]
≤ 2E

(
1

n
[Em]n0 + lim

t↗T
[Em]nt + (I )m + (II)m

)

≤ 2E
(

1

n
[Em]n0 + [Em]nT

)
≤ c(n)

(4.2)

using the assumptions on the initial datum, the estimates for (I )m and (II)m above as well
as (4.1). As in [4], Section 4.5.2, we can infer from (4.1) the following uniform pressure
estimate

E

[∫ T

0

∫
TN

p(�m)�β
m dx dt

]
� c(�,T )

for a certain β > 0. Here � is given by

� = sup
m∈N

∫
TN

�m,0 dx.

As in [4], Proposition 4.5.4, we can use momentum and continuity equation (as well as the
estimates (4.1) and (4.2)) to gain information about the regularity in time: There exist κ > 0
and k ∈N such that

(4.3) λP
[∥∥(�m,�mum)

∥∥
Cκ([0,T ];W−k,2(TN)) > λ

]≤ C(T )

for all T > 0 uniformly in m and λ. Combining (4.1)–(4.3) we can show that the family of
joint laws {

L[�m,�mum,um,Um,Wm, δ[�m,um,∇um]];m ∈ N
}

is tight on

X = X� ×X�u ×Xu ×XU ×XW ×Xν,

where

X� = (
L

γ+β
loc

(
0,∞;Lγ+β(

T
N )),w)∩ Cloc

([0,∞);(
Lγ (

T
N ),w))∩ Cloc

([0,∞);W−k,2(
T

N )),
X�u = Cloc

([0,∞); (L 2γ
γ+1

(
T

N ;RN ),w))∩ Cloc
([0,∞);W−k,2(

T
N ;RN )),

Xu = (
L2

loc
(
0,∞;W 1,2(

T
N,RN )),w),

XU = (
W

1,2
loc

(
0,∞;W 1,2(

T
N,RN )),w),

XW = Cloc
([0, T );U0

)
Xν = (

L∞
loc
(
(0,∞) ×T

N ;Prob
(
R

13)),w∗).
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Note that we also include the Young measure νm associated to [�m,um,∇um], that is the
weak-∗ measurable mapping

νm : [0, T ]×T
N → Prob

(
R×R

3 ×R
3×3)� Prob

(
R

13), νm,t,x(·) = δ[�m,um,∇um](t,x)(·).
In particular, we have shown that {Um;m ∈ N} is tight. By Prokhorov’s theorem there is a

subsequence converging weakly to some U ∈ Prob[�]. It remains to show that U ∈ CNS(y).
Following [4], Proposition 4.5.5, we obtain by the Jakubowski–Skorokhod theorem [14]
the existence of a complete probability space (�̃, F̃, P̃) with X -valued random variables
[�̃m, q̃m, ũm, Ũm, W̃m, ν̃m], m ∈ N, as well as [�̃, q̃, ũ, Ũ, W̃ , ν̃] such that (up to a subse-
quence):

(1) L[�̃m, q̃m, ũm, Ũm, W̃m, ν̃m] and L[�m,�mum,um,Um,Wm, δ[�m,um,∇um]] coincide
for all m ∈ N, in particular, we have L[�̃m, �̃mũm, Ũm] = Um;

(2) the law of [�̃, q̃, ũ, Ũ, W̃ , ν̃] on X is a Radon measure,
(3) [�̃m, �̃mũm, ũm, Ũm, W̃m, ν̃m] converges P̃-a.s. to [�̃, q̃, ũ, Ũ, W̃ , ν] in the topology of

X ;
(4) for any Carathéodory function H = H(t, x, ρ,v,V) where (t, x) ∈ (0, T ) × T

N ,
(ρ,v,V) ∈ R

13, satisfying for some q1, q2 > 0 the growth condition∣∣H(t, x, ρ,v,V)
∣∣� 1 + |ρ|q1 + |v|q2 + |V|q2,

uniformly in (t, x), denote H(�̃, ũ,∇ũ)(t, x) = 〈ν̃t,x,H 〉. Then it holds true that

H(�̃m, ũm,∇ũm) ⇀ H(�̃, ũ,∇ũ) in Lr((0, T ) ×T
N )

for all 1 < r ≤ γ + β

q1
∧ 2

q2
,

as m → ∞ P̃-a.s.

Finally, it remains to show that U which is the probability law of [�̃, q̃, Ũ] solves the
martingale problem associated to (1.1)–(1.3). First observe that we have ũ = ∂t Ũ and q̃ = �̃ũ
P̃-a.s. Next, we observe that [�̃, ũ] is a dissipative martingale solution to (1.1)–(1.3) in the
sense of Definition 3.1. This can be shown exactly as in [4], Section 4.5.1. It remains to pass
to the limit in the energy inequality. Setting

S n(ρ,q,v)τ = 1

n
E(ρ,q)nτ +

∫ τ

0

(
E(ρ,q)n−1

∫
TN

S(∇v) : ∇v dx

)
dt

− 1

2

∫ τ

0

(
E(ρ,q)n

∞∑
k=1

∫
TN

|Gk(ρ,q)|2
ρ

dx

)
dt

− n − 1

2

∫ τ

0

(
E(ρ,q)n−2

∞∑
k=1

(∫
TN

Gk(ρ,q) · v dx

)2
)

dt,

E(ρ,q)t =
∫
TN

[
1

2

|q(t)|2
ρ(t)

+ P
(
ρ(t)

)]
dx,

we deduce from [4], Theorem 2.9.1, that S n(�m,�mum,um)t ∼ S n(�̃m, �̃mũm, ũm)t . In
particular, S n(�̃m, �̃mũm, ũm) is an a.s. supermartingale. We can pass to the limit in (3.4)
(in the version for (�̃m, �̃mũm, ũm)) along the lines of [4], Proposition 4.4.13 (the situation
is even much easier since there is no stochastic integral). We note that the set of exceptional
times in the limit is the union of the exceptional times of all iterates, which is still a nullset. In
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addition, from the convergence of the deterministic initial conditions Um,0 → U0 it follows
that Ũ0 = U0. To summarize, we proved that

U = L
[
�̃, �̃ũ, Ũ = U0 +

∫ ·
0

ũ ds

]
,

where [�̃, ũ] is a dissipative martingale solution to (1.1)–(1.3). According to Proposition 3.8,
U is a solution to the martingale problem with the initial law given by δ(�0,q0,U0). Hence
U ∈ CNS(y) and the proof is complete. �

4.2. Disintegration property. In this subsection we prove that the family {CNS(y)}y∈Y is
stable with respect to disintegration.

PROPOSITION 4.4. The family {CNS(y)}y∈Y has the disintegration property of Defini-
tion 2.5.

PROOF. Let y ∈ Y and U ∈ CNS(y). Further let T ≥ 0 be a regular time (i.e., a time
at which the energy inequality in the sense of Definition 3.7 (e) holds). In accordance with
Theorem 2.1, there is a family of probability measures,

� � ω̃ 	→ U |ω̃BT
∈ Prob

[
�[T ,∞)]

such that

(4.4) ω(T ) = ω̃(T ),U |ω̃BT
-a.s., U(ω|[0,T ] ∈ A,ω|[T ,∞) ∈ B) =

∫
ω̃∈A

U |ω̃BT
(B)dU,

for any Borel sets B ⊂ �[T ,∞), A ⊂ �[0,T ]. Our goal is to prove that

S−T U |ω̃Bτ
∈ C

(
ω(T )

)
for ω̃ ∈ �, U -a.s.

We aim at finding an U |ω̃
BT

-nullset N outside of which points (a)–(f) from Definition 3.7

hold for U |ω̃
BT

. In fact, we will relate nullsets Na, . . . ,Nf to each of the points (a)–(f) and
set N = Na ∪ · · · ∪ Nf . The crucial part hereby is (b), the rest is similar to [12], Lemma 4.4.
However, we still give the details for the convenience of the reader.

(a) Setting

ST = {
ω ∈ � : ω|[0,T ] ∈ C

([0, T ]; (Lγ (
T

N ),w))× C
(
0, T ; (L 2γ

γ+1
(
T

N ;RN ),w))
× W 1,2(0, T ;W 1,2(

T
N ;RN ))},

ST = {
ω ∈ � : ω|[T ,∞) ∈ Cloc

([T ,∞); (Lγ (
T

N ), ))× Cloc
([T ,∞); (L 2γ

γ+1
(
T

N ;RN ),w))
× W

1,2
loc

(
T ,∞;W 1,2(

T
N ;RN ))},

we obtain by (a) for U that

1 = U
(
ST ∩ ST )= ∫

ST

U |ω̃BT

(
ST )dU(ω̃).

Consequently, there holds U |ω̃
BT

(ST ) = 1 for U -a.a. ω̃. The remaining ω̃ ∈ � are contained
in a nullset Na .

(b) Due to (4.4) and (a) for U we obtain

1 = U
(
ξ2 = ξ1∂tξ

3)= U
(
ξ2|[0,T ] = (

ξ1∂tξ
3)|[0,T ], ξ2|[T ,∞) = (

ξ1∂tξ
3)|[T ,∞)

)
=
∫
{ξ2|[0,T ]=(ξ1∂t ξ

3)|[0,T ]}
U |ω̃BT

(
ξ2|[T ,∞) = (

ξ1∂tξ
3)|[T ,∞)

)
dU(ω̃),
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which implies that

U |ω̃BT

(
ξ2|[T ,∞) = (

ξ1∂tξ
3)|[T ,∞)

)= 1 U -a.e. ω̃ ∈ �.

So, we have ξ2|[T ,∞) = (ξ1∂tξ
3)|[T ,∞) U |ω̃

BT
-a.s. and obtain the nullset Nb.

(c) Recalling Et = ∫
TN [1

2
|ξ2

t |2
ξ1
t

+ P(ξ1
t )]dx we consider the sets

ET = {
ω ∈ � : E |[0,T ] ∈ L∞

loc(0, T )
}
,

ET = {
ω ∈ � : E |[T ,∞) ∈ L∞

loc(T ,∞)
}
.

As (c) holds for U we can argue as in the proof of (a) (replacing ST and ST by ET and ET

respectively) to conclude that U |ω̃
BT

(ET ) = 1 for U -a.a. ω̃. This gives us the nullset Nn
c . (d)

Let (ψn)n∈N be a dense subset of Wk,2(TN). To each n ∈ N we will relate an U -nullset Nn
c

and set Nd =⋃
n∈N Nn

d . Let us fix some n ∈ N. We split the continuity equation into two part,
namely [∫

TN
ξ1
t ψn dx

]t=τ

t=0
+
∫ τ

0

∫
TN

ξ2
t · ∇ψn dx dt = 0 ∀0 ≤ τ ≤ T ,(4.5)

[∫
TN

ξ1
t ψn dx

]t=τ

t=T

+
∫ τ

0

∫
TN

ξ2
t · ∇ψn dx dt = 0 ∀T ≤ τ < ∞.(4.6)

Now we consider the sets

RT = {ω ∈ � : ω|[0,T ] satisfies (4.5)},
RT = {ω ∈ � : ω|[T ,∞) satisfies (4.6)}.

As (d) holds for U we can argue again as in the proof of (a) and (c) to obtain the nullset Nn
d .

(e) follows by exactly the same reasoning as in (d).
(f) Let (ϕn)n∈N be a dense subset of Wk,2(TN ;RN). As in (d) we will set Nf =⋃

n∈N Nn
f

where for each n ∈ N we will obtain an U -nullset Nn
f . Since (f) holds for U we know that

(Mt (ϕn))t≥0 is a ((Bt )t≥0,U)-square integrable martingale with quadratic variation

N (ϕn)τ = 1

2

∫ τ

0

∞∑
k=1

(∫
TN

Gk

(
ξ1
t , ξ2

t

) · ϕn dx

)2
dt.

On account of Proposition 2.8 we obtain for U -a.a. ω̃ that (Mt (ϕn))t≥T is a ((Bt )t≥T ,

U |ω̃
BT

)t≥T -square integrable martingale with quadratic variation (N (ϕn))t≥T .

(g) We recall that Et = ∫
TN [ |ξ2

t |2
2ξ1

t

+ P(ξ1
t )]dx and decompose the process S n

τ as S n
τ =

αn
τ − βn

τ , where

αn
τ = 1

n
En

τ +
∫ τ

0

(
En−1

t

∫
TN

S
(∇∂tξ

3
t

) : ∇∂tξ
3
t dx

)
dt,

βn
τ = 1

2

∫ τ

0

(
En−1

t

∞∑
k=1

∫
�

|Gk(ξ
1
t , ξ2

t )|2
ξ1
t

dx

)
dt

+ n − 1

2

∫ τ

0

(
En−2

t

∞∑
k=1

(∫
�

Gk

(
ξ1
t , ξ2

t

) · ∂tξ
3
t dx

)2
)

dt.

By (g) for U we know that (S n
t )t≥T is an almost sure ((Bt )t≥T ,U)-supermartingale and

we can show iteratively that EU [αn
τ ] < ∞ and E

U [βn
τ ] < ∞ for all n ∈ N. We note that αn

τ

is lower semicontinuous, and βτ nondecreasing such that S n
τ is left lower semicontinuous.
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Hence, Proposition 2.9 is applicable and yields for U -a.a. ω̃ that (S n
t )t≥T is an almost sure

((Bt )t≥T ,U |ω̃
BT

)-supermartingale. This gives an U -nullset Nn
g and we set Ng = ⋃

n∈N Nn
g .
�

4.3. Reconstruction. In this subsection we prove that the family {CNS(y)}y∈Y is stable
with respect to reconstruction.

PROPOSITION 4.5. The family {CNS(y)}y∈Y has the reconstruction property of Defini-
tion 2.5.

PROOF. Let y ∈ Y and U ∈ CNS(y). Further let T ≥ 0 be a regular time (i.e., a time
at which the energy inequality in the sense of Definition 3.7 (g) holds). We shall prove the
following: Let Qω : � → Prob(�[T ,∞)) be a BT -measurable map such that there is N ∈BT

with U(N) = 1 and for all ω /∈ N it holds

ω(T ) ∈ Y and S−T Qω ∈ CNS
(
ω(T )

);
then U ⊗T Q ∈ CNS(y). So, we have to verify points (a)–(f) from Definition 3.7 for U ⊗T Q.
As in the proof of Proposition 4.4 the crucial point is (b) and the rest follows along the lines
of [12], Lemma 4.4.

(a) As (a) holds for Qω we have Qω[ST ] = 1 (using the notation from the proof of Propo-
sition 4.4) such that

U ⊗T Q
[
ST ∩ ST ]= ∫

ST

Qω

[
ST ]dP(ω) = 1.

Finally, with probability 1 we have that ξ3 is continuous and hence weakly differentiable at
time T such that (a) follows.

(b) Due to the definition of U ⊗T Q, the measure Qω is a regular conditional probability
distribution of U ⊗T Q on BT . Hence, it holds

(U ⊗T Q)(A ∩ B) =
∫
A

Qω(B)dU(ω)

for every two Borel sets A ⊂ �[0,T ] and B ⊂ �[T ,∞). Accordingly,

(U ⊗T Q)
(
ξ2 = ξ1∂tξ

3)= (U ⊗T Q)
(
ξ2|[0,T ] = (

ξ1∂tξ
3)|[0,T ], ξ2|[T ,∞) = (

ξ1∂tξ
3)|[T ,∞)

)
=
∫
{ξ2|[0,T ]=(ξ1∂t ξ

3)|[0,T ]}
Qω

(
ξ2|[T ,∞) = (

ξ1∂tξ
3)|[T ,∞)

)
dU(ω)

=
∫
{ξ2|[0,T ]=(ξ1∂t ξ

3)|[0,T ]}
dU(ω) = 1.

This completes the proof of (b).
(c) Using the notation from the proof of Proposition 4.4 we have

U ⊗T Q
[
ET ∩ET ]= ∫

ET

Qω

[
ET ]dU(ω) = 1

due to Qω(ET ) = 1 by (c) for Qω. Consequently, we have E ∈ L∞
loc(0,∞) U ⊗T Q-a.s.

(d) Using the notation from the proof of Proposition 4.4 we have

U ⊗T Q
[
RT ∩ RT ]= ∫

RT

Qω

[
RT ]dU(ω) = 1

due to Qω(RT ) = 1 by (d) for Qω.
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(e) follows by exactly the same reasoning as in (d).
(f) As (d) holds for Qω we know that (Mt (ϕ))t≥T is a ((Bt )t≥T ,Qω)-square integrable

martingale for all ϕ ∈ C1(TN ;RN). By Proposition 2.8 we obtain that (Mt (ϕ))t≥T is a
((Bt )t≥T ,U ⊗T Q)t≥T -square integrable martingale as well. Since U and U ⊗T Q coin-
cide on B(�[0,T ]) and (Mt (ϕ))0≤t≤T is a ((Bt )0≤t≤T ,U)-martingale (as U satisfies (f)) we
conclude that (Mt (ϕ))t≥0 is a ((Bt )t≥0,U ⊗T Q) is a martingale.

(g) We use again the notation from the proof of Proposition 4.4 and recall that S n
τ

is left lower semicontinuous. As (g) holds for Qω we know that (S n
t )t≥T is an almost

sure ((Bt )t≥T ,Qω)-supermartingale. By Proposition 2.9 we obtain that (S n
t )t≥T is an al-

most sure ((Bt )t≥T ,U ⊗T Q)-supermartingale as well. Since U and U ⊗T Q coincide on
B(�[0,T ]) and (S n

t )0≤t≤T is an almost sure ((Bt )0≤t≤T ,U)-supermartingale (as U satisfies
(g)) we conclude that (S n

t )t≥0 is an almost sure ((Bt )t≥0,U ⊗T Q)-supermartingale. �
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