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It is well known that, without restricting treatment effect heterogeneity,
instrumental variable (IV) methods only identify “local” effects among com-
pliers, that is, those subjects who take treatment only when encouraged by the
IV. Local effects are controversial since they seem to only apply to an uniden-
tified subgroup; this has led many to denounce these effects as having little
policy relevance. However, we show that such pessimism is not always war-
ranted: it can be possible to accurately predict who compliers are, and obtain
tight bounds on more generalizable effects in identifiable subgroups. We pro-
pose methods for doing so and study estimation error and asymptotic proper-
ties, showing that these tasks can sometimes be accomplished even with very
weak IVs. We go on to introduce a new measure of IV quality called “sharp-
ness,” which reflects the variation in compliance explained by covariates, and
captures how well one can identify compliers and obtain tight bounds on
identifiable subgroup effects. We develop an estimator of sharpness and show
that it is asymptotically efficient under weak conditions. Finally, we explore
finite-sample properties via simulation, and apply the methods to study can-
vassing effects on voter turnout. We propose that sharpness should be pre-
sented alongside strength to assess IV quality.

1. Introduction. Instrumental variable (IV) methods are a widespread tool for identi-
fying causal effects in studies where treatment is subject to unmeasured confounding. These
methods have been used in econometrics since the 1920s [49], but have only been set within a
formal potential outcome framework more recently [21, 31, 35]. Roughly speaking, an instru-
ment is a variable that is associated with treatment, but is itself unconfounded and does not
directly affect outcomes. An archetypal example is in randomized experiments with noncom-
pliance, where initial randomization can be an instrument for the treatment that was actually
received. IV methods are also used widely in observational studies, where investigators try
to exploit natural randomness in, for example, treatment preference, distance or time. We
refer to Baiocchi, Cheng, and Small [5], Hernán and Robins [18], Imbens [20] for a more
comprehensive review and examples.

Despite their popularity and prevalence, instrument variable methods bring some difficul-
ties that do not arise in studies of unconfounded treatments. In particular, without restricting
treatment effect heterogeneity in some way or adding extra assumptions, one cannot iden-
tify average treatment effects across the entire population. For example, even in the simplest
setting involving a randomized study with one-sided noncompliance (e.g., where subjects
randomized to control cannot access treatment), the treatment effect is nonparametrically
identified only among those who actually receive treatment.

One option then is to pursue bounds on the overall average treatment effect [6, 31, 35]. This
approach is robust, but has been criticized on the grounds that the resulting inferences can
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be so imprecise that they are not helpful for making policy decisions. Others argue that even
wide bounds are useful, by making explicit that any more precision would require further
assumptions [37]. An alternative approach incorporates extra assumptions to achieve point
identification. Classically, this was often accomplished via constant treatment effect assump-
tions within linear structural equation models. More recent generalizations allow for hetero-
geneous treatment effects and nonlinear models based on weaker homogeneity restrictions,
for example, no effect modification by the instrument, or other no-interaction or parametric
assumptions [36, 43]. However, as noted by Tchetgen Tchetgen and Vansteelandt [44], para-
metric identification can be problematic since it a priori restricts the effect of interest, and
such functional form knowledge is not typically available in practice.

Yet another strategy instead assumes monotonicity [21, 35], which rules out the possibility
that the instrument could encourage someone to take control when they would otherwise take
treatment (i.e., rules out so-called defiers). This approach is unique in allowing nonparametric
identification of a causal effect, but only a local effect among the subgroup of compliers, that
is, those subjects who would only take treatment when encouraged by the instrument [2, 21].
These local average treatment effects (LATEs) have generated some controversy, since they
are defined in an unidentified subgroup that is not directly observed; we refer to Imbens [20]
and Swanson and Hernán [42] for a recent debate. The issue is that, for encouraged subjects,
we never get to see whether they would have taken treatment if not encouraged, and vice versa
for unencouraged subjects. Therefore, it is generally unknown whether any given subject is a
complier or not.

One justification for continuing to pursue complier effects is that they allow something
causal to be learned in broken or “second-best” studies with unmeasured confounding, even
without restricting effect heterogeneity [19, 20]. In other words, although complier effects
may not be an ideal target estimand, in reality most observational studies are confounded and
so the ideal is not attainable. Despite this, one might argue, complier effects can still reveal a
piece of the puzzle of the causal structure, and can in principle be used together with bounds
on more standard effects.

However, such justification is not always convincing, yielding some lively debate. Robins
and Greenland [37] stressed early on that the complier subgroup is not identified, and gave
examples where complier effects are not of primary policy interest. Pearl [33] says the com-
plier “subpopulation cannot be identified and, more seriously, it cannot serve as a basis for
policies.” Deaton [11] compares targeting local effects to the drunk who only looks for his
keys near the lamppost, since that is where the light is. Swanson and Hernán [42] state that
complier effects “only pertain to an unknown subset of the population,” and that “as we do
not know who is a complier, we do not know to whom our new policy should apply.” These
kinds of critiques suggest that generalization via complier effects is a hopeless endeavor. In
this paper, we explore whether this is necessarily the case.

1.1. Motivating example. The most common way to judge an instrument’s quality is by
its strength, typically defined as the proportion of compliers P(C = 1) [5], where C is the
unobserved indicator of complier status. However, consider Figure 1.

In this toy example, there is a single covariate X ∼ N(0,1) and three candidate instru-
ments, (Z1,Z2,Z3). All three instruments have exactly the same strength, each yielding 30%
compliers in the population. However, the available information about compliers changes
drastically across the three cases. For the first instrument Z1, it is only known that the prob-
ability of compliance is 30% for each subject, regardless of covariate value. Thus there is no
additional information beyond the marginal strength; this is the worst-case setup often consid-
ered in critiques of complier-specific effects. However, consider the third instrument Z3. For
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FIG. 1. Compliance probability γ (x) = P(C = 1 | X = x) for three equally strong IVs.

this instrument, the covariate X perfectly predicts compliance, so that C = 1(X > 0.5244 . . .)

and the complier-specific effect

E
(
Ya=1 − Ya=0 | C = 1

) = E
(
Ya=1 − Ya=0 | X > 0.5244 . . .

)
is in fact just a conditional effect within an observable subgroup. Therefore, when using
Z3 as an instrument all aforementioned concerns about local effects fall away completely.
Importantly, this fact is not reflected at all in the strength of the instrument. It is also missed by
the first-stage F-statistic, another common measure of instrument quality [8, 40], regardless
of whether modeling assumptions are correct or not; we provide a simulated example in
Appendix A [26]. The second instrument Z2 is an intermediate between Z1 and Z3.

This example raises many interesting questions, which arise more generally in any in-
strument variable study. How can we quantify the extra information afforded by instruments
like Z2 relative to Z1? Can we leverage this information to obtain more accurate guesses of
who the compliers are? Can this help us go beyond local effects and instead identify effects
in observable subgroups? The goal of this paper is to provide answers to these questions.
Overall, we find that pessimism about local effects may be warranted in studies with blunt
instruments. However, our work indicates that many concerns can be ameliorated or avoided
in studies with sharp instruments, even if they are weak.

1.2. Outline and contributions. In this paper, we characterize sharp instruments as those
that admit accurate complier predictions, and tight bounds on effects in identifiable sub-
groups. We present some notation and our assumptions in Section 2. In Section 3, we discuss
the problem of classifying compliers. We propose several complier classification rules, de-
rive their large-sample errors and discuss optimality and estimation. In Section 4, we discuss
using instruments to bound effects in identifiable subgroups, characterize the subgroup that
yields tightest bounds and propose corresponding estimators for these bounds. In Section 5,
we propose a new summary measure of instrument quality called sharpness, which is sepa-
rate from strength, and measures the variation in compliance explained by compliance scores.
We show that sharper instruments yield better identification of compliers and tighter bounds
on effects in identifiable subgroups, and present an efficient nonparametric estimator of the
sharpness of an instrument. Our estimators are based on influence functions so as to yield fast
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convergence rates and tractable inference even when relying on modern flexible regression
methods; all methods are implemented in the npcausal package in R. Finally, in Section 6
we study finite-sample properties via simulation, and apply our methods in a study of effects
of canvassing on voter turnout [17].

2. Notation and setup. We consider the usual instrumental variable setup, where one
observes an i.i.d. sample {O1, . . . ,On} ∼ P with

O = (X,Z,A,Y )

for covariates X ∈ X ⊆ R
p , a binary instrument Z ∈ {0,1}, a binary treatment A ∈ {0,1}

and some outcome Y ∈ [0,1] of interest. We let Y a denote the potential outcome [38] that
would have been observed had treatment been set to A = a, and the goal is to learn about the
distribution of the treatment effect Ya=1 − Ya=0. We also need to define potential outcomes
under interventions on the instrument. Thus let Y za denote the potential outcome that would
have been observed under both Z = z and A = a, and similarly let Az and Y z = Y zAz

denote
the potential treatment and outcome when the instrument is set to Z = z. In the statement of
some of our results, we use the standard statistical big-O notation, as well as the shorthand
a � b to denote a ≤ Cb for some universal positive constant C > 0.

To ease the presentation, we let

πz(x) = P(Z = z | X = x), λz(x) = P(A = 1 | X = x,Z = z),

denote the instrument propensity score and treatment regression, and let

γ (x) = λ1(x) − λ0(x)

denote the corresponding IV-difference.
We let C = 1(Az=1 > Az=0) denote the latent variable indicating whether a subject is

a complier, that is, whether a subject would respond to encouragement by the instrument.
As mentioned in Section 1, C is not directly observed. Nonetheless, it is well known [1, 2,
18] that causal effects among compliers are nonparametrically identified under the following
assumptions.

ASSUMPTION 1 (Consistency). A = ZAz=1 + (1 − Z)Az=0 and Y = ZYz=1 + (1 −
Z)Y z=0.

ASSUMPTION 2 (Positivity). P{ε ≤ πz(X) ≤ 1 − ε} = 1 for some ε > 0.

ASSUMPTION 3 (Unconfounded IV). Z ⊥⊥ (Az,Y z) | X.

ASSUMPTION 4 (Exclusion restriction). Y za = Ya .

ASSUMPTION 5 (Strong monotonicity). P(Az=1 < Az=0) = 0 and P(C = 1) ≥ ε > 0.

(Note the lower-case indices z, a represent arbitrary values of the instrument and treat-
ment.) We refer elsewhere [1, 2, 18] for a detailed discussion of the above assumptions,
which are standard in the literature (as mentioned in Section 1, monotonicity is sometimes
replaced by effect homogeneity or no-interaction assumptions). Assumptions 1–5 imply that
the average effect among compliers (called the local average treatment effect, or LATE) with
V = v (for any subset V ⊆ X) is given by

E
(
Ya=1 − Ya=0 | V,C = 1

)
= E{E(Y | X,Z = 1) −E(Y | X,Z = 0) | V}

E{E(A | X,Z = 1) −E(A | X,Z = 0) | V} .
(2.1)
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This is the kind of local effect discussed in Section 1. Crucially, Assumptions 1–3 and 5 also
imply that the chance of being a complier given covariates is given by

P(C = 1 | X = x) = γ (x)

and so strength is given by μ ≡ P(C = 1) = E{γ (X)}. The function γ (x) has been termed
the “compliance score” [3, 16, 25], and is an example of a “principal score” [13, 14, 24, 41].
Note that the principal score literature typically assumes independence between principal
strata indicators (e.g., C) and potential outcomes, which we avoid here.

3. Classifying compliers. Heuristically, we propose calling instruments sharp when it
is possible to predict compliance well, and obtain tight bounds on effects in identifiable sub-
groups. In this section, we discuss the first of these properties, that is, that of predicting
the latent complier status C based on observed covariate information X. We present several
complier classification rules, characterize their errors and the relations between them, and
discuss optimality. Finally, we present corresponding estimators and discuss estimation error
and large-sample properties.

REMARK 1. Our view is that complier classification can be a valuable tool in practice,
complementary to assessing compliance scores γ on their own. A first reason why it is prag-
matic: it may be simply preferred (e.g., based on ease of interpretation) for practitioners to
inspect a concrete set of likely compliers. Also, as we will discuss shortly, there is one par-
ticular classifier whose predicted compliers can act as surrogates for estimating any complier
characteristic. Another pragmatic justification is that, statistically, complier classification is
at least as easy as compliance score estimation: as in standard classification, one’s score esti-
mates could be severely biased and yet good classification error might still be attainable. For
a trivial example, suppose γ = 0 for all x so there are no compliers, but estimated compliance
scores γ̂ = 0.4 everywhere and so are highly biased; even so, the classifier ĥ = 1(γ̂ > t) is
perfectly accurate for all t ≥ 0.4.

Importantly, classification is also particularly crucial whenever decision-making is re-
quired. For example, from a policy perspective, encouraging noncompliers may be wasted
effort since noncompliers will by definition have the same behavior regardless of encourage-
ment. Thus one could consider the following two-stage treatment policy: first, compliance
status is predicted, and then treatment is recommended only to those predicted compliers
who are expected to benefit. Complier classification could also be useful for simultaneously
minimizing noncompliance and increasing generalizability in experiments: for example, one
could run a doubly randomized preference trial [32] where those subjects who are predicted
to be compliers are randomized to the experimental arm with a higher probability, whereas
predicted noncompliers are randomized to the observational arm with a higher probability.
We aim to explore the use of complier classification in these specific decision-making con-
texts in detail in future work.

3.1. Classifiers and properties. As noted earlier, although compliers are not strictly iden-
tified it is possible to predict compliance status based on the fact that Assumptions 1–3 and 5
suffice to ensure that

P(C = 1 | X = x) = γ (x).

As stated in the following proposition, we can similarly identify the classification error
E(h) = P(C 	= h) for any given complier classification rule h, which we define as an ar-
bitrary measurable function h : X 
→ {0,1} mapping the covariates to a binary prediction.
As discussed further following (3.3), this proposition and subsequent results generalize in a
natural way to classifiers that are stochastic.
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PROPOSITION 1. For any complier classification rule h : X 
→ {0,1}, the corresponding
classification error E(h) = P{C 	= h(X)} is identified under Assumptions 1–3 and 5 as

E(h) = E
[
γ (X)

{
1 − h(X)

} + {
1 − γ (X)

}
h(X)

]
.

A proof of Proposition 1 and all other results can be found in the Appendix [26]. Although
the compliance score has been discussed in the literature since at least Follmann [16] and
Joffe et al. [25], we have not seen it used before for the specific purpose of predicting who
the compliers are, nor have we seen any discussion of the error of this task. In contrast, most
work seems to focus on the related but separate problem of estimating complier character-
istics, such as E(X | C = 1) [1, 5]. As explained above, we feel compliance classification is
practically important and yet understudied, particularly for so-called sharp instruments that
allow for accurate prediction. If the error E(h) can be made small, then it is possible to know
who the compliers are quite precisely. A main point of this paper is to formalize this and
show that it is possible for compliers to be accurately classified even with weak instruments.

The optimal classifier h0 in terms of minimizing the error E(h) is given by the Bayes
decision function

(3.1) arg min
h:X 
→{0,1}

E(h) = 1
{
γ (x) > 1/2

} ≡ h0(x).

The proof of this fact follows from the same logic as in standard classification problems [12].
Shortly, we will discuss estimation of the Bayes decision via the plug-in estimator 1(γ̂ >

1/2). One could also consider empirical risk minimizers of the form

ĥ = arg min
h∈H

Ê(h)

for an appropriate class H (e.g., linear classifiers) and estimator Ê(h) of the error. We leave
this to future work, only considering plug-in classifiers in this paper.

Despite its simplicity and optimality (with respect to classification error), the rule h0 may
have some practically unfavorable properties in the setting of complier classification. In par-
ticular, the set of putative compliers returned by h0 could have a very different size compared
to the true set. We call classifiers strength-calibrated if they output sets with the same size as
the true set.

PROPERTY 1. A complier classification rule h : X 
→ {0,1} is strength-calibrated if

(P1) P
{
h(X) = 1

} = P(C = 1).

If for no other reason, strength calibration can be important in complier classification sim-
ply because strength μ = P(C = 1) is such a fundamental quantity in instrumental variable
problems. Strength is often the primary criterion used to judge instrument quality, since the
more compliers there are, the more subjects there are for whom the local effect is relevant,
and so the more meaningful and generalizable the effect is. Thus one might prefer to trade off
some error for a classification rule that accurately reflects the underlying size of the complier
population, for instance, in settings where achieving a minimum error threshold is sufficient,
rather than precise minimization.

Similarly, it is possible that the optimal rule h0 would never guess any compliers (i.e.,
h0 = 0 with probability one), which could be unfavorable for a practical analysis. For ex-
ample, suppose γ = μ = 49%, or that the covariate X was uniform and γ (x) = x/2. Then
the optimal rule h0 would return the empty set in both cases, even though the proportion of
compliers is nearly one-half and a quarter, respectively. The empty set could be an unsatisfy-
ing result for a practitioner who was curious about identifying which particular subjects were
compliers.
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A simple strength-calibrated rule is given by the quantile-threshold classifier

(3.2) hq(x) = 1
{
γ (x) > q

}
,

where q = F−1(1 − μ), and F(t) = P{γ (X) ≤ t} is the cumulative distribution function of
the compliance score. The rule hq simply predicts that the 100μ% of subjects with the highest
compliance scores are the compliers. That hq is strength-calibrated follows since

P(hq = 1) = P
{
F(γ ) > 1 − μ

} = 1 − (1 − μ)

because F(γ ) follows a uniform distribution. Here, we have assumed there exists an exact
(unique) quantile q such that F(q) = 1 − μ; when this does not hold, one could instead en-
force a weaker condition like P(h = 1) ≥ P(C = 1). In the next subsection, we show that
when there is a unique quantile, no other strength-calibrated rule can achieve a better classi-
fication error than hq .

One could similarly consider rules of the form ht (x) = 1{γ (x) > t} for a generic t ∈ [0, q],
if a finer trade-off between classification error and size is required, for example, if the increase
in classification error when moving from h0 to hq is too severe.

Another restriction that may be useful to consider in complier classification problems is
that of ensuring the covariate distributions among the predicted and true compliers are the
same. We call this distribution-matching.

PROPERTY 2. A complier classification rule h : X 
→ {0,1} is distribution-matched if

(P2) P
{
X ≤ x | h(X) = 1

} = P(X ≤ x | C = 1) ∀x.

Distribution matching is useful as it allows practitioners to query the covariate distribution
among predicted compliers to learn about the true complier distribution. This provides a
user-friendly method for assessing complier characteristics, which can be an alternative to
direct estimation via the identifying expressions given for example by Abadie [1]. Strength-
calibration and distribution-matching together imply that P(X ≤ x | h = 0) = P(X ≤ x | C =
0), so the statistician can also estimate prevalence ratios [5] like P(X ≤ x | C = 1)/P(X ≤ x)

by simply comparing predicted compliers to the whole sample, that is, by estimating P(X ≤
x | h = 1)/P(X ≤ x) for a distribution-matched classifier h.

In fact, we show in the next subsection that the only rule that is both strength-calibrated
and distribution-matched is the stochastic classifier

(3.3) hs(x) = 1
{
γ (x) > U

} ∼ Bernoulli
{
γ (x)

}
,

where U ∼ Unif(0,1) is an independent draw from the uniform distribution on [0,1]. Note
that hs randomly predicts that a subject with covariates x is a complier with probability γ (x).
To be precise, since hs is stochastic it should really also be indexed by U , as in hs(x) =
hs(x,U). It is implicit that any expectations E(h) = E{h(X,U)} are over both X and U .

3.2. Classifier errors and relations. In the following results, we characterize the errors
of the classifiers hq and hs , show that they are optimal in the classes of strength-calibrated
and distribution-matched classifiers, respectively, and relate their error to the minimal Bayes
error E(h0). Interestingly, the classification error for the stochastic classifier hs takes a simple
form, which equals the quadratic entropy, that is, the asymptotic error of a nearest neighbor
classifier [10, 12].

THEOREM 1. Suppose there is a unique (1 − μ) quantile so that P(γ > q) = μ. Then
for the quantile-threshold classifier hq defined in (3.2) we have

Eq ≡ E(hq) = 2E
[
γ (X)1

{
γ (X) ≤ q

}] ≤ E(h)

for any strength-calibrated h : X 
→ {0,1} with E(h) = μ.
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Further, the only classifier that is both strength-calibrated and distribution-matched is the
stochastic classifier hs defined in (3.3). Its error is given by

Es ≡ E(hs) = 2E
{
γ (X) − γ (X)2}

.

We prove Theorem 1 and all other results in the Appendix [26]. Since Eq ≤ Es and Es

equals the asymptotic nearest-neighbor error, we can transport results from the standard clas-
sification setting accordingly. The following theorem from Cover and Hart [10], Devroye
et al. [12] shows how these errors yield bounds on the optimal error E(h0), and indicates how
much worse they can be compared to E(h0).

PROPOSITION 2 (Cover and Hart [10], Devroye et al. [12]). Suppose there is a unique
(1 − μ)-quantile q such that P(γ > q) = μ. Then the optimal classification error E(h0) is
bounded as

1

2
(1 − √

1 − 2Es) ≤ 1

2
(1 −

√
1 − 2Eq) ≤ E(h0) ≤ Eq ≤ Es .

We further have the upper bound Eq ≤ Es ≤ E(h0){1 − E(h0)} ≤ 2E(h0).

Proposition 2 follows from our Theorem 1 together with Theorem 3.1 of Devroye et al.
[12], and shows that the errors of the stochastic and quantile classifiers can be quite infor-
mative about the optimal error E(h0) of unconstrained classifiers. For example, if compli-
ance status can be correctly predicted for 75% of the population with either classifier (e.g.,
Es = 0.25) then the optimal classifier can have no better than 86% accuracy. Theorem 1
further indicates that the errors Eq and Es can never be worse than twice that of the best
unconstrained classifier, which is particularly informative when Eq or Es are not too large.

3.3. Estimation. The simplest way to estimate the proposed classification rules is via
plug-in estimators. For example, the plug-in estimator of the Bayes decision function h0 is
given by

(3.4) ĥ0(x) = 1
{
γ̂ (x) > 1/2

}
.

Analogs of this estimator have been studied widely in the classification literature [4, 12].
However, the form of the Bayes classifier h0, in our setting, brings some additional compli-
cations relative to the standard classification setting, since γ (x) = λ1(x) − λ0(x) is a differ-
ence in regression functions. For example, the minimax convergence rate for estimating γ

can depend not only on the smoothness of γ , but also on the smoothness of λz and π . This is
an open problem and beyond the scope of this paper; nonetheless, we can still relate the error
of ĥ0 to that of γ̂ , as in standard classification problems. Specifically, as in Theorem 2.2 of
Devroye et al. [12] we have

E(ĥ) − E(h0) ≤ 2‖γ̂ − γ ‖,
where here and throughout we let ‖f ‖2 = P(f 2) = ∫

f (o)2 dP(o) denote the squared L2(P)

norm (in fact the above also holds replacing the L2 with the L1 norm). This shows that con-
sistent estimation of the compliance score γ is enough to yield a consistent plug-in estimator
of the rule h0, in terms of classification error.

A plug-in estimator for the quantile rule hq is given by

(3.5) ĥq(x) = 1
{
γ̂ (x) > q̂

}
,

where q̂ is an estimate of the (1 − μ) quantile of γ , that is, an estimate of q for which
P(γ ≤ q) = 1 − μ. For example, one could use q̂ = F̂−1(1 − μ̂), for initial estimators F̂ and
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μ̂ of the distribution function and mean of the compliance score, respectively. In the next
subsection, we will detail an efficient estimator of μ, which is doubly robust and can attain
the minimax root-n convergence rate even if (π̂, λ̂z) converge at slower nonparametric rates.
Finally, a plug-in estimator of the stochastic classification rule is given by

(3.6) ĥs(x) = 1
{
γ̂ (x) > U

}
for U ∼ Unif(0,1), so that ĥs ∼ Bernoulli(γ̂ ). We note that, although natural, the plug-in
classifiers described above are not necessarily exactly strength-calibrated or distribution-
matched when estimated from a finite-sample. For the plug-in estimators in (3.5) and (3.6),
the next result gives a bound, relating excess classification error to error of the estimated com-
pliance score (and quantile estimation error for ĥq ). For the quantile classifier, we require a
margin condition [4], which controls the behavior of γ around the threshold q . Formally, we
have the following condition.

ASSUMPTION 6 (Margin condition). For some α > 0 and for all t , we have that

P
(|γ − q| ≤ t

)
� tα.(3.7)

The margin condition requires that there are not too many compliance scores near the
quantile q . This is essentially equivalent to the margin condition used in standard classifi-
cation problems [4], optimal treatment regime settings [30, 46], as well as other problems
involving estimation of nonsmooth covariate-adjusted bounds [27].

Overall, the following result shows that plug-in classifiers using accurate nuisance esti-
mates have small excess error.

THEOREM 2. Let ĥq and ĥs be the plug-in classifiers defined in (3.5) and (3.6). Then for
ĥs ∣∣E(ĥs) − Es

∣∣ ≤ (
√

1 − 2Es)‖γ̂ − γ ‖.
Furthermore, under the margin condition, for ĥq we have that∣∣E(ĥq) − Eq

∣∣ � (‖γ̂ − γ ‖∞ + |q̂ − q|)α.

REMARK 2. From a theoretical standpoint, we might consider if the margin assumption
may be eliminated in the analysis of the plug-in quantile classifier. In Appendix D [26], we
show that if we can obtain reasonable bounds on the errors ‖γ̂ − γ ‖∞ and |q̂ − q|, a slight
modification of the plug-in quantile classifier in (3.5) achieves a similar guarantee without
the margin assumption.

The next result shows a further unique property of ĥs , which is that it can be used to
estimate complier characteristics of the form θ = E{f (X) | C = 1}, by simply computing
corresponding averages in the group of predicted compliers with ĥs = 1. For example, one
might be interested in, for a given variable Xj , the complier-specific mean f (X) = Xj or
distribution function f (X) = 1(Xj ≤ t). The proposed estimator is then given by

(3.8) θ̂ = Pn

{
f (X) | ĥs(X) = 1

} = Pn{f (X)ĥs(X)}
Pn{ĥs(X)} ,

where Pn denotes the empirical measure so that sample averages can be written as
Pn{f (O)} = 1

n

∑n
i=1 f (Oi). For simplicity, we suppose γ̂ is fit in a separate independent

sample; this will be discussed in more detail after stating the result.



SHARP INSTRUMENTS 2017

THEOREM 3. Assume that f is bounded, then for the estimator θ̂ defined in (3.8) we
have that

|θ̂ − θ | = OP

(
1√
n

+ ‖γ̂ − γ ‖
)
,

whenever γ̂ is constructed from a separate independent sample.

Theorem 3 shows that θ̂ is consistent as long as γ̂ is, and that the convergence rate is of
the same order as a typical plug-in estimator. This gives an alternative to the weighting ap-
proach of Abadie [1]. Our approach only requires computing usual statistics among predicted
compliers. In general, however, this approach will not be fully efficient for two reasons. The
first is that θ̂ is a plug-in estimator, not specially targeted to estimate θ well (partly evidenced
by the first-order bias term ‖γ̂ − γ ‖ in its convergence rate). We conjecture that θ̂ might be
able to attain full nonparametric efficiency under strong smoothness assumptions and for par-
ticular γ̂ estimators (e.g., kernel regression with undersmoothing). However, a more flexible
approach would be to estimate θ with an appropriate doubly robust influence function-based
estimator. The other reason the estimator θ̂ is not fully efficient is because it uses only a single
sample split, however, this can be remedied by swapping samples and averaging; we formally
include this approach in our subsequent proposed estimators of effect bounds and sharpness.
Despite disadvantages with respect to efficiency, the proposed plug-in estimator of θ might
be favored in some settings for its simplicity.

4. Bounding effects in identifiable subgroups. In this section, we consider the second
feature of so-called sharp instruments: obtaining tighter bounds on effects in identifiable sub-
groups, that is, subgroups defined not by principal strata (e.g., compliers) but by observed
covariates. In the toy example from Section 1, we saw a case where the local effect actually
reduced to such a subgroup effect (among those with X > 0.5244 . . .). This raises the ques-
tion of when this can occur, and if it cannot, how to quantify the extent to which it can nearly
occur. We derive bounds on effects in any identifiable subgroup and derive the corresponding
bound length, and characterize the optimal subgroup that minimizes bound length, among all
subgroups of a given size. Finally, we propose efficient nonparametric bound estimators, and
describe their asymptotic properties.

4.1. Bounds and bound length. Define the treatment effect in an identifiable subgroup
{x : g(x) = 1} corresponding to an arbitrary measurable subgroup indicator g : X 
→ {0,1} as

β(g) = E
(
Ya=1 − Ya=0 | g = 1

)
.

Our first result gives bounds on this effect under the instrumental variable assumptions, for
any given g. Before stating our result, let us first introduce some notation. Define

βj (g) = E
{
E(Vj,1 | X,Z = 1) −E(Vj,0 | X,Z = 0)|g = 1

}
(4.1)

for j ∈ {l, u} where

Vu,1 = YA + 1 − A, Vu,0 = Y(1 − A),(4.2)

Vl,1 = YA, Vl,0 = Y(1 − A) + A.(4.3)

With these definitions in place, we have the following result.

THEOREM 4. Under Assumptions 1–5, and if P(Y ∈ [0,1]) = 1, the effect β(g) in the
identifiable subgroup defined by g : X 
→ {0,1} is bounded as

βl(g) ≤ β(g) ≤ βu(g).
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Theorem 4 generalizes the results of Balke and Pearl [6], Manski [31], Robins [35] to
allow for covariate adjustment and conditional effects; these previous bounds are recovered
by taking X = ∅ and g = 1 with probability one. The logic used in the proof of Theorem 4
follows that of this earlier work. Specifically, as shown above, Assumptions 1–5 allow one
to express β(g) in terms of observed data quantities and two nonidentified terms of the form
E(Y a=t | Az=t = 1 − t, g = 1) for t ∈ {0,1}; bounds are obtained by replacing these latter
quantities with their most extreme values of 0 and 1. Note the condition that Y ∈ [0,1] is
immaterial as long as Y is bounded in some finite range [ymin, ymax], since then one can work
with Y ∗ = (Y − ymin)/(ymax − ymin) ∈ [0,1] and transform back.

An important consequence of Theorem 4 for our work is in the length of the corresponding
bounds, which provides a basis for quantifying near-identification of effects β(g) in identifi-
able subgroups. This length is given in the following corollary.

COROLLARY 1. The length of the bounds in Theorem 4 for any subgroup h is

	(g) ≡ βu(g) − βl(g) = E
{
1 − γ (X) | g = 1

}
.

Importantly, under Assumptions 1–5 we have

	(g) = P(C = 0 | g = 1),

so the bound length is also interpretable as the proportion of noncompliers in the subgroup
{x : g(x) = 1}. This fact was noted previously for marginal effects (i.e., when g = 1 with
probability one) by Balke and Pearl [6], for example. It implies that the bounds on the sub-
group effect β(g) are strictly narrower than those on the average effect E(Y a=1 − Ya=0)

whenever P(C = 0 | g = 1) < P(C = 0), that is, whenever the proportion of noncompliers in
the subgroup is less than the proportion overall. In Section 5, we frame this condition in a
different way that shows how it is intimately related to our proposed notion of sharpness.

Corollary 1 further suggests exploring subgroups that minimize bound length. Among
all possible subgroups, the one minimizing bound length is simply that which picks the
subject(s) with the maximum compliance score, that is, arg minh 	(g) = 1(γ = γmax) for
γmax = supx∈X γ (x). However, in general this subgroup will have negligible size (unless there
is a non-trivial point mass at γmax), leading to estimates with necessarily high finite-sample
error. This is similar to the potential disadvantages of the optimal classification rule h0 dis-
cussed in Section 3.1. Therefore, as discussed there, it may be preferable to only consider
subgroups of a particular minimum size. We let

G(t) = {
g : P(g = 1) = t

}
denote the set of all subgroups of a given size t , and we assume there exists a unique quantile
ξ such that P(γ > ξ) = t . The following result gives the form of optimal subgroups of a given
size.

PROPOSITION 3. Let F(t) = P(γ ≤ t) denote the distribution function of the compliance
score. Then the subgroup that minimizes bound length among all those of size at least t is
given by

arg min
g∈G(t)

	(g) = 1
{
γ (X) > F−1(1 − t)

}
.

Proposition 3 shows that, among all subgroups of size t , the subgroup that yields the tight-
est bounds is simply the group with the 100t% highest compliance scores. This is perhaps
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expected given the form of the bounds from Corollary 1, and their interpretation as a pro-
portion of noncompliers. Note also that, once we restrict to subgroups of a given size t , the
minimizers of complier classification error and bound length are the same, that is,

arg min
g∈G(t)

E(g) = arg min
g∈G(t)

	(g) = 1
{
γ (X) > F−1(1 − t)

}
.

Therefore, for subgroups of a given size, the problems of finding the classifier with best error
and the subgroup with tightest bounds are equivalent, both leading to a version of the quantile
classifier hq from Section 3.1.

This suggests targeting novel subgroup effects of the form

E
{
Ya=1 − Ya=0 | γ (X) > F−1(1 − t)

}
.

These effects are similar in spirit to those proposed by Follmann [16], Joffe et al. [25], which
are also conditional on the compliance score, but these prior works use parametric models
and do not use quantiles. Thus, our proposed effects can be viewed as a nonparametric gen-
eralization.

4.2. Estimation and inference. Now we turn to estimation and inference for bounds on
β(g). We focus in particular on β(hq), that is, the effect among the 100μ% of the popu-
lation with the highest compliance scores. Our bound estimators (and sharpness estimators
presented in the next section) are built from the efficient influence function and use sample
splitting. These tools are used to combat bias from nonparametric estimation of nuisance
functions (e.g., the compliance score γ ) and to allow arbitrary complex and flexible nuisance
estimators to be used.

Influence functions are a central element of nonparametric efficiency theory. We refer to
Bickel et al. [7], van der Vaart [48], van der Laan and Robins [47], Tsiatis [45] and others
for more detailed information, and so just give some brief description here. The efficient
influence function is important because its variance yields a benchmark for nonparametric
efficiency, and because it can be used to construct estimators that are in some cases minimax
optimal and efficient in nonparametric models. Such estimators are typically doubly robust
or have general second-order bias, and so can attain parametric rates of convergence, even in
high-dimensional settings where nuisance functions are estimated at slower rates via flexible
nonparametric methods. Mathematically, the efficient influence function corresponds to the
score function in a one-dimensional submodel that is least favorable, in the sense of having
minimal Fisher information for the parameter of interest, across all submodels. We refer to
the earlier references for more details.

To simplify notation in this section, for any random variable T we let

ϕz(T ;η) = 1(Z = z)

πz(X)

{
T −E(T | X,Z = z)

} +E(T | X,Z = z)

denote the uncentered efficient influence function for the parameter E{E(T | X,Z = z)},
where η = {πz(X),E(T | X,Z = z)} denotes the relevant nuisance functions. We use η for
nuisance functions generally, though the actual functions depend on the choice of T . In par-
ticular, we let

νj,z(X) = E(Vj,1 | X,Z = 1) −E(Vj,0 | X,Z = 0),

and let ν̂j,z denote an estimate of νj,z, for variables Vj,z defined as in (4.2).
Following Chernozhukov et al. [9], Robins et al. [34], Zheng and van der Laan [50], we

propose to use sample splitting to allow for arbitrarily complex nuisance estimators η̂ and
avoid empirical process conditions, by constructing the estimated η values for each subject
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using data from only other subjects. Specifically, we split the data into K disjoint groups by
drawing variables (B1, . . . ,Bn) independent of the data, with Bi = b indicating that subject
i was split into group b. For example, each Bi could be drawn uniformly from {1, . . . ,K}
or to ensure equally sized groups (B1, . . . ,Bn) could be drawn uniformly from the set of
permutations of sequences containing n/K repetitions of each value of b ∈ {1, . . . ,K}. In
our analysis, we focus on the former setting and treat K as a fixed constant. We first estimate
the strength of the instrument by the weighted average of corresponding estimators across
groups

μ̂ =
K∑

b=1

{
1

n

n∑
i=1

1(Bi = b)

}
P

b
n

{
φμ(O; η̂-b)

} = Pn

{
φμ(O; η̂-B)

}
,

where P
b
n denotes the subempirical distribution over the units {i : Bi = b} in group b, that is,

P
b
n{f (O)} = ∑n

i=1 f (Oi )1(Bi = b)/
∑n

i=1 1(Bi = b), the function

φμ(O;η) = ϕ1(A;η) − ϕ0(A;η),

is the uncentered influence function for μ = E(γ ), and here η̂-b denotes estimators of
η = (πz, λz) constructed using only those units with Bi 	= b. Then for j ∈ {l, u} we propose
estimating βj (hq) with β̂j (ĥq), where

β̂j (ĥq) = Pn

[{
ϕ1(Vj,1; η̂-B) − ϕ0(Vj,0; η̂-B)

}
ĥq,-B(X)

]
/Pn

{
ĥq,-B(X)

}
for ĥq,-b = 1(γ̂-b > q̂-b) and q̂-b the (1 − μ̂) quantile of γ̂ solving P

b
n{1(γ̂-b > q̂-b)} = μ̂ (at

least up to oP(1/
√

n) error).
Before stating our next result, we define the remainder terms that appear in our result:

R1,n = ‖π̂1 − π1‖
(
max

z
‖̂λz − λz‖ + max

z
‖ν̂j,z − νj,z‖

)
,(4.4)

R2,n = (‖γ̂ − γ ‖∞ + |q̂ − q|)α,(4.5)

where α > 0 is the margin exponent in (3.7). The next theorem gives the rate of convergence
for our proposed estimator, as well as nonparametric conditions under which it is asymptoti-
cally normal and efficient.

THEOREM 5. Assume that P{ε ≤ π̂z(X) ≤ 1 − ε} = 1 for z = 0,1 and some ε > 0, and
that ‖π̂1 − π1‖ + maxz ‖̂λz − λz‖ + maxz ‖ν̂j,z − νj,z‖ + P(ĥq 	= hq) = oP(1).

1. If the margin condition holds for some α, then

β̂j (ĥq) − βj (hq) = OP

(
1√
n

+ R1,n + R2,n

)
.

2. If it also holds that R1,n + R2,n = oP(1/
√

n), then
√

n
{
β̂j (ĥq) − βj (hq)

}
� N

(
0,var

[{
ϕ1(Vj,1) − ϕ0(Vj,0)

}
hq − βj (hq)φμ

]
/μ2)

.

Theorem 5 shows that the error in estimating bounds on β(hq) consists of a doubly robust
second-order term R1,n that will be small if either πz or (λz, νj,z) are estimated accurately,
along with a term R2,n that will be small if the compliance score γ is estimated accurately,
and particularly so depending on a margin condition.

If the exponent in the margin condition is too small, for example, α ≤ 1, then the proposed
estimators will not in general be asymptotically normal or even

√
n-consistent, for example,

if γ̂ and q̂ are estimated nonparametrically at slower than
√

n-rates. In general, we expect
the margin condition to be weakest when the instrument is sharper, that is, α is likely larger
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for sharper instruments, and smaller for more blunt instruments, since then γ is more flat and
likely puts more mass around the quantile q . In Appendix F [26], we consider some examples,
and illustrate for which α values the condition holds. An alternative approach would be to
avoid the margin condition by instead targeting a smooth approximation of the nonsmooth
functional βj (hq), for example, in the same spirit as Kennedy et al. [29], or smooth but wider
bounds.

Importantly, under the conditions of Theorem 5 that ensure asymptotic normality, one can
use the approach of Imbens and Manski [22] to construct valid confidence intervals for the
partially identified effect β(hq). We implement this in the npcausal R package.

5. Summarizing sharpness. So far we have discussed two primary features that make
an instrument sharp: accurate prediction of compliers, and tight bounds on effects in iden-
tifiable subgroups. In this section, we present a new summary measure of sharpness that
captures these two properties, separate and apart from strength. We characterize how this
measure is related to the complier classification error and bound length quantities from pre-
vious sections, and discuss efficient nonparametric estimation and inference. We suggest our
sharpness measure be reported alongside strength in practice.

5.1. Proposed measure and properties. To summarize sharpness, we use the proportion
of variance in the instrument’s compliance explained by covariates, specifically that pro-
portion explained by the highest compliance score values; this is equivalent to the correla-
tion between the true and predicted compliance status. Although we view this measure as
a (strength-independent) summary of how well one can predict compliance and obtain tight
bounds on identifiable subgroup effects, we refer to it as sharpness for simplicity.

DEFINITION 1. The sharpness ψ of instrument Z with latent compliance indicator C

and compliance score γ is defined as

ψ = cov(C,hq)

var(C)
= corr(C,hq),

where hq = 1{γ (X) > F−1(1 − μ)} is the quantile classifier defined in (3.2), which selects
subjects with the top 100μ% compliance scores.

We will now give some motivation and intuition for our proposed sharpness measure.
First, as a ratio of covariances, it is easily interpretable as a measure of variance explained.
In particular, it represents the proportion of variation in compliance explained by the highest
100μ% compliance scores (it is in the unit interval when γ is continuously distributed). In
this sense, it can be viewed as a model-free and population version of a classical R2 measure,
indicating to what extent compliance can be predicted by covariates (through the compliance
score). In fact, sharpness is also the slope of a population regression of compliance C on
predicted compliance hq . At one extreme, if the highest compliance scores do not predict
compliance at all, that is, C ⊥⊥ hq (say if γ ≈ 0.5 so that C is just a coin flip), then the
sharpness measure is zero. Conversely, if compliance is perfectly predictable, that is, C =
1(γ > q) = hq , then sharpness is one. For the toy example in Figure 1, the sharpness is 0%,
40% and 100% for instruments 1, 2 and 3, respectively.

One could substitute other classifiers for hq and redefine sharpness as ψ(h) = cov(C,h)/

var(C) for some other h : X 
→ {0,1}, such as h0 or hs discussed in Section 3. We focus on
hq for three main reasons: first, it is optimal among classifiers with size μ, that is,

arg min
h∈G(μ)

E(h) = arg min
h∈G(μ)

	(h) = arg max
h∈G(μ)

ψ(h) = hq.
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Second, using the classifier hq yields simple and interpretable relationships between E(hq),
	(hq), and ψ , as will be discussed shortly; and finally, the classifier has an easy interpretation
as selecting the highest 100μ% of compliance scores.

The proposed sharpness measure is further interpretable since, for any classifier h : X 
→
{0,1}, we show in Appendix G that

cov(C,h)

var(C)
= P(h = 1 | C = 1) − P(h = 1 | C = 0).

Thus, in addition to measuring variance explained, sharpness also measures the difference
between true positive and false positive rates. In particular, for the quantile classifier we have
that

ψ = P
(
γ > F−1(1 − μ) | C = 1

) − P
(
γ > F−1(1 − μ) | C = 0

)
.

This quantity is typically called the Youden index and is a popular summary measure of
classifier performance [15, 39].

One might question the additional benefits of reporting sharpness ψ , beyond just the clas-
sification error E(h) or bound length 	(h). One crucial feature of ψ is that, unlike say classifi-
cation error E(h), it is formally separate from instrument strength μ, in the sense of variation
independence. This means, for example, that ψ—unlike E(h)—cannot be small solely due to
instrument strength (or lack thereof). As an illustrative example, consider an instrument for
which γ = 0.05 with probability one. Then the optimal classifier in terms of prediction error
is given by h0 = 0, and this uninteresting rule classifies 95% of subjects correctly (an im-
pressive error rate). However, this instrument has zero sharpness in the intuitive sense of the
motivating example from Section 1, and this fact is not reflected by the classification error. In
particular, with respect to both classification error and strength, the instrument with γ = 0.05
is virtually indistinguishable from one with γ = �(−2.7+1.4x) for X ∼ N(0,1). Both yield
approximately 5% classification error and strength, but in the latter case more information is
available: we know that subjects with larger x values are more likely to be compliers; in fact,
we have ψ = cov(C,hq)/var(C) ≈ 50% for the second instrument, compared to ψ = 0 for
the first.

More formally, sharpness and strength are truly separate measures in the sense that they
are variation independent in the presence of a continuous covariate. In particular, for an in-
strument with any given strength μ ∈ [ε,1 − ε] we can construct a congenial compliance
score γ with any sharpness value ψ ∈ [0,1]; conversely, for an instrument with any given
sharpness ψ ∈ [0,1] we can construct a congenial compliance score with any strength value
μ ∈ [ε,1 − ε]. For example, suppose without loss of generality that X ∼ N(0,1), which
can be satisfied for any continuous covariate X∗ with cumulative distribution function G

via the transformation X = �−1{G(X∗)} for � the N(0,1) distribution function. Then for
γ (x) = �(b0 + b1x) we can always find particular (b0, b1) values to satisfy E(C) = μ and
cov(C,hq) = ψμ(1 − μ) for any (μ,ψ) ∈ [ε,1 − ε]2. For the case where ψ = 0 or ψ = 1,
we can simply take γ = μ and γ = 1{x > �−1(1 − μ)}, respectively. More details are given
in Section E of the Appendix, along with a plot to illustrate the bijective relationship between
(μ,ψ) and (b0, b1).

Although compliance status C is not directly observed, sharpness is still identified under
usual instrumental variable assumptions, simply because the compliance score is identified.

PROPOSITION 4. Under Assumptions 1–3 and 5, sharpness is identified as

ψ = E
{
γ (X)hq(X) − μ2}

/μ(1 − μ).
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Proposition 4 follows easily from the definition of sharpness together with the fact that
E(C | X) = γ (X), and is of course critical for constructing estimators of sharpness from
observed data, which will be presented in the next subsection.

Having defined, motivated and identified the sharpness measure ψ , we now turn to char-
acterizing its relation to classification error and bound length. The next result shows that,
keeping strength fixed, sharper instruments yield more accurate complier classification and
tighter bounds on identifiable subgroup effects.

THEOREM 6. The classification error E(hq) and bound length 	(hq) can be expressed
in terms of strength μ and sharpness ψ as

E(hq) = 2μ(1 − μ)(1 − ψ),

	(hq) = (1 − μ)(1 − ψ).

The theorem indicates the precise relationship between complier classification error, bound
length, strength and sharpness for hq . The result follows from the fact that, defining ψ(h) =
cov(C,h)/var(C) for general classifiers h, we have

E(h) = 2μ(1 − μ)
{
1 − ψ(h)

} + (1 − 2μ)(Eh − μ),

	(h) = (1 − μ)
{
1 − μψ(h)/Eh

}
together with the fact that E(hq) = μ. Theorem 6 has several important consequences. First,
it shows that strength and sharpness are fundamental aspects of the quality of an instrument,
since together they completely determine the best error for classifying compliers and the
tightest bounds on identifiable subgroup effects, among all classifiers/subgroups of size μ.
It also shows that for fixed strength, sharper instruments yield better complier classification
and tighter bounds on identifiable subgroup effects. As expected, perfect complier prediction
E(hq) = 0 and point identification 	(hq) = 0 requires perfect sharpness ψ = 1 (note we
must have μ ≤ 1 − ε because if μ = 1 then A = Z, which means the instrument cannot be
unconfounded if the treatment is confounded).

Of more practical relevance, Theorem 6 also shows that nonzero sharpness is an important
sufficient condition for better complier prediction and tighter bounds on identifiable subgroup
effects. Focusing first on complier prediction, we observe that if ψ > 0 then there exists a
classifier that attains better error than the naive strength-calibrated classifier (which simply
flips a coin with probability μ). This follows since if ψ > 0 then E(hq) < 2μ(1 − μ), which
is the error of the rule h ∼ Bern(μ). Further, since the classifier hq attains a better error than
the coin flip rule, then h0 does as well, since the error of hq is a lower bound for the latter.
Turning our attention to bound lengths, we note that if ψ > 0 then there exists an identifiable
subgroup (of size μ) yielding tighter bounds than those on the average treatment effect. This
follows since nonzero sharpness ψ > 0 implies 	(hq) < 1 − μ, which is the length of the
bounds on the average treatment effect E(Y a=1 − Ya=0) as derived, for example, by Balke
and Pearl [6], Manski [31], Robins [35]. The size of ψ indicates the percent reduction in
the length of the bounds, for example, bounds on the subgroup effect β(hq) are precisely
100ψ% tighter than those on the average treatment effect. The only way tighter bounds could
be obtained would be to consider smaller subgroups.

In summary, the sharpness measure proposed in Definition 1 captures the proportion of
variance in an instrument’s compliance explained by the highest compliance scores. It is
an interpretable and strength-independent reflection of (i) how accurately compliers can be
classified and (ii) how tightly effects in identifiable subgroups can be bounded. We suggest
that it be reported alongside strength in instrumental variable analyses; in the next subsection,
we propose methods for estimation and inference.
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5.2. Estimation and inference. Here, we propose an estimator for sharpness ψ that, like
estimators from previous sections, uses influence functions to correct bias from nonparamet-
ric nuisance estimation and incorporates sample splitting to avoid empirical process restric-
tions. We refer back to Section 4.2 for more details and notation.

Our sharpness estimator relies on the strength estimator μ̂ = Pn{φμ(O; η̂-B)} from Sec-
tion 4, as well as an estimator ξ̂ = Pn(φ̂ξ,-B) of

ξ = E(γ hq),

where φξ = φμ(O;η)hq(X) and φ̂ξ,-b = φμ(O; η̂-b)ĥq,-b(X) are the corresponding influence
function for ξ and its estimate. In particular, we estimate sharpness as

ψ̂ = (̂ξ − μ̂2)

μ̂(1 − μ̂)

which appropriately combines influence-function-based estimators of the corresponding
terms from Definition 1 (i.e., the numerator is the estimator of the covariance between com-
pliance C and the classifier hq ). To concisely state our results, we define the remainder terms:

R1,n = ‖π̂1 − π1‖
(
max

z
‖̂λz − λz‖

)
,

R2,n = (‖γ̂ − γ ‖∞ + |q̂ − q|)1+α
,

where once again α > 0 is the margin exponent (see (3.7)). We note that in comparison with
the remainder in (4.5) for the estimation of subgroup effects the remainder here for the esti-
mation of sharpness is of lower order, that is, we are able to estimate sharpness at much faster
rates. With these definitions in place, the next theorem gives corresponding convergence rates,
as well as conditions under which ψ̂ is asymptotically normal and efficient.

THEOREM 7. Assume that P{ε ≤ π̂z(X) ≤ 1 − ε} = 1 for z = 0,1 and some ε > 0, and
‖π̂1 − π1‖ + maxz ‖̂λz − λz‖ + P(ĥq 	= hq) = oP(1).

1. If the margin condition holds for some α > 0, then

ψ̂ − ψ = OP

(
1√
n

+ R1,n + R2,n

)
.

2. If it also holds that R1,n + R2,n = oP(1/
√

n), then
√

n(ψ̂ − ψ)

� N

(
0,var

[{φμhq + q(φμ − hq) − ξ}
(μ − μ2)

+ (2μξ − ξ − μ2)

(μ − μ2)2 (φμ − μ)

])
.

Theorem 7 gives two main results. First, it shows that the proposed sharpness estimator
is consistent with convergence rate that is second-order in nuisance estimation errors, under
weak conditions (bounded IV propensity scores, consistent nuisance estimators and the mar-
gin condition). This means ψ̂ attains faster rates than those of its nuisance estimators, which
comes from using influence functions for better bias correction than a general plug-in. We do
not require any complexity or empirical process conditions, since we use sample splitting to
separate the evaluation and estimation of the influence function. Second, Theorem 7 shows
that if the second-order nuisance errors converge to zero at a faster than

√
n rate, the esti-

mator is asymptotically normal, and efficient by virtue of the fact that we are working in a
nonparametric model (where the only influence function is the efficient one). This condition
on the nuisance estimation is satisfied, for example, if α = 1 and the nuisance estimators
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converge at faster than n1/4 rates; this can hold under nonparametric smoothness, sparsity or
other structural conditions.

The asymptotic variance in the second part of Theorem 7 can be easily estimated with
its corresponding plug-in, from which Wald-type confidence intervals can be constructed.
Since such intervals may go outside the unit interval, we give an improved logit-transformed
interval in Corollary 5 in the Appendix (which is implemented in the npcausal R package).

6. Simulations and illustration. In this section, we report the results of various simu-
lations we performed to illustrate the finite-sample performance of our proposed estimators.
We also analyze data from a study of canvassing effects on voter turnout [17] and study the
sharpness of the instrument and explore some of its consequences.

6.1. Simulation study. To assess finite-sample performance, we considered simulations
from the following model:

X ∼ N(0,1), C | X ∼ Bern(γ ) for γ (x) = �(b0 + b1x),

Z | X,C ∼ Bern(π1) for π1(x) = expit(x),

A = CZ + (1 − C)A∗ for A∗ | X,C,Z ∼ Bern(0.5),

Y = AYa=1 + (1 − A)Ya=0

for Ya | X,C,Z,A ∼ Bern
(
0.5 + (a − 0.5)β

)
,

with (b0, b1) chosen to ensure given values (μ,ψ) of strength μ = 30% and sharpness as
detailed in Appendix E. This model satisfies Assumptions 1–5 and implies

(6.1) E
(
Ya=1 − Ya=0) = E

(
Ya=1 − Ya=0 | hq

) = β.

We used the proposed methods to classify compliers and estimate sharpness and bounds.
Nuisance functions were estimated with correctly specified logistic regression models, with
K = 2 sample splits. To assess performance, we used empirical error Pn(ĥ 	= C) for each
classifier; length of estimated bounds for parameters (6.1) with β = 20%; and bias, RMSE
and 95% CI coverage of the sharpness estimator. All code is in Appendix 1.

The simulations illustrate what our theory predicts, as illustrated in Table 1. Instruments
with the same strength can yield drastically different complier classification error (between

TABLE 1
Simulation results across 500 simulations (all figures are percentages)

Class. error Bound length Sharpness est.

Setting ĥ0 ĥq ĥs ATE β(hq) Bias SE Cov

n = 500:
ψ = 0.2 30.9 36.7 39.9 68.8 61.2 −9.4 13.5 96.9
ψ = 0.5 21.2 22.1 29.2 69.9 36.2 −1.4 13.9 98.2
ψ = 0.8 8.5 9.3 14.3 70.4 13.9 0.1 10.3 95.8

n = 1000:
ψ = 0.2 30.0 35.1 39.6 70.1 59.7 −3.7 10.3 97.0
ψ = 0.5 20.6 21.4 28.9 69.9 35.4 −0.4 8.0 95.2
ψ = 0.8 8.4 8.8 13.6 70.1 14.4 −0.4 7.0 95.0

n = 5000:
ψ = 0.2 29.6 33.7 39.4 70.0 56.4 −0.4 3.6 95.8
ψ = 0.5 20.5 21.0 28.1 70.1 34.9 0.4 3.1 95.2
ψ = 0.8 8.4 8.5 12.6 70.0 14.1 −0.1 3.1 94.6
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39.9% to 8.4% here) and subgroup effect bound lengths (between 13.9% to 70.4%) depending
on sharpness. Our proposed sharpness estimator has minimal bias decreasing with sample
size and confidence intervals attain nominal coverage (coverage was at least 95% for all
bound estimators).

6.2. Data analysis. Here, we illustrate the proposed methods by analyzing data from a
study of canvassing effects on voter turnout. Green et al. [17] conducted a study of n = 18,933
voters across six cities who were randomly assigned to receive encouragement to vote in local
elections or not. Recall we are using an i.i.d. assumption; inference without this assumption
is an important avenue of future research. Noncompliance arose since some voters who were
assigned to receive encouragement could not be contacted. As a result, Green et al. [17]
estimated the complier average effect, where here compliers are those people who would be
encouraged only when assigned to be. Aronow and Carnegie [3] argue that the local estimand
is of limited interest, since in this study compliance is less an inherent characteristic, and more
a feature of the design and could change over time (e.g., multiple contacts could increase
compliance). Thus it is of interest to identify compliers based on observed characteristics, so
as to better generalize the study results by understanding to which subpopulation the effect
corresponds.

In this study, the measured covariates include city indicators (Bridgeport, Columbus, De-
troit, Minneapolis, Raleigh, St. Paul), party affiliation, prior voting history, age, family size,
race and corresponding missingness indicators. We use our proposed methods to classify
compliers, estimate bounds on the average treatment effect as well as the subgroup effect
β(hq) and assess sharpness of the instrument (i.e., initial randomization). We used random
forests (via the ranger R package) to estimate the nuisance functions with K = 2-fold
sample splitting.

In Figures 2(a) and 2(c), we present estimated compliance scores and results from the three
proposed complier classification methods, respectively. In both cases, we plot the voter’s
estimated compliance scores against two important covariates: the voter’s city and age. The
estimated compliance scores ranged from 8% to 69% across the voter population. Overall,
the results indicate that the set of compliers is very likely to contain people from Raleigh (city
5), across a range of ages, as well as older voters in Detroit (city 3). Relative to the estimated
Bayes classifier ĥ0, the quantile classifier ĥq classifies more voters as compliers (30% versus
only 4%), mostly from Raleigh but also from Bridgeport and St. Paul. With the stochastic
classifier ĥs , it is somewhat more difficult to distinguish predicted compliers from the rest,
based on city and age; however, one can still clearly see overrepresentation in Raleigh and St.
Paul. The estimated error of the quantile classifier is 2μ̂(1−μ̂)(1−ψ̂) = 33.3%, which yields
bounds 27.2% ± 6.1% = [21.1%,33.3%] on the optimal error E(h0) from Proposition 2.

Our nonparametric doubly robust analysis yielded an estimated local effect very similar
to that of Green et al. [17] (5.7%, 95% confidence interval (CI): 2.5%–8.9%). However, we
estimate that the instrument in this study was stronger than it was sharp, yielding μ̂ = 30.1%
(95% CI: 29.2%–31.1%) but ψ̂ = 20.9% (95% CI: 18.8%–23.2%). Figure 2(b) shows the
estimated local effect, along with bounds on the average treatment effect and subgroup effect
β(hq); we used the Imbens and Manski [22] approach to construct confidence intervals for
the subgroup effects. Although the bounds for the subgroup effect are narrower than for the
average treatment effect, they are still relatively wide due to the instrument not being very
sharp. In particular, the bounds on β(hq) are 20% narrower than for the average treatment
effect, but still cover zero; the estimated bounds on β(hq) are [−17.1%,38.7%] with 95% CI
[−18.9%,41.2%].
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FIG. 2. Results from analysis of Green et al. [17] study of canvassing effects.

7. Discussion. In this paper, we introduce a new measure of instrument quality, called
sharpness, which measures the variation in an instrument’s compliance explained by the co-
variates (in particular, by the compliance scores), and which reflects how well one can pre-
dict who compliers are and how tightly one can bound effects in identifiable subgroups. We
propose complier classification rules and characterize their large-sample errors, as well as
novel effects in identifiable subgroups defined by subjects with the highest compliance scores.
We discuss nonparametric methods for estimating all of these quantities (classification rules,
bounds and sharpness) and give general rates of convergence results, as well as conditions
under which the methods are efficient. Finally, we have studied the methods via simulation,
and applied them in a study of canvassing effects on voter turnout. Implementations of all our
methods are publicly available in the npcausal R package.

There are several caveats to mention and ways in which our work could be generalized. Al-
though we have allowed for complex covariate information, we have focused on the relatively
simple setting where both the instrument and treatment are binary. The binary instrument re-
striction can be removed without changing the estimands and methods too much (although
some nontrivial statistical complications could result, as noted, e.g., in Kennedy et al. [28]).
A multivalued treatment, however, prevents (nonparametric) identification of the compliance
score and even local treatment effects; therefore, removing this restriction would necessitate a
substantially different approach, for example, involving estimands that are only partially iden-
tified without further assumptions. The same goes for removing the monotonicity restriction,
a lack of which also prevents nonparametric identification. Although the binary/monotonic
setup we consider here is widely used, it would be useful in future work to consider analogs
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of sharpness for different instrumental variable models, such as those of Robins [36], Tan [43]
that replace monotonicity with effect homogeneity restrictions. It would also be worthwhile
to consider violations of the instrumental variable assumptions [6, 23] might affect sharpness.

In practice, we propose that sharpness should be assessed in instrumental variable stud-
ies, alongside strength. Sharp instruments can help yield more generalizable causal effects
(via better prediction of compliers, and tighter bounds on effects in identifiable subgroups),
which has been a prominent concern with standard instrumental variable methods. Given
the substantial benefits of sharp instruments, this work also suggests new strategies for data
collection and study design. Namely, one should aim to collect data not only on covariates
that explain instrument assignment (so as to de-confound the instrument-treatment/outcome
relationships for Assumption 3), but also on covariates that predict subjects’ compliance be-
havior. Further, sharpness provides another factor to consider when choosing among instru-
ments, in cases where numerous IVs are available (e.g., in A/B test settings involving many
experiments with noncompliance). Importantly, both sharpness and strength can be assessed
without outcome data; so if such data collection is costly, one can decide where to collect
data on the basis of sharpness and strength.
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in the Supplementary Materials.

REFERENCES

[1] ABADIE, A. (2003). Semiparametric instrumental variable estimation of treatment response models.
J. Econometrics 113 231–263. MR1960380 https://doi.org/10.1016/S0304-4076(02)00201-4

[2] ANGRIST, J. D., IMBENS, G. W. and RUBIN, D. B. (1996). Identification of causal effects using instru-
mental variables. J. Amer. Statist. Assoc. 91 444–455.

[3] ARONOW, P. M. and CARNEGIE, A. (2013). Beyond LATE: Estimation of the average treatment effect with
an instrumental variable. Polit. Anal. 21 492–506.

[4] AUDIBERT, J.-Y. and TSYBAKOV, A. B. (2007). Fast learning rates for plug-in classifiers. Ann. Statist. 35
608–633. MR2336861 https://doi.org/10.1214/009053606000001217

[5] BAIOCCHI, M., CHENG, J. and SMALL, D. S. (2014). Instrumental variable methods for causal inference.
Stat. Med. 33 2297–2340. MR3257582 https://doi.org/10.1002/sim.6128

[6] BALKE, A. and PEARL, J. (1997). Bounds on treatment effects from studies with imperfect compliance.
J. Amer. Statist. Assoc. 92 1171–1176.

[7] BICKEL, P. J., KLAASSEN, C. A. J., RITOV, Y. and WELLNER, J. A. (1993). Efficient and Adaptive
Estimation for Semiparametric Models. Johns Hopkins Series in the Mathematical Sciences. Johns
Hopkins Univ. Press, Baltimore, MD. MR1245941

[8] BOUND, J., JAEGER, D. A. and BAKER, R. M. (1995). Problems with instrumental variables estima-
tion when the correlation between the instruments and the endogenous explanatory variable is weak.
J. Amer. Statist. Assoc. 90 443–450.

[9] CHERNOZHUKOV, V., CHETVERIKOV, D., DEMIRER, M., DUFLO, E., HANSEN, C., NEWEY, W. and
ROBINS, J. (2016). Double machine learning for treatment and causal parameters. ArXiv preprint.
Available at arXiv:1608.00060.

[10] COVER, T. and HART, P. (1967). Nearest neighbor pattern classification. IEEE Trans. Inform. Theory 13
21–27.

[11] DEATON, A. (2010). Instruments, randomization, and learning about development. J. Econ. Lit. 48 424–455.

https://doi.org/10.1214/19-AOS1874SUPP
http://www.ams.org/mathscinet-getitem?mr=1960380
https://doi.org/10.1016/S0304-4076(02)00201-4
http://www.ams.org/mathscinet-getitem?mr=2336861
https://doi.org/10.1214/009053606000001217
http://www.ams.org/mathscinet-getitem?mr=3257582
https://doi.org/10.1002/sim.6128
http://www.ams.org/mathscinet-getitem?mr=1245941
http://arxiv.org/abs/arXiv:1608.00060


SHARP INSTRUMENTS 2029

[12] DEVROYE, L., GYÖRFI, L. and LUGOSI, G. (1996). A Probabilistic Theory of Pattern Recognition. Ap-
plications of Mathematics (New York) 31. Springer, New York. MR1383093 https://doi.org/10.1007/
978-1-4612-0711-5

[13] DING, P. and LU, J. (2017). Principal stratification analysis using principal scores. J. R. Stat. Soc. Ser. B.
Stat. Methodol. 79 757–777. MR3641406 https://doi.org/10.1111/rssb.12191

[14] FELLER, A., MEALLI, F. and MIRATRIX, L. (2017). Principal score methods: Assumptions, extensions,
and practical considerations. J. Educ. Behav. Stat. 42 726–758.

[15] FLUSS, R., FARAGGI, D. and REISER, B. (2005). Estimation of the Youden index and its associated cutoff
point. Biom. J. 47 458–472. MR2190469 https://doi.org/10.1002/bimj.200410135

[16] FOLLMANN, D. A. (2000). On the effect of treatment among would-be treatment compliers: An analy-
sis of the multiple risk factor intervention trial. J. Amer. Statist. Assoc. 95 1101–1109. MR1821718
https://doi.org/10.2307/2669746

[17] GREEN, D. P., GERBER, A. S. and NICKERSON, D. W. (2003). Getting out the vote in local elections:
Results from six door-to-door canvassing experiments. J. Polit. 65 1083–1096.

[18] HERNÁN, M. A. and ROBINS, J. M. (2006). Instruments for causal inference: An epidemiologist’s dream?
Epidemiology 17 360–372.

[19] IMBENS, G. W. (2010). Better LATE than nothing: Some comments on Deaton (2009) and Heckman and
Urzua (2009). J. Econ. Lit. 48 399–423.

[20] IMBENS, G. W. (2014). Instrumental variables: An econometrician’s perspective. Statist. Sci. 29 323–358.
MR3264545 https://doi.org/10.1214/14-STS480

[21] IMBENS, G. W. and ANGRIST, J. D. (1994). Identification and estimation of local average treatment effects.
Econometrica 62 467–475.

[22] IMBENS, G. W. and MANSKI, C. F. (2004). Confidence intervals for partially identified parameters. Econo-
metrica 72 1845–1857. MR2095534 https://doi.org/10.1111/j.1468-0262.2004.00555.x

[23] IMBENS, G. W. and RUBIN, D. B. (1997). Estimating outcome distributions for compliers in instrumental
variables models 64 555–574. MR1485828 https://doi.org/10.2307/2971731

[24] JO, B. and STUART, E. A. (2009). On the use of propensity scores in principal causal effect estimation.
Stat. Med. 28 2857–2875. MR2750169 https://doi.org/10.1002/sim.3669

[25] JOFFE, M. M., TEN HAVE, T. R. and BRENSINGER, C. (2003). The compliance score as a regressor in
randomized trials. Biostatistics 4 327–340.

[26] KENNEDY, E. H, BALAKRISHNAN, S. and G’SELL, M. (2020). Supplement to “Sharp instruments for
classifying compliers and generalizing causal effects.” https://doi.org/10.1214/19-AOS1874SUPP.

[27] KENNEDY, E. H., HARRIS, S. and KEELE, L. J. (2019). Survivor-complier effects in the presence of se-
lection on treatment, with application to a study of prompt ICU admission. J. Amer. Statist. Assoc. 114
93–104. MR3941240 https://doi.org/10.1080/01621459.2018.1469990

[28] KENNEDY, E. H., LORCH, S. and SMALL, D. S. (2019). Robust causal inference with continuous instru-
ments using the local instrumental variable curve. J. R. Stat. Soc. Ser. B. Stat. Methodol. 81 121–143.
MR3904782

[29] KENNEDY, E. H., MA, Z., MCHUGH, M. D. and SMALL, D. S. (2017). Non-parametric methods for
doubly robust estimation of continuous treatment effects. J. R. Stat. Soc. Ser. B. Stat. Methodol. 79
1229–1245. MR3689316 https://doi.org/10.1111/rssb.12212

[30] LUEDTKE, A. R. and VAN DER LAAN, M. J. (2016). Statistical inference for the mean outcome under a pos-
sibly non-unique optimal treatment strategy. Ann. Statist. 44 713–742. MR3476615 https://doi.org/10.
1214/15-AOS1384

[31] MANSKI, C. F. (1990). Nonparametric bounds on treatment effects. Am. Econ. Rev. 80 319–323.
[32] MARCUS, S. M., STUART, E. A., WANG, P., SHADISH, W. R. and STEINER, P. M. (2012). Estimating the

causal effect of randomization versus treatment preference in a doubly randomized preference trial.
Psychol. Methods 17 244.

[33] PEARL, J. (2009). Causality: Models, Reasoning, and Inference, 2nd ed. Cambridge Univ. Press, Cambridge.
MR2548166 https://doi.org/10.1017/CBO9780511803161

[34] ROBINS, J. LI, L., TCHETGEN TCHETGEN, E., and VAN DER VAART, A. (2008). Higher order influence
functions and minimax estimation of nonlinear functionals. Probability and Statistics: Essays in Honor
of David A. Freedman 335–421.

[35] ROBINS, J. M. (1989). The analysis of randomized and non-randomized AIDS treatment trials using a new
approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus
on AIDS 113–159.

[36] ROBINS, J. M. (1994). Correcting for non-compliance in randomized trials using structural nested
mean models. Comm. Statist. Theory Methods 23 2379–2412. MR1293185 https://doi.org/10.1080/
03610929408831393

http://www.ams.org/mathscinet-getitem?mr=1383093
https://doi.org/10.1007/978-1-4612-0711-5
http://www.ams.org/mathscinet-getitem?mr=3641406
https://doi.org/10.1111/rssb.12191
http://www.ams.org/mathscinet-getitem?mr=2190469
https://doi.org/10.1002/bimj.200410135
http://www.ams.org/mathscinet-getitem?mr=1821718
https://doi.org/10.2307/2669746
http://www.ams.org/mathscinet-getitem?mr=3264545
https://doi.org/10.1214/14-STS480
http://www.ams.org/mathscinet-getitem?mr=2095534
https://doi.org/10.1111/j.1468-0262.2004.00555.x
http://www.ams.org/mathscinet-getitem?mr=1485828
https://doi.org/10.2307/2971731
http://www.ams.org/mathscinet-getitem?mr=2750169
https://doi.org/10.1002/sim.3669
https://doi.org/10.1214/19-AOS1874SUPP
http://www.ams.org/mathscinet-getitem?mr=3941240
https://doi.org/10.1080/01621459.2018.1469990
http://www.ams.org/mathscinet-getitem?mr=3904782
http://www.ams.org/mathscinet-getitem?mr=3689316
https://doi.org/10.1111/rssb.12212
http://www.ams.org/mathscinet-getitem?mr=3476615
https://doi.org/10.1214/15-AOS1384
http://www.ams.org/mathscinet-getitem?mr=2548166
https://doi.org/10.1017/CBO9780511803161
http://www.ams.org/mathscinet-getitem?mr=1293185
https://doi.org/10.1080/03610929408831393
https://doi.org/10.1007/978-1-4612-0711-5
https://doi.org/10.1214/15-AOS1384
https://doi.org/10.1080/03610929408831393


2030 E. H. KENNEDY, S. BALAKRISHNAN AND M. G’SELL

[37] ROBINS, J. M. and GREENLAND, S. (1996). Comment: Identification of causal effects using instrumental
variables. J. Amer. Statist. Assoc. 91 456–458.

[38] RUBIN, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies.
J. Educ. Psychol. 66 688.

[39] SCHISTERMAN, E. F., PERKINS, N. J., LIU, A. and BONDELL, H. (2005). Optimal cut-point and its
corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology
16 73–81.

[40] STAIGER, D. and STOCK, J. H. (1997). Instrumental variables regression with weak instruments. Econo-
metrica 65 557–586. MR1445622 https://doi.org/10.2307/2171753

[41] STUART, E. A. and JO, B. (2015). Assessing the sensitivity of methods for estimating principal causal
effects. Stat. Methods Med. Res. 24 657–674. MR3428422 https://doi.org/10.1177/0962280211421840

[42] SWANSON, S. A. and HERNÁN, M. A. (2014). Think globally, act globally: An epidemiologist’s perspective
on instrumental variable estimation [discussion of MR3264545]. Statist. Sci. 29 371–374. MR3264549
https://doi.org/10.1214/14-STS491

[43] TAN, Z. (2010). Marginal and nested structural models using instrumental variables. J. Amer. Statist. Assoc.
105 157–169. MR2757199 https://doi.org/10.1198/jasa.2009.tm08299

[44] TCHETGEN TCHETGEN, E. J. and VANSTEELANDT, S. (2013). Alternative identification and inference for
the effect of treatment on the treated with an instrumental variable. In Harvard University Biostatistics
Working Paper Series, Paper 166.

[45] TSIATIS, A. A. (2006). Semiparametric Theory and Missing Data. Springer Series in Statistics. Springer,
New York. MR2233926

[46] VAN DER LAAN, M. J. and LUEDTKE, A. R. (2013). Targeted learning of an optimal dynamic treatment,
and statistical inference for its mean outcome. UC Berkeley Division of Biostatistics Working Paper
Series 329 1–96.

[47] VAN DER LAAN, M. J. and ROBINS, J. M. (2003). Unified Methods for Censored Longitudinal Data and
Causality. Springer, New York.

[48] VAN DER VAART, A. (2002). Semiparametric statistics. In Lectures on Probability Theory and Statistics
(Saint-Flour, 1999). Lecture Notes in Math. 1781 331–457. Springer, Berlin. MR1915446

[49] WRIGHT, S. (1934). The method of path coefficients. Ann. Math. Stat. 5 161–215.
[50] ZHENG, W. and VAN DER LAAN, M. J. (2010). Asymptotic theory for cross-validated targeted maximum

likelihood estimation. UC Berkeley Division of Biostatistics Working Paper Series 273 1–58.

http://www.ams.org/mathscinet-getitem?mr=1445622
https://doi.org/10.2307/2171753
http://www.ams.org/mathscinet-getitem?mr=3428422
https://doi.org/10.1177/0962280211421840
http://www.ams.org/mathscinet-getitem?mr=3264549
https://doi.org/10.1214/14-STS491
http://www.ams.org/mathscinet-getitem?mr=2757199
https://doi.org/10.1198/jasa.2009.tm08299
http://www.ams.org/mathscinet-getitem?mr=2233926
http://www.ams.org/mathscinet-getitem?mr=1915446

	Introduction
	Motivating example
	Outline and contributions

	Notation and setup
	Classifying compliers
	Classiﬁers and properties
	Classiﬁer errors and relations
	Estimation

	Bounding effects in identiﬁable subgroups
	Bounds and bound length
	Estimation and inference

	Summarizing sharpness
	Proposed measure and properties
	Estimation and inference

	Simulations and illustration
	Simulation study
	Data analysis

	Discussion
	Acknowledgments
	Supplementary Material
	References

