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An Explanatory Rationale for Priors Sharpened
Into Occam’s Razors

David R. Bickel*

Abstract. In Bayesian statistics, if the distribution of the data is unknown, then
each plausible distribution of the data is indexed by a parameter value, and the
prior distribution of the parameter is specified. To the extent that more compli-
cated data distributions tend to require more coincidences for their construction
than simpler data distributions, default prior distributions should be transformed
to assign additional prior probability or probability density to the parameter val-
ues that refer to simpler data distributions. The proposed transformation of the
prior distribution relies on the entropy of each data distribution as the relevant
measure of complexity. The transformation is derived from a few first principles
and extended to stochastic processes.

Keywords: explanatory coherence, foundations of Bayesian statistics, informative
prior distribution, objective Bayes, objective prior distribution, Ockham’s razor,
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1 Introduction

The typical Bayesian data analysis involves specifying one or more default prior dis-
tributions, often called “objective priors” (Ghosh et al., 2006; Press, 2009). They are
objective in the sense that they are automatically determined by the application of some
algorithm as opposed to representing the beliefs of one or more people. The simplest
case is the uniform prior distribution on a finite set of parameter values. In hypothesis
testing, the assignment of equal prior probability to the null hypothesis and the alterna-
tive hypothesis is the most common default. In Bayesian model selection and Bayesian
model averaging, the most common default is to assign each model equal prior proba-
bility. When the parameter value is continuous, more sophisticated procedures replace
the assignment of equal probabilities (Kass and Wasserman, 1996).

The following toy models explain why default prior distributions may need to be
modified to reflect the simplicity or complexity of each data distribution specified by a
parameter value.

Example 1. The observable outcomes from a black box are independent and identically
distributed (IID) integers between 1 and 20. Before observations are made, it is known
that n outcomes x = (x1,x2,...,2,) will be generated by rolls of a fair die with a
number on each face from 1 up to the number of sides of the die. The die is shaped like
one of the five Platonic solids, which implies that the die has 4, 6, 8, 12, or 20 sides.
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The die was constructed inside the box by an unknown mechanism that constructs
shapes at random until it happens upon one that closely resembles a Platonic solid. To
make Bayesian inferences about #, the number of sides of the die, we need the posterior
probability that it has @ sides:

P(Ola) o P (6) ] fo (o). (1)
=1
where P () is the prior probability that it has 6 sides, and fy (x;) is the probability that
x; would be observed if it has 0 sides. From the given information, each data distribution
fo is a uniform distribution on {1,...,0}, so that fo (i) = 1/0 for i = 1,...,6 but
fo(i)=0for i =60+1,...,20. While it might be tempting to assign the uniform prior
distribution such that P (0) = 1/5 for § = 4,6,8,12,20, that would not account for
how many more coincidences it would take for the mechanism to generate a die with
a higher number of sides than a lower number of sides. Incorporating that information
means assigning more probability to simpler dice and less probability to more complex
dice:
P(4)>P(6)>P(8) >P(12) > P(20).

Which prior distribution satisfying that constraint should be used? A

Such coincidences, occurrences of multiple improbable events without strong depen-
dence on each other, are tacit in many other complex distributions (cf. White, 2005).
A less Platonic example emphasizes the need to consider the simplicity of data distri-
butions when assigning a prior.

Example 2. Inside a black box, an unknown mechanism randomly constructed one or
more balls of different colors and placed them in an urn. The number of balls in the
urn is the number that could be constructed within a short time window. If none were
constructed within that time period, the process started over and continued until at
least one ball was placed into the urn. The mechanism had access to a million colors.
From the urn, n balls will be drawn independently, with equal probability, and with
replacement. The observer wants to make inferences about ¢, the set of the colors of
the |¢| balls in the urn. That set differs from the configuration 0, the |$|-tuple of the
colors of the balls in the order in which they were placed into the urn, in that ¢ is an
unordered set and # is an ordered set or vector of the same number of colors. Since 6 is a
permutation of the members of ¢, the posterior probability that the set of colors of the
balls in the urn is ¢ is the sum of each posterior probability that the configuration is @
over all permutations of the members of ¢. The latter posterior probability is given by
(1) with P (0) as the configuration is € and with fy (x;) as the probability that the ith
ball drawn from the urn will be of color z;, conditional on € as the configuration. It may
have been reasonable to assign a uniform prior distribution over O, the configuration
space, were it not for the information about how the urns were populated, information
indicating the higher number of coincidences needed to populate an urn with more balls
as opposed to fewer. That information, without being enough to determine the prior
distribution, requires configurations with fewer balls to have higher prior probabilities
than those with more balls: P (61) > P (62) for all 61,05 € © such that |01| < |02|, where
|| is the dimension of . Subject to that constraint, what should the prior be? A
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Occam’s razor is the principle that simpler explanations are more credible than more
complex explanations in the absence of evidence favoring more complex explanations.
In a Bayesian framework with the number of free parameters in a model as the measure
of complexity, that greater credibility may show up as a higher posterior probability (cf.
Rosenkrantz, 1976) or, via the simplicity postulate (Jeffreys, 1948, pp. 100-101, 113,
222), as a higher prior probability (Jefferys and Berger, 1992). Multiple methodology
researchers reached similar conclusions for other forms of complexity. Among others,
Poston (2014) argues that complexity should constrain the prior distribution, with sim-
pler explanations being at least as probable as more complex explanations. Explanations
requiring more coincidences, while not impossible, tend to be less probable than those
requiring fewer coincidences (Myrvold, 2017; Blanchard, 2018).

A special case of that type of constraint on prior distributions is seen in Examples 1
and 2. In both examples, each data distribution fy is uniform on some sample space
Xy of a number of possible outcomes equal to |Xy| = 0 in Example 1 and |Xy| = |0] in
Example 2. Also in both examples, the prior probability P () decreases as a function
of |Xp| since it reflects the number of coincidences that fy would require. Although | Xy
increases with the complexity of a uniform distribution, another measure of complexity
is needed for other data distributions.

Entropy is a measure of complexity that generalizes the reasoning of Examples 1
and 2, for the entropy of a uniform distribution fy is log|Xy|. The conditions of Section 2
result in the constraint that parameter values corresponding to data distributions with
lower entropy have higher prior probabilities than those of higher entropy. Although
those conditions are not universally applicable, they provide the foundation for the
more general methods of later sections.

Merely arranging parameter values in order of prior probability is not enough for
Bayesian data analysis, as an ordering in itself does not determine a prior distribution.
Starting with the ordering, Section 3 derives a method for transforming a preliminary
prior distribution such as the uniform distributions of Examples 1 and 2 into a prior
distribution informed by Occam’s razor. The derivation is based on desirable properties
of such a transformation.

That prior distribution, however, is only determined up to a parameter that con-
trols the extent to which it differs from the preliminary prior. In applications requiring
flexibility, the ability to set the parameter on a case-by-case basis may be desirable. In
other applications, using a default value would save resources or reduce concerns about
a potential conflict of interest. Section 4 derives such a value from an idealized model of
constructing a data distribution, with more complex distributions being less probable
because they require more coincidences to construct.

Because Shannon’s entropy has a number of complexity-suitable properties that
uniquely characterize it (e.g., Rényi, 1965), it is the measure of complexity emphasized
in this paper. As an excursus, Section 5 explores alternative definitions of entropy as
complexity. It notes that since all Rényi entropies are additive and have the property
that the entropy of a uniform distribution fy is log|Xp|, any of them may replace the
Shannon entropy.
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Since most statistics applications involve probability distributions with infinite do-
mains, the framework is generalized from finite parameter spaces to infinite parameter
spaces in Section 6 and from finite sample spaces to infinite sample spaces in Section 7.
The latter section applies the framework to null hypothesis significance testing.

Since the entropy of a whole sample is greater than that of a single observation,
the relation to the sample size is specified in Section 8, which extends the framework
to stochastic processes. In the usual case of a sample of n IID observations from a
distribution conditional on 6, the sharpened prior probability is proportional to the un-
sharpened prior probability and inversely proportional to the exponential of the entropy
or differential entropy of that distribution. Examples include both the IID processes of
Examples 1-2 and some binomial and normal models that commonly occur in practice.

Section 9 closes with a discussion of which priors require simplicity adjustments.

2 Prior probabilities constrained by the simplicity of
data distributions

The preliminary concepts of this section provide a foundation for generating prior distri-
butions that satisfy a generalization of the simplicity conditions suggested by Examples
1 and 2. The subsequent sections build on this foundation.

The entropy of a probability mass function (PMF) ¢ on finite set X of possible

observations is
S(g)=-> glx)ng(x), (2)
reX

understood such that 0ln0 = 0. All data distributions are on the same sample space
X. That means the data distributions of Example 1, while uniform if restricted, are not
uniform on X = {1,...,20}, with the exception of fyg, the distribution of outcomes
of the 20-sided die. For reasons explained below, we also need a continuum between
different uniform distributions on a finite sample space. For example, on the sample
space X = {1,2,3,4,5,6}, the PMF given by

2/5 if z=1,2
gx)=¢1/5 ifx=3 ) (3)
0 ifz—=456

is uniform on {1, 2} but with = 3 having a probability mass between that of each z
in the main supported set {1,2} and that of each x in the non-supported set {4,5,6}:

g4)=9g()=g(6)=0<1/5=9(3)=1/5<2/5=9(1)=yg(2). (4)
To streamline development involving distributions like g, we need a term for them.

Definition 1. A PMF g on X is called partially uniform if it meets these conditions:

1. Tt is uniform on X (g), a non-empty subset of X. That is, there is a g™** > 0 such
that g (z) = ¢g™®* for all x € X (g).
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2. There is no more than one y € X such that 0 < g (y) < g™®*.

3. It otherwise has a value of 0. That is, g (z) = 0 for all x # y in X but not in X (g)
if y exists; otherwise, g (z) = 0 for all x € X\ X (g).

Condition 3 requires g to have a value of 0 outside its support. Loosely speaking,
conditions 1-2 require g to be as uniform as possible on its support.

More precisely, condition 2 requires that, outside of X' (g), which is the uniform por-
tion of ¢g’s domain, g is only allowed to have at most one component deviating from the
uniformity specified by condition 1. It allows one component (“y”) to have lower proba-
bility than the components on X (g), as seen in (4), in which y = 3. The reason to allow
that departure from uniformity is to create a continuum of PMF's between the uniform
distribution on the whole support and the uniform distribution on the support without
y. That continuum is needed in the next paragraph to generalize the cardinality of a
sample space’s support from a counting number to a positive real number. Without the
continuum and its real-valued generalization of cardinality, the measure of complexity
to be derived would be unnecessarily burdened with discontinuities to keep track of. In
short, a little inelegance in Definition 1 will pay off in the elegance of the result.

For a continuous functional I defined as follows, the intricacy of a partially uniform g
is I (g). If y does not exist, then I (g) = |X (g)], the cardinality of g’s support. If y exists,
then I (g) = I x(g)| (9 (y)), where I|x(4) is a strictly monotonic increasing, continuous
function on ]0, 1] such that limy_,o I\ x(4)| (¢) = |X (g)| and limg_1 I|x () (q) = |X (g)|+
1. For example, the g of (3) is of intricacy I (g) = I|{1,23 (1/5) = I2(1/5), which is
a non-integer between 2 and 3. That is because g (y) = ¢g(3) = 1/5 is between 0 and
g(1) = ¢g(2) = 2/5, as per (4). Were ¢g(1) = ¢g(2) = 1/2 and g(3) = 0, then the
intricacy would instead be |{1,2}| = 2, whereas were g (1) = g (2) = ¢g(3) = 1/3, then
the intricacy would instead be |{1,2,3}| = 3. In that way, the intricacy of a partially
uniform PMF generalizes the cardinality of its support to a continuum of non-integer
values.

A Bayesian model is a pair (0 — fp, P), where 6 — fy, abbreviated as f,, is a
function on O such that, for every § € ©, fy is a (data) PMF on X and P is a (prior)
PMF P on O. Let M (X, ©) denote the set of all Bayesian models with X" as the sample
space and © as the parameter space.

What it means for a prior distribution to be constrained by the simplicity of the
sampling distributions uses entropy as a generally applicable measure of complexity and
intricacy as a measure of complexity that only applies to partially uniform distributions.

Definition 2. Let M? denote a subset of M (X,0). M? is called a set of Bayesian
models with simplicity-constrained PMFs if these conditions are satisfied:

1. There exists a function p such that, for every (f,, P) € M3,

P=p(Ss), ()

where Sy, is the function on © defined to satisfy Sy, (6) = S (fp) for all § € ©.
The function p is called the prior generator for M¥, and the function S 1, is called
the entropy spectrum of f,.
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2. For every Bayesian model (fo, P) such that (f,, P) € M (X,0) and such that fy

is partially uniform for every 6 € ©,
P(01) 2 P(b2) <= I(fo,) <1(fo.) (6)

for all 61,0, € © and (f,, P) € M*.
While (5) says the prior distribution is a function of the entropy spectrum, (6) says
parameter values labeling less intricate partially uniform distributions have higher prior
probabilities. The rationale is that, in the absence of other information, uniform distri-

butions on larger domains tend to require more coincidences and thus to be less probable
than those on smaller domains, as seen in Examples 1 and 2.

The result is that simpler data PMF's tend to have higher prior probabilities.

Lemma 1. If M?® is a set of Bayesian models with simplicity-constrained PMFs, then
the prior generator for M?® is constrained such that each (fo, P) € M* satisfies

P(01) = P(02) < S(fo,) <S5 (fo,) (7)
for all 61,05 € ©.

Proof. If a PMF g is partially uniform, then

1 1 . 1
S(g) = {_ 2 sex(y) TN N Z( if Vo € Xg(x) € {0’ —|X<g>|}
=X (g)l g™ Ing™™> —g(y)Ing(y) if JyeX0<g(y) < g™
: 1
In|X (g)] if VCL‘EXQ(I)E{O,W}

(8)

max 9(y) .
In <(gmax)|2«(g>|g (ﬁ) > if Jyex0<g(y) <gm=

Consider a Bayesian model (f,, P) € M?® such that fy is partially uniform and Vz €
X fo (x) € {0,1/|X (fo)|} for every 6 € ©. Since in that case I (fg) = |X (fp)| for every
0 € ©, (6) and (8) imply that (7) holds for all 6y, 60, € ©.

Now consider instead a Bayesian model (f,, P) € M?% such that fy is partially
uniform and Vo € X fy(z) € {0,1/|X (fo)|} for every § € © except 6 (y) for some
y € X such that 0 < fy() (y) < fotyy» where fgi = maxzex fo(y) (z). Equations (6)
and (8) would be satisfied if I (fy) = exp (S (fp)) for every 6 € O. In fact, since such
a Bayesian model is in M?® by part 2 of Definition 2 for every real value of fow) (v)
strictly between 0 and 1, the functions I and S must be isomorphic on the domain of 1
by its monotonicity and continuity properties. Thus, (5) constrains the prior generator
p such that its PMF assignments satisfy (7) holds for all 81,0, € ©.

Since every possible entropy spectrum Sy, is achieved by some Bayesian model
(fe, P) such that fy is partially uniform for every 6 € ©, and since every such model is
in M*® (Definition 2, part 2), it follows that p is completely determined by I in such a
way that (7) holds for all 61,65 € ©. That same p is the prior generator not only for
those Bayesian models but for all Bayesian models in M* by part 1 of Definition 2. It
follows that (7) holds just as generally. O
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3 Adjusting prior probabilities for the simplicity of data
distributions

The method of this section transforms a prior distribution that does not account for
the simplicity of the data distributions into a prior that does. That prior satisfies the
constraints of Section 2 in the special case that the pre-transformation prior is uni-
form. More generally, any prior on a finite parameter space may serve as the pre-
transformation prior, regardless of how far it deviates from uniformity. That is how this
section paves the way for the extensions to priors for more general parameter spaces
in Section 6, including commonly used objective priors such as those of Section 8’s
Examples 6 and 7.

Definition 3. Let of denote a function that transforms a PMF to another PMF on
the same parameter space and that necessarily satisfies the following conditions for a
prior generator p. That function is called a sharpener. Given any PMF P, its sharpened
counterpart is Pﬁ, that is, ef evaluated at P. Conditions:

1. Simplicity constraint. The sharpened counterpart P¥ of a uniform PMF P is a
simplicity-constrained PMF generated by p.

2. Coherence. The sharpened counterpart P (o|X = 96)rj of a posterior PMF P (e|z)
based on a prior PMF P is P* (o|X = z), the posterior distribution based on P¥,
the sharpened counterpart of P, where x is an observed sample.

3. Independence preservation. Consider the finite parameter sets © and ®. Suppose
that, for all # € © and ¢ € &, X ~ fyp and Y ~ g, are independent random
variables of joint PMF hg 4 with values in X and Y, where fy and g4 are PMFs
on X and Y, respectively. If P¥ is the sharpened counterpart of a PMF 0,6) —
P (0,9) = P1(0) P3 (o) that is the joint PMF of independent parameters 6 and ¢
that have prior PMFs P; and P, and their sharpened counterparts Pﬁ and Pg,
respectively, then P* (0, ¢) = Pi} (0) Pg (¢) for all @ € © and ¢ € D.

The simplicity constraint (condition 1) builds Definition 3 on the foundation laid in
Section 2. The coherence condition (condition 2) means considering simplicity commutes
with conditioning on the observed data so that it does not matter which happens first.
Independence preservation (condition 3) means that if two quantities have nothing to
do with each other, then that should be reflected in their priors adjusted for simplicity.

Theorem 1. Let (fo, P) denote a Bayesian model. If P* is the sharpened counterpart
of P on a parameter set ©, then there is a k > 0 such that

P(G) e_ﬁs(fe) 9
=S P (0 5T ©)

P (0)
for all9 € ©.
Proof. Let fo, g4, ho,¢, P1, P2, and P denote PMFs that satisfy the independence

assumptions of Condition 3, and assume P; and P5 are uniform. Since P, P1, and Ps
are uniform, the simplicity constraint (Condition 1) requires that P, Pq, and Pg are
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simplicity-constrained PMFs generated by the same prior generator p. By (5), Pq =
p(St.), Pi=1p (8,.), and P* = p (Sh..). According to Lemma 7, they satisfy 7 for
the same prior generator p. Thus, there is a strictly monotonic decreasing function ¢
such that P (0) x q (S (fa)), P5(0) x q(S (g5)), and P*(6,6) ox q(S (ho,s)) for all
f# € © and ¢ € ®. According to the independence preservation condition, P 0,6) =
Pﬁ @ Pg (¢) for all @ € © and ¢ € ®. Thus, there is a real number ¢ such that

g (S (ho,¢)) =g (S (fo)) +ng(5(gs)) + ¢,

which, with the property that S (he,s) = S (fo) + S (g94) for independent random vari-
ables, implies that there are real numbers a and b such that Ing (e) = a x e + b, where
a < 0 since ¢ is strictly monotonic decreasing, and b may differ between fg, g4, and
ho.e.

It follows that, even when the independence assumptions are not satisfied,
InP (A|X ==)* = aS(fs) up to a constant term for every uniform posterior PMF
P (e|X = z) according to the simplicity constraint. Letting x = — |al,

P(OX = )" oc e rSU0),

As a posterior distribution, P (8|X = x) o< P () fo (x) for all § € © by Bayes’s theorem.
Since P (o|X = z) is uniform, P (6) < 1/fp (z). Coherence (Condition 2) then gives

PE(9) fo(z) x PP(O|X =) = P (0|X = )" oc e #5U0),

where the first proportionality results from another application of Bayes’s theorem.
Thus,
P*(0) o e " 5U0) /£y (2) oc P (0) e "5 We)

which ensures that the more generally applicable sharpener of has the form of (9). O

A prior would require sharpening whenever it neglects relevant information about
the simplicity of the data distributions.

The value of k is called the sharpness of the sharpener, which may now be written
as o to distinguish it from other sharpeners. Each sharpener corresponds to a different
sharpened prior distribution, as will be seen in Figure 1 of Example 3. The application
to real data may suggest a way to specify the value of x in some cases. In other cases,
a default value is needed.

4 How much should priors be adjusted for simplicity by
default?

The method of Section 3 cannot be applied without somehow specifying a value of x,
the degree to which priors are adjusted for the simplicity of the data distributions. This
section argues for a default setting of kK = 1.

Definition 4. Let o/ denote a sharpener of sharpness x* > 0 with the following
constraint. For any Bayesian model (f}, P*) such that fj is partially uniform, Va €
X f5(x) € {0,1/|X (fy)|} for every 6 € ©, and there is an 2* € X such that 2* € X (fy)
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for every 6 € © and such that the sharpened counterpart P*" of P* is the conditional
PMF given by X
P**" (0) = Probgp+ x~p, (0 = 0] X = 2*) (10)

for all § € ©. Then, given any Bayesian model (f,, P), the sharpened counterpart pi’
of P is ideal, whether or not P meets the conditions for P*.

Thus, the universal ideal k* may be found by conditioning on successfully generating
the correct realization, with the unsharpened PMF as the distribution of opportunities
to attempt a correct realization. In Example 1, that means successfully constructing a
die of a certain number of sides, whereas in Example 2, it means successfully constructing
an urn with the specified configuration of colors.

Theorem 2. For any Bayesian model (f,, P), the ideal sharpened counterpart pis of
P satisfies
. P (0) e~ 5Uo)
P (9) = Pt (9) = 11
OO e @y e =

for all 8 € ©.

Proof. By (10) and the conditions on f7,
pris’ () x Proby. p+ (¥ = 0) Proby.p« (X = z*|¢ = 0)
= P*(0) f5 (x) = P* () /| X (f3)]
— P*(0) e~ X — p* (0) e S(£3)

That only agrees with (9) if x* = 1. Thus, P = P* for any Bayesian model (fa, P),
and the right-hand-side of (11) results from the relevant special case of (9). O

Similar results may be derived from fewer assumptions using the concept of Rényi
entropy (Section 5).

An alternative derivation of (11) appears in Bickel (2016). Instead of conditioning on
the event that a data distribution is constructed correctly, it conditions on the event that
a randomly typed computer program yields output representing the data distribution.

5 Excursus: Rényi entropy as a measure of complexity

For any o > 0, the a-Rényi entropy of a probability mass function (PMF) ¢ on finite
set X of possible observations is

Sa(g)=—In (Z g(@) g™ (Jf)) . (12)

reX

if a« # 1 and is the Shannon entropy given by (2) if a = 1. Thus, if g is uniform, then

W m L a—1 ﬁ_n
Sa(g)_ 1 <|X|(|X> ) =1 |X|
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for all o # 1. With that property and additivity under independence, substituting
S for S; throughout the paper would yield analogous results for any other Rényi
entropy.

In Section 4, the Shannon entropy was derived as a component of the ideal sharpened
prior given assumptions including one about the coincidences involved in constructing a
data distribution. A Rényi entropy and a limiting case of Rényi entropy can be derived
from fewer assumptions, as follows.

S2(g), the quadratic entropy, also called the “collision entropy” (Teixeira et al.,
2012), is related to the prior distribution obtained if the difficulty of constructing a data
distribution is modeled in terms of the coincidence that two independent realizations
collide with each other.

Definition 5. Given any Bayesian model (f,, P), the collision prior PMF corresponding
to P is
P () = Probyp,x,x'~y, (0 = 0| X = X'),

as a function of 6, where X and X’ are IID.

Theorem 3. The collision prior PMF corresponding to P satisfies

el 6 = P(0)e S2(fe)
ZG/G(—) P (9/) e~ SZ(fB’)

for all 0 € ©.

Proof. By Bayes’s theorem with X’ as data,
P () o Probyp (9 = 0) Probyp x x~ s, (X = X'|9 = 6)
=P #) fo () fo(x) = P (8) e 529,

reX

where the substitution of e~ 52(/o) for > wex Jo () fo (x) is sanctioned by (12) with
a=2. O

A limiting case of Rényi entropy that is important in cryptography is the min-entropy
(Teixeira et al., 2012),

S (g) = lim S, (9) = —Inmax g (2) = minln — (13)

a—00 reX zeX g (I) '
It is related to the prior distribution obtained if the difficulty of constructing a data
distribution is modeled in terms of the coincidence of a successful prediction using the
best predicted observation given the data distribution.

Definition 6. Given any Bayesian model (fo, P), the prediction prior PMF' correspond-
ing to P is
PP () = Proby.p.xr, (19 —9|X = xgred) ,

. d
as a function of 6, where z}"*" = argmax,cx fo.
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Theorem 4. The prediction prior PMF corresponding to P satisfies

Ppred (0) _ P (9) e Soo(fo)
Yoo P () e S=Ua)

for all 0 € ©.

Proof. By Bayes’s theorem with xgred as data,

PP (9) o Probyp (¥ = 0) Probyp x~f, (X = 2By = 9)

= P(0) fo (ab*!) = P(O) e 5=,

where the substitution of e~ S>(fe) for fo(x2"%) is permitted by (13). O

6 Adjusting prior densities for the simplicity of data
distributions

The extension of sharpened prior PMFs to general sharpened priors, while requiring
more notation, is straightforward. It says sharpened prior probability distributions and
sharpened probability density function (PDFs) project to sharpened prior PMFs on all
finite partitions the parameter space, which need not be finite.

Definition 7. Given any x > 0 and a probability measure II on a measure space (0, ),
the probability measure IT** on (©,F) is the k-sharpened counterpart of II if

YN € § I (V) = Pl o (N) (14)
for every finite partition § C § of ©, where each Pry g is the PMF on § such that
VJ\[ESI Pn,g/(./\/)ZH(N). (15)

For every measure v that dominates I1, the PDF dII** /dv is the x-sharpened counterpart
of the PDF dIl/dv.

The differential element “dv (f')” in the next result may be read as “df’” in the
usual case that the dominating measure is uniform on the real line.
Corollary 1. The k-sharpened counterpart of any continuous PDF 7 on © satisfies

7 (0) e=" S o)
Jm(0)exSUe)dy (07)

T (0) = (16)

where v is the measure that defines m as dIl/dv for some probability measure II on
(0©,F) that is dominated by v, almost surely with respect to II.
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Proof. By the definition of the x-sharpened counterpart of any PDF 7 and by the
definition of a PDF,

1% (A) = /N % (0) dv ()

for all N € §, where II** is the s-sharpened counterpart of II. Thus, from Theorem 1
and (14)—(15),
B Prg (N)e * S(fn)

ZN’es/ Py (/\/’) et S(farr)

T (N) e SUn)

ZN’es/ 11 (/\/’) e—rS(farr)
B Sy m(0)dv () e SUN)
- Cwvey pe 7 (0) dv () e SUN

for every finite partition §' C § of ©, where x — far () oc [y, 7 (8) fo () dv () for all
N € §. In short, for every §,

VN eF / ™% (0) dv (0)
N

/ 7 (0) dv (0) o / 7 (0) dv (9) e " SUN)
N N

for all A/ € §'. According to the mean value theorem, the continuity of both 7 and
6 — S (fg) requires that there is a @ € A such that 7% () o< 7 () e=*SUN). That can
only be the case for every arbitrarily small A" if 7% () o< 7 (9) e=* %) holds up to a
II-null set. Since 7%, as a PDF, integrates to 1, it follows that (16) holds up to a IT-null
set. U

Equation (16) reveals that sharpened prior distributions are not alternatives to
elicited priors, objective Bayes priors such as reference priors, or other priors in the
literature, for it requires as input 7, the unsharpened prior density. On the contrary,
any prior density might serve as w, as will be illustrated for commonly used default
priors in Examples 6 and 7.

7 Adjusting priors for the simplicity of data PDFs

Since infinite sample spaces are valuable only as approximations of finite sample spaces
(e.g., Evans, 2015, Appendix A), previous sections used finite sample spaces to determine
how to adjust prior distributions of parameters to reflect the simplicity of each data
distribution indexed by a parameter value. The results are now extended to infinite
sample spaces, as anticipated in Bickel (2016), following Cover and Thomas (2006,
§8.3).

The technical tools to accomplish that are relative entropy and the convergence
of sample spaces of increasing cardinality. The relative entropy function D has values
equal to D (u||v) = [ dplog (du/dv), the entropy of a probability measure p relative to
a measure v that dominates p (e.g., Maas, 2017). Complementary statistical applications
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of relative entropy include the prevention of overfitting models (Fuquene et al., 2016;
Gelman et al., 2017), the idealization of Cromwell’s rule for revising priors (Bickel,
2018), and the automatic construction of unsharpened priors (Section 8, Example 7).

“The convergence of sample spaces” refers to the weak convergence of the data
distributions and other measures defined on them. Lemmas 2—-3 both involve a sequence
of finite sample spaces that approach X1), a countably infinite sample space. The (1) in
the superscript indicates that 1 is the lowest possible distance between members of X' (1),
Lemma 3 additionally uses a sequence of countably infinite sample spaces that approach
X an uncountably infinite sample space. The (0) in the superscript indicates that
the members of X(©) may be arbitrarily close to each other.

Lemma 2. Let X(Y) denote a set of integers and p') a probability measure on the power
set (set of subsets) of XD such that p is dominated by XV, the counting measure
on XM Let XMW1 x(M:2  denote a sequence of finite sets such that the sequence
XD N2 of their counting measures converges weakly to AV, abbreviated by

ADm 2N g5 m — co. Let D™ (o) = pM) (o] xMm) . Then

lim D (M“)vm [ A<1>’m) =D (u“) [ )\(1)) .

m—o0

Proof. Since D is a continuous function and since both A A1) ang
pm ¥k () s m — oo, the claim follows. O

The “(1)” in the superscripts of Lemma 2 roughly corresponds to A =1 in the “A”
superscripts of Lemma 3.

Lemma 3. Let X denote a measurable subset of the real line and p a probability
measure on the o-field generated by the Borel subsets of X(©) such that p is dominated
by \, the Lebesque measure on X, and such that the probability density function
dp/dX is continuous on X©). Consider X» = XOn{..., —2A, —A,0,A,2A,...}, the
probability measure u* (o) = ﬂ(O\XA) on the power set (set of all subsets) of X2, and

the normalized counting measure \> on X2 for each A > 0, where the normaliza-

tion multiplies each counting measure by a constant such that A\® etk N as A — 0.

For every A > 0, let X2, X22, .. denote a sequence of finite sets such that the se-

quence XM N2 of their normalized counting measures converges weakly to \*,
weak

abbreviated by \>™ ZZ5 N A as m — oo. For every A > 0 and m = 1,2,..., let
pAm (o) = pt (O‘XA’m). Then

lim Lim D (p®™[|A%™) =D (u|| ).

A—0 m—o0

Proof. Consider any A > 0. Since D is a continuous function and since both
weak weak

AR 25 AA and p®m 25 48 as mo— oo, it follows that

lim D (,uA’m I /\A) =D (MA I )\A) .

m—o0
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. . . . . . weak weak
Likewise, since D is continuous and since pu® —— 1 and \® 225 X as A — 0,

: A A\ _
Jim D (p= [|A%) = D (][N O

With either X1 or X(© as the limiting sample space, sharpened prior distributions
may now be defined.

Definition 8. Consider a x > 0 and probability measures IT and II** on a measure space
(0, F). If the probability measure H%'f)m on (0, F) is the x-sharpened counterpart of IT
with X1 a5 the sample space for all m = 1,2, ..., if H?T),m weak, 118k as m — o0, and
if the convergence conditions of Lemma 2 hold for all finite-sample PMFs corresponding
to each 6 € ©, then II** is the k-sharpened counterpart of II with X) as the sample
space and, for all § € ©, with Mél) as the data probability measure on the power set
of XM and fa(l) = d,uél)/d)\(l) as the data PDF. Similarly, if the probability measure

H%’m on (O, ) is the k-sharpened counterpart of IT with X2™ as the sample space for

weak

all m =1,2,... and A > 0, if Hﬁ:’m—>ﬂu" as m — oo followed by A — 0, and if
the convergence conditions of Lemma 3 hold for all finite-sample PMF's corresponding
to each # € ©, then II** is the k-sharpened counterpart of II with X9 as the sample
space and, for all 8 € ©, with pg as the data probability measure on the measurable
subsets of X(®) and féo) = dug/dX as the data PDF.

Since (16) holds for each sharpened prior distribution based on a finite sample space,
its equivalent holds for each limiting sharpened prior distribution based on an infinite
sample space, where “equivalent” means writing fe(l) or 9(0)

infinite sample space is X! or X9 respectively.

in place of fy when the

Theorem 5. Consider a k > 0 and probability measures I1 and II** on a measure space
(©,3). Let I** denote the k-sharpened counterpart of IL with X or X(©) as the sample
space, and 7" = dII** /dv for a measure v that dominates II. Almost surely with respect
to I1, if X1 is the sample space, then

K (0 67ﬁs(f9(1))
wn ) = D an)
[m(0)e™ (For ) du (9"

where S is the entropy function defined by (2), but if X(©) is the sample space, then

m(0)e ™" 8(£")

7711’{ (9) = )
[m(@)e " S(fg(?))dy (9"

(18)

where S is the differential entropy function defined by

5 (fo) = — / fo (@) In fo (z) de. (19)
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Proof. First, suppose II** is the k-sharpened counterpart of IT with X! as the sample
space. By Lemma 2, for all § € O,

Jm D (g™ A ) = D (g 1)

- (e D" 1) (1 G5
lim [ dupy " (x)In FNORS (x) = [ dpy’ (z)In 5 (z)

m—o00 d\1
3 (1)7m (1)1m — (1) (1)
Tim o ) @ f " (@)= Y S (@)Y ()
zeX () zex (0
: (1),mY _ (1)
- i s (07 = -5 (5), &

where pél)’m is a probability measure on the power set of X1)>™ and fa(l)’m = duél)’m/

d\W™ for all m = 1,2,.... By Definition 8, JIb

(1),m oAk, 1185 as m — 00, from which
and from (16) it follows that

i k (1),m
fr 0) — dH(l),m o) — 71'(0)6 .S (fg )
T)m (0) = — - -

v fﬂ. (9/) e S qu (9,)

as m — oo for all § € ©. Therefore, (20) implies (17) II-almost surely.

— 7 (0)

Next, suppose II*® is the k-sharpened counterpart of II with X(® as the sample
space. Using reasoning analogous to the proof for the X(1) case, by Lemma 3,

b i, (59) =5 (47) o
o dnmm 7 (0) e~ "SUs)
T (0) = dj’ (0) = ©) — 7 (6) (22)

[0 e SUa ™y (07
as m — oo followed by A — 0 for all § € ©. Equations (21)—(22) entail (18) II-almost
surely. O

The next example presents a new Bayesian method of calibrating p values.

Example 3. To address the problem of interpreting p values, Held and Ott (2016)
presented various lower bounds on the Bayes factor in favor of the null hypothesis.
For example, suppose that under the alternative hypothesis z (X) ~ N (O, 02), where
o is the alternative hypothesis’s standard deviation of z (X), the pone (X)-quantile of
the standard normal distribution, given pone (X), a single-sided p value or pone (X) =
1—p(X) /2, from p(X), a two-sided p value. Then one of the lower bounds is based on
the observed Bayes factor
_(=07?)z%(x)
B(z;0) = oe 2
if |z (x)] > 1. With P (0) as the prior probability of the null hypothesis and P (1) =
1 — P (0) as the prior probability of the alternative hypothesis, the null hypothesis’s
posterior probability is
P (0) B(x;0) P (0)

POEX)=2) = 50 B o)+ PA) ~ PO+ (AP ) /B0




1314 An Explanatory Rationale for Priors Sharpened Into Occam’s Razors

by Bayes’s theorem. P (0) may be interpreted as the probability that the null hypoth-
esis component of a mixture model rather than the alternative hypothesis component
generated the observation that z (X) = z (z).

If the complexity of the distribution of z(X) conditional on the alternative hy-
pothesis is the differential entropy and was not considered when the value of o was
elicited, then P is an unsharpened prior PMF on {0, 1}. Since S (N (O, 02)), the differ-
ential entropy of a normal distribution of standard deviation o, is In o plus a constant
(Michalowicz et al., 2013, p. 127), sharpening P according to (18) leads to

P (0) e F S(N(0,1))
P (O) e~ S(N(0,1)) + P (1) e—r S(N(0,02))
_ P(0) /1" _ P (0)
~ P(0)/1x4+P(1)/or  P(0)+ P(1)/o"

POV
= <1+ <a P(1)> ) (23)
P*ﬁm (0)

P (0) + (1 _ prn (0)) /B (z;0)

P*ﬁ/{ (0) - -
=1+ (B(x;a) T’M)

1\ 1
(1 + ((o“B (x;0)) %) ) (24)

as the sharpened prior and posterior probabilities of the null hypothesis. The sharpened
prior is plotted in Figure 1.

P (0) =

P (0] (X) = = (&) =

Equation (24) suggests viewing 0" B (x; o) as the k-sharpened Bayes factor, applica-
ble regardless of the value of P (0). Under the ideal value of x derived in Section 4, that
simplicity adjustment, when coupled with an argument of Benjamin et al. (2017), leads
to 0.001 or 0.01 rather than 0.005 or 0.05 as the default p-value threshold of statistical
significance (Bickel, 2019c¢).

Alternatively, there is a true Bayes factor that is either the unsharpened Bayes
factor B (x;0) or the k-sharpened Bayes factor "B (z;0) for a x known only to lie
within some interval. Let kK > 0 and ¥ > k denote the lowest and highest possible
values of the true k; hence, kK = 0 if the true Bayes factor is possibly unsharpened
and ® = 0 if the true Bayes factor is necessarily unsharpened. Since ¥ < k < R, the
true Bayes factor is in [0%B (z;0),0%B (x;0)]. Suppose a decision maker (DM) must
decide whether or not to reject the null hypothesis under some loss for rejecting a
true null hypothesis and some potentially different loss for failing to reject a false null
hypothesis. The action the DM takes minimizes the expected loss with respect to the
posterior distribution corresponding to the Bayes factor that a scientist reports. When
deciding which Bayes factor in [02B (2;0),0"B (z;0)] to report, the scientist incurs
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Figure 1: The sharpened prior probability P*** (0) that the null hypothesis is true, as a
function of the unsharpened prior probability P (0), according to (23) with o = 2. The
degrees of sharpness are k =4, k =2, k =1, Kk = 1/2, and k = 0 from the darkest curve
to the lightest curve.

regret according to a caution parameter C € [0, 1] whenever the DM takes an action
different than the action that minimizes the DM’s loss function with respect to the
posterior distribution corresponding to the unknown true Bayes factor. Accordingly, the
scientist reports the minimax Bayes factor B (z), the Bayes factor that minimizes the
scientist’s expected regret while an opponent chooses the true Bayes factor to maximize
that expected regret. If the scientist does not know the DM’s loss function but can
assume certain invariance properties, then the minimax Bayes factor is a C-weighted
geometric mean of the two most extreme Bayes factors (Bickel, 2019b, Proposition 1),
in this case

B(z) = (6%B (x;0))" ¢ x (O‘EBA(.Z‘;O’))C

= (1=t CER (z;0)=0"B (z;0),

which is the R-sharpened Bayes factor, where kK = (1 — C') k + C'R, the weighted arith-
metic mean called the minimax sharpness. That has some interesting consequences:

1. At least some sharpening is optimal unless the true Bayes factor is known or the
regret is at the least cautious extreme. More precisely, & > 0 unless & = 0 or both
C=0and k=0.

2. At the most cautious extreme (C' = 1), the minimax sharpness is the highest
possible: & = &.

3. In the case of intermediate caution (C = 1/2), the minimax sharpness is the un-
weighted arithmetic mean of the lowest possible sharpness and the highest possible
sharpness: K = (k + &) /2.
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4. For any degree of caution, if the unsharpened Bayes factor could be true (k = 0),
then the minimax sharpness is simply K = C'R.

5. Putting the conditions of consequences 3 and 4 together with taking Section 4’s
ideal sharpness as the maximum (% = 1) yields K = 1/2 as a low-sharpness de-
fault. A

8 Adjusting priors for the simplicity of stochastic
processes

In a typical Bayesian analysis, the data constitute a sample of n observations that are
conditionally independent given each value of 8, the parameter. The data can be viewed
in terms of making n observations of an IID stochastic process labeled by an unknown
value of 6. More generally, the data consist of a time series of n observations of a
stationary stochastic process labeled by an unknown value of 6. In either case, Bayesian
coherence does not allow either the unsharpened prior distribution of 6 or the sharpened
prior distribution of 6 to depend on n. Under that restriction, this section applies
sharpened prior distributions to stochastic processes in order to facilitate Bayesian data
analysis.

8.1 General stochastic processes

A discrete-time Bayesian model is a pair ((Xe1,Xe2,...),7) such that 7 is a PDF
on © and (Xg1,Xpo,...) is a stationary discrete-time stochastic process on xH e
{X(l),.)c'(o)} for each § € ©. To distinguish it from the Bayesian model (fo,7) used
in Sections 6-7, the latter is called a basic Bayesian model. As defined in information
theory, the entropy rate of a stochastic process (X, Xo,...) is

8((X1,X2,...)) = tli}rgoS(XﬂXl,...,Xt_l)

= lim Ex, . x,_,S(g:(e|X1,..., Xt 1)),

t—o0

,,,,,

where g; (¢|X1,...,X:_1) is the conditional PDF of X; given (Xi,...,X:_1),
S (g¢ (| X1,..., X 1)) is its entropy if X*) = XM (or its differential entropy (19)
it ™) = X(O)) as a function of the random (Xi,...,X;_1), and Ex, . x, , gives the
expectation value over Xq,..., X; 1.

Definition 9. Let ((Xo1,Xe2,...),7) denote a discrete-time Bayesian model and
(fe, ™) a basic Bayesian model such that s ((Xg,1, Xg2,...)) = S( é*)) for every 6 € O,
where fé*) = fél) if ¥ = xM and fe(*) = fe(o) if ) = x©) Let, with respect to

(feo,m), w?fj denote the sharpened counterpart of 7 for some x > 0. The same PDF 7Tf/j
is also the k-sharpened counterpart of m with respect to (Xg.1, Xg,2,...).

That definition ensures that the expression for sharpened priors over stochastic
processes has the same form as those over other observables.
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Corollary 2. Consider a discrete-time Bayesian model ((Xe1,Xe2,...),m). Let

ik

T(Xe 1, Xe20) denote the sharpened counterpart of m for some k > 0. Then

ﬂ'u"@ (6) _ 7'('(9) e_ﬁs((XG,I,XQQ,...))
(Xe,1,Xe,2,0-+) fﬂ'(ﬂl) et s((Xor 1, Xg1 2,-)) gy, (0/)

(25)
almost surely with respect to I1, the prior probability measuring defining © by 7 = dIl/dv.

Proof. Let (fo,m) denote any basic Bayesian model such that s ((Xg,1,Xp2,...)) =
S(fé*)) for every 6 € ©. By Definition 9, 71'?';(. Xes) = W]ﬁp'f, allowing the substitution

of s ((Xo,1,Xp.2,...)) for every occurrence of S( 9(1)) or S( (go)) in (17) or (18) IT-almost
surely according to Theorem 5. U

8.2 1ID processes

Suppose X; ~ gg.1, IID conditional on @, for all i = 1,2,..., where gg; is a PDF on

X ™) for each § € ©. Then s ((Xg.1, Xg2,...)) = S(go.1) = S(f(g*)), and (25) simplifies
to
77(9) e_ﬁs(fe(*))

[ (@) e 5 ) dy (7))

where S( f(g*)) is either S( fél)), the entropy of a discrete-valued observable, or S( éo)),
the differential entropy of a continuous-valued observable.

rie (0) =

(26)

Finite-© examples

In both of the following examples from Section 1, the sample space X*) = X1 is finite,
as is the parameter space ©. In (26), both fe(l) and m are PMFs, and v is the counting
measure.

Example 4. Example 1, continued. Since fe(l) (x;)=1/0fori=1,...,0 but fe(l) (24)
0fori=6+1,...,20, the entropy is S( 0(1)) = In 6. Then the preliminary prior P (0) =
1/5 for 6 = 4,6, 8,12, 20 gives

" o (1/5) (em?) ™" B 1/6%
PXer Xen)0) = AR 1/0=
’ > g—4,6,8,12,20 (1/5) (€™?) 6'=4,6,8,12,20

according to (26). Thus, the ideal sharpened prior probability (x = 1) of a die is inversely
proportional to how many sides it has. A

(27)

Example 5. Example 2, continued. With the uniform distribution on the configuration
space © as the preliminary prior, reasoning analogous to that of Example 4 yields the
analog of (27),

pin 0= WenEn T e
(Xe1,Xe2,--.) Sorco (1/10]) (187 Ygreo 1/ 10"
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with 6 as the configuration of colors. Substituting x = 1 shows that the ideal sharpened
prior probability of a configuration is inversely proportional to how many colors it has. A

The prior distributions resulting in the x = 1 case of both examples are reciprocal
distributions, which are important in studies of Benford’s law (Hill, 1995; Pietronero
et al., 2001; Kossovsky, 2014, p. 238). While those finite-domain examples motivate the
theory, the remaining examples illustrate the sharpening of priors for statistical data
analysis with infinite domains.

Infinite-© examples

Example 6. Consider n independent trials, each with an unknown probability 6 of
success. The entropy per trial is

s (fgl)) = —f0logh — (1—0)log (1 —0).

Jeffreys’s prior density (Jeffreys, 1948) for a family of binomial distributions is pro-

portional to =2 (1 — 9)71/2 (Robert et al., 2012, p. 73). By (26), the corresponding
sharpened density is

ﬂ_:m (0) x 971/2 (1 . 0)—1/2 66n10g0+(170)n10g(179) _ 96/171/2 (1 . 9)(1—9)5—1/2 )

Instead of Jeffreys’s prior density, Bickel (2016) considered the uniform density as the
unsharpened prior. A

Example 7. Maximizing the entropy of an asymptotic posterior, relative to a prior,
leads to the Berger-Bernardo (e.g., Berger and Bernardo, 1989) reference priors (Kass
and Wasserman, 1996); see Berger et al. (2009). In the case of a normal data distribution
with unknown mean g and unknown standard deviation o, the reference prior density
7 (i, o) is proportional to 1/o (Ghosh et al., 2006, §5.1.0). As noted in Example 3, the
differential entropy S( FSO(),) of a normal distribution fﬁ?(), = N (p,0?%) is Ino up to a
constant term. Then (26) prescribes the sharpened counterpart of the reference prior
density:
e—filna 1

7 (, 0) o = (28)

o ogltek ’

which, in the case of Section 4’s k = 1, is the left-invariant measure (Bickel, 2016). Since
the reference density in this case is a probability matching prior, (28) may also be used
to adjust p values and confidence intervals for simplicity (Bickel, 2019a). A

9 Discussion: Which priors should be adjusted for
simplicity?
The idea of Examples 1-2 and Section 4 that priors are adjusted according to the

coincidences involved in constructing the system studied has implications for whether
and how to adjust priors for the simplicity of data distributions. First, simplicity may
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be warranted not only for default priors such as those in Examples 4-7 but also for
other priors that do not account for the coincidences involved in the construction of
the system studied (e.g., Example 3). Another implication is that prior distributions
that represent known physical variability do not require adjustments for simplicity (cf.
Bickel, 2019c¢), for their probabilities are limiting relative frequencies that do not depend
on the construction of systems.

A third implication is that each fy used to adjust a prior for simplicity must reflect
the variability intrinsic to the system studied as opposed to technical variability or
measurement error. Otherwise, the sharpened prior, like some default priors, would
depend on the details of the experiment or observational study, in violation of the
likelihood principle. That charge of violating the likelihood principle is often made
against default priors that depend on the sampling model (e.g., Ghosh et al., 2006, §5.2;
Kadane, 2011, §12.8).
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