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We propose an empirical Bayes method for high-dimensional linear re-
gression models. Following an oracle approach that quantifies the error lo-
cally for each possible value of the parameter, we show that an empirical
Bayes posterior contracts at the optimal rate at all parameters and leads to
uniform size-optimal credible balls with guaranteed coverage under an “ex-
cessive bias restriction” condition. This condition gives rise to a new slic-
ing of the entire space that is suitable for ensuring uniformity in uncertainty
quantification. The obtained results immediately lead to optimal contraction
and coverage properties for many conceivable classes simultaneously. The re-
sults are also extended to high-dimensional additive nonparametric regression
models.

1. Introduction. A linear regression model with a large number of predictors is
commonly adopted in modern statistics. Numerous methods exploiting a possible low-
dimensional sparse structure have been proposed and their optimality properties for esti-
mation and variable selection have been studied, the most notable of which is the Lasso
[Tibshirani [32]]. Various oracle inequalities established for Lasso-type procedures imply
optimal estimation accuracy adapted to the sparsity level and accuracy of model selection.
However, confidence regions are rarely studied in the context of sparse regression. The is-
sue of coverage with an adaptive optimal size is far more delicate than estimation accuracy.

For instance, in the well-studied, infinitely many normal means model Xi
ind∼ N(θi, n

−1),
i = 1,2, . . . ,

∑∞
i=1 θ2

i < ∞, it is impossible for any confidence set to have coverage at all
parameter values maintaining the optimal diameter adaptively over different classes [Li [20],
Baraud [1], Cai and Low [8]]. This happens since under some true parameter values in each
class, any optimal smoothing procedure can be tricked to believe that the true parameter is
smoother than actually is, and hence it underestimates the bias, leading to the lack of adequate
coverage. Only sufficiently conservative procedures can achieve coverage for such parameter
values. Forcing coverage all over the parameter space makes the expected diameter of the
confidence set to be at least of the order n−1/4 for all values of the true parameter, and will
be as bad as a constant for some parameter values. A sensible compromise is to remove a set
of “deceptive parameters” responsible for the poor precision and obtain coverage of the con-
fidence region with optimal size adaptively over the remaining part of the parameter space.
As long as the set of deceptive parameters is small in an appropriate sense, a more precise
procedure giving coverage at all nondeceptive parameters is preferable. Some conditions on
the true parameter with increasing generality ensuring coverage of some confidence set in the
context of infinitely many normal means are given by self-similarity [Picard and Tribouley
[25]], polished tail [Szabó et al. [31]] and excessive bias restriction [Belitser [2]]. To the
best of our knowledge, the only articles dealing with the construction of confidence regions
in high-dimensional linear regression models are Nickl and van de Geer [24] and Cai and
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Guo [7]. The former assumed all predictors are generated independently from the standard
normal distribution and studied the size of a confidence set for the vector of linear regression
coefficients under two different regimes of sparsity at a time. The latter treated only linear
functionals of the parameter.

Bayesian procedures have a natural method for quantifying uncertainty through credible
regions, which are typically easy to obtain using modern computing techniques. However,
in general, a Bayesian credible set need not have frequentist coverage at the desired level,
even approximately, for infinite-dimensional models; see Cox [13] and Freedman [16]. The
problem arises essentially because in nonparametric problems, under optimal smoothing, the
order of the bias matches the order of the posterior variation, and hence the coverage may
be arbitrarily low. In recent years, the problem of constructing Bayesian credible regions
with guaranteed coverage for nonparametric problems received considerable attention. The
infinitely many normal means model, which is equivalent with the white noise model, is the
most well-studied model in the nonparametric setting ostensibly because of the availability
of explicit expressions. For the white noise model, Knapik et al. [19] obtained sufficient
coverage by undersmoothing, while Castillo and Nickl [9] constructed credible sets with
frequentist coverage through Bernstein–von Mises theorems in negative Sobolev spaces using
wavelet-based priors. Ray [28] pursued the approach of Castillo and Nickl [9] in the adaptive
setting and obtained coverage of credible balls for self-similar sequences with adaptive size.
An approach based on inflating a credible region by a sufficiently large constant was adopted
in Szabo et al. [31], Belitser [2] and Belitser and Nurushev [4]. In the latter two papers, an
oracle approach was used to quantify accuracy locally for each possible value of the true
parameter. The main advantage of quantifying error locally for each parameter value is that
different scales may be used to quantify regularity. For example, a Bayes procedure is shown
to attain automatically the best rate for the size of the credible region over different levels of
regularity of the true parameter and simultaneously over many possible regularity scales (such
as ellipsoids or hypercubes). Outside the normal mean models, only a few results on coverage
of nonparametric credible sets are available. Castillo and Nickl [10] extended their earlier
work to density estimation problems. Yoo and Ghosal [35] used inflated credible regions
to obtain coverage for multivariate nonparametric regression for pointwise, L2- and L∞-
credible sets using priors based on B-spline basis expansion. Sniekers and van der Vaart
[29] used scaled Brownian motion to construct credible sets with coverage properties for
nonparametric regression while Sniekers and van der Vaart [30] constructed inflated adaptive
L2-credible regions using a rescaled Gaussian process prior and showed asymptotic coverage
for an analog of a polished tail condition. Coverage properties of posterior credible sets in a
high-dimensional linear regression model have not been studied thus far.

In this paper, we adopt the oracle approach of Belitser [2] and Belitser and Nurushev [4] to
quantify the estimation accuracy, coverage and precision of an empirical Bayesian procedure
for linear regression with a large number of predictors. Suppose that we observe

(1.1) Y = Xθ + σε,

where X = (X1, . . . ,Xp) is a deterministic n × p design matrix, θ = (θ1, . . . , θp) ∈ R
p is

an unknown regression parameter where possibly p can be much larger than n, and ε =
(ε1, . . . , εn)

′ is the (column) vector of independent normally distributed random errors with
zero mean and unit standard deviation. We do not impose any a priori restriction on the design
matrix. If the predictors arise randomly from certain distributions, the results will have to be
applied conditionally on their realizations. As in comparable works in the literature, the noise
intensity σ > 0 will be considered known in our setting. For a predictor of the form Ŷ = Xθ̂

for some estimator θ̂ of θ , the prediction risk is defined by R2(I, θ) = E‖Xθ̂ (I ) − Xθ‖2,
where θ̂ (I ) is θ̂ computed on the basis of the model indexed by I ⊆ {1, . . . , p}, that is,



BAYES UNCERTAINTY QUANTIFICATION FOR REGRESSION 3115

assuming θIc = (θj : j ∈ I c) = 0, or equivalently, when the predictors (Xj : j ∈ I c) are made
irrelevant. The prediction risk optimized over some natural family of predictors serves as
a natural quantification of the estimation accuracy and the precision of a confidence region
for Xθ at any given value of θ , and will be referred to as the (squared) oracle rate. For a
good choice of the predictors family, the oracle rate is dominated by the scale of minimax
rates over traditional sparsity classes. We shall consider an empirical Bayes approach for
the problem by putting a conjugate normal prior on θ and selecting the mean of the prior
distribution by the empirical Bayes approach. In the Supplementary Material [3], we describe
a computing strategy based on the simulated annealing technique. We show that the empirical
Bayes posterior concentrates around the true value nearly at the oracle rate, thus leading to
adaptive minimax optimality of the empirical Bayes posterior mean as a point estimator over
sparsity classes. We shall also construct a posterior credible ball centered at Ŷ with size
nearly equaling a multiple of the oracle rate provided that certain deceptive parameters are
excluded from consideration. Clearly, it is desirable to exclude as little of the parameter space
as possible. It will be seen that a condition, to be called the excessive bias restriction, arises
naturally in controlling the bias in terms of the oracle rate. The condition is milder than
other conditions such as self-similarity or polishedness of the tail used in the literature for
analogous purposes. In effect, the excessive bias restriction condition gives rise to a new
sparsity scale which slices the entire space and is very suitable for ensuring uniformity in
uncertainty quantification. The structural parameter of the EBR-scale measures the extent of
deceptiveness, which determines the needed amount of inflation of the confidence ball for
high coverage.

The results obtained for linear regression models are further extended to additive nonpara-
metric regression models where we show that the posterior distribution adapts to both sparsity
of the model and the smoothness of the component functions and the resulting credible re-
gions have coverage when a suitable excessive bias restriction condition holds.

The paper is organized as follows. The setup is formulated and the main results are pre-
sented in Section 2. Some extensions are given in Section 3, along with a thorough discus-
sion of the key condition of excessive bias restriction. Extensions of the results to additive
nonparametric regression models are given in Section 4. Proofs are presented in Section 5.
Empirical Bayes interpretation of the posterior distribution, its computational scheme and
some proofs are provided in the Supplementary Material [3].

2. Setup and main results. Consider the linear regression model (1.1) with ε ∼
Nn(0, I), the n-variate normal distribution with mean vector 0 and dispersion matrix I, the
identity matrix. We let X be fixed in our setup. Various objects defined in course may depend
on X.

2.1. Notation and conventions. We use the following notation and conventions through-
out the paper. We denote the probability distribution of Y from the model (1.1) by Pθ and
the corresponding expectation is denoted by Eθ . Let |S| denote the cardinality of a set S,
vI = (vi, i ∈ I ) ∈ R

|I | denote a subvector of v ∈ R
p , and ‖v‖ denote the Euclidean norm

of v. We interpret vectors as column vectors and denote matrices by upright capital letters.
For positive integers k, l, let Ik and Ok,l denote the k × k identity matrix and the k × l zero
matrix, respectively, and let 0k stand for the zero vector of length k, with the index(es) omit-
ted if clear from the context. For two square matrices A and B, we say that A ≤ B (resp.,
A < B) if B − A is nonnegative definite (resp., positive definite). The symbol � will refer to
equality by definition. Let 1 stand for the indicator function.

Let I = {∅ 	= I ⊆ {1, . . . , p} : the columns (Xi, i ∈ I ) are linearly independent}, XI be
the submatrix of X with columns (Xi, i ∈ I ). Clearly, |I| ≤ 2p and |I | ≤ ν for any I ∈ I ,
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where ν = rank(X) ≤ min(n,p). If I ∈ I were known to be the support of θ , then a natural
(minimax) estimator will set θIc = 0|I c| and estimate the remaining components by the least
square estimator. This motivates considering the family of estimators

(2.1)
{
θ̂ (I ), I ∈ I : θ̂I (I ) = (

X′
I XI

)−1X′
I Y, θ̂I c (I ) = 0|I c|

}
,

and introducing the oracle risk relative to this family. Let HI = XI (X′
I XI )

−1X′
I be the or-

thogonal projection matrix onto the column space col(XI ) of XI . Since Xθ = XI θI + XI cθI c

and HI (I − HI ) = O, the quadratic prediction risk of Xθ̂ (I ) = XI θ̂I (I ) = HI Y is

R2(I, θ) = Eθ

∥∥Xθ̂ (I ) − Xθ
∥∥2 = ∥∥(I − HI )Xθ

∥∥2 + σ 2|I |.(2.2)

This follows from the standard fact that if V is a random vector with mean μ and covariance
matrix � and A is a symmetric matrix of constants, then E(V ′AV ) = tr(A�) + μ′Aμ. For
a given θ , the minimizer IR

o = IR
o (θ) of the risk in (2.2) with respect to I ∈ I is called the

R-oracle. The corresponding minimum R(θ) = R(IR
o , θ) quantifies the level of accuracy of

inference about Xθ if we choose the best possible index set I . Note that this “local rate” does
not rely on any particular scale of regularity. The goal would be to construct an (empirical)
Bayesian procedure which performs, under any true θ , uniformly like the oracle procedure
θ̂IR

o
without knowing IR

o , that is, will mimic the R-oracle. However, even in the case X = I,
Donoho and Johnstone [15] and Birgé and Massart [5] showed that it is impossible to mimic
the R-oracle and a logarithmic factor is the unavoidable price for the uniformity over the
whole of R

p (in fact, even over the scale of sparsity classes, cf. Birgé and Massart [5]).
Therefore, only a modification of the risk R where the variance term σ 2|I | is inflated with an
appropriate logarithmic factor is “mimicable.” For τ > 0, define a τ -oracle I τ

o = I τ
o (θ) at θ

as a minimizer (with respect to I ∈ I) of

r2
τ (I, θ) = ∥∥(I − HI )Xθ

∥∥2 + τσ 2|I | log
ep

|I | .(2.3)

It should be noted that the quantity rτ (I
τ
o , θ), called the τ -oracle rate, is unique but the τ -

oracle I τ
o itself need not be. If there are multiple minimizers, any one can be chosen for

our purpose. For instance, if θ = 0, then {i} for any i = 1, . . . , p, is a τ -oracle. Note that
the empty set is not allowed to be the oracle by the definition. The rate (2.3) is clearly a
modification of the prediction risk (2.2) where the variance part has been inflated by the factor
τ log(ep/|I |). Denote from now on rτ (θ) = rτ (I

τ
o , θ), and let r(I, θ) = r1(I, θ), Io = I 1

o and
r(θ) = r1(I

1
o , θ) correspond to the case of the standard oracle (i.e., τ = 1).

2.2. Empirical Bayes: EBMS and EBMA. It is well known that in the normal regression
setting, a normal prior for θ is conjugate, but it overshrinks toward the prior mean. This prop-
erty led Castillo et al. [11] in their study of posterior contraction to consider priors with tails
at least as thick as that of the Laplace distribution for each coefficient selected as nonzero.
Nevertheless, a normal prior is useful if the prior mean is not fixed but instead is chosen by
an empirical Bayes technique, as noted in Belitser [2] and Belitser and Nurushev [4]. Below
we follow the same path because the explicit expressions resulting from conjugacy allow us
deriving useful bounds for the procedure in terms of the local rate. Although our primary
interest is in the coverage of (empirical Bayes) adaptive credible regions of optimal size, en
route the proof we also derive posterior contraction results analogous to those in Castillo et al.
[11] but based on a spike-and-slab conjugate normal prior with hyperparameters chosen by
the empirical Bayes technique. The exact expressions that we obtain lead to a significantly
shorter derivation of equivalent results, and more importantly, allow obtaining coverage of
credible regions.
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For the model (1.1) with ε ∼ Nn(0, I), introduce a two-level hierarchical prior,

πI (θ) : θ |I ∼ N
(
μ(I), κσ 2(

X′
I XI

)−1) ⊗ δ0|Ic |,(2.4)

λ(I) : I ∼ (λI : I ∈ I), λI = cκe−κ|I | log(ep/|I |), I ∈ I,(2.5)

where κ > 0, κ > 1 are chosen constants, vectors μI = (μ(I) : I ∈ I) are to be chosen by
the empirical Bayes method and cκ = cκ,p is the normalizing constant making

∑
I∈I λI = 1.

The prior on θ given I is Zellner’s g-prior, which was also used in the same context by Martin
et al. [22] along with an empirical Bayes choice for the mean μ(I) like ours. However, they
restricted to the situation where the number of true predictors is less than the sample size
and considered the pseudo-posterior distribution obtained from a power of the likelihood less
than 1, and they did not study coverage properties of credible sets. We note that the prior λ

for I given by (2.5) is proper since
(p
k

) ≤ (ep/k)k and

∑
I∈I

λI ≤ cκ

p∑
k=1

(p
k

)(ep

k

)−κk

≤ cκ

p∑
k=1

(
ep

k

)−(κ−1)k

≤ cκ

p∑
k=1

e−(κ−1)k = cκe−(κ−1)

1 − e−(κ−1)
< ∞,

which also implies that cκ ≥ eκ−1 − 1 > 0. The parameters κ and κ need to satisfy

(2.6) κ ≥ (1 − h)−1/h − 1, κ > 2/h for some h ∈ (0,1/3).

These conditions will be assumed throughout below.
Simple calculations involving normal-normal conjugacy lead to explicit expressions for

the marginal distribution πI (Y ) of Y given I and the posterior distribution π(θ |I, Y ) of θ

given I and Y dependent on μ. Then μ can be estimated by maximizing the marginal like-
lihood, which is given by the least square estimate; see Section 1 of the Supplementary Ma-
terial [3]. Upon substituting the estimator μ̂(I ) in place of μ(I) for every I , the empirical
Bayes marginal distribution π̂I (Y ) = πI,μ̂(Y ) and the empirical Bayes posterior distribution
π̂(θ |I, Y ) can be seen to be given by

π̂I (Y ) = exp{− 1
2σ 2 Y ′(I − HI )(I + κHI )

−1(I − HI )Y }√
(2πσ 2)n det(I + κHI )

(2.7)

= exp{− 1
2σ 2 Y ′(I − HI )Y }

(2πσ 2)n/2(1 + κ)|I |/2 ,

π̂(θ |I, Y ) = N|I |
(
θ̂I (I ),

κσ 2

κ + 1

(
X′

I XI

)−1
)

⊗ δ0|Ic | .(2.8)

Above we have used the fact that, as HI is a projection matrix with rank(HI ) = |I |, we have
that det(I + κHI ) = (1 + κ)|I | and

(I − HI )(I + κHI )
−1(I − HI ) = (I − HI )

(
I − κ

1 + κ
HI

)
(I − HI ) = I − HI .

To obtain the final posterior distribution of θ given Y , we need to eliminate the hyperparam-
eter I from the expression. We may either estimate I by the empirical Bayes approach and
substitute its value in the above expressions to obtain the empirical Bayes model selection
(EBMS) method, or we can sum over I weighted by its (empirical Bayes) posterior distribu-
tion to obtain the empirical Bayes model averaging (EBMA) method. In the EBMS approach,
the resulting posterior density of θ is given by

π̌ (θ |Y) = π
Î,μ̂

(θ |Y) = N|Î |
(
θ̂
Î
(Î ),

κσ 2

κ + 1

(
X′

Î
X

Î

)−1
)

⊗ δ0|Î c |,(2.9)

Î = arg max
I∈I λI π̂I (Y ).(2.10)



3118 E. BELITSER AND S. GHOSAL

If the maximizer is not unique, any maximizer may be chosen. Note that the EBMS estimator
θ̌ = Ě(θ |Y) = θ̂ (Î ) can also be viewed as a penalized estimator since

(2.11) Î = arg min
I∈I

{∥∥Y − Xθ̂ (I )
∥∥2 + |I | log(1 + κ)1/2 + |I |κ log

(
ep/|I |)}.

In the EBMA approach, the posterior density of θ is given by π̃(θ |Y) = ∑
I∈I π̃I (θ |Y) ×

π̃(I |Y), where

(2.12)

π̃ (I |Y) = λI π̂I (Y )∑
J∈I λJ π̂J (Y )

,

π̃I (θ |Y) = N|I |
(
θ̂I (I ),

κσ 2

κ + 1

(
X′

I XI

)−1
)

⊗ δ0|Ic |,

and π̂I (Y ) is defined by (2.7). Then the EBMA posterior mean is given by θ̃ = Ẽ(θ |Y) =∑
I∈I ẼI (θ |Y)π̃(I |Y) = ∑

I∈I θ̂ (I )π̃(I |Y).

REMARK 1. Notice that Î can be seen as minimizing the expression in (2.11) over the
whole family of subsets Ī = {I ⊆ {1, . . . , p} : I 	= ∅}, rather than just over I , as the second
and the third term for I outside I only increase the expression without decreasing the first
term. Also the oracle rate r(θ) can be seen as the minimizer of r(I, θ) over the whole family
Ī because these quantities are defined in terms of projections HI and cardinalities |I | which
are well-defined for any I ∈ Ī .

2.3. Prediction, support and signal recovery. In the sequel, by π̂(θ |Y) (with the corre-
sponding expectation Ê(·|Y)) we denote either the EBMS posterior π̌(θ |Y) defined by (2.9)
or the EBMA posterior π̃(θ |Y) defined by (2.12), and θ̂ will stand respectively either for θ̌ or
θ̃ . Then π̂(I ∈ G|Y) should be read as 1{Î ∈ G} in the case π̂ = π̌ , and as π̃(I ∈ G|Y) in the
case π̂ = π̃ , for all G ⊆ I that appear in what follows. Respectively, π̂(I |Y) = 1{Î = I } and
Eθ0 π̂(I ∈ G|Y) = Pθ0(Î ∈ G) in the former case, and π̂(I |Y) = π̃(I |Y) and Eθ0 π̂(I ∈ G|Y) =
Eθ0 π̃(I ∈ G|Y) in the latter case.

The following theorem shows that most of the π̂ -posterior mass of Xθ concentrate near the
true value Xθ0 in the frequentist sense and the empirical Bayes posterior mean Xθ̂ converges
to Xθ0 uniformly over the entire parameter space, at the oracle rate r(θ0).

THEOREM 1 (Prediction). There exists a constant C > 0 such that, for any θ0 ∈ R
p ,

M > 0, Eθ0 π̂(‖Xθ − Xθ0‖ ≥ Mr(θ0)|Y) ≤ CM−2 and Eθ0‖Xθ̂ − Xθ0‖2 ≤ Cr2(θ0).

Notice that Xθ̂ = H
Î
Y . The result is analogous to the first conclusion of Theorem 2 of

Castillo et al. [11] for the prior (2.4)–(2.5) (with the empirical Bayes choice for the hyper-
parameter (μ(I), I ∈ I)) replacing their prior. This follows by observing that for θ0 with
sparsity s(θ0) = |I ∗(θ0)| ≥ 1, where I ∗ = I ∗(θ0) = supp(θ0) = {i : θ0i 	= 0} is the true active
index set, we have that (I − HI∗)Xθ0 = 0 and, by the definition of the oracle,

(2.13) r2(θ0) ≤ r2(
I ∗, θ0

) ≤ σ 2s(θ0) log
(
ep/s(θ0)

)
.

Note that we do not need the compatibility condition connecting �1- and �2-norms since we
do not use Laplace priors. The symbol s(θ0) will be reserved throughout for the sparsity level
at the true parameter θ0, that is, the number of nonzero elements of θ0.

We also obtain the following result as a by-product of the proof of Theorem 1.

COROLLARY 1 (Weak support recovery and sparsity control). There exist positive con-
stants m0, c′, c′′, τ0 such that, for any θ0 ∈ R

p and m > 0:
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(i) Eθ0 π̂(I ∈ I : r2(I, θ0) ≥ m0r
2(θ0) + mσ 2|Y) ≤ e−c′m,

(ii) Eθ0 π̂(I ∈ I : |I | ≥ τ0s(θ0)|Y) ≤ exp{−c′′s(θ0) log(ep/s(θ0))}.

One can interpret the first claim (i) of Corollary 1 as some sort of weak support recovery:
the posterior π̃(I |Y) and the variable selector Î “live” on those index sets I ∈ I whose rate
r2(I, θ0) is close to the oracle rate r2(θ0), uniformly in θ0 ∈ R

p . Notice that no conditions
are needed. The second claim (ii) provides sparsity control from above: it ensures basically
that models with substantially higher size than the true one are unlikely to occur under the
empirical Bayes posterior. This property and Corollaries 2 and 3 below are analogous to the
corresponding results of Castillo et al. [11] for the posterior distribution using Laplace priors
on active coefficients and also of Martin et al. [22] for their empirical Bayes pseudo-posterior
distribution. Notice that Lemma 2 (auxiliary result needed in the proof of Theorem 2) pro-
vides sparsity control also from below, but in terms of the τ -oracle.

Corollary 1, being nonasymptotic and uniform in θ0, can be specialized to certain situa-
tions. In particular, assertion (ii) leads to an interesting conclusion under the asymptotic set-
ting p = pn → ∞ and 1 ≤ s(θ0) ≤ sn = o(pn) as n → ∞. Then the probability bound goes
to 0 as n → ∞, uniformly in θ0 ∈ �0[sn] � {θ : | supp(θ)| ≤ sn}. Further, when sn = o(pn),
the constant τ0 can be chosen smaller, which makes the conclusions in Corollaries 2 and 3
below stronger.

It is of substantial interest to know if the empirical Bayes procedure also gives concen-
tration for the posterior of θ near its true value θ0, measured by the usual Euclidean or the
�1-distance. Because the dimension p may be larger than n, the correspondence between Xθ

and θ is not unique, and hence additional conditions are necessary even in the noiseless situ-
ation. As is commonly adopted in the literature (see, e.g., van de Geer and Bühlmann [33]),
we too assume a condition that lower bounds the norm of Xθ by a positive multiple of a norm
on θ for sparse vectors, which is a condition on the design matrix X.

Recall that s(θ) denotes the number of nonzero elements of θ ∈R
p , that is, the cardinality

of the support supp(θ) = I ∗(θ) = {i : θi 	= 0} of θ . Let ‖θ‖1 = ∑p
j=1 |θj | be the �1-norm of θ .

Define ‖X‖max = maxk=1,...,p ‖Xk‖ (notice that if the design matrix X is normalized so that
‖Xk‖2 = n, k = 1, . . . , p, then ‖X‖max = √

n). For a positive integer m, define

φ1(m) = inf
{ √

m‖Xθ‖
‖X‖max‖θ‖1

: 0 	= ∣∣supp(θ)
∣∣ ≤ m

}
,(2.14)

φ2(m) = inf
{ ‖Xθ‖
‖X‖max‖θ‖ : 0 	= ∣∣supp(θ)

∣∣ ≤ m

}
.(2.15)

Because ‖θ‖1 ≤ √
s(θ)‖θ‖, it follows that φ1(m) ≥ φ2(m). Positivity of φ1 at an argument

m is called the compatibility condition, and is stronger if φ1(m) is larger. Since

‖θI‖ = ∥∥(
X′

I XI

)−1X′
I XI θI

∥∥ ≤ ∥∥(
X′

I XI

)−1∥∥∥∥X′
I

∥∥‖XI θI‖ =
√

λmax(X′
I XI )

λmin(X′
I XI )

‖XI θI‖

for any I ∈ I , it follows that φ2(m) ≥ inf{λmin(X′
I XI )/‖X‖max

√
λmax(X′

I XI ), |I | ≤ m,I ∈
I}, where λmin(M) and λmax(M) refer respectively to the minimal and maximal eigenvalues
of a square matrix M. Hence, φ2(m) can be bounded in terms of eigenvalues of submatrices
of X′X. In the result below, if any of φ1 or φ2 is zero at its argument, then the result becomes
trivial but remains valid.
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COROLLARY 2 (Signal recovery). Let φ1 and φ2 be defined by (2.14) and (2.15), respec-
tively. For constants C, τ0, c′′ appearing in Theorem 1 and Corollary 1, we have

Eθ0 π̂

(
‖θ − θ0‖1 ≥ Mr(θ0)

√
(τ0 + 1)s(θ0)

‖X‖maxφ1((τ0 + 1)s(θ0))

∣∣∣Y
)

≤ CM−2 + exp
[−c′′s(θ0) log

(
ep/s(θ0)

)]
,

Eθ0 π̂

(
‖θ − θ0‖ ≥ Mr(θ0)

‖X‖maxφ2((τ0 + 1)s(θ0))

∣∣∣Y
)

≤ CM−2 + exp
[−c′′s(θ0) log

(
ep/s(θ0)

)]
.

Selecting the correct set of predictors is also relevant, but is clearly impossible without
assuming that the signals are sufficiently strong, since estimating a very small coefficient
introduces more error than the bias for ignoring it. Assuming that all signals are significantly
large, the following result shows that the empirical Bayes posterior (and the variable selector
Î ) can rarely miss a signal; this is called the “variable screening property” in Bühlmann [6].
Notice that the condition in the corollary is a version of the so-called “beta-min” condition;
cf. Castillo et al. [11] and Bühlmann [6].

COROLLARY 3 (Selection). Let φ2 be defined by (2.15) and assume that

|θ0,j | > Mσ‖X‖−1
max

√
s(θ0) log

(
ep/s(θ0)

)
/φ2

(
(τ0 + 1)s(θ0)

)
,

whenever θ0,j 	= 0. Then for constants C, τ0, c′′ appearing in Theorem 1 and Corollary 1, we
have Eθ0π̂ (θ : supp(θ) 	⊃ supp(θ0)|Y) ≤ CM−2 + exp[−c′′s(θ0) log(ep/s(θ0))].

From Corollary 3, variable selection consistency follows by an easy argument when the
actual support is sufficiently small; see Martin et al. [22].

2.4. Uncertainty quantification. While the empirical Bayes method has the optimal accu-
racy for point estimation (matching with the local oracle rate), the question of frequentist cov-
erage and optimal size of empirical Bayes credible balls is a lot more delicate. As mentioned
in the Introduction, it is impossible to construct any procedure, Bayesian or otherwise, which
will have the optimal size and required coverage uniformly all over the parameter space. If
we wish to obtain the optimal size of a confidence ball with high probability uniformly in the
parameter space, the best we can achieve is coverage only after removing a (small) collec-
tion of deceptive parameters. The main problem is in the bias term ‖(I − HI τ

o (θ))Xθ‖2 of the
τ -oracle rate, that results from the fact that the coordinates θ(I τ

o )c = (θi, i /∈ I τ
o ) are classified

as zeros by the τ -oracle, but actually these may not be zeros. Although this is the best choice
from the τ -oracle’s perspective, some “deceptive” θ values may still have many nonzero co-
ordinates from (I τ

o )c (being classified as zeros), making the bias term large (i.e., “the bias
is excessive”) relative to the variance term. The idea is to control the excessive bias via the
(inflated) oracle variance, which means that the whole oracle rate is then controlled by the
variance term.

Define the normalized τ -bias at θ0 ∈R
p by

(2.16) bτ (θ0) = θ ′
0X′(I − HI τ

o (θ0))Xθ0

σ 2|I τ
o (θ0)| log(ep/|I τ

o (θ0)|) ,

and hence we may write r2
τ (θ0) = (bτ (θ0)+ τ) log(ep/|I τ

o (θ0)|)σ 2|I τ
o (θ0)|. The τ -oracle rate

becomes a multiple of the variance term of the rate. However, to make this multiple factor
uniform over θ0 ∈ R

p , a control over the normalized τ -bias bτ (θ0) will be needed. This
naturally leads to a restriction, which will ensure coverage at θ0.
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DEFINITION 1. We say that the excessive bias restriction (EBR) condition with structural
parameters (t, τ ) holds at a parameter value θ0 if bτ (θ0) ≤ t . We denote the corresponding
region of the parameter space by �eb(t, τ ) = {θ ∈ R

p : bτ (θ) ≤ t}.
A discussion on the EBR condition is given in Section 3. We shall need the EBR condition

satisfied for

τ > τ̄ �
[
4κ(e + 1) + 2e log(1 + κ)

]
/(e − 2).(2.17)

REMARK 2. The origin of the condition (2.17) can be elucidated as follows. Recall that
by the definition of the oracle rate, for any θ ∈ R

p we have |I τ2
o (θ)| ≤ |I τ1

o (θ)| ≤ |I ∗(θ)| for
any 0 ≤ τ1 ≤ τ2. This means that the EBR condition is weaker if τ is smaller. Interestingly,
the “limiting” oracle, as τ ↓ 0, I 0

o (θ) = I ∗(θ) recovers the active index set I ∗(θ) and the
corresponding limiting EBR set would become the entire space: �eb(t,0) = R

p . Besides,
checking the proofs reveals that the constants will not deteriorate for smaller τ (in fact, will
improve). However, as condition (2.17) shows, Lemma 2 (and hence Theorem 2) hold only
if τ is appropriately large, thus ruling out the possibility that arbitrarily weak versions of the
EBR condition can ensure coverage.

Now we construct a confidence ball for Eθ (Y ) = Xθ using the EBMS posterior distribution
π̌(θ |Y). From (2.9), we have Xθ |Y ∼ Nn(Xθ̌ , κσ 2

κ+1H
Î
). Denoting by χ2

k,α the (1−α)-quantile

of χ2
k -distribution, we have that π̂(‖Xθ − Xθ̌‖2 ≤ κσ 2

κ+1χ2
|Î |,α|Y) = 1 − α. However, χ2

|Î |,α is

bounded by a constant multiple of |Î |, and hence for simplicity the latter can replace the
former to obtain a credible ball. Instead of EBMS posterior mean θ̌ , the EBMA posterior
mean θ̃ may also be used as the center of the resulting confidence ball. This leads to the
confidence set B(Xθ̂ ,Mσ |Î |1/2) as a credible ball for Xθ , which clearly can be guaranteed to
have at least a given level of credibility by choosing a sufficiently large constant M . We shall
see that under a true parameter θ0, with arbitrarily high probability, |Î | is of the order |I τ

o |.
Since the minimax risk of the class of adaptive estimators is larger than this by a multiplicative

factor log(ep/|I τ
o |), it is clear that B(Xθ̂ ,Mσ |Î |1/2

) cannot have a guaranteed coverage,
since otherwise the center θ̂ will have risk lower than the minimax risk for sparse adaptive
estimation. Hence to obtain coverage, the order of the radius of any confidence ball must
contain a logarithmic factor. This leads us to the inflated credible ball B(Xθ̂ ,Mρ̂), where

ρ̂2 = σ 2|Î | log
(
ep/|Î |).(2.18)

The following theorem shows that the logarithmic inflation leads to coverage at all true pa-
rameter θ0 satisfying the EBR condition.

THEOREM 2 (Coverage and oracle size). Let (2.17) be fulfilled. Then for any t > 0,
ε1, ε2 > 0, there exist M = M(t, ε1) > 0 and L = L(ε2) > 0 such that

sup
θ0∈�eb(t,τ )

Pθ0

(
Xθ0 /∈ B(Xθ̂ ,Mρ̂)

) ≤ ε1, sup
θ0∈Rp

Pθ0

(
ρ̂ ≥ Lr(θ0)

) ≤ ε2.

REMARK 3. The EBR condition is formulated in terms of τ -oracle I τ
o defined by (2.3),

rather than the “standard” oracle Io (i.e., for τ = 1). It may be desirable to impose an EBR
condition in terms of the oracle Io. Notice that the τ -oracle can be seen as the standard oracle
but in the model with the new variance parameter σ 2

τ = τσ 2 instead of σ 2. By rewriting the
original model (1.1) as Yτ−1/2 = Xθτ−1/2 + στ−1/2ε, it is not difficult to see that we can
construct a confidence ball for Xθ with the radius

√
τMρ̂ satisfying the coverage property as

above, but now uniformly over �eb(t,1).
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REMARK 4. Interestingly, as is recently shown by Castillo and Szabó [12] for the “signal
plus noise” model, the EBR condition turns out to be minimal in a certain sense.

REMARK 5. We can construct a confidence ball with a radius of the order r(θ0) + σn1/4

with coverage uniformly over the whole space θ0 ∈ R
p . This means that there is no EBR

condition needed if the extra information r2
o (θ0) ≥ Cσ 2√n (the parameter θ0 is “not sparse”

in a sense) is available (cf. Nickl and van de Geer [24]). However, the construction of that
confidence ball is different from the confidence ball in Theorem 2. It is an interesting problem
to investigate whether it is possible to test between “sparse” and “nonsparse” cases.

REMARK 6. While it is appropriate to treat B(Xθ̂ ,Mρ̂) as a credible and confidence
region for EθY = Xθ , it is possible to interpret {θ : Xθ ∈ B(Xθ̂ ,Mρ̂)} as a region for θ ,
which automatically “inherits” the corresponding credibility and coverage. However, as the
matrix X′X is typically rank deficient, the set {θ : (θ − θ̂ )′X′X(θ − θ̂ ) ≤ M2ρ̂2} obtained
from the corresponding quadratic form will be unbounded in terms of the Euclidean distance.
The main difficulty is that the relation θ �→ Xθ is not invertible. Hence, a bounded diameter
credible and confidence region is possible only by imposing an additional restriction on the
parameter θ through the compatibility condition that allows the inversion.

COROLLARY 4. Let (2.17) hold. Then for any t > 0, θ0 ∈ �eb(t, τ ), ε1, ε2 > 0, there
exist M = M(t, ε1) > 0, L = L(ε2) > 0 and positive constants τ0, c′′ such that

Pθ0

(‖θ0 − θ̂‖ ≥ Mρ̂/
[‖X‖maxφ2

(
(τ0 + 1)s(θ0)

)]) ≤ ε1 + exp
{
−c′′s(θ0) log

(
ep

s(θ0)

)}
,

Pθ0

(‖θ0 − θ̂‖1 ≥ M
√

s(θ0)ρ̂/
[‖X‖maxφ1

(
(τ0 + 1)s(θ0)

)])

≤ ε1 + exp
{
−c′′s(θ0) log

(
ep

s(θ0)

)}
,

and supθ0∈Rp Pθ0(ρ̂ ≥ Lr(θ0)) ≤ ε2.

The first two claims can be made uniform over θ0 ∈ �eb(t, τ ) ∩ �0[s] with s ≥ 1:

sup
θ0∈�eb(t,τ )∩�0[s]

Pθ0

(‖θ0 − θ̂‖ ≥ Mρ̂/
[‖X‖maxφ2

(
(τ0 + 1)s

)]) ≤ ε1 + exp
[−c′′ log(ep)

]
,

and similarly for the second relation. The diameter of the confidence ball for θ constructed
above is Mρ̂/[‖X‖maxφ2((τ0 + 1)s(θ0))]. As ρ̂ is of the oracle order r(θ0) with large proba-
bility, it follows that the diameter of the confidence set for θ ∈ �eb(t, τ ) ∩ �0[s] is at most of
the order r(θ0)/[‖X‖maxφ2((τ0 + 1)s)] ≤ σ

√
s log(ep/s)/[‖X‖maxφ2((τ0 + 1)s)] with high

probability.
To construct a credible ball using the EBMA posterior, we can choose the radius ρ̃ to be

that of the smallest 1 − γ credible ball:

ρ̃ = inf
{
ρ : π̃(‖Xθ − Xθ̂‖ ≤ ρ|Y ) ≥ 1 − γ

}
.(2.19)

Next, we can construct the confidence ball B(Xθ̂ ,Mρ̃), and it can even be shown that the
quantity ρ̃2 is of the order σ 2|Io|. As in the EBMS posterior, this concentration rate around
its center is faster than the oracle rate r2(θ0), which is the rate at which the EBMA posterior
mean concentrates near the truth. Hence in order to ensure coverage, logarithmic inflation of
the radius ρ̃ is needed. In doing so, we attain the full coverage under EBR, sacrificing slightly
on the size property. The following theorem describes coverage and size precisely. Its proof
is given in the Supplementary Material [3].
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THEOREM 3 (EBMA coverage and oracle size). Let (2.17) be fulfilled. Then for any
t > 0 and ε1, ε2 > 0, there exist M = M(t, ε1) > 0 and L = L(ε2) > 0 such that

sup
θ0∈�eb(t,τ )

Pθ0

(
Xθ0 /∈ B

(
Xθ̂ ,M

[
log(ep)

]1/2
ρ̃

)) ≤ ε1, sup
θ0∈Rn

Pθ0

(
ρ̃ ≥ Lr(θ0)

) ≤ ε2.

REMARK 7. By analyzing Lemma 3 in the Supplementary Material [3] (and subsequent
proof of Theorem 3), we see that we can replace the log factor [log(ep)]1/2 by [log log(ep)]1/2

in the coverage relation of Theorem 3 if |I τ
o | ≥ C log(ep)/ log log(ep).

One can also show that the coverage relation in Theorem 3 holds uniformly over the class
of the very sparse parameters θ ∈ �0[sn] with sn ≤ c logp.

3. Discussions and extensions.

Random predictors. In our setting, for posterior concentration and coverage results, we
treated the predictors as deterministic. As the posterior distribution is obtained by condi-
tioning on the given data, all Bayesian procedures remain unchanged even if the predictors
are random, as long as they have a fixed distribution free of the unknown model parame-
ters. However, frequentist behaviors of Bayesian procedures are different when predictors
are considered to be deterministic or random. Clearly, conditional on the observed predic-
tors, the frequentist behavior of a Bayesian procedure is given by the corresponding result for
deterministic predictors. Since the oracle approach measures errors “locally at a parameter,”
this allows deriving concentration and coverage results for random predictors through those
for deterministic predictors, as shown below.

When the predictors X = (X1, . . . ,Xp) are obtained randomly, we first define the risk
function and the oracle rates (see (2.3)) conditional on the realization of X. Let r(θ0|X)

stand for the oracle rate at parameter θ0 given X, and let r2(θ0) = EXr2(θ0|X), where EX
stands for the expectation with respect to the distribution of X. Note that the conclusion of
Theorem 1, conditioned on a realized value of a random predictor X, can be strengthened to
Eθ0[Ê{‖Xθ − Xθ0‖2|Y }|X] ≤ Cr2(θ0|X) for some constant C > 0. Then the second part of
Theorem 1 holds by Jensen’s inequality while the first part follows from Markov’s inequality.
Clearly, Corollaries 1–3 follow with unconditional probabilities replacing the corresponding
conditional probabilities given X, although the compatibility coefficients are also dependent
on X. Note that the joint distribution of X can be completely arbitrary.

Extension of Theorem 2 is less immediate since the EBR condition also depends on X.
For a structural parameter (t, τ ) and ε > 0, we say that the ε-EBR condition holds at θ0 if
bτ (θ0) = bτ (θ0|X) defined by (2.16) satisfies PX(bτ (θ0|X) > t) < ε. Clearly, the condition is
implied by EX(bτ (θ0)|X) < εt . The last condition can be more easily understood if different
replications X(1), . . . ,X(n) of the predictors are independent (or even just uncorrelated) with
a common mean vector M ∈ R

p and covariance matrix �. Then denoting HI τ
o (θ0) by H, the

expectation of θ ′
0X′(I − H)Xθ0 is given by

θ ′
0(M,M, . . . ,M)(I − H)(M,M, . . . ,M)′θ0 + tr

[((
θ ′

0�θ0
)
I
)
(I − H)

]

= (
M ′θ0

)2∥∥(I − H)(1, . . . ,1)′
∥∥2 + (

θ ′
0�θ0

)(
n − tr(H)

)
.

Thus the ε-EBR condition with structural parameter holds at θ0 if
(
M ′θ0

)2∥∥(I − H)(1, . . . ,1)′
∥∥2 + (

θ ′
0�θ0

)
(n − tr H)) < εtσ 2∣∣I τ

0 (θ0)
∣∣ log

(
ep/

∣∣I τ
0 (θ0)

∣∣).
Clearly, for any θ0 this holds for t sufficiently large, implying that the inflated credible set we
constructed will have adequate coverage if the inflation factor is chosen properly.
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Let the set of all θ satisfying the ε-EBR condition with structural parameters (t, τ ) be
denoted by �ε-eb(t, τ ). Then Theorem 2 can be stated as follows: if τ satisfies (2.17), t > 0,
ε1, ε2 > 0, then there exist M = M(t, ε1) > 0 and L = L(ε2) > 0 such that

sup
θ0∈�ε-eb(t,τ )

Pθ0

(
Xθ0 /∈ B(Xθ̂ ,Mρ̂)

) ≤ ε + ε1, sup
θ0∈Rp

Pθ0

(
ρ̂ ≥ Lr(θ0)

) ≤ ε2.

The first relation is evident from the original version of Theorem 2. To see the size condition,
first obtain L′ such that supθ0∈Rp Pθ0(ρ̂ ≥ L′r(θ0|X)) ≤ ε2/2 for all realizations of X. By
Markov’s inequality, find constant L′′ > 0 such that PX(r(θ0|X) ≥ L′′r(θ0)) ≤ ε2/2. Now
define L = L′L′′ to conclude the proof. Corollary 4 clearly follows as well.

EBR condition. Next, we discuss the excessive bias restriction (EBR) condition. Let Ii =
I ∪{i}, I−i = I \ {i} and HI , HIi

and HI−i
be the projections onto the column spaces col(XI ),

col(XIi
) and col(XI−i

), respectively. Clearly, HIi
− HI is the projection onto the orthogonal

complement of col(XI ) in col(XIi
), which is zero if Xi ∈ col(XI ). Otherwise, by some te-

dious direct calculations,

HIi
− HI = hIi

h′
Ii

where hIi
= (I − HI )Xi

‖(I − HI )Xi‖ .

Similarly, if Xi /∈ col(XI,−i ), then

HI − HI−i
= hI−i

h′
I−i

where hI−i
= (I − HI−i

)Xi

‖(I − HI−i
)Xi‖ .

For any i ∈ {1, . . . , p}, denote I τ
o,i = I τ

o ∪ {i}. Then by the definition of the τ -oracle we
have r2

τ (I τ
o,i , θ0) ≥ r2

τ (I τ
o , θ0), yielding

∥∥(HI τ
o,i

− HI τ
o
)Xθ0

∥∥2 ≤ τσ 2(∣∣I τ
o

∣∣ + 1
)

log
ep

|I τ
o | + 1

− τσ 2∣∣I τ
o

∣∣ log
ep

|I τ
o | ≤ τσ 2 log(ep).

On the other hand, if |I τ
o | > 1, the oracle coordinates must have a relatively significant con-

tribution in the following sense. For any i ∈ I τ
o , let Io,−i = I τ

o \ {i}, we have by the definition
of the τ -oracle that r2

τ (I τ
o,−i , θ) ≥ r2

τ (I τ
o , θ), yielding

∥∥(HI τ
o

− HI τ
o,−i

)Xθ
∥∥2 ≥ τσ 2∣∣I τ

o

∣∣ log
ep

|I τ
o | − τσ 2(∣∣I τ

o

∣∣ − 1
)

log
ep

|I τ
o | − 1

= τσ 2
(

log(ep) + log
(|I τ

o | − 1)|I τ
o |−1

|I τ
o ||I τ

o |
)

≥ τσ 2(
log(ep) − log

[√
2
(∣∣I τ

o

∣∣ − 1
)])

.

If we compare the EBR parameters �eb(t, τ ) with the traditional sparsity class �0[s] = {θ ∈
R

p : |I ∗(θ)| ≤ s}, it is easy to see that a subset of �0[s] with prominent nonzero components
�̄0(s, τ1) = {θ ∈ �0[s] : I ∗(θ) = I

τ1
o (θ)} trivially satisfies EBR for τ = τ1 and any t ≥ 0. For

example, if θ ∈ �0[s] is such that ‖(HJ − HJ−i
)Xθ0‖2 ≥ τ1σ

2 log(ep) for all i ∈ J for some
J ∈ I with |J | = s > 1, then θ0 ∈ �̄0(s, τ1) ⊆ �eb(t, τ1) for any t ≥ 0.

In this light, the EBR condition can be thought of as a more lenient sparsity on a param-
eter value θ0, (to be called the EBR-sparsity), compared with the classical “conservative”
sparsity requirement |I ∗(θ0)| ≤ s: the error the oracle makes when setting certain “insignif-
icant” coordinates of θ to zero should not exceed (up to a constant multiple) the error made
in recovering the contribution by “significant” nonzero coordinates. The parameter t ≥ 0
measures the EBR-sparsity level, which is weaker for larger t , and becomes no condition as
t → ∞. Thus for any fixed τ > 0, a new scale, to be called the EBR scale, “slices” R

p as
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R
p = ⋃

t≥0 �eb(t, τ ) by varying the other structural parameter t over the positive half-line.
Therefore, in view of Theorem 2, at any true parameter θ0, an optimal-order inflated credible
ball has high coverage provided that the constant inflation factor is chosen sufficiently large.
This provides a new perspective at the deceptiveness issue mentioned in the Introduction:
each parameter value θ0 is deceptive (or nondeceptive) to some extent as θ0 ∈ �eb(t, τ ) for
some t ≥ 0 depending on θ0. It is the structural parameter t of the new EBR-scale that mea-
sures the amount of deceptiveness, which in turn determines the effective amount of inflation
of the confidence ball needed to provide high coverage.

The EBR condition appears naturally as a bias-variability comparison. Besides giving a
sort of minimal condition to suppress the bias to ensure coverage, it is conceptually easier to
envision in more general settings. In contrast, the concepts of self-similarity or polished tail
are based on diminishing tails in the infinitely many normal means problem, where the bias
is handled by controlling the tail of the sequence. The definitions of self-similar or polished
tail sequences are presently unclear for sparse sequences as there is no clear conception of a
tail in this setting.

Relation to the literature. Although our main goal in this paper is the uncertainty quantifi-
cation problem in the linear regression model, we do obtain en route posterior contraction,
estimation and some more related variable selection results, some of which constitute the
necessary ingredients for the main problem of uncertainty quantification. There is a substan-
tial number of results on estimation and variable selection (and posterior contraction) in the
Bayesian and frequentist literature for the linear regression, especially in the modern high-
dimensional setting with a sparsity structure. Our Theorem 1, Corollaries 1, 2 and 3 are the
results of that type (although the weak support recovery result in claim (i) of Corollary 1
seems to be new). We, however, emphasize the main distinctive feature of our approach as
compared with the existing literature on the topic: our results are all local and uniform over
the entire space. That is, we do not a priori assume any traditional sparsity structure. We
rather establish that our method exploits as much intrinsic sparsity, measured by the oracle
rate r(θ0), present in the underlying θ0 (and X).

As to the main goal of our study, within our familiarity, the only paper addressing the is-
sue of confidence ball of the whole regression coefficient for sparse high-dimensional linear
regression is Nickl and van de Geer [24], who constructed such a set centered at a sparse esti-
mator with radius obtained from an estimate of risk using completely non-Bayesian methods.
They showed that it is impossible to adapt to the optimal size for different sparsity without
paying in terms of coverage at some parameter values. Then they adapt their confidence re-
gion for only two possible sparsity levels at a time, by imposing a restriction on a parameter
value in the larger class (i.e., less sparse) to maintain a distance of some appropriate order
from the smaller class (i.e., more sparse). We, on the contrary, consider all possible spar-
sity levels simultaneously and obtain adaptive size and coverage after removing the set of
deceptive parameters by the excessive bias restriction condition.

Oracle approach. It is to be noted that the definition of the oracle is dependent on the choice
of the class of estimators. In particular, we defined the oracle risk for a given model and pa-
rameter value through the risk of the family of least square estimators restricted to the given
model at the given parameter value. There are other sensible families of estimators for the
problem such as a ridge regression estimator or the Lasso with some chosen tuning parame-
ter, especially when the given model leads to multicollinearity. One advantage of the latter is
that the requirement of linear independence of the columns of XI is no longer required, and
apparently, the risk bound may be lower. However, we note that the oracle approach needs
only to consider the minimizer of the risk over the entire family, and hence if a lot of multi-
collinearity is present in XI (thus making the least square estimator restricted to the model
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I have higher risk), the oracle will be given by an appropriately smaller model, and hence
the oracle risk will be sufficiently controlled. This intuitive reasoning is supported by the fact
that the oracle approach based on the family of least square estimators is already sufficient
for obtaining the optimal rates for sparsity classes. The use of the family of least square es-
timators to construct the oracle allows more explicit expressions, which are instrumental in
the derivations.

The oracle approach is elegant since it automatically derives the minimax rates simulta-
neously for different possible scales through the local rates, but is clearly dependent on the
availability of explicit expressions for the posterior density in each model. More specifically,
a key step is to bound the posterior probabilities of models corresponding to different se-
lection indexes by strong exponential inequalities as in (5.4). This restricts us essentially to
a normal-normal conjugate setting, and hence the specific choice of the prior is important.
This prior also makes the empirical Bayes choice for the mean, correcting the overshrinkage,
necessary. With the availability of explicit expressions, the construction of credible sets with
guaranteed frequentist coverage becomes more manageable. The conjugacy also makes the
computations more manageable through Monte Carlo sampling, as explained in the Supple-
mentary Material [3]. Formulating an analogous computational procedure for other priors,
such as for the Laplace prior used by Castillo et al. [11], may be difficult to implement since
the model posterior probabilities cannot be obtained explicitly due to the lack of conjugacy,
although other algorithms such as sequential Monte Carlo may work; see Castillo et al. [11].
Therefore, it appears that in the linear Gaussian setting, the proposed empirical Bayes pro-
cedure is very fruitful. While every problem needs to be considered separately to address
their unique features, a general path to the proof may be envisioned from the experiences in
Belitser [2], Belitser and Nurushev [4] and the present paper. Indeed analogous results may
be immediately extended to the problem of linear regression with grouped predictors. These
predictors can enter the model only as groups, and the true set of predictors is also assumed to
respect the grouping structure. We assume that for each group of predictors G, the submatrix
XG formed by the predictors in G has linearly independent columns. Then in our setting,
the grouped predictor problem can be simply interpreted as imposing a restriction on I , the
family of possible sets of active predictors in the model. Thus the reduced cardinality of I
leads to reduced complexity and hence (λI : I ∈ I) continues to sum to a number bounded
independently of p and n. This shows that the key step (5.8) remains valid and hence all
the bounds derived for ungrouped predictors will remain in force. An extension to additive
nonparametric regression is described in the next section.

4. Additive nonparametric regression. Nonparametric regression in high dimensions
suffers from the curse of dimensionality problem because the convergence rate significantly
slows down with the dimension. Additive nonparametric regression avoids the curse of di-
mensionality, but still retains the flexibility of nonparametric models, and is widely used;
see Hastie and Tibshirani [18]. An additive nonparametric regression model for a response
variable Yk based on p-dimensional random predictors X(k) = (X

(k)
1 , . . . ,X

(k)
p )′ ∈ R

p , k =
1, . . . , n, is given by the relation

Yk = μ +
p∑

i=1

fi

(
X

(k)
i

) + εk, k = 1, . . . , n,(4.1)

where μ is a real-valued parameter, f1, . . . , fp are functions with some smoothness proper-

ties and satisfy the identifiability restrictions Efi(X
(k)
i ) = 0, i = 1, . . . , p, and εk

ind∼ N(0, σ 2),
k = 1, . . . , n. Common approaches to estimating the regression function use kernel smooth-
ing, penalization or expanding in a convenient basis. When p is large, a variable selection step
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needs to be incorporated in the inference, which is typically performed through a penalization
approach [Lin and Zhang [21], Ravikumar et al. [27], Meier et al. [23], Raskutti et al. [26]] or
by Bayesian variable selection [Curtis et al. [14], Yang and Tokdar [34]]. Representing each
component function through basis expansions, the additive nonparametric regression model
(4.1) can be reduced to a linear regression model after truncating the basis expansion and
allowing for approximation bias. Below we present an argument to show that the results of
Section 2 can be adapted in this setting to quantify posterior concentration rates in terms of
the oracle rates and derive coverage of the resulting credible sets.

Let (X(k), Y (k)), k = 1, . . . , n, be the observed sample, Y = (Y1, . . . , Yn)
′, ε = (ε1, . . . , εn)

′
and X = (X(1), . . . ,X(n))′. Denote for brevity J = {(i, j) : i ∈ [p], j ∈ N}, where [k] =
{1, . . . , k} for k ∈ N. Assume that the ith predictor X

(k)
i is distributed according to a den-

sity qi on its domain Di and different predictors are independently distributed. For each
i ∈ [p], let {1,Bij : j ∈ N} be an orthonormal basis of L2(Di, qi). This, in particular, means
that

∫
Bijqi = 0 for all i ∈ [p] and j ∈ N. Let fi ∈ L2(Di, qi) be such that

∫
fiqi = 0 for

all i ∈ [p]. Denoting Z(k) = (1, (Bij (X
(k)
i ) : (i, j) ∈ J ))′, Z = Z(X) = (Z(1), . . . ,Z(n))′ and

θ = (μ, (θij , (i, j) ∈ J ))′, we can rewrite the model (4.1) as Y = Zθ + ε. Now, for every
I ⊆ [p] and J ∈ N, consider the (I, J )-truncated linear model

Y = ZI,J θI,J + ε,(4.2)

where ZI,J is the (n × (|I |J + 1))-matrix with the kth row equal to Z
(k)
I,J = (1, (Bij (X

(k)
i ) :

i ∈ I, j ∈ [J ]))′ and θI,J = (μ, (θij : i ∈ I, j ∈ [J ]))′. Observe that in the (I, J )-th model
(4.2), the least square estimator θ̂ (I, J ) = (μ̂, (θ̂ij (I, J ), (i, j) ∈ J ))′ of θ is

θ̂I,J (I, J ) = (
Z′

I,J ZI,J

)−1Z′
I,J Y, θ̂i,j (I, J ) = 0, (i, j) /∈ (

I, [J ]),
provided that (I, J ) ∈ I � {(I ′, J ′) : the columns of ZI ′,J ′ are linearly independent}. In other
words, this means that the estimator has the (i, j)-th component set to zero if either i /∈ I or
j > J , and the least square estimator is applied to the surviving coefficients. Then, as in (2.2),
the quadratic prediction risk of Zθ̂ (I, J ) is given by

R2(
(I, J ), θ

) = θ ′E
[
Z′(I − HI,J )Z

]
θ + σ 2(|I |J + 1

)
,

where HI,J = ZI,J (Z′
I,J ZI,J )−1Z′

I,J is the projection on the column space of ZI,J . The R-
oracle is the minimizer of this risk over all (I, J ) ∈ I . The objective is then to mimic the risk
of the oracle based estimator without knowing it. As in linear regression, it is impossible to
match the risk of the R-oracle based estimator by any other estimator. Following (2.3), we
need to include an additional term to define the τ -oracle rate rτ ((I, J ), θ) by

r2
τ

(
(I, J ), θ

) = θ ′E
[
Z′(I − HI,J )Z

]
θ + τσ 2(|I |J + 1

) + τσ 2|I | log
ep

|I | ,(4.3)

and define the τ -oracle (I τ
o (θ), J τ

o (θ)) to be the minimizer of (4.3). We note that a term with
the additional logarithmic factor log(ep/|I |) is needed only for the first index I , since the
values of J are linearly ordered, unlike I , which requires considering all possible subsets of
{1, . . . , p}. The role of the index J is similar to the truncating parameter in Belitser [2]. As
before, we define the oracle rate by r(θ) = r1((I

1
o (θ), J 1

o (θ)), θ).
We consider the conjugate prior: given (I, J ),

θI,J |(I, J ) ∼ N
(
μ(I, J ), κσ 2(

Z′
I,J ZI,J

)−1)
, θij = 0 if i /∈ I or j > J.

It may be noted that the functions
∑J

j=1 θijBij used in modeling fi are automatically cen-
tered with respect to qi for all for any choice of coefficients {θij } and i ∈ [p], since the basis
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functions are centered. On I , we put the prior given by (2.5), and independently we put a geo-
metric prior λ(J = j) = (eβ − 1)e−βj on J , j ∈ N, β > 0. The resulting joint prior for (I, J )

will be denoted by λI,J . This leads to the posteriors πμ(θ |X, Y, (I, J )) = π(I,J ),μ(θ |X, Y )

and πμ((I, J )|X, Y ). As before, for each (I, J ), μ(I, J ) is selected by the empirical Bayes
method: μ̂(I, J ) = θ̂I,J (I, J ), leading to the empirical Bayes posteriors π(I,J ),μ̂(θ |X, Y ) and
πμ̂((I, J )|X, Y ). Now we can again determine the maximizer (Î , Ĵ ) of the marginal empirical
Bayes posterior probability πμ̂((I, J )|X, Y ), and construct two versions of empirical Bayes
posteriors: the EBMS posterior π̌(θ |X, Y ) with the corresponding EBMS mean θ̌ , and the
EBMA posterior π̃ (θ |X, Y ) with the corresponding EBMA mean θ̃ . Let, as before, π̂ denote
either π̌ or π̃ and, respectively, θ̂ denote either θ̌ or θ̃ .

Denote θ0 = (μ0, (θij,0, (i, j) ∈ J )) and fi,0(x) = ∑∞
j=1 θij,0Bij (x), i = 1, . . . , p. We

shall write Pθ0 and Eθ0 , respectively, for the probability and the expectation under the dis-
tribution induced by the parameter value θ0. The empirical Bayes posterior π̂ and the esti-
mator θ̂ then satisfy concentration results similar to Theorem 1. A proof is provided in the
Supplementary Material [3].

THEOREM 4. There exists a constant C > 0 such that, for any μ0 ∈ R and fi,0 ∈ L2(Di)

with
∫
Di

fi,0(xi)qi(xi) dxi = 0, i = 1, . . . , p, and any M > 0, we have that

Eθ0 π̂
(‖Zθ − Zθ0‖ ≥ Mr(θ0)|X, Y

) ≤ CM−2, Eθ0‖Zθ̂ − Zθ0‖2 ≤ Cr2(θ0).(4.4)

Here, the true expectation integrates out the X-values too as they are random; see Re-
mark 3. Note that, when modeling additive nonparametric regression by linear regression, we
are only interested in the prediction problem, that is, an inference on Zθ , rather than on θ .

In addition, as a consequence of the oracle approach, we obtain that a credible ball with
squared radius a large multiple of ρ̂2 = 1 + |Î |Ĵ + |Î | log(ep/|Î |) has frequentist coverage
at all true parameters which meet the ε-EBR condition for a sufficiently small ε > 0, and the
size of the credible set is minimax optimal with high probability. Precisely, in this case, the
normalized τ -bias at θ0 is defined as follows:

bτ (θ0) = bτ (θ0|X) = θ ′
0Z′(I − HI τ

o ,J τ
o
)Zθ0

σ 2(|I τ
o |J τ

o + 1) + τσ 2|I τ
o | log ep

|I τ
o |

.

For a structural parameter (t, τ ) and ε > 0, recall that the ε-EBR condition holds at θ0 if
the normalized τ -bias bτ (θ0) = bτ (θ0|X) satisfies PX(bτ (θ0|X) > t) < ε. Let the set of all
parameter values satisfying the ε-EBR condition with structural parameters (t, τ ) be denoted
by �ε-eb(t, τ ). The following theorem claims the uncertainty quantification results for the
additive nonparametric regression model under the ε-EBR condition. The proof is given in
the Supplementary Material [3].

THEOREM 5. Let τ satisfy (2.17), t > 0, ε1, ε2 > 0. Then there exist M = M(t, ε1) > 0
and L = L(ε2) > 0 such that

sup
θ0∈�ε-eb(t,τ )

Pθ0

(
Zθ0 /∈ B(Zθ̂ ,Mρ̂)

) ≤ ε + ε1, sup
θ0∈Rp

Pθ0

(
ρ̂ ≥ Lr(θ0)

) ≤ ε2.

The above results, Theorem 4 and 5, are admittedly abstract, but they can easily lead to
well-interpretable results when sparsity conditions for selection of the variables X1, . . . ,Xp

in the true regression function and smoothness of each selected function are assumed. This
would deliver adaptive minimax results over an appropriate functional scale. For this, we only
need to upper bound the oracle risk by a multiple of the corresponding minimax rate under
these assumptions.
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Let each component Xi of the predictor variable X be distributed uniformly on the
unit interval [0,1] independently of other components. Fix a convenient orthonormal ba-
sis {1,B1,B2, . . .} in L2[0,1] (such as that of Legendre polynomials or trigonometric func-
tions). Then an additive regression function μ+∑p

i=1 fi(Xi) with fi ∈ L2[0,1], ∫
fi = 0, can

be equivalently represented by the infinite dimensional vector θ = (μ, (θj (fi), (i, j) ∈ J )),
where for f ∈ L2[0,1], θj (f ) = ∫ 1

0 Bj(x)f (x) dx. Observe that the property
∫

fi = 0 for
all i ∈ [p] is needed for the expansion since the basis functions are centered. Writing the
additive nonparametric model as an infinite dimensional linear model Y = Zθ + ε using
these basis expansions and letting F0(X) = Zθ0 stand for the true regression function and
θ0 be the corresponding true coefficient vector, we can quantify posterior contraction and
coverage of credible sets in terms of the metric ‖x‖n = n−1/2‖x‖, x ∈ R

n, and the ball
Bn(x, r) = {y ∈ R

n : ‖x − y‖n ≤ r}, r > 0.
Introduce the tail class T (α) = {θ ∈ �2 : ∑

j>J θ2
j ≤ QJ−2α, J ∈ N} which contains the

Sobolev class S(α) = {θ ∈ �2 : ∑
j∈N j2αθ2

j ≤ Q}. Then for the additive regression function,
we define the functional classes

F(s, α) =
{
μ + ∑

i∈I

fi(xi) : μ ∈R, I ⊆ [p],1 ≤ |I | ≤ s,

∫ 1

0
fi(x) dx = 0, θ(fi) ∈ T (α), i ∈ [p]

}

for s ∈ [p] and α > 0. Note that for inactive predictors, the regression functions are zero
functions, which trivially satisfy the smoothness assumption.

COROLLARY 5. There exist a constant C > 0 such that

sup
F0∈F(s,α)

EF0 π̂
(∥∥Zθ − F0(X)

∥∥
n ≥ Mεn|X, Y

) ≤ CM−2,

sup
F0∈F(s,α)

EF0

∥∥Zθ̂ − F0(X)
∥∥2
n ≤ Cε2

n,

where ε2
n = max{sn−2α/(1+2α), sn−1 log(p/s)}.

Moreover, let τ satisfy (2.17), t > 0, ε1, ε2 > 0, ρ̂2 = n−1{1 + |Î |Ĵ + |Î | log(ep/|Î |)},
where (Î , Ĵ ) is the EBMS selector. Then there exist M = M(t, ε1) > 0 and L = L(ε2) > 0
such that

sup
θF0∈�ε-eb(t,τ )

PF0

(
F(X) /∈ Bn(Zθ̂ ,Mρ̂)

) ≤ ε + ε1, sup
F0∈F(s,α)

PF0(ρ̂ ≥ Lεn) ≤ ε2.

A proof of this corollary is provided in the Supplementary Material [3].
The obtained rate εn was shown to be the minimax rate for estimation in Raskutti et al. [26]

and Yang and Tokdar [34]. Thus the empirical Bayes procedure achieves the optimal minimax
rate of estimation in the stated regime. Yang and Tokdar [34] also showed, using the general
theory of posterior contraction (see Ghosal and van der Vaart [17]), that the posterior based
on a Gaussian process prior contracts at the optimal minimax rate up to a logarithmic factor.
By using the oracle approach, we obtain the same result without the additional logarithmic
factor for the empirical Bayes posterior based on the orthogonal series prior. The same rate
for the convergence of the empirical Bayes posterior mean is automatically obtained. The
obtained coverage result for credible sets is new.
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5. Proofs. In this section, we present the proofs of the results stated in Section 2.
The following is a version of a maximal inequality under a bounded exponential moment

assumption and will be used in the proof of Theorem 1.

LEMMA 1. Let t > 0 and η1, . . . , ηN be random variables such that Eetηi ≤ At for some
0 < At < ∞ and all i = 1, . . . ,N . Then E(max{ηi : 1 ≤ i ≤ N}) ≤ t−1(logN + logAt).

PROOF. By Jensen’s inequality, exp{tE max1≤i≤N ηi} ≤ E exp{t max1≤i≤N ηi} ≤∑N
i=1 Eetηi ≤ NAt , which is equivalent with the assertion. �

PROOF OF THEOREM 1. Recall our notational convention for all G ⊆ I: when π̂ = π̌ ,
π̂(I ∈ G|Y) = 1{Î ∈ G} (in particular, π̂ (I |Y) = 1{Î = I }) and Eθ0 π̂(I ∈ G|Y) = Pθ0(Î ∈ G);
while if π̂ = π̃ , π̂ (I ∈ G|Y) = π̃(I ∈ G|Y) (in particular, π̂(I |Y) = π̃(I |Y)) and Eθ0 π̂(I ∈
G|Y) = Eθ0π̃(I ∈ G|Y).

According to the empirical Bayes posterior distribution π̂(·|Y) given in (2.9), it follows
that Xθ |(Y, I ) ∼ Nn(HI Y, κσ 2

κ+1HI ). Then as HI (I − HI ) = O for any I , we have that

Ê
(‖Xθ − Xθ0‖2|Y ) = ∑

I∈I

(
κσ 2

κ + 1
tr(HI ) + ‖HI Y − Xθ0‖2

)
π̂(I |Y)

= ∑
I∈I

(
κσ 2

κ + 1
|I | + ∥∥(HI − I)XI cθ0,I c + σHI ε

∥∥2
)
π̂(I |Y)

≤ ∑
I∈I

(
r2(I, θ0) + σ 2‖HI ε‖2)

π̂ (I |Y).

Therefore, by Markov’s inequality we obtain

Eθ0 π̂
(‖Xθ − Xθ0‖ ≥ Mr(θ0)|Y )

= Eθ0

∑
I∈I

π̂I

(‖Xθ − Xθ0‖ ≥ Mr(θ0)|Y )
π̂(I |Y)

≤ Eθ0

∑
I∈I

Ê(‖Xθ − Xθ0‖2|Y, I )

M2r2(θ0)
π̂(I |Y)

≤
∑

I∈I r2(I, θ0)Eθ0π̂ (I |Y)

M2r2(θ0)
+ σ 2Eθ0

∑
I∈I ‖HI ε‖2π̂ (I |Y)

M2r2(θ0)
.

(5.1)

Henceforth, we consider two cases π̂ = π̌ and π̂ = π̃ separately. If π̂ = π̌ , by using (2.10)
and (2.7), we obtain that, for any h ∈ [0,1] and any I, I0 ∈ I ,

Eθ0π̂(I |Y) = Pθ0(Î = I ) ≤ Pθ0

(
λI π̂I (Y )

λI0 π̂I0(Y )
≥ 1

)
≤ Eθ0

[
λI π̂I (Y )

λI0 π̂I0(Y )

]h

.

When π̂ = π̃ , by the definition of π̃(I |Y) in (2.12), we derive the same as follows: for any
h ∈ [0,1] and any I, I0 ∈ I ,

Eθ0 π̂(I |Y) = Eθ0π̃ (I |Y) ≤ Eθ0

[
λI π̂I (Y )∑

J∈I λJ π̂J (Y )

]h

≤ Eθ0

[
λI π̂I (Y )

λI0 π̂I0(Y )

]h

.

In either case, we derive the bound

Eθ0π̂(I |Y) ≤ Eθ0

[
λI π̂I (Y )

λI0 π̂I0(Y )

]h

=
(

λI

λI0

)h Eθ0 exp{ h
2σ 2 Y ′(HI − HI0)Y }

(1 + κ)h(|I |−|I0|)/2 .(5.2)
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Recall the fact that if Y ∼ N(μ,�) and A� < I for a symmetric matrix A, then

E exp
[
Y ′AY/2

] = exp[1
2μ′(I − A�)−1Aμ]√

det(I − A�)
.(5.3)

Denote for brevity HI,I0 = HI − HI0 . Using (5.2) and (5.3) with � = σ 2I and A = h
σ 2 HI,I0 ,

(5.4) Eθ0 π̂(I |Y) ≤
(

λI

λI0

)h exp{ h
2σ 2 θ ′

0X′(I − hHI,I0)
−1HI,I0Xθ0}

(1 + κ)h(|I |−|I0|)/2
√

det(I − hHI,I0)
,

provided that I − hHI,I0 is invertible.
Next, for any h ∈ [0,1] and any symmetric matrix A such that A ≤ I and I − hA is invert-

ible, we have that (I − hA)−1A = A(I − hA)−1 = A + hA(I − hA)−1A. Thus

(I − hHI,I0)
−1HI,I0 = HI,I0 + hHI,I0(I − hHI,I0)

−1HI,I0, h ∈ [0,1),

as I−hHI,I0 is invertible for any h ∈ [0,1). For brevity, denote y = Xθ0. Observe that 1
1−h

(I−
hHI,I0) = I + h

1−h
(I − HI,I0) ≥ I, so that (I − hHI,I0)

−1 ≤ 1
1−h

I. Hence

y′(I − hHI,I0)
−1HI,I0y

= y′HI,I0y + hy′HI,I0(I − hHI,I0)
−1HI,I0y

≤ ∥∥(I − HI0)y
∥∥2 − ∥∥(I − HI )y

∥∥2 + h

1 − h
‖HI,I0y‖2

≤ ∥∥(I − HI0)y
∥∥2 − ∥∥(I − HI )y

∥∥2 + 2h

1 − h

(∥∥(I − HI )y
∥∥2 + ∥∥(I − HI0)y

∥∥2)

= 1 + h

1 − h

∥∥(I − HI0)y
∥∥2 − 1 − 3h

1 − h

∥∥(I − HI )y
∥∥2

,

(5.5)

for any h ∈ [0,1). Besides, we have that for any h ∈ [0,1)

det
(
I − h(HI − HI0)

) ≥ (1 − h)|I |.(5.6)

Inserting (2.5), (5.5) and (5.6) in (5.4), the bound for Eθ0 π̂(I ) reduces to

(
ep/|I |)−c1|I | exp

{
h(1 + h)

2σ 2(1 − h)
θ ′

0X′(I − HI0)Xθ0 +κh|I0| log
ep

|I0| + h

2
|I0| log(1 + κ)

− h(1 − 3h)

2σ 2(1 − h)
θ ′

0X′(I − HI )Xθ0 − (hκ − c1)|I | log
ep

|I | − |I | log
[
(1 + κ)h/2(1 − h)1/2]}

,

where c1 = 1 + hκ
2 . By (2.6), (1 + κ)h/2(1 −h)1/2 ≥ 1, h ∈ (0,1/3) and κ > 2/h. Using this

and applying the last relation with I0 = Io(θ0), we obtain

Eθ0 π̂(I |Y) ≤ (
ep/|I |)−c1|I | exp

{−c2σ
−2(

r2(I, θ0) − c3r
2(θ0)

)}
,(5.7)

where

c2 = min
{
h(1 − 3h)

2(1 − h)
,
hκ

2
− 1

}
, c3 = h

2c2
max

{
1 + h

1 − h
,2κ + log(1 + κ)

}
.

By the assumed conditions (2.6) on κ , κ and h, we have c1 > 2, c2 > 0 and c3 > 0.
For a τ0 > 0 and θ0 ∈ R

p , let O(τ0, θ0) = {I ∈ I : r2(I, θ0) ≤ τ0r
2(θ0)}. Choosing τ0 > c3,

where c3 is as in (5.7), it follows that for any I ∈ Oc(τ0, θ0), we have r2(I, θ0) − c3r
2(θ0) ≥
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(1 − c3/τ0)r
2(I, θ0). Using the estimates xe−cx ≤ (ce)−1 for any x ≥ 0, c > 0 and

(p
k

) ≤
(ep/k)k , with B = c2(τ0 − c3)/(2τ0), we obtain from (5.7) that

∑
I∈Oc(τ0,θ0)

r2(I, θ0)
[
Eθ0 π̂(I |Y)

]1/2 ≤ ∑
I∈Oc(τ0,θ0)

(
ep

|I |
)−c1|I |/2

r2(I, θ0)e
−Br2(I,θ0)/σ

2

≤ σ 2

Be

p∑
k=1

(
p

k

)(
ep

k

)−c1k/2
≤ σ 2

Be(e(c1−2)/2 − 1)
.

(5.8)

As ‖HI ε‖2 ∼ χ2|I |, we have that E‖HI ε‖4 = |I |2 + 2|I | ≤ 3|I |2 ≤ 3r4(I, θ0)/σ
4. There-

fore, by the Cauchy–Schwarz inequality and (5.8), we obtain

σ 2Eθ0

∑
I∈Oc(τ0,θ0)

‖HI ε‖2π̂(I |Y) ≤ ∑
I∈Oc(τ0,θ0)

σ 2[
E‖HI ε‖4]1/2[

Eθ0π̂(I |Y)
]1/2

≤ √
3

∑
I∈Oc(τ0,θ0)

r2(I, θ0)
[
Eθ0 π̂(I |Y)

]1/2

≤
√

3σ 2

Be(e(c1−2)/2 − 1)
.

(5.9)

To estimate the contributions from I ∈ O(τ0, θ0), note that the cardinality |I | of I is nec-
essarily bounded by m = max{|J |, J ∈ O(τ0, θ0)} which satisfies

σ 2m log(ep/m) ≤ τ0r
2(θ0),(5.10)

by the definitions of O(τ0, θ0) and r2(θ0). In view of the norm decreasing properties of pro-
jection operators, we have that∑

I∈O(τ0,θ0)

‖HI ε‖2π̂(I |Y) ≤ max
I∈O(τ0,θ0)

‖HI ε‖2 = max
{‖HI ε‖2 : I ∈ O(τ0, θ0), |I | = m

}
.

Now ‖HI ε‖2 ∼ χ2|I |, and hence for any I ∈ I with |I | = m, Eet‖HI ε‖2 = (1 − 2t)−m/2 ≤ em

provided that t ≤ (1 − e−2)/2 ≈ 0.43. As the cardinality of {I ∈ O(τ0, θ0) : |I | = m} is at

most
(

p

m

)
≤ (ep/m)m, it follows from Lemma 1 with t = 0.4 that

E
(
max

{‖HI ε‖2 : I ∈ O(τ0, θ0), |I | = m
}) ≤ 5

2

(
m log(ep/m) + m

) ≤ 5m log(ep/m).

This leads to the bound

σ 2Eθ0

∑
I∈O(τ0,θ0)

‖HI ε‖2π̂(I |Y) ≤ 5σ 2m log(ep/m) ≤ 5τ0r
2(θ0).

Combining this with (5.9) yields a bound for the second term in (5.1):

σ 2Eθ0

∑
I∈I

‖HI ε‖2π̂(I |Y) ≤ 5τ0r
2(θ0) +

√
3σ 2

Be(e(c1−2)/2 − 1)
.(5.11)

For the first term in (5.1), we proceed similarly by splitting I in O(τ0, θ0) and its complement.
For the sum over O(τ0, θ0), we use the bounds r2(I, θ0) ≤ τ0r

2(θ0) and
∑

I∈I π̂(I |Y) =
1. For the sum over Oc(τ0, θ0), we import the bound in (5.8) by noting that Eθ0π̂ (I |Y) ≤
[Eθ0π̂(I |Y)]1/2. Using these relations, we obtain

(5.12)
∑
I∈I

r2(I, θ0)Eθ0 π̂(I |Y) ≤ τ0r
2(θ0) + σ 2

Be(e(c1−2)/2 − 1)
.
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Note that σ 2 ≤ r2(θ0) by the definition of the risk. Thus all terms in (5.11) and (5.12) can
be bounded in terms of r2(θ0) and hence the bound in (5.1) reduces to C/M2, where C =
6τ0 + (

√
3 + 1)/(Be(e(c1−2)/2 − 1)). This proves the first part of the theorem.

Observe that from (5.1) and the bounds (5.11) and (5.12), we get a stronger conclusion:

Eθ0Ê
(‖Xθ − Xθ0‖2|Y ) = Eθ0

∑
I∈I

ÊI‖Xθ − Xθ0‖2π̂ (I |Y) ≤ Cr2(θ0).

Now the second part of the theorem follows from Jensen’s inequality. �

PROOF OF COROLLARY 1. Denote G = {I : r2(I, θ0) ≥ m0r
2(θ0) + mσ 2}, for m0 = c3,

where the constants c1 > 2, c2 > 0, c3 > 0 are as in (5.7). Using (5.7) and the fact that∑
I∈I(ep/|I |)−c1|I | ≤ (ec1−1 − 1)−1 ≤ 1 for c1 > 2, it follows that

Eθ0 π̂(I ∈ G|Y) = ∑
I∈G

Eθ0 π̂(I |Y) ≤ e−c2m
∑
I∈I

(
ep/|I |)−c1|I | ≤ e−c2m,(5.13)

which leads to the assertion (i) with m0 = c3 and c′ = c2.
To prove (ii), note that for any τ ′

0 > 2m0, where m0 is obtained from part (i), |I | ≥ τ ′
0s(θ0)

implies that

r2(I, θ0) ≥ σ 2|I | log
(
ep/|I |) ≥ τ ′

0σ
2s(θ0)

[
log

(
ep/s(θ0)

) − log τ ′
0
]

≥ τ ′
0

2
σ 2s(θ0) log

(
ep/s(θ0)

)

provided that s(θ0) < ep/(τ ′
0)

2. Using (2.13), the relation above implies that r2(I, θ0) ≥
m0r

2(θ0)+mσ 2, where m = (τ ′
0/2−m0)s(θ0) log(ep/s(θ0)). Hence by part (i), the assertion

holds for τ0 = τ ′
0 and c′′ = c′(τ ′

0/2 − m0) whenever s(θ0) < ep/(τ ′
0)

2. If s(θ0) ≥ ep/(τ ′
0)

2,
the result trivially holds by choosing τ0 = (τ ′

0)
2/e. Hence the choice τ0 = max{τ ′

0, (τ
′
0)

2/e}
ensures the result for any θ0. �

PROOF OF COROLLARY 2. By the definition of the compatibility coefficient, if I with
|I | ≤ τ0s(θ0), then ‖θ − θ0‖1 ≤ √

(τ0 + 1)s(θ0)‖X(θ − θ0)‖/‖X‖maxφ1((τ0 + 1)s(θ0)) since
the cardinality of supp(θ − θ0) is at most (τ0 + 1)s(θ0). By Theorem 1 and Corollary 1,
respectively, we obtain Eθ0 π̂(‖X(θ − θ0)‖ > Mr(θ0)|Y) ≤ CM−2 and

Eθ0π̂
(|I | ≥ τ0s(θ0)|Y ) ≤ exp

[−c′′s(θ0) log
(
ep/s(θ0)

)]
.

Thus the first assertion follows. The proof of the second one is similar. �

PROOF OF COROLLARY 3. If |θ0j | > Mσ‖X‖−1
max

√
s(θ0) log(ep/s(θ0))/φ2((τ0 + 1) ×

s(θ0)) and the posterior does not select the j th predictor (i.e., sets θj = 0), then clearly ‖θ −
θ0‖ ≥ |θ0j | ≥ Mr(θ0)‖X‖−1

max/φ2((τ0 + 1)s(θ0)) by (2.13). The result now follows from the
second part of Corollary 2. �

To prove Theorem 2, we need to establish a bound which assures that the cardinality of
the support of θ chosen from the posterior can rarely be much smaller than the cardinality of
a τ -oracle I τ

o (θ0) defined by (2.3) for some sufficiently large τ > 0.

LEMMA 2. If � ∈ [0,1) and τ > τ̄ (�) � [4κ(1+�)+2 log(1+κ)]/(1−�(1+ log(1/�)),
then for any θ0 ∈ R

p ,

Eθ0 π̂
(|I | ≤ �|I τ

o (θ0)‖Y ) ≤ (
eκ−1 − 1

)−1 exp
{−α

∣∣I τ
o (θ0)

∣∣ log
(
ep/

∣∣I τ
o (θ0)

∣∣)},
where α = α(τ,�)� τ [1 − �(1 + log(1/�))]/4 −κ(1 + �) − log(1 + κ)/2 > 0.

In particular, if τ > τ̄ (e−1), then, for all � ∈ [0, e−1], Eθ0π̂ (|I | ≤ �|I τ
o (θ0)|Y) ≤ �α0 ,

where α0 = α(τ, e−1) > 0.
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PROOF. For each θ0 ∈ R
p and I ∈ I such that |I | ≤ �|I τ

o |, let I0 = I ∪ I ∗
o for some

I ∗
o ⊆ I τ

o such that I0 ∈ I and col(XI )+col(XI τ
o
) = col(XI0). For brevity, we have suppressed

the dependence of I0 on I and θ0 and the dependence of I τ
o = I τ

o (θ0) on θ0. Clearly,

(5.14) max
(|I |, ∣∣I τ

o

∣∣) ≤ |I0| ≤ |I | + ∣∣I τ
o

∣∣ ≤ (1 + �)
∣∣I τ

o

∣∣.
As the function x �→ x log(ep/x) is increasing on [0,p], for |I | ≤ �|I τ

o |,
(5.15) |I | log

ep

|I | ≤ �
∣∣I τ

o

∣∣ log
ep

�|I τ
o | ≤ �

(
1 + log(1/�)

)∣∣I τ
o

∣∣ log
ep

|I τ
o | .

Because col(XI0) contains col(XI τ
o
), the difference HI0 − HIτ

o
of the corresponding projec-

tions HI0 and HIτ
o

is nonnegative definite. Therefore,

σ−2θ ′
0X′(HI0 − HI )Xθ0 = σ−2(

θ ′
0X′(I − HI )Xθ0 − θ ′

0X′(I − HI0)Xθ0
)

≥ σ−2(
θ ′

0X′(I − HI )Xθ0 − θ ′
0X′(I − HI τ

o
)Xθ0

)
≥ τ

(∣∣I τ
o

∣∣ log
(
ep/

∣∣I τ
o

∣∣) − |I | log
(
ep/|I |)),

where the last relation holds because r2
τ (I τ

o , θ0) ≤ r2
τ (I, θ0) by the definition of I τ

o as the
minimizer of (2.3). In view of (5.15), this gives the bound

(5.16) σ−2θ ′
0X′(HI0 − HI )Xθ0 ≥ τa(�)

∣∣I τ
o

∣∣ log
(
ep/

∣∣I τ
o

∣∣),
where a(�) = 1 − �(1 + log(1/�)).

Since HI0 − HI is also a projection, we have (I + HI0 − HI )
−1 = I − 1

2(HI0 − HI ) and
det(I + (HI0 − HI )) ≥ 1. With h = 1 and our choice for I0 in (5.4), the expression for λI ,
(5.14) and (5.16), it follows that for |I | ≤ �|I τ

o |, Eθ0π̂ (I |Y) is bounded by

λI

λI0

Eθ0

exp{− 1
2σ 2 Y ′(HI0 − HI )Y }

(1 + κ)(|I |−|I0|)/2

= λI exp{− 1
4σ 2 θ ′

0X′(HI0 − HI )Xθ0}
λI0(1 + κ)(|I |−|I0|)/2

√
det(I + (HI0 − HI ))

≤ λI

cκ
exp

{
−1

4
τa(�)

∣∣I τ
o

∣∣ log
ep

|I τ
o | +κ|I0| log

ep

|I0| + 1

2

(|I0| − |I |) log(1 + κ)

}

≤ (
eκ−1 − 1

)−1
λI exp

{
−1

4
τa(�)

∣∣I τ
o

∣∣ log
ep

|I τ
o | +κ(1 + �)

∣∣I τ
o

∣∣ log
ep

|I τ
o |

+ 1

2
log(1 + κ)

∣∣I τ
o

∣∣}

≤ (
eκ−1 − 1

)−1
λI exp

{[
−1

4
τa(�) +κ(1 + �) + 1

2
log(1 + κ)

]∣∣I τ
o

∣∣ log
ep

|I τ
o |

}
.

As
∑

I λI = 1 and (eκ−1 − 1)−1 ≤ 1 since κ > 2 by the choice in (2.6), the result follows by
summing over I ∈ I: |I | ≤ �|I τ

o |.
To show the second assertion of the lemma, consider two cases |I τ

o | ≤ log�−1 and |I τ
o | >

log�−1, with � ∈ [0, e−1]. In the first case, as � ≤ e−1, we have

Eθ0 π̂
(|I | ≤ �

∣∣I τ
o

∣∣|Y ) ≤ Eθ0π̂
(|I | ≤ � log(1/�)|Y ) ≤ Eθ0π̂

(|I | ≤ e−1|Y ) = 0.

Consider the second case |I τ
o | > log�−1. Since α = α(τ,�) is a decreasing function of � ≥ 0,

we have that α0 = α(τ, e−1) ≤ α(τ,�) for each � ∈ [0, e−1]. Then by the first assertion of the
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lemma and |I τ
o | > log�−1,

Eθ0 π̂
(|I | < �

∣∣I τ
o

∣∣|Y ) ≤ e−α(τ,�)|I τ
o | log(ep/|I τ

o |) ≤ e−α0|I τ
o | ≤ �α0 . �

PROOF OF THEOREM 2. We first establish the coverage property. According to Theo-
rem 1, we have that, for any θ0 ∈ R

p and M > 0,

(5.17) Pθ0

(‖Xθ0 − Xθ̂‖ ≥ Mr(θ0)
) ≤ CM−2.

Since τ ≥ 1 and θ0 ∈ �eb(t, τ ), it follows that r2(θ0) ≤ r2
τ (θ0) ≤ (1 + t)σ 2|I τ

o | log(ep/

|I τ
o |), where I τ

o = I τ
o (θ0). This combined with the definition (2.18) of ρ̂ and (5.17), leads to

Pθ0

(
Xθ0 /∈ B(Xθ̂ ,Mρ̂)

)
≤ Pθ0

(‖Xθ0 − Xθ̂‖ > Mρ̂, ρ̂ ≥ δr(θ0)
) + Pθ0

(
ρ̂ < δr(θ0)

)

≤ Pθ0

(‖Xθ0 − Xθ̂‖ > Mδr(θ0)
) + Pθ0

(
|Î | log

ep

|Î | < δ2(1 + t)
∣∣I τ

o

∣∣ log
ep

|I τ
o |

)

≤ C

M2δ2 + Pθ0

(
|Î | log

ep

|Î | < δ2(1 + t)
∣∣I τ

o

∣∣ log
ep

|I τ
o |

)
.

Let δ̃ � δ2(1 + t) ≤ e−1. As the function x �→ x log(ep/x) is increasing on [0,p],
Pθ0

(
|Î | log

ep

|Î | < δ̃
∣∣I τ

o

∣∣ log
ep

|I τ
o |

)
≤ Pθ0

(
|Î | log

ep

|Î | < δ̃
∣∣I τ

o

∣∣ log
ep

δ̃|I τ
o |

)
= Pθ0

(|Î | < δ̃
∣∣I τ

o

∣∣).
The second assertion of Lemma 2 gives Pθ0(|Î | < δ̃|I τ

o |) ≤ (δ2(1 + t))α0 for all δ ≤
1/

√
e(1 + t). This and the last two displays entail that, for δ ≤ 1/

√
e(1 + t),

Pθ0

(
Xθ0 /∈ B(Xθ̂ ,Mρ̂)

) ≤ C

M2δ2 + (
δ2(1 + t)

)α0,

for all θ0 ∈ �eb(t, τ ). Take δ = M−1/(1+α0)/
√

1 + t , so that for all M ≥ M0 = e(1+α0)/2,

sup
θ0∈�eb(t,τ )

Pθ0

(
Xθ0 /∈ B(Xθ̂ ,Mρ̂)

) ≤ (
C(1 + t)2 + 1

)
M−2α0/(1+α0).

This establishes the coverage relation as the right-hand side can be bounded by ε1 uniformly
in θ0 ∈ �eb(t, τ ) by choosing M sufficiently large (depending on t and ε1 only).

We now show the size property. Introduce the set G(L) = G(L, θ0) = {I ∈ I : σ 2|I | ×
log(ep/|I |) ≥ L2r2(θ0)}. Then for any θ0 ∈ R

p and all I ∈ G(L),

σ−2(
r2(I, θ0) − c3r

2(θ0)
) ≥ |I | log

(
ep/|I |) − c3σ

−2r2(θ0) ≥ (
L2 − c3

)
σ−2r2(θ0).

From (5.7) and the last relation, it follows that for any I ∈ G(L),

Pθ0(Î = I ) ≤ (
ep/|I |)−c1|I | exp

{−c2σ
−2(

r2(I, θ0) − c3r
2(θ0)

)}

≤ (
ep/|I |)−c1|I | exp

{−c2
(
L2 − c3

)
σ−2r2(θ0)

}
.

Note that r2(θ0) ≥ τ−1r2
τ (θ0) ≥ σ 2|I τ

o | log(ep/|I τ
o |). Using the last relation and reasoning as

in (5.13), we derive that, for any θ0 ∈ R
p ,

Pθ0

(
ρ̂ ≥ Lr(θ0)

) = ∑
I∈G(L,θ0)

Pθ0(Î = I )

≤ exp
{−c2

(
L2 − c3

)
σ−2r2(θ0)

} ∑
I∈I

(
ep/|I |)−c1|I |

≤ exp
{−c2

(
L2 − c3

)|Io| log
(
ep/|Io|)} ≤ ec2c3 exp

{−c2L
2}

.

Clearly, a sufficiently large L ≥ L0 makes the bound smaller than any given ε2 > 0. �
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PROOF OF COROLLARY 4. Consider the case π̂ = π̌ , the other case is similar. Note that
θ̂ has support Î . By part (ii) of Corollary 1, Î has cardinality |Î | ≤ τ0s(θ0) ≤ τ0s for some
constant τ0 > 0 with probability at least 1 − exp{−c′′s(θ0) log(ep/s(θ0))}, where c′′ > 0 is a
constant. Since (θ̂ − θ0) is supported within an index set of cardinality at most (τ0 + 1)s(θ0),
by the definition of the compatibility coefficient φ2, it follows that ‖X(θ̂ − θ0)‖ ≥ φ2((τ0 +
1)s(θ0))‖X‖max‖θ̂ − θ0‖. This leads to the first claim of the corollary. The proof for the
�1-case is similar. The last relation is inherited from Theorem 2. �
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SUPPLEMENTARY MATERIAL

Supplement to “Empirical Bayes oracle uncertainty quantification for regression”
(DOI: 10.1214/19-AOS1845SUPP; .pdf). More elaboration on empirical Bayes interpreta-
tion of the procedures, computational strategy and proofs of some results are provided in
Supplement [3].
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