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This paper provides a unified framework and an efficient algorithm for
analyzing high-dimensional survival data under weak modeling assumptions.
In particular, it imposes neither parametric distributional assumption nor lin-
ear regression assumption. It only assumes that the survival time T depends
on a high-dimensional covariate vector X through low-dimensional linear
combinations of covariates �T X. The censoring time is allowed to be con-
ditionally independent of the survival time given the covariates. This general
framework includes many popular parametric and semiparametric survival
regression models as special cases. The proposed algorithm produces a num-
ber of practically useful outputs with theoretical guarantees, including a con-
sistent estimate of the sufficient dimension reduction subspace of T | X, a
uniformly consistent Kaplan–Meier-type estimator of the conditional distri-
bution function of T and a consistent estimator of the conditional quantile
survival time. Our asymptotic results significantly extend the classical theory
of sufficient dimension reduction for censored data (particularly that of Li,
Wang and Chen in Ann. Statist. 27 (1999) 1–23) and the celebrated nonpara-
metric Kaplan–Meier estimator to the setting where the number of covariates
p diverges exponentially fast with the sample size n. We demonstrate the
promising performance of the proposed new estimators through simulations
and a real data example.

1. Introduction. Literature on high-dimensional data analysis has experienced an ex-
plosion recently. However, there still exists relatively little work, particularly with theoretical
guarantees, for analyzing high-dimensional data with censored responses where new techni-
cal challenges arise. We are interested in studying the relationship between an event time T

and a p-dimensional vector of predictors X = (X1, . . . ,Xp)T . The event time T may not be
observed due to right censoring, such as patients dropout. Let Y = min(T ,C) be the observed
event time where C denotes the censoring variable, and let δ = I (T ≤ C) be the censoring
indicator. The observed data consist of (Xi , Yi, δi), i = 1, . . . , n. In this paper, we develop a
general theory for analyzing such censored data in the setting where the number of covariates
p can be much larger than the sample size n. A distinguishable feature of our proposal is that
we only impose a very general model framework instead of a specific model. In particular,
we impose neither parametric distributional assumption nor linear regression assumption.

The basic modeling assumption we adopt is that T depends on X only through a few linear
combinations of covariates �T X, where � is a p × d (d ≤ p) matrix with d usually much
smaller than p. Alternatively, we write

(1.1) T ⊥⊥ X |�T X,

where ⊥⊥ stands for independence. The matrix � itself is not identifiable as for any d × d

nonsingular matrix A, AT �T X also satisfies (1.1). Instead, we aim to estimate the smallest
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linear space spanned by the columns of �, denoted by ST |X. In the dimension reduction
literature, such a space is referred to as the central subspace, and is known to exist and be
unique under mild conditions (Cook (1998)).

Note that (1.1) is equivalent to the statement F(T |X) = F(T |�T X), where F(T |X) and
F(T |�T X) are conditional distribution functions of T given X and �T X, respectively. To
appreciate the flexibility of this general formulation, we observe that (1.1) encompasses many
popular survival analysis model assumptions as special cases regarding T |X:

• Proportional hazards or Cox model: h(t |X) = h0(t) exp(βT X), where the hazard func-
tion h(t |X) = − d

dt
logQ(t |X) with Q(t |X) = 1 − F(t |X) being the conditional sur-

vival function. This model is equivalent to F(t |X) = 1 − exp{−H0(t)e
βT X}, where

H0(t) = ∫ t
0 h0(s)ds. Hence, (1.1) is satisfied with � = β .

• Accelerated failure time (AFT) regression model: log(T ) = βT X + ε, where ε is the ran-
dom error. Then it is easy to see that (1.1) is satisfied with � = β .

• Various semiparametric variants of Cox or AFT model, for example, log(T ) = βT
1 X +

g1(β
T
2 X) + g2(β

T
3 x)ε, where g2 is a nonnegative function. The vectors βi , i = 1, . . . ,3,

are unknown; and g1 and g2 are also possibly unknown. For this semiparametric regression
model, (1.1) is satisfied with � whose columns are β1, β2 and β3.

The purpose of this paper is twofold. First, we will estimate the central subspace ST |X
for high-dimensional censored data, an important problem that has not been explored much
in the literature due to technical challenges. The central subspace is known to be a power-
ful tool for data reduction and visualization. However, it does not directly provide prediction,
which is often a main objective for real data analysis. Our second goal is therefore to estimate
the conditional distribution function F(T |X) in the high-dimensional setting while account-
ing for censoring. This would help answer important practical questions such as what is the
probability that a patient can survive more than 6 months given his/her clinical conditions
and genetic profile.

2. Related work and contribution. There exists a rich literature on central subspace
estimation for dimension reduction; see Chen, Cook and Zou (2015), Cook and Ni (2005),
Hsing and Ren (2009), Kong and Xia (2014), Li (1991), Li (2007), Li and Dong (2009), Li
and Wang (2007), Ma and Zhu (2012), Ye and Weiss (2003), Yin and Li (2011), Zhu, Miao
and Peng (2006), Bura, Duarte and Forzani (2016), among many important others. More
recently, progress has been made in high-dimensional setting (p > n) (e.g., Cook, Forzani and
Rothman (2012), Li and Yin (2008), Lin, Zhao and Liu (2018), Qian, Ding and Cook (2018),
Tan et al. (2018), Wang et al. (2018), Yin and Hilafu (2015), Yu, Dong and Shao (2016),
Yu et al. (2013)). However, these methods were mainly designed for complete data and do
not apply to data with censored outcomes. When the response variable is censored, several
authors have made significant progresses for the classical setting (fixed p or p diverging but
p < n); see, for example, Li, Wang and Chen (1999), Cook (2003), Li and Li (2004), Li
(2005), Xia, Zhang and Xu (2010), Lu and Li (2011), Nadkarni, Zhao and Kosorok (2011),
Lopez (2011), Sun et al. (2019) and Zhao, Ma and Lu (2017).

Our first main contribution is to significantly extend the existing theory on sufficient di-
mension reduction (SDR) for censored data. Based on our proposed new methodology, we
establish both the central subspace estimation consistency and variable selection consistency
in the ultrahigh-dimensional setting without stringent parametric distributional assumptions.
Furthermore, these consistency properties are achieved under relatively mild conditions on
the censoring mechanism: we assume the conditional independence condition T ⊥⊥ C |X,
as opposed to the more restrictive complete independence condition T ⊥⊥ C or the strong
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marginally conditional independence condition T ⊥⊥ C |Xj , for all j , required by many
screening methods.

To the best of our knowledge, our proposal is the first to extend SDR method to the analysis
of high-dimensional censored data with theoretical guarantees, where p is allowed to increase
at an exponential rate of n. It is worth noting that our approach is very different from existing
model-based (mostly based on Cox model) variable selection methods (e.g., Bradic, Fan and
Jiang (2011), Du, Ma and Liang (2010), Fan and Li (2002), Fang, Ning and Liu (2017), Huang
et al. (2013), Johnson (2009), Tibshirani (1997), Zhang and Lu (2007), Chai et al. (2019)).
Moreover, the proposed methods apply to a wide class of survival data models where the
proportional hazards assumption is violated.

We also establish uniform convergence of a local Kaplan–Meier estimator in the high-
dimensional setting with assistance of the estimated central subspace. The celebrated non-
parametric Kaplan–Meier estimator for the conditional distribution of the event time plays
a central role in survival analysis but requires the strong independent censoring assumption.
On the other hand, important extensions of Kaplan–Meier estimator to covariate-dependent
censoring, such as Beran (1981), only works with a few covariates in practical data analysis
due to the curse of dimensionality. Our result much extends the practical use of Kaplan–Meier
estimator to high-dimensional censored data while permitting covariate-dependent censoring.

In addition, we equip our method with an efficient algorithm for computation. It adopts
an iterative strategy to solve the objective functions without inverting any large covariance
matrix. Furthermore, we propose a specialized cross-validation method to achieve automatic
tuning parameter and structural dimension selection. Its practical effectiveness is demon-
strated through extensive numerical and real data evaluations.

The remainder of the paper is organized as follows. Section 3 proposes the new double-
slicing assisted SDR method for studying high-dimensional censored data. Section 4 estab-
lishes consistency results in both central subspace estimation and variable selection under
the ultrahigh-dimensional setting, as well as estimation consistency for conditional survival
function. Computational aspects are presented in Section 5. Simulation studies and real data
analysis are given in Sections 6 and 7, and concluding remarks are given in Section 8. Proofs,
related technical details, and additional computational and numerical results are left to the
supplement.

3. Methodology. In this section, we introduce the double-slicing assisted SDR method
in high dimension (abbreviated as DASH) to estimate the central subspace ST |X and to simul-
taneously select important covariates for T |X in the ultrahigh-dimensional settings. DASH
has two main steps. First, it estimates a cruder augmented central subspace S(T ,C)|X for the
conditional distribution of (T ,C) |X, inspired by the double slicing approach in Li, Wang and
Chen (1999) for the classical setting p < n. It then provides a refined estimate of the targeted
central subspace ST |X adjusting for censoring in the second step. Based on the central sub-
space estimation from DASH, we then obtain a nonparametric estimator of the conditional
survival function, which also yields an estimator for the conditional quantile function as a
byproduct.

3.1. The DASH method. To motivate DASH, we provide some basic intuition for the
ideal situation where we fully observe T and there are only fixed number of covariates. In
this case, sliced inverse regression (SIR; Li (1991)) is a simple way to estimate the cen-
tral subspace. Let μ = E(X) and � = cov(X) be the mean and covariance matrix of X,
respectively. The key observation behind SIR is that E(X − μ |T ) is in the space �ST |X
under the linearity condition in Li (1991), which holds for the elliptical distribution fam-
ily and also holds to a good approximation in high dimension (Hall and Li (1993)). SIR
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reverses the relation between the response variable and the covariates. Let It = [at , at+1),
t = 1, . . . , b, be b nonoverlapping intervals of a partition of the range of T , where 0 = a1 <

· · · < ab < ∞ = ab+1. For a given t , define ξ t = �−1E(X−μ |T ∈ It ) for t = 1, . . . , b. With
M = (ξ1, . . . , ξb) ∈ Rp×b and SM = Span(M), where Span(M) is the subspace spanned by
the columns of M , we have SM ⊆ ST |X. Furthermore, we assume the coverage condition
SM ⊇ ST |X, which is usually reasonable with large enough b. With d = dim(SM), the dimen-
sion of SM , Cook and Ni (2005) proposed to estimate SM with a d-dimensional subspace that
is closest to the columns of M , where the closeness is measured by a quadratic discrepancy
function. This general approach subsumes SIR as a special case. However, this quadratic dis-
tance approach is not applicable to our setting due to the challenges of random censoring and
high-dimensional covariates.

The DASH method we introduce below corrects the bias due to random censoring by
employing inverse probability weighting. Such weighting intrinsically also depends on the
high-dimensional covariates. We extend the double-slicing approach of Li, Wang and Chen
(1999) to obtain estimates of such weights with theoretical guarantee in high dimension. Fur-
thermore, DASH incorporates high-dimensional covariates in estimating ST |X by extending
the quadratic discrepancy function with appropriate penalization and devising an algorithm
that avoids inverting the high-dimensional covariance matrix.

For censored data, T may not be completely observed. Instead of slicing T , we consider
Hy = [ty, ty+1), y = 1, . . . , b, which form b nonoverlapping intervals of a partition of the
observed survival time Y with 0 = t1 < · · · < tb < ∞ = tb+1. Let S(t |x) = P(C > t |X = x)

be the conditional survival function of the censoring time C given X. Let py = P(Y ∈ Hy)

and p̃y = P(T ∈ Hy). It is not hard to verify (see Supplement I.1) that

(3.1) E(X − μ |T ∈ Hy) = py

p̃y

E
{
δ(X − μ)

S(Y |X)

∣∣∣ Y ∈ Hy

}
.

Hence, one can correct the censoring bias by inverse probability weighting. Variations of in-
verse probability weighting for censored data were also used in Cheng, Wei and Ying (1995),
Fan and Gijbels (1994), Lu and Li (2011), Nadkarni, Zhao and Kosorok (2011), among oth-
ers, for classical fixed or small p cases. When the censoring distribution depends on the co-
variates, the aforementioned literature either imposed relatively strong assumptions such as
complete independence or employed a nonparametric estimator for S(Y |X) which may suf-
fer from curse of dimensionality in practice. We instead propose a convenient double-slicing
assisted procedure to first perform SDR for the joint conditional distribution of (T ,C) |X
and obtain a uniformly consistent estimator S(t |X) nonparametrically under reduced predic-
tor dimension. Let Ŝ(t |X) denote this estimator of S(t |X). For now, we assume Ŝ(t |X) has
been obtained. The details of estimating Ŝ(t |X) will be described in Section 3.3.

Let my = E{δ(X−μ)/S(Y |X) |Y ∈ Hy}, y = 1, . . . , b. And define Mc = (m1, . . . ,mb) ∈
Rp×b. Then (3.1) implies that SMc ⊆ �ST |X. Unless stated otherwise, we assume throughout
the article that SMc ≡ �ST |X. Let g = (

√
p1, . . . ,

√
pb) and Dg = diag(g), where diag(g)

denotes the diagonal matrix with diagonal components to be the elements of g. Construct a
modified matrix Uc = McDg. Then we have SUc = SMc = �ST |X and Uc is called a kernel
matrix. Let Jy = {1 ≤ i ≤ n : Yi ∈ Hy} be the index set corresponding to slice Hy and let
Ny = |Jy |, y = 1, . . . , b, where | · | denotes the set cardinality. Then the sample estimates of
my and py can be formulated by m̂y = N−1

y

∑
i∈Jy

δi(Xi − X̄)/Ŝ(Yi |Xi) and p̂y = Ny/n,

where X̄ is the sample mean of X. Correspondingly, we can obtain sample estimates M̂c and
ĝ of Mc and g, and set Ûc = M̂cDĝ.

Let �0 be a basis matrix of ST |X and let γ 0j ∈ Rd be the j th row of �0. With ‖·‖2 being
the L2 norm, let A0 ≡ {1 ≤ j ≤ p : ‖γ 0j‖2 > 0}. Then it is natural to define XA0 to be the



2136 S. DING, W. QIAN AND L. WANG

active variables of ST |X, where XA0 is the sub-vector of X corresponding to the index set
A0. To achieve SDR and to simultaneously identify the active variables, we estimate �0 by
considering the penalized sample objective function

(3.2) Fn(�,�) = tr
{
(Ûc − �̂n��)T �̂n(Ûc − �̂n��)

} + λ

p∑
j=1

wj‖γ j‖2,

subject to ��T = Id , where tr(·) is the trace operator, �̂n is the sample covariance matrix of
X, �̂n denotes a sample estimate of �−1, and γ j is the j th row vector of �. It is important

to stress that we avoid finding an explicit form of �̂n by setting �̂n�̂n = Ip in the sample
objective function in our algorithm (Section 5). In (3.2), λ is a tuning parameter and wj ’s
are penalty weights. Note that each column vector in �0 produces a linear combination of
the p covariates, and the above penalty hence encourages sparse linear combinations of all
covariates.

REMARK 3.1. We assume throughout the paper that central subspaces ST |X and S(T ,C)|X
exist and are unique. This assumption has been shown to hold under mild conditions (when,
e.g., the covariates have density with convex support; Cook (1998), Chapter 6; Li (2018),
Chapter 2.2. Then, by Proposition A.1 in the Appendix, the set of active (or relevant) variables
associated with the central subspace is also unique.

REMARK 3.2. The loss function in (3.2) is motivated by the quadratic discrepancy ap-
proach discussed in Cook and Ni (2005) as we can rewrite the population version of the loss
function as

(3.3) F(�,�) = (
vec(Ũc) − vec(��)

)T
W

(
vec(Ũc) − vec(��)

)
,

where vec(·) denotes the operator that constructs a vector from a matrix by stacking its
columns, ⊗ denotes Kronecker product, Ũc = �−1Uc satisfies S

Ũc
≡ ST |X, and W = Ip ⊗�

is positive-definite. See also Proposition A.2 in the Appendix for the motivation. In the pop-
ulation version, (A.1) does not involve �−1 after expansion, and we thus avoid inverting a
large covariance matrix in high dimension. For identifiability, instead of imposing constraints
on basis � like many SDR methods, we use an alternative constraint ��T = Id to overcome
computational challenges in the ultrahigh- dimensional setting. As discussed in Section 5, the
new constraint will lead to iterative optimization steps that involves singular value decompo-
sition (SVD) of relatively small matrix, which is efficient to compute.

REMARK 3.3. Here, we take �̂n to be the sample covariance matrix of X. Alternatively,
we can use other estimators such as a thresholded covariance matrix (Bickel and Levina
(2008)). Unless stated otherwise, we simply assume sample covariance is used, but we also
use the thresholded covariance for numerical studies in Section 6.

REMARK 3.4. The derivation of the penalty weights wj follows a variant of the adaptive
group lasso (Zou (2006), Yuan and Lin (2006)): we first obtain an initial estimator (�̃0, �̃0) of
(3.2) by using equal weights w1 = · · · = wp = 1 with tuning parameter λ̃; then we set weights
by wj = ‖γ̃ 0j‖−ρ

2 to find the estimator (�̂0, �̂0), where γ̃ 0j is the j th row of �̃0 and ρ is
some pre-specified constant. We can also define wj = +∞ if ‖γ̃0j‖2 = 0. The estimator for
ST |X is then S

�̂0
, and the estimated set of active variables is Â0 = {1 ≤ j ≤ p : ‖γ̂ 0j‖2 > 0},

where �̂0 = (γ̂ 01, . . . , γ̂ 0p)T . The detailed computational algorithm and tuning parameter
selection related to (3.2) are presented in Section 5.

3.2. Nonparametric estimation of conditional survival function. We now describe how
we can construct a nonparametric estimator of the conditional survival function Q(T |X)
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based on the central subspace obtained in Section 3.1. Estimating the conditional survival
function is often of independent interest.

The estimated central subspace allows us to estimate Q(t |x) = P(T > t |�T
0 X = �T

0 x) as
�0 is a basis matrix of ST |X. The dimension of �T

0 X is usually low and we assume it is upper
bounded. In addition, as shown in Proposition A.3 in the Appendix, conditioning on �T

0 X,
the conditional independence assumption remains to hold. We generalize the local Kaplan–
Meier (KM) estimator (e.g., Beran (1981), Gonzalez-Manteiga and Cadarso-Suarez (1994),
Zeng (2004)) to estimate Q(t |x) by

(3.4) Q̂(t |x) =
n∏

i=1

{
1 − I (Yi ≤ t, δi = 1)Bni(�̂

T
0 x)∑n

k=1 I (Yk ≥ Yi)Bnk(�̂
T
0 x)

}
,

where Bni(�̂
T
0 x) are nonparametric local weights, and �̂0 is the estimator for �0 obtained in

Section 3.1 with transformation to be a semiorthogonal matrix (e.g., we can simply perform
a SVD on �̂0�̂0 to obtain this matrix; this step is only for convenience of technical analysis
and, as shown in Proposition A.4 in the Appendix, ensures the existence of a basis �0 ∈ ST |X
that is close enough to the transformed estimator). Two popular choices of weights are the his-
togram weight and the Nadaraya–Watson weight. To use the histogram weight, we partition
the support Z ⊂ Rd of �̂T

0 X into small subdomains; given z ∈ Z , let M(z) be the subdomain
containing z and let Nn(z) be the number of observations Zi = �̂T

0 Xi (1 ≤ i ≤ n) that are con-
tained in M(z). Then Bni(z) = 1/Nn(z) if M(z) = M(Zi ), and Bni(z) = 0 otherwise. To
use the Nadaraya–Watson weight, we set Bni(z) = K(Zi−z

hn
)/

∑n
k=1 K(Zk−z

hn
), where K(·) is

a kernel function and hn is the bandwidth. In Section 4, we establish the uniform convergence
for the local KM estimator in (3.4). The proposed estimator much broadens the practical use
of Kaplan–Meier estimator in high dimension.

As one interesting and useful application of the estimated survival function Q̂(t |X), we
can further estimate the conditional quantile function for T |X. That is, given 0 < τ < 1, we
directly estimate the τ th conditional quantile by inverting Q̂(t |X). In Section 4, we show
that this produces a consistent estimator for QT (τ |X) = sup{t : Q(t |X) < 1 − τ }. See also
the numerical illustration in Section 6.

3.3. Double-slicing assisted preliminary estimator of S(t |X) in high dimension. In Sec-
tion 3.1, we discussed the need to flexibly estimate S(t |X) for inverse probability weighting
in (3.1). In this subsection, we provide the details on how such a preliminary estimator can
be obtained in high dimension by extending the seminal work of Li, Wang and Chen (1999),
which was developed for the small p large n setting. The basic idea is to consider a slightly
larger subspace based on the sufficient reduction for (T ,C)|X, which also provides a suf-
ficient reduction for C |X and can facilitate the estimation of S(t |X). Therefore, we first
reduce the dimension of X through the augmented central subspace S(T ,C)|X and then esti-
mate S(t |X) nonparametrically based on the dimension reduced predictors.

Specifically, because (Y, δ) is a function of (T ,C), we have that S(Y,δ)|X ⊆ S(T ,C)|X (e.g.,
Theorem 2.3, Li (2018)). In addition, Proposition A.5 in the Appendix shows that the cov-
erage condition S(Y,δ)|X ⊇ S(T ,C)|X is equivalent to ST |X ⊆ S(Y,δ)|X and SC|X ⊆ S(Y,δ)|X; the
latter conditions are often reasonable considering that SY |X ⊆ S(Y,δ)|X and P(Y > t |X) =
P(T > t |�0X)P (C > t |�cX) from the conditional independence, where �0 and �c are ba-
sis of ST |X and SC|X, respectively. Then assuming a full coverage, S(T ,C)|X can be estimated
through S(Y,δ)|X by the sliced inverse regression method with double slicing on Y and δ. This
idea eases the central subspace estimation as both Y and δ are observable.

Let H1,l , l = 1, . . . , b1, be the b1 nonoverlapping intervals of the discretized event time Y

without censoring (δ = 1), and let H0,l , l = 1, . . . , b0, be b0 nonoverlapping intervals of the
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discretized Y with censoring (δ = 0). With the double-slicing (DS) practice, similar to our
discussion for (3.1), it can be shown that

mk,l := E(X |Y ∈ Hk,l, δ = k) − μ ∈ �S(T ,C)|X
for any k = 0,1, and l = 1, . . . , bk , under the linearity condition. Define M1 = (m1,1, . . . ,

m1,b1,m0,1, . . . ,m0,b0) ∈ Rp×(b1+b0), pk,l = P(Y ∈ Hk,l, δ = k), and g1 = (
√

p1,1, . . . ,√
p1,b1,

√
p0,1, . . . ,

√
p0,b0). By setting U1 = M1Dg1 , we have SU1 = SM1 = �S(T ,C)|X.

Then U1 is a kernel matrix for S(T ,C)|X. Let d1 = dim(S(T ,C)|X). By replacing Uc with U1 in
(A.1), we have the objective function

(3.5)
F1(�,�) = tr

{
(U1 − ���)T �−1(U1 − ���)

}
subject to ��T = Id1,

where � ∈ Rp×d1 and � ∈ Rd×(b1+b0) are parameters, and its minimizer �1 ∈ Rp×d1 of �

forms a basis of S(T ,C)|X. Likewise, with Ũ1 = �−1U1, this objective function also forms a
quadratic discrepancy function resembling (3.3).

Define Jk,l := {1 ≤ i ≤ n : Yi ∈ Hk,l and δ = k} to be the index set corresponding to slice
Hk,l , and Nk,l = |Jk,l|. Let m̂k,l = X̄k,l − X̄ := ∑

i∈Jk,l
Xi/Nk,l − X̄ and p̂k,l = Nk,l/n, which

are used to construct the sample estimators M̂1 and ĝ1 for M1 and g1. Set Û1 = M̂1Dĝ1 .
Under sparsity, let A1 be the index set corresponding to active variables of S(T ,C)|X. Assume
q1 := |A1| < p. We can then use Û1 to formulate a penalized sample objective function
similar to (3.2) to estimate S(T ,C)|X and A1 by minimizing

(3.6) F1n(�,�) = tr
{
(Û1 − �̂n��)T �̂n(Û1 − �̂n��)

} + λ1

p∑
j=1

wj‖γ j‖2,

subject to ��T = Id1 , where λ1 is tuning parameter with unequal penalty weights. Here,
we perform the same adaptive estimation procedure as described for (3.2), and set λ̃1 to be
the tuning parameter corresponding to the initial equal penalty weights. With the estimator
(�̂1, �̂1) from (3.6), this DS procedure generates the estimated central subspace S

�̂1
and

variable selection set Â1 = {1 ≤ j ≤ p : ‖γ̂ 1j‖2 > 0}, where �̂1 = (γ̂ 11, . . . , γ̂ 1p)T .
Since �T

1 X is a sufficient reduction for C |X, we have S(t |x) = P(C > t |�T
1 X = �T

1 x).
Similar to (3.4), we assume d1 is upper bounded. Thus, with the help of low-dimensional
estimator �̂1, the local KM estimation is applied to estimate S(t |x) as

(3.7) Ŝ(t |x) =
n∏

i=1

{
1 − I (Yi ≤ t, δi = 0)Bni(�̂

T
1 x)∑n

k=1 I (Yk ≥ Yi)Bnk(�̂
T
1 x)

}
,

where Bni(·)’s are the weight functions as described for (3.4).

REMARK 3.5. Since the sufficient reduction for (T ,C) |X is also a sufficient reduction
for T |X, the proposed DS method not only achieves dimension reduction to facilitate the es-
timation of S(t |X), but also provides reduction for the targeted T |X. However, as S(T ,C)|X
is usually a larger space than ST |X, it might still contain redundant information for the ul-
timate reduction of T |X. Nevertheless, the DS method can be efficiently adapted to our
high-dimensional framework, and is worthy as an initial assisting step for reduction. Since
ST |X ⊆ S(T ,C)|X, we have A0 ⊆ A1 and q1 ≥ q . When S(T ,C)|X = ST |X, A1 = A0, and the
DS method itself achieves simultaneous SDR and variable selection for ST |X. In Section 6,
we will evaluate and compare the DS estimator with the DASH estimator under different
simulation scenarios.

4. Theoretical results. In this section, we state the main theoretical results of the pro-
posed methods in ultrahigh dimension that allows p to grow exponentially with n. Under this
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setting, we first establish consistency properties for the DS method targeting S(T ,C)|X. With
these results as preparation, we then investigate consistency properties for DASH targeting
ST |X and the subsequently estimated conditional survival function Q̂(t |x) with local KM
estimator.

4.1. DS estimator. Let μj = E(Xj ), μyj = E(Xj |Y ∈ Hy) and μk,l,j = E(Xj |Y ∈
Hk,l, δ = k) for 1 ≤ j ≤ p, 1 ≤ y ≤ b, k = 0,1 and 1 ≤ l ≤ bk . Define b̄ = max(b1, b0)

and σij = (�)ij . Let λmin(·) denote the minimum eigenvalues of a square matrix. Let ej be
the vector with the ith element to be one and the rest to be zeros. Consider the following
regularity conditions:

(A1) Let G be a basis matrix of S = S(T ,C)|X or ST |X. Assume X satisfies E(X −
μ |GT X) = AGT (X − μ) for some matrix A ∈ Rp×dim(S).

(A2) There is a positive constant cH such that P(Y ∈ Hk,l, δ = k) ≥ cH b̄−1 for all k = 0,1
and 1 ≤ l ≤ bk .

(A3) For all ε > 0, there is a constant c1 > 0 such that for all 1 ≤ j ≤ p, P(|Xj − μj | >

ε) ≤ 2 exp(−c1ε
2). In addition, for all ε > 0, 1 ≤ j ≤ p, 1 ≤ y ≤ b, k = 0,1 and 1 ≤ l ≤ bk ,

there are constants c2, c̃2 > 0 such that P(|Xj − μyj | > ε |Y ∈ Hy) ≤ c̃2 exp(−c2ε
2) and

P(|Xj − μk,l,j | > ε |Y ∈ Hk,l, δ = k) ≤ c̃2 exp(−c2ε
2).

(A4) Assume that σij < σ̃ (1 ≤ i, j ≤ p) and λmin(�) > σ∗, where σij is the (i, j)-
element of �, and σ∗ and σ̃ are some positive constants.

(A5) Assume the nonzero singular values of Ũ1 are bounded away from 0.
(A6) Assume minj∈A1 eT

j Ũ1Ũ
T
1 ej > cu1n

−τ1 for some 0 ≤ τ1 < 1.

Condition (A1) is the linearity condition discussed in Section 3. Condition (A2) assumes
that all slices of the response have reasonably large marginal probability, which is mild and
is often satisfied in practice. The first component in (A3) is the commonly used uniformly
sub-Gaussian assumption for the marginal distribution of predictors Xj (1 ≤ j ≤ p). The
second component in (A3) further assumes uniformly sub-Gaussian condition for Xj given
each slice; if b and b̄ are upper bounded, these two components are essentially equivalent.
Condition (A4) assumes that all elements in � are uniformly upper bounded with minimum
eigenvalue bounded from zero. Conditions (A5) and (A6) includes mild assumptions on the
“kernel” matrix Ũ1: (A5) holds if the nonzero eigenvalues of Var(E(X | Ỹ )) are bounded
away from zero, where Ỹ is the double-sliced response; (A6) uses a marginal utility quantity
condition (Zhu et al. (2011)) to control signal levels. To obtain consistency results, define PS
to be the projection matrix onto a given subspace S , and let ‖·‖F be the Frobenius norm.
Define p̄n = max(p,n). The following condition allows p to grow exponentially with n:

(A7) Assume b̄2q1 log p̄ = O(n1−ζ1) and q2
1 log p̄n = O(n1−ζ1) for some constant ζ1 with

τ1 < ζ1 < 1.

THEOREM 4.1. Assume Conditions (A1)–(A7) hold. Suppose that λ̃1 = 2c1n

√
log p̄n/n,

λ1 = 21−ρc
ρ/2
u1 c1n

√
log p̄n/n1+ρτ1 and ρ(ζ1 − τ1) ≥ 1 − ζ1, where c1n = (C1b̄ + C2q

1/2
1 )/2

with C1, C2 being some generic positive constants (given in Theorem I.2 of Supplement I.4).
Then the DS estimator of Section 3.3 satisfies

‖PS
�̂1

− PS(T ,C)|X‖F = Op

((
b̄ + q

1/2
1

)√
q1 log p̄n/n

)
,(4.1)

P(Â1 =A1) → 1 as n → ∞.(4.2)

Theorem 4.1 shows that the estimation consistency and the variable selection consistency
of S(T ,C)|X can be simultaneously established by our DS method without imposing stringent
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conditions. In addition to p, the theorem allows q1 and b̄ to diverge with n. If b̄ is upper
bounded, the convergence rate of the central subspace estimation is Op(q1

√
log p̄n/n); if q1

is upper bounded, it is Op(b̄
√

log p̄n/n); with both q1 and b̄ upper bounded, the result is
simplified to Op(

√
log p̄n/n).

4.2. DASH estimator. The results in Theorem 4.1 target on S(T ,C)|X, which can be a
larger subspace than our main interest ST |X. We next establish theoretical properties for the
DASH method targeting ST |X. Unless stated otherwise, assume that the Nadaraya–Watson
kernel-based KM estimator is applied to obtain Ŝ(t |X). For technical brevity, we assume
uniform kernel function K(x) = I (‖x‖2 ≤ 1) is used, although other popular kernel choices
can apply. Assume data splitting (Cox (1975)) is applied so that �̂1 and the local KM es-
timation use different data halves, and Ŝ(t |Xi) is obtained via the leave-one-out technique
(Härdle, Hall and Ichimura (1993)), where the product in (3.7) omits the ith sample point.
Suppose the domain X of X is compact with ‖X‖2 ≤ K for some constant K > 0. Consider
the following regularity conditions:

(C1) Suppose P(T ≥ C ≥ t |X) ≥ τ0 for any t ∈ [0, T0] and X ∈ X , where τ0 is some
positive constant and T0 is the maximum follow-up time.

(C2) Given a basis �1 ∈ S(T ,C)|X, m(t | z) := P(T > t |�T
1 X = z) and m̃(t | z) := P(C >

t |�T
1 X = z), assume that |m(t | z1) − m(t | z2)| ≤ cl‖z1 − z2‖2 and |m̃(t | z1) − m̃(t | z2)| ≤

c̃l‖z1 − z2‖2 hold for any t ∈ [0, T0], where cl and c̃l are some positive constants.
(C3) Given a basis �̄ of S(T ,C)|X or ST |X, the density of �̄T X is positive and bounded from

zero on Z̄ , where Z̄ = {�̄T X : X ∈ X }. In addition, the density of �T X satisfies Lipschitz
condition for � on a neighborhood of �̄ in ‖·‖F -norm.

(C4) For every 1 ≤ y ≤ b, there exists a constant cs > 0 such that P(Y ∈ Hy) ≥ csb
−1.

(C5) Assume minj∈A0 eT
j ŨcŨ

T
c ej > cu2n

−τ2 for some 0 ≤ τ2 < 1. The nonzero singular

values of Ũc are bounded away from zero.

(C6) Assume bq(
log p̄n

n
)

2
2+d1 = O(n−ζ2) and (b̄2q1 + q2

1 + b)bq log p̄n = O(n1−ζ2) for
some constant ζ2 with τ2 < ζ2 < 1.

Condition (C1) is commonly assumed in censored data analysis. It implies that for every
t ∈ [0, T0), P(C > t |X) ≥ τ0 and P(Y > t |X) ≥ τ 2

0 . Condition (C2) indicates that condi-
tional survival functions satisfy Lipschitz conditions on �T

1 X. Condition (C3) is similar to
Assumption C1 in Wang et al. (2010) and is used to bound the density of �T X away from
zero. Condition (C4) is similar to (A2) and is used to allow reasonable sample size on each
slice. Condition (C5) is similar to (A5) and (A6) to regulate the “kernel” matrix. We also
allow p to grow exponentially with n in Condition (C6). Theorem 4.2 establishes estimation
and selection consistency for DASH in the ultrahigh-dimensional setting.

THEOREM 4.2. Assume the conditions in Theorem 4.1 and (C1)–(C6) hold and take

hn � (
log p̄n

n
)

1
2+d1 . Define ξn = b1/2(log p̄n/n)

1
2+d1 +(b̄q

1/2
1 + q1 + b1/2)(b log p̄n/n)1/2. Sup-

pose that λ̃ = 2c0ξn, λ = 21−ρc0c
ρ/2
u2 n−ρτ2/2ξn and ρ(ζ2 − τ2) ≥ 1 − ζ2, where c0 is some

generic positive constant (given in Theorem I.1 of Appendix I.3). Then the DASH estimator
satisfies

‖PS
�̂0

− PST |X‖F

= Op

(
(bq)1/2

(
log p̄n

n

) 1
2+d1 + (

b̄q
1/2
1 + q1 + b1/2)(bq log p̄n

n

)1/2)
,

(4.3)

P(Â0 = A0) → 1 as n → ∞.(4.4)
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Compared to the consistency result (4.1) of the initial DS estimator, the DASH method
achieves estimation consistency for ST |X with simultaneous variable selection consistency.
From (4.3), when b, b̄ and q1 are all upper bounded, the DASH estimator converges at the

rate of Op((log p̄n/n)
1

2+d1 ). The somewhat slower convergence rate relative to (4.1) is mainly
due to the key inverse probability weighting procedure, but this enables us to target the true
central subspace ST |X, instead of the larger S(T ,C)|X. Interestingly, under classical fixed p

scenarios, if d ≥ d1/2 (i.e., dim(ST |X) is allowed to be as small as half of dim(S(T ,C)|X)), the
rate for DASH matches (up to a logarithmic factor) or exceeds the known convergence rate

Op(n
− 1

2(1+d) ) in Nadkarni, Zhao and Kosorok (2011).

REMARK 4.1. In the discussion above, we assume that S(T ,C)|X is truly sparse in the
sense that the number of active variables (i.e., |A1|) is much smaller than p. Interestingly, our
results can be extended to a weaker condition to allow an “approximately” sparse scenario
where a large number of variables are active for S(T ,C)|X. Specifically, recall that �1 denotes
a basis of S(T ,C)|X that gives a minimizer of (3.5). Given any index set A ⊂ {1, . . . , p}, let
�1,A be the |A| × d1 matrix consisting of the rows of �1 corresponding to A. Then rather
than requiring that only a small subset of variables are active, we assume that there exists an
index set Ǎ1 ⊂ {1, . . . , p} with q1 = |Ǎ1| < p and a (small) parameter θ > 0 such that

(4.5) ‖�1,Ǎc
1
‖2,1 ≤ θ,

where ‖·‖2,1 is the l2,1 norm (i.e., ‖�1,Ǎc
1
‖2,1 = ∑

j∈Ǎc
1
‖γ 1j‖2 and γ1j is the j th row of �1).

By Proposition A.6 in the Appendix, given the objective (3.5), the assumption of (4.5) is well
defined as ‖�1,A‖2,1 is unique.

Under the weaker condition of (4.5), on the one hand, S(T ,C)|X is not strictly sparse ac-
cording to the definition of active variables in Section 3; on the other hand, as the magnitude
of �1 in Ǎc

1 is relatively small, it is still possible to approximate the (nonsparse) S(T ,C)|X
by a sparse model. Therefore, the extended setting here, to some extent, shares the flavor of
both the abundant variable settings in SDR (e.g., Cook, Forzani and Rothman (2012)) and the
approximately sparse conditions in linear models (e.g., Zhang and Huang (2008)). With the
weaker form of sparsity, we have the following theorem.

THEOREM 4.3. Assume Conditions (A1)–(A5) and (A7) hold. Suppose that θ = o(1)

and λ1 = 3c1n

√
log p̄n/n with equal weights wj = 1 for 1 ≤ j ≤ p, where c1n is defined as

in Theorem 4.1. Then the DS estimator satisfies

(4.6) ‖PS
�̂1

− PS(T ,C)|X‖F = Op

(
max

{(
b̄ + q

1/2
1

)√
q1 log p̄n/n, θ

})
.

In addition, suppose that θ = O(b̄
√

q1 log p̄n/n) and θ = O(q1
√

log p̄n/n)) and further as-
sume that the additional conditions of Theorem 4.2 hold. Then the DASH estimator satisfies
the consistency properties of (4.3) and (4.4).

In particular, if θ = 0, (4.5) reduces back to the strict sparsity conditions for S(T ,C)|X in
Section 3.3, and the convergence result of (4.6) becomes the same as (4.1) in Theorem 4.1.
If θ is positive but converges to 0, by approximating S(T ,C)|X with a parsimonious model
from the DS method, we also note that the final DASH estimator may still be consistent for
estimation of ST |X, at some possible cost of the convergence rate.
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4.3. Local KM estimator. As discussed in Section 3.2, with �̂0 available, we can subse-
quently apply popular nonparametric estimation methods to estimate Q(t |x). In the follow-
ing, suppose the local KM estimator (3.4) with Nadaraya–Watson kernel weighting scheme is
applied. Similar to Ŝ(t |x), we assume same techniques with uniform kernel are used, but we
can generalize the results to other kernel function choices. The following theorem provides a
uniform estimation consistency result for Q(t |x).

THEOREM 4.4. Suppose the conditions of Theorem 4.2 are satisfied. Then given any
x0 ∈ X , the local KM estimator satisfies

(4.7)

sup
t∈[0,T0)

∣∣Q̂(t |x0) − Q(t |x0)
∣∣

= Op

(
(bq)1/2

(
log p̄n

n

) 1
2+d1 + (

b̄q
1/2
1 + q1 + b1/2)(bq log p̄n

n

)1/2)
.

By employing the Nadaraya–Watson based local KM estimator, the consistency rate upper
bound obtained in Theorem 4.4 is the same as that of (4.3). Likewise, when b, b̄ and q1 are

all upper bounded, the local KM estimator can converge at the rate of Op((log p̄n/n)
1

2+d1 ).
It is worth noting that other nonparametric methods may also be applied to estimate Q(t |x).
For example, histogram-based local KM method may be used and we can provide a similar
uniform estimation error bound for Q(t |x), which is left in Supplement I.5.

COROLLARY 4.1. Suppose the conditions of Theorem 4.2 are satisfied. Then given any
x0 ∈ X and 0 < τ < 1, the τ th conditional quantile estimator Q̂T (τ |x0) = sup{t : Q̂(t |x0) <

1 − τ } is a consistent estimator for QT (τ |x0).

With the estimated survival function, we naturally obtain a consistent estimator for con-
ditional quantiles of the survival time as described in Corollary 4.1. Beyond all these con-
sistency results, post selection inference on SDR (with censored data) may need to directly
involve the set of selected variables besides central subspace estimation error; it is an inter-
esting yet challenging problem in its own right, which is left for future studies.

5. Computation. As we described in Section 3, the algorithm for the DASH method
involves a DS estimation step followed by an IPCW based step. We summarize the procedures
for DASH in Algorithm 1.

Algorithm 1 DASH method for censored data
1. An initial DS estimation step

(a) Construct the kernel matrix Û1 and covariance estimation �̂n.
(b) Given d1, λ̃1 and λ1, find minimizer (�̂1, �̂1) of (3.6).

2. An IPCW-based estimation step

(a) Given hn, apply the local KM estimation method with the DS estimator to find
Ŝ(t |Xi) by (3.7).

(b) Construct the kernel matrix Ûc.
(c) Given d , λ̃ and λ, find minimizer (�̂0, �̂0) of (3.2).

3. Apply a nonparametric method discussed in Section 3.2 to estimate Q(t |X).
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It remains to consider two practically important issues: (1) how to find proper values for
tuning parameters and structural dimensions (d1, λ̃1, λ1), hn and (d, λ̃, λ); (2) how to solve
optimization problems for the objective functions (3.2) in Step 2(c) and (3.6) in Step 1(b).
Accordingly, we propose the procedures of tuning parameters and structural dimension de-
termination in Section 5.1. Section 5.2 explains the algorithm used to solve (3.2), which is
also applicable to solving Step 1(b).

5.1. Tuning parameter and structural dimension selection. We propose to use cross-
validation (CV) procedures to determine (d1, λ̃1, λ1), hn and similarly (d, λ̃, λ) in their re-
spective steps. As discussed in Yang (2007), CV is often considered as a natural approach for
complicated nonparametric procedure/model comparison purposes. As will be seen, the main
challenge of applying CV is that the true survival time is not always observable. We propose
a new sequential data-driven approach that integrates inverse weighting ideas for prediction
error measurements (Gerds and Schumacher (2007)) into the parameter/dimension determi-
nation. Since (d1, λ̃1, λ1) can be chosen by procedures similar to that of (d, λ̃, λ), for brevity,
we next assume (d1, λ̃1, λ1) has been chosen, and only describe in detail how to find hn and
(d, λ̃, λ) sequentially. Suppose the data is partitioned into K folds, and denote the nonover-
lapping index set of each fold by I1, . . . ,IK ⊂ {1, . . . , n}. Let Zk be the validation set in the
kth fold and Z(−k) be the estimation set excluding the kth fold.

5.1.1. Determining hn. We intend to find hn used in Step 2(a). Given a specified time
point τm (e.g., τm = median(Yi)), define δ∗ = I (C > τm). For each candidate hn, we esti-
mate E(δ∗ |X) = S(τm |X) by the local KM estimation using the estimation set Z(−k), and
denote this estimator by Ŝ(−k)(τm |X, hn). Then we define the prediction mean square error
MSE(hn) := E[δ∗ − Ŝ(−k)(τm |X, hn)]2. With the censored data, δ∗ is not always observed.
As a solution, MSE(hn) can be equivalently written as E[δ∗ − Ŝ(−k)(τm |X, hn)]2W , where

W = I (Y>τm)
Q(τm |X)

+ I (Y≤τm)(1−δ)
Q(Y |X)

is a weighting variable. Consequently, given a set G of candi-
dates hn’s, we can now determine the parameter hn = hopt by

(5.1) hopt := arg min
h∈G M̂SE(h) = arg min

h∈G
1

n

K∑
k=1

∑
i∈Ik

Ŵi

(
δ∗
i − Ŝ(−k)(τm |Xi , h)

)2
,

where Ŵi = I (Yi>τm)

Q̃(τm |Xi )
+ I (Yi≤τm)(1−δi )

Q̃(Yi |X)
and Q̃(t |X) is a local KM estimation of Q(t |X) using

the reduction �̂T
1 X. Since our computation is all based on dimension reduced predictors,

selection for hn is computationally fast.

5.1.2. Determining (d, λ̃, λ). In Step 2(c), to find (d, λ̃, λ), we again apply specialized
sequential CV and the aforementioned weighting techniques to naturally handle performance
evaluation. Specifically, we perform the following steps:

(i) Given a candidate d and a sequence of candidate λ̃’s, using data Z(−k) (k = 1, . . . ,K)
with wj = 1 (j = 1, . . . , p), compute the solution path of (3.2) and denote the estimators by
(�̃(−k), �̃(−k)).

(ii) With Z(−k) and �̃(−k), compute the local KM estimator Q̂�
(−k)(t |X) for Q(t |X)

based on the reduction �̃T
(−k)X. The bandwidth for Q̂�

(−k)(t |X) is automatically determined
by a CV within Z(−k) using similar procedures as in Section 5.1.1 by switching the roles of
T and C.
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(iii) With each candidate (d, λ̃) and their corresponding Q̂�
(−k)’s, evaluate the out-of-

sample prediction performance by computing

(5.2) M̂SE2(d, λ̃) := 1

n

K∑
k=1

∑
i∈Ik

Ŵ �
i

(
δ�
i − Q̂�

(−k)(τm |Xi)
)2

,

where δ�
i = I (T > τm) and Ŵ �

i = I (Yi>τm)

Ŝ(τm |Xi )
+ I (Yi≤τm)δi

Ŝ(Yi |Xi )
.

(iv) With (d, λ̃) chosen by minimal (5.2), compute (3.2) with the whole data to find �̃0.
Then set wj = ‖γ̃ 0j‖−ρ

2 and repeat Steps (i)–(iv) with the previously selected d to determine
λ.

The determination of (d1, λ̃1, λ1) is obtained similarly. But the detailed procedures are
slightly different and simpler because DS does not involve the delicate survival function
estimation issues. Accordingly, in Step (ii), rather than using the local KM estimator, we
apply the tree classification (Breiman et al. (1984)) with pruning to predict the response slice;
in Step (iii), rather than using M̂SE2(d, λ̃), we compute slice classification errors to evaluate
prediction performance.

Since (d1, λ̃1, λ1), hn and (d, λ̃, λ) are determined sequentially instead of combinatorially
and nonparametric estimation method like local KM estimation and tree classifications are
all performed on dimension reduced covariates, these important tuning parameters are thus
automatically determined in our algorithm in a computationally efficient way.

5.2. Objective function optimization. To solve (3.2) in Algorithm 1, we employ an itera-
tive algorithm, where a Stiefel manifold optimization is directly embedded into a paralleliz-
able coordinate descent to update � and � iteratively until convergence. This optimization
algorithm is motivated by Qian, Ding and Cook (2018) for SDR optimization problems with
complete data, and is computationally efficient without inverting any large covariance. For
presentation brevity, we leave the detailed algorithm and rationales in Supplement II.1.

6. Simulation studies. In this section, we evaluate the numerical performance of DASH
along with the DS procedure for censored data in high dimension.

6.1. Performance with different covariance estimation. Unless stated otherwise, we use
the following candidate parameters in our simulation and real data experiments: For λ̃, λ,
λ̃1 and λ1, we use a sequence of 50 values between 0.01 and 1 that are evenly spaced in the
logarithmic scale. Similarly, for hn, we use a sequence of 20 values between 0.1 and 1 that are
evenly spaced in the logarithmic scale. The candidates for d1 and d are {1,2,3}. In addition,
we simply set b1 = b = 5, b0 = 2, τm = median(Yi) and ρ = 0.5. Gaussian kernel was used
for the estimation of S(t |X) and Q(t |X).

In the following, we set n = 200 and p = 1000. The covariate vector X was generated
from a multivariate normal distribution with mean zero and covariance matrix � that has an
exponential decay structure, such that [�]i,j = 0.5|i−j |, i, j = 1, . . . , p. The survival time T

was generated from the linear transformation model T = exp(−2.5 + βT X + 0.25ε), where
β = (1,1,1,1,1,0, . . . ,0)T , and the error ε follows the standard extreme value distribution
ε = log[− log(1 − U)] with uniformly distributed U on [0,1]. This corresponds to both an
AFT and proportional hazards model. The censoring time C was generated in two scenarios:
Case 1: C = exp(−2 + βT X + 0.5ε1);Case 2: C = exp(−1 + βT

1 X + 0.5ε1), where β1 =
(0, . . . ,0,1,1,1,1,1), and ε1 takes the extreme value distribution and is independent of ε.
The censoring rates are on average about 27% for Case 1 and 40% for Case 2. It can be
seen that in Case 1, ST |X = S(T ,C)|X = Span(β), and thus DS can be directly applied to
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TABLE 1
Comparison of different estimations based on 100 runs

Frequency (%)

Cases Method
Averaged

Frobenius-norm loss d = 1 d = 2 d = 3 Cv ICv

Case 1 Oracle – 100 0 0 5 0
SC-DS 0.265 (0.010) 100 0 0 5.00 1.00

SC-DASH 0.323 (0.012) 100 0 0 4.99 0.31
TC-DS 0.191 (0.010) 100 0 0 5.00 0.42

TC-DASH 0.220 (0.011) 100 0 0 5.00 0.33

Case 2 Oracle – 100 0 0 5 0
SC-DS 0.735 (0.051) 5 94 1 4.99 13.97

SC-DASH 0.384 (0.035) 85 15 0 4.94 1.80
TC-DS 0.672 (0.050) 13 87 0 5.00 7.68

TC-DASH 0.278 (0.030) 86 14 0 4.99 1.10

estimate the target ST |X, while in Case 2, ST |X = Span(β) is a proper subspace of S(T ,C)|X =
Span(β,β1) and DASH is required to estimate the true central subspace.

We examined both DS and DASH in the high-dimensional setting with covariance matrix
� estimated by sample covariance (SC) and thresholded covariance (TC), respectively. We
denote them by SC-DS, SC-DASH, TC-DS and TC-DASH. The thresholded covariance is
obtained by a univariate lasso-type thresholding rule in Rothman, Levina and Zhu (2009)
designed for (approximately) sparse covariance matrix estimation. We recorded the estimated
structural dimension d , and used Frobenius norm loss of projection matrix ‖PŜT |X − PST |X‖F

to evaluate the estimation accuracy of the central subspace. To quantify variable selection
performance, we used Cv to denote the number of correctly identified active variables, and
ICv to denote the number of incorrectly identified active variables. The procedure above was
repeated 100 times for each model and the results are summarized in Table 1.

The empirical results showed that when ST |X = S(T ,C)|X (Case 1), both methods success-
fully identified relevant variables with relatively low ICv rates, and correctly selected the
structural dimension. As expected from the equivalence of ST |X and S(T ,C)|X in this exam-
ple, DS resulted in central subspace estimation similar to or slightly better than that of DASH.
However, in Case 2 when ST |X ⊂ S(T ,C)|X, DS tends to estimate the larger space S(T ,C)|X and
thus predominantly suggested larger structural dimensions than the truth of targeted ST |X.
Therefore, DS resulted in much higher estimation error in central subspace estimation and
selected larger number of irrelevant variables than that of DASH. In practice, since the rela-
tionship between ST |X and S(T ,C)|X is unknown, we suggest using the DASH method rather
than simply stopping at double slicing: if the selected dimension of DASH is the same as that
of DS, one may adopt results of DS for central subspace estimation and variable selection;
on the other hand, if the selected dimension of DASH is smaller, we adopt final results from
DASH. The thresholding covariance methods TC-DS and TC-DASH gave better estimation
results than their sample covariance counterparts, suggesting potential gain by imposing the
extra covariance thresholding step if covariance matrix is sparse.

6.2. Conditional quantile estimation. Since the proposed methods have the potential to
facilitate nonparametric estimation of conditional survival functions and consequently con-
ditional quantile functions, we further evaluated the numerical performance in estimating
conditional quantile functions under nonlinear and heteroscedastic scenarios. Due to space
constraint, we leave detailed numerical results in Supplement II.2.1.
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FIG. 1. True survival functions Q(t |x) for some different covariate values x. Left panel: Case A; Right panel:
Case B.

6.3. Simulation examples with possible model misspecification. It is well known that the
Cox proportional hazard model requires the relative effect of covariates to be unchanged
over time. Next, we provide example case studies where this assumption does not hold.
Specifically, with p = 1000, consider the following two hazard functions for T : (Case A)
h(t |X) = exp(−2βT X + |βT X|t) and (Case B) h(t |X) = exp(−(2 + βT

2 X)2 + (βT
2 X)2t),

where β = (1,1,1,1,1,0, . . . ,0)T , β2 = (1,1,1,0, . . . ,0,1)T and X = (X1, . . . ,Xp)T con-
sists of i.i.d. standard normal variables. Unless stated otherwise, our simulation sample size is
set at n = 200. For both cases, we have dim(ST |X) = 1, but the proportional hazard assump-
tion is not satisfied. Indeed, for each case, its survival functions Q(t |x) at three different
covariate values (denoted by x1, x2 and x3) are given in Figure 1, where x1, x2 and x3 corre-
spond to the first quartile, median and third quantile of βT X (or βT

2 X) from a simulated data
set. We observed the “crossing” pattern in both cases.

In the following, we consider various censoring time and covariate generating scenarios
under possible model misspecification settings in Sections 6.3.1–6.3.2. Due to space con-
straint, additional scenarios and related numerical results are left to Supplements II.2.2–II.2.6.

6.3.1. Large structural dimension d1. First, for Case A, let C = exp(2+βT
3 X+ε), where

β3 = (1,1,1,1,0, . . . ,0)T and ε is the random error; for Case B, let C = exp(3 + β4X + ε),
where β4 = (0, . . . ,0,1,1,1)T . We consider two different choices of the random error (Lu
and Li (2011)): (PH) the extreme value distribution ε = log[− log(1 − U)] and (PO) the
logistic distribution ε = log[U/(1 − U)], where U is uniform distribution on [0,1]. Both
cases have d1 = dim(S(T ,C)|X) = 2, and we denote these censoring time scenarios by Case A0
and Case B0, respectively. In contrast, it is also possible to encounter scenarios with relatively
large d1. For example, for Case A, consider C = exp(2 + βT

3 X + 0.5X4X5 + 0.1X2
6 + ε); for

Case B, consider C = exp(3 + βT
4 X + 0.5X4X5 + 0.1X2

6 + ε). Then both cases have d1 = 5,
and we denote them by Case A1 and Case B1, respectively.

When true d1 is relatively large, as the local KM method is involved in our estimation
for conditional survival function of censoring time, by the curse of dimensionality and The-
orem 4.2, it is expected that the use of a smaller (or underestimated) d1 can often lead to
better empirical results. Similar practice has been adopted in classical work of SDR survival
models: for example, Xia, Zhang and Xu (2010) introduced a “working dimension” to find
reduced space to apply kernel estimation for survival function of Y ; Lu and Li (2011) applied
a proportional hazard model to implement the estimation of survival function of C.

Accordingly, to illustrate the performance with possibly underestimated d1, we simply set
d1 = 2 for the DS step, which is correct for Cases A0 and B0 but is underestimated for Cases
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TABLE 2
Averaged simulation results with relatively large structural dimension d1

PH PO

Case Method Frobenius-norm loss Cv ICv Frobenius-norm loss Cv ICv

A0 Oracle – 5 0 – 5 0
(d1 = 2) Coxnet 1.31 (0.01) 1.02 5.44 1.30 (0.01) 1.1 6.45

DS 1.21 (0.01) 4.77 29.90 1.24 (0.01) 4.87 38.88
DASH 0.63 (0.02) 4.76 8.88 0.65 (0.02) 4.83 11.35

B0 Oracle – 4 0 – 4 0
(d1 = 2) Coxnet 1.33 (0.01) 0.53 3.81 1.35 (0.01) 0.45 3.68

DS 1.15 (0.01) 3.94 14.74 1.18 (0.01) 3.84 16.27
DASH 0.52 (0.02) 3.88 3.53 0.47 (0.02) 3.84 3.47

A1 Oracle – 5 0 – 5 0
(d1 = 5) Coxnet 1.32 (0.01) 0.78 5.05 1.29 (0.01) 1.00 4.84

DS 1.18 (0.01) 4.78 24.55 1.22 (0.01) 4.82 32.33
DASH 0.59 (0.02) 4.77 8.35 0.65 (0.02) 4.82 10.25

B1 Oracle – 4 0 – 4 0
(d1 = 5) Coxnet 1.34 (0.01) 0.39 3.62 1.38 (0.01) 0.34 2.99

DS 1.20 (0.01) 3.80 18.39 1.19 (0.01) 3.88 18.19
DASH 0.55 (0.02) 3.78 3.71 0.47 (0.02) 3.85 3.48

A1 and B1. Sample covariance estimation is used for both DS and DASH. The averaged
simulation results over 100 runs summarized in Table 2 show that, like in Cases A0 and
B0, DASH remains to perform reasonably well in both estimation and variable selection for
Cases A1 and B1 despite our use of underestimated d1. In practice, a user may adopt the CV
procedure of Section 5.1.2 to determine d1 (DASH gives similar results and the details are
thus omitted). On the other hand, the benchmark Coxnet method (Simon et al. (2011)) does
not give satisfactory results in these case studies.

In addition, we considered two other case examples (Case 5 and Case 6) with misspecified
(underestimated) d1, which also showed reasonable numerical performance by DASH. We
leave the detailed results including bootstrap confidence intervals in Supplement II.2.5 and
Table II.3.

6.3.2. Approximately sparse central subspace. As seen from above, different from the
penalized Cox model (Coxnet) or other partial likelihood related methods, our proposal does
not assume the proportional hazard or require a specific model form, and is therefore in-
tended to be robust to model misspecification in this perspective (which is different from the
Coxnet’s robustness to model misspecification; e.g., Lu, Goldberg and Fine (2012)). In addi-
tion, as is pointed out in Remark 4.1, although we require sparsity in the central subspace, our
proposal can be extended to an “approximately” sparse scenarios where a large number of
variables are active for S(T ,C)|X but S(T ,C)|X can be approximated by a more sparse structure.
In the following, we provide numerical illustration on the “approximately” sparse scenarios.

Modifying the settings in Section 6.3.1, under Case A of T , assume C = exp(2+β̃
T

3 X+ε),
where β̃3 = β3 + 1√

m
δA, and δA ∈ Rp has its first 100 elements being 1 and the other elements

being 0; denote this censoring time scenario by Case A2. Similarly, under Case B of T ,

assume C = exp(3 + β̃
T

4 X + ε), where β̃4 = β4 + 1√
m

δB , and δB ∈ Rp has its first and last
50 elements being 1 and the other elements being 0; denote this censoring time scenario by
Case B2. Set m = 20,100 or 500. Clearly, larger m indicates better approximation and smaller
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TABLE 3
Averaged simulation results with approximately sparse central space

PH PO

Case m Method Frobenius-norm loss Cv ICv Frobenius-norm loss Cv ICv

A2 Oracle – 5 0 – 5 0
20 Coxnet 1.38 (0.01) 0.41 3.52 1.37 (0.01) 0.51 4.38

DS 1.33 (0.01) 4.81 68.54 1.26 (0.01) 4.84 47.85
DASH 0.83 (0.02) 4.64 13.77 0.76 (0.02) 4.77 13.09

100 Coxnet 1.35 (0.01) 0.50 3.21 1.35 (0.01) 0.68 4.52
DS 1.23 (0.01) 4.79 40.27 1.22 (0.01) 4.81 32.49

DASH 0.70 (0.02) 4.77 11.00 0.66 (0.02) 4.79 8.92

500 Coxnet 1.34 (0.01) 0.44 2.65 1.30 (0.01) 1.09 6.17
DS 1.21 (0.01) 4.77 35.61 1.20 (0.01) 4.82 27.58

DASH 0.67 (0.02) 4.76 11.50 0.62 (0.02) 4.80 9.11

B2 Oracle – 4 0 – 4 0
20 Coxnet 1.37 (0.01) 0.19 2.02 1.39 (0.01) 0.19 2.60

DS 1.34 (0.02) 3.49 43.80 1.33 (0.02) 3.65 39.82
DASH 1.02 (0.03) 3.00 10.46 0.83 (0.03) 3.28 6.68

100 Coxnet 1.35 (0.01) 0.25 2.40 1.38 (0.01) 0.32 3.80
DS 1.22 (0.01) 3.84 20.77 1.24 (0.02) 3.80 22.83

DASH 0.64 (0.03) 3.76 4.55 0.55 (0.03) 3.75 3.68

500 Coxnet 1.36 (0.01) 0.33 4.11 1.36 (0.01) 0.24 2.73
DS 1.19 (0.01) 3.86 18.33 1.18 (0.01) 3.83 17.81

DASH 0.58 (0.03) 3.83 4.65 0.45 (0.02) 3.83 2.95

deviation of S(T ,C)|X in Case A2 (or B2) from the original sparsity structure in Case A0 (or
B0). We kept other simulation settings the same as that of Section 6.3.1, and summarized the
results in Table 3.

Compared to Coxnet, the DASH method can still provide reasonable results in both esti-
mation and variable selection even though some relevant variables got missed in estimation
of the censoring time probability. Meanwhile, as the DASH estimation is partially influenced
by the central subspace estimation errors in the first DS step, in alignment with Theorem 4.3,
the DASH estimation errors tend to decrease as we decreased the relatively weak signals by
increasing m from 20 to 500. We expect similar phenomenon applies to approximately sparse
scenarios for the survival time probability as well. To some extent, these numerical results
provide some evidence that the DASH method may often be applicable when the central sub-
space violates the strict sparsity assumption and some relevant variables (with weak signals)
are missed.

7. A real data example. In this section, we describe our analysis on the kidney renal
clear cell carcinoma (KIRC) data, which was downloaded directly from the National Can-
cer Institute’s GDC Data Portal platform (https://portal.gdc.cancer.gov/) under project ID
TCGA-KIRC. The KIRC data contains 530 patients with clinical information (including sur-
vival time and censoring time) as well as their gene expressions based on 57,251 genes from
the next-generation sequencing technique known as RNA-Seq. Considering that RNA-Seq
contains count data with unique structures including high skewness with many zeros, widely
different sequencing depth and over-dispersion, we performed data preprocessing steps, the
description of which is left in Supplement II.3. The cleaned data after preprocessing has
p = 2962 genes and sample size n = 265 in both training and testing sets.

https://portal.gdc.cancer.gov/
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FIG. 2. Loadings of regression directions for DASH. Column labels are the gene names. The solid lines represent
relative magnitude and sign of the loading values, and the dashed lines represent 0.

We then applied the proposed DASH method along with the DS procedure to the cleaned
training set to obtain the estimated basis �̂0 and �̂1, respectively. We also applied the Coxnet
method as a benchmark, which implicitly assumes d = 1 under the parametric Cox model.
Both DS and DASH methods chose structural dimension d = 2, and the number of selected
genes (#Var) are given in Table 3, with DASH having the smallest model size among the three.
In particular, we plot loadings of the two directions (denoted by DR1 and DR2) of �̂0 by a
heatmap in Figure 2, with names of the selected genes marked under the corresponding cells.
Interestingly, we found that multiple selected genes such as ENSG00000131778 (CHD1L,
Cheng, Su and Xu (2013)) and ENSG00000181449 (SOX2, Santini et al. (2014)), among
others, have been recently reported as useful prognostic biomarkers.

In the following, we show that the basis estimators of DS and DASH methods indeed
performed well in predicting KIRC patient’s cancer prognosis. Specifically, with DS and
DASH estimators given above, the sufficient predictors had dimension d = 2, and we used
the training data to build a gradient boosting machine (GBM; Friedman (2001)), where a
proportional hazard model h(t |X) = h0(t) exp(R(Z1,Z2)) is assumed with (Z1,Z2) being
the sufficient predictors, R(Z1,Z2) is the general (nonlinear) link function that can be viewed
as a patient’s risk score, and h0(t) is a base hazard function. The DASH link function surface
in Figure 3 exhibited nonlinear patterns of the two sufficient predictors, as opposed to the
linear assumption of Coxnet (the DS showed similar nonlinear patterns and is thus omitted).

Using the models built above, we then computed the risk scores for all patients in the
testing set and assigned them into the “high-risk” and “low-risk” groups using the median of
the training-set risk scores as the cutoff. In Figure 4(a) and Figure 4(b), we plotted the testing-
set KM estimator curves and their confidence interval curves of the two groups generated

FIG. 3. Link function R(Z1,Z2) from GBM using DASH predictors.
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FIG. 4. The testing set Kaplan–Meier curves of segmented patient groups. (a) DS method; (b) DASH method. In
both panels, the thin lines represent “high-risk” group and the thick lines represent “low-risk” group. The dashed
lines are the confidence interval curves.

from DASH and DS methods, respectively. We also performed log-rank tests to compare
survival functions of the two groups and showed p-values in Table 3. Both the KM curves
and p-values obtained from our methods confirmed that the high-risk and low-risk groups
segmented by the risk scores indeed had significantly different prognostic patterns.

Furthermore, we evaluated the risk scores computed above by the time-dependent receiver
operating characteristic (ROC) curve analysis (Heagerty, Lumley and Pepe (2000)). Using
median(Y ) of the training set as the cutoff time point, we considered sensitivity-specificity
curves constructed using the testing set, and the corresponding areas under curve (AUC) are
listed in Table 3. Satisfactorily, DS and DASH performed very competitively compared to
the benchmark. It is not surprising that DS can perform well in this example given that it
selected the same structural dimension as DASH. In addition, our evaluations on prediction
performance showed similar patterns and advantages, the details of which are left in Supple-
ment II.3.

8. Concluding remarks. We propose a promising model-free double-slicing assisted
SDR method for high-dimensional censored data, which is a flexible alternative to exist-
ing model-based approaches, such as high-dimensional Cox models. The new development
achieves simultaneous dimension reduction and variable selection while preserving full in-
formation for the distribution of T |X. With new technical tools to handle censored response,
we establish both estimation consistency and variable selection consistency that allow p to
grow exponentially with n, and obtain uniform convergence for the nonparametric survival
function estimation. As evidenced by numerical studies, our model-free proposal can greatly
facilitate the practical application of robust nonparametric approaches in the estimation of
conditional survival functions with high-dimensional covariates.

APPENDIX: PROPOSITIONS

PROPOSITION A.1. Suppose the central subspace ST |X exists and is unique. Then the
set of active variables A0 for ST |X is also unique.
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PROPOSITION A.2. Given the objective function

(A.1)
F(�,�) = tr

{
(Uc − ���)T �−1(Uc − ���)

}
subject to ��T = Id,

where � ∈ Rp×d and � ∈ Rd×b are parameters. Let (�0,�0) be any minimizer of (A.1).
Then �0 ∈ Rp×d forms a basis matrix of ST |X and �0 is the corresponding coordinate matrix.

PROPOSITION A.3. Let A0 be the set of active variables for ST |X and let �0 be a basis
matrix of ST |X. Then conditional on XA0 or �T

0 X, T and C are independent.

PROPOSITION A.4. Let �̂ = �̂0�̂0. Suppose �̂01 ∈ Rp×d is the semiorthogonal matrix
consisting of left-singular vectors of �̂ with the nonzero singular values. If ‖�̂ − Ũc‖F → 0
as n → 0 and Condition (C5) holds, then for large enough n, there exists a basis �0 of ST |X
such that

(A.2) ‖�̂01 − �0‖F ≤ √
2
∥∥sin�(S

�̂
,ST |X)

∥∥
F ≤ ca‖�̂ − Ũc‖F ,

where ca > 0 is some constant, and �(S
�̂
,ST |X) is d × d diagonal matrix in which the j th

diagonal entry is the j th principle angle between S
�̂

and ST |X.

PROPOSITION A.5. The coverage S(Y,δ)|X ⊇ S(T ,C)|X holds if and only if ST |X ⊆ S(Y,δ)|X
and SC|X ⊆ S(Y,δ)|X.

PROPOSITION A.6. Let �1 be any minimizer of � in (3.5). Given any index set A ⊂
{1, . . . , p}, let �1,A be the |A| × d1 submatrix of �1 consisting of the rows corresponding to
A. Then given objective function (3.5) and an index set A, we have that ‖�1,A‖2,1 is unique.

Acknowledgment. We would like to thank the Editors, Associate Editor and two anony-
mous referees for their valuable comments that help to improve this manuscript significantly.

The first and second authors were supported in part by NSF Grant DMS-1916376 and
DE-CTR ACCEL/NIH U54 GM104941 SHoRe award.

The third author was supported in part by NSF Grant DMS-1712706.

SUPPLEMENTARY MATERIAL

Supplement to “Double-slicing assisted sufficient dimension reduction for high-
dimensional censored data” (DOI: 10.1214/19-AOS1880SUPP; .pdf). The supplemental
file (Ding, Qian and Wang (2020)) contains proofs, technical details and numerical results.
Supplement I.1 gives proofs of the propositions; Supplement I.2 assembles some useful lem-
mas; Supplements I.3–I.5 provide proofs for the main theorems; Supplement II contains ad-
ditional results on computation, simulation and data analysis.
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