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Archimax copula models can account for any type of asymptotic depen-
dence between extremes and at the same time capture joint risks at medium
levels. An Archimax copula is characterized by two functional parameters:
the stable tail dependence function �, and the Archimedean generator ψ
which distorts the extreme-value dependence structure. This article devel-
ops semiparametric inference for Archimax copulas: a nonparametric esti-
mator of � and a moment-based estimator of ψ assuming the latter belongs
to a parametric family. Conditions under which ψ and � are identifiable are
derived. The asymptotic behavior of the estimators is then established un-
der broad regularity conditions; performance in small samples is assessed
through a comprehensive simulation study. The Archimax copula model with
the Clayton generator is then used to analyze monthly rainfall maxima at three
stations in French Brittany. The model is seen to fit the data very well, both
in the lower and in the upper tail. The nonparametric estimator of � reveals
asymmetric extremal dependence between the stations, which reflects heavy
precipitation patterns in the area. Technical proofs, simulation results and R
code are provided in the Online Supplement.

1. Introduction. In various applications in environmental sciences, finance, insurance
or risk management, joint extremal behavior between random variables is of particular in-
terest. For example, this plays a central role in assessing risks of natural disasters and in
determining the dimensions of structures such as dams or dikes. Misspecification of the de-
pendence between the variables can lead to substantial underestimation of risk. To fix ideas,
consider monthly maxima of daily precipitation for the months from September to February
between 1976 and 2016 at three stations in French Brittany, Belle-Ile-en-Mer, Groix, and
Lorient. Based on these trivariate observations, provided by Météo France, the goal might be
to assess the risk of medium and high precipitation at these three stations simultaneously in
order to devise protective measures against floods in the region.

To answer such questions, the copula approach to multivariate data modeling has gained
substantial popularity in recent years; see, for example, Joe (2015). It is rooted in the decom-
position of Sklar (1959), which states that the joint distribution function of any multivariate
random vector X = (X1, . . . ,Xd) with continuous margins F1, . . . ,Fd can be written, for
any x ∈R

d , as

(1.1) Pr(X1 ≤ x1, . . . ,Xd ≤ xd)=C{
F1(x1), . . . ,Fd(xd)

}
in terms of a unique copula C, that is, a distribution function on [0,1]d with standard uniform
margins. This decomposition allows for separate modeling of the marginals F1, . . . ,Fd and
the dependence structure C.
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In catastrophic risk modeling, the copula C in (1.1) is typically chosen from the extreme-
value class. This means that, following Huang (1992) and de Haan and Ferreira (2006), there
exists a stable tail dependence function (stdf) � such that for all u = (u1, . . . , ud) ∈ [0,1]d ,

C(u)= C�(u)= exp
[−�{− log(u1), . . . ,− log(ud)

}]
.

The use of extreme-value copulas is motivated by the fact that the latter are the only possi-
ble limits of normalized componentwise maxima on the uniform scale. However, while this
asymptotic result is a very strong theoretical argument for using these models, it is seldom a
realistic assumption in finite samples. For example, the hypothesis that the underlying copula
is an extreme-value copula is clearly rejected for the above precipitation data; the p-value for
the test of Kojadinovic, Segers and Yan (2011) is p ≈ 5 × 10−5. While extreme-value depen-
dence seems reasonable for seasonal maxima (p ≈ 0.43), working with the latter reduces the
sample size from n = 240 to n= 40. To estimate extremal dependence from monthly max-
ima directly, one could resort to the procedures in Fougères, de Haan and Mercadier (2015)
or Einmahl, Kiriliouk and Segers (2018). However, these procedures cannot assess joint risk
in medium regimes, which can also be a cause for damaging events.

Thus unified, smooth and flexible yet parsimonious models that can capture risk at both
medium and extreme regimes are needed, and only few such are available. Only recently,
such a model for univariate nonzero precipitation amounts was proposed by Naveau et al.
(2016). Another example is the max-copula just introduced by Zhao and Zhang (2018), which
captures specific types of asymmetric dependence present, for example, in financial stocks in
both the extreme and the medium regime.

In the multivariate case when asymptotic dependence is present, a dependence model that
is fully flexible in the extreme regime and that can account for medium risks at the same
time is the class of so-called Archimax copulas, proposed by Capéraà, Fougères and Genest
(2000) in the bivariate case and extended to higher dimensions by Mesiar and Jágr (2013)
and Charpentier et al. (2014). The latter are, at any u ∈ [0,1]d , of the form

(1.2) Cψ,�(u)=ψ[
�
{
φ(u1), . . . , φ(ud)

}]
,

where � is an arbitrary d-variate stdf and ψ : [0,∞)→ [0,1] is an Archimedean generator
with inverse φ, as detailed in Section 2. One can think of the function ψ as distorting the
extreme-value dependence structure. Indeed, if ψ(x)= e−x , then Cψ,� = C� is an extreme-
value copula and, as recalled in Section 2, Cψ,� is in the domain of attraction of C� under
suitable conditions on ψ (Capéraà, Fougères and Genest (2000), Charpentier et al. (2014)).

For lack of proper inference tools, Archimax copulas have been rarely used in practice.
The only viable option at present is to use a fully parametric Archimax model, where ψ
and � belong to parametric classes of Archimedean generators and stdfs, respectively. In
dimensions 2 or 3, this has been employed by Bacigál, Jágr and Mesiar (2011) and Bacigál
and Mesiar (2012). However, especially in higher dimensions, existing parametric models for
� are often either too restrictive or too cumbersome.

This paper is the first to consider the problem of fitting Archimax copulas to data in full
generality. To this end, we propose a semiparametric approach, in which � is estimated non-
parametrically and ψ is assumed to belong to a parametric class � = {ψθ, θ ∈ O}. This
approach ensures the identifiability of � and θ under mild conditions on � . In addition, given
that ψ distorts the limiting extreme-value dependence, a parametric model for it is likely to
be sufficient to adequately capture dependence at medium and extreme levels. The estimators
of � developed here extend the work of Pickands (1981) and Capéraà, Fougères and Genest
(1997); they converge weakly to a centered Gaussian process under regularity conditions on
� and ψ .
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As we show, the Archimax copula model whose Archimedean generator is from the Clay-
ton class fits the aforementioned monthly precipitation maxima very well, and reveals clima-
tologically sound features of the data. We also demonstrate that when the Clayton–Archimax
model is appropriate, the nonparametric estimators of � proposed here are considerably more
precise and efficient than those in Fougères, de Haan and Mercadier (2015) and Einmahl,
Kiriliouk and Segers (2018), as well as the estimators based on seasonal blocks in Gudendorf
and Segers (2012).

The paper is organized as follows. Basic facts about Archimax copulas are recalled in Sec-
tion 2, where the identifiability of ψ and � is proved under mild conditions on the family � .
Section 3 introduces nonparametric estimators of � under the assumption that ψ is known.
Under the latter assumption and regularity conditions, the asymptotic behavior of these esti-
mators is derived in Section 4, and their finite-sample performance is investigated via simula-
tions in Section 5. Building upon these results, Section 6 establishes the asymptotic behavior
of the nonparametric estimators of � when ψ is estimated parametrically. A moment-based
estimator of the parameter of the Archimedean generator ψ is constructed in Section 7. Sec-
tion 8 presents an application to precipitation data. Detailed proofs are reported in the Online
Supplement (Chatelain, Fougères and Nešlehová (2020)); the latter also contains additional
simulations.

In what follows, vectors in Rd are denoted by boldface letters, namely x = (x1, . . . , xd).
Binary operations such as x + y or a · x, xa are understood as componentwise opera-
tions. In particular, for any function f : R → R and x ∈ R

d , f (x) denotes the vector
(f (x1), . . . , f (xd)). Furthermore, ‖ · ‖ stands for the �1-norm, namely ‖x‖ = x1 + · · · + xd .
For any x, y ∈ R, let x ∧ y = min(x, y) and x ∨ y = max(x, y). Finally, Rd+ is the positive
orthant [0,∞)d and for any x ∈ R, x+ denotes the positive part of x.

2. Multivariate Archimax copulas. This section gathers properties of Archimax cop-
ulas that are needed for subsequent developments. In Section 2.1, the existence, stochastic
representation and extremal behavior are recalled, while Section 2.2 discusses the identifia-
bility of ψ and �.

2.1. Existence and stochastic representation of Archimax copulas. We begin with a def-
inition of several key concepts including Archimax copulas.

DEFINITION 2.1. A nonincreasing and continuous function ψ : [0,∞)→ [0,1] which
satisfies ψ(0) = 1, limx→∞ψ(x) = 0 and is strictly decreasing on [0, xψ), where xψ =
inf{x :ψ(x)= 0}, is called an Archimedean generator.

A function � :Rd+ →R
+ is called a d-variate stable tail dependence function (stdf) if there

exists a finite measure μ on the d-dimensional unit simplex �d = {w ∈ [0,1]d : w1 + · · · +
wd = 1} such that for all j ∈ {1, . . . , d}, ∫

�d
sj dμ(s)= 1 and such that for all x ∈ R

d+,

�(x)=
∫
�d

max(x1s1, . . . , xdsd) dμ(s).

A d-dimensional copula C is called Archimax if it permits the representation (1.2) for
some d-variate stdf � and an Archimedean generator ψ with inverse φ : (0,1] → [0,∞),
where by convention ψ(∞)= 0 and φ(0)= xψ .

As the name suggests, the class of Archimax copulas includes both Archimedean and
extreme-value copulas. When � is the stdf pertaining to independence, that is, �(x) = x1 +
· · · + xd for all x ∈ R

d+, Cψ,� in (1.2) becomes the Archimedean copula Cψ with generator
ψ given, for all u ∈ [0,1]d , by

Cψ(u1, . . . , ud)=ψ{
φ(u1)+ · · · + φ(ud)}.
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When ψ(x) = e−x for any x ≥ 0, Cψ,� reduces to the extreme-value copula C� with stdf
�. An interesting special case arises when � = �M with �M(x) = max(x1, . . . , xd) for all
x ∈ R

d+. Because φ is strictly decreasing on (0,1], one has that for all u ∈ [0,1]d ,Cψ,�M (u)=
min(u1, . . . , ud). In other words, Cψ,�M is the Fréchet–Hoeffding upper bound whatever the
generator ψ ; this copula characterizes the dependence between comonotonic variables.

The right-hand side in (1.2) is not a bona fide copula for all choices of Archimedean
generator and d-variate stdf. As proved by Charpentier et al. (2014), the sufficient condition
is that ψ is d-monotone, defined as follows.

DEFINITION 2.2. An Archimedean generator ψ is called k-monotone, k ∈ N and k ≥ 2,
if it is differentiable on (0,∞) up to the order k−2, the derivatives satisfy (−1)mψ(m)(x)≥ 0
for all x ∈ (0,∞) and m ∈ {1, . . . , k− 2}, and further if (−1)k−2ψ(k−2) is nonincreasing and
convex on (0,∞).

Note that 2-monotone simply means thatψ is convex, and that a d-monotone Archimedean
generator is also k-monotone for all k ≤ d .

When �(x)= x1 + · · · + xd , that is, when Cψ,� is Archimedean, the d-monotonicity of ψ
is also necessary (Malov (2001), McNeil and Nešlehová (2009), Morillas (2005)). However,
this condition is not necessary in general; Example 3.7 of Charpentier et al. (2014) shows that
for some stdfs, it suffices that ψ is k-monotone for some k < d . In fact, ψ can be an arbitrary
Archimedean generator when �= �M .

Next, recall from Ressel (2013) that � :Rd+ →R
+ is a d-variate stdf iff:

(a) � is homogeneous of degree 1, that is, for all k > 0 and x1, . . . , xd ∈ [0,∞),
�(kx1, . . . , kxd)= k�(x1, . . . , xd);

(b) �(e1)= · · · = �(ed)= 1 where for j ∈ {1, . . . , d}, ej denotes a vector whose compo-
nents are all 0 except the j th which is equal to 1;

(c) � is fully d-max decreasing, that is, for any k ∈ N, x1, . . . , xd, h1, . . . , hd ∈ [0,∞) and
J ⊆ {1, . . . , d} with |J | = k,∑

ι1,...,ιk∈{0,1}
(−1)ι1+···+ιk �(x1 + ι1h111∈J , . . . , xd + ιdhd1d∈J )≤ 0.

Due to property (a), any stdf � is uniquely determined by its restriction A to the unit
simplex �d , called the Pickands dependence function (Pickands (1981)). Indeed, for any
x = R

d+, �(x) = ‖x‖A(x/‖x‖). Thus an Archimax copula can also be denoted Cψ,A and
expressed, for any u ∈ [0,1]d , as

(2.1) Cψ,A(u)=ψ[∥∥φ(u)∥∥A{
φ(u)/

∥∥φ(u)∥∥}]
.

Archimax copulas also admit a stochastic representation. Per Theorem 3.3 of Charpentier
et al. (2014), Cψ,� is the survival copula of a random vector

(2.2) (X1, . . . ,Xd)=R× (S1, . . . , Sd),

where R is a positive random variable independent of S. The distribution function of R is the
inverse Williamson d-transform of ψ and the survival function of S is given, for any s ∈ R

d+,
by Pr(S1 > s1, . . . , Sd > sd)= [max{0,1 − �(s)}]d−1. In this representation, R can again be
interpreted as a distortion variable; when its law is Erlang with parameter d , Cψ,� =C�.

As announced in the Introduction, Archimax copulas have a given extreme-value attractor.
Recall that a function f : R+ → R+ is regularly varying with index α ∈ R iff for all x > 0,
f (xt)/f (t)→ xα as t → ∞, in notation f ∈Rα . When 1−ψ(1/·) ∈ R−α for α ∈ (0,1], it is
shown in Proposition 6.1 of Charpentier et al. (2014) that Cψ,� is in the maximum domain of
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attraction of the extreme-value copula C�α , that is, for any u ∈ [0,1]d , limn→∞Cnψ,�(u1/n)=
C�α(u), where for any x ∈ R

d+, �α(x)= �α(x1/α).
Finally, recall the tail dependence coefficients of Joe (2015), which measure the strength of

dependence in the tails of a bivariate distribution. For any bivariate copula C and (U1,U2)∼
C, the upper and lower tail dependence coefficients are respectively defined, provided the
limits exists, as

λU = lim
q↑1

Pr(U2 > q|U1 > q)= 2 − lim
q↑1

{
1 −C(q, q)}/(1 − q),(2.3)

λL = lim
q↓0

Pr(U2 < q|U1 < q)= lim
q↓0
C(q, q)/q.(2.4)

2.2. Identifiability concerns. In this section, we establish conditions under which � and
θ are identifiable when ψ ∈ � = {ψθ, θ ∈ O}. To accomplish this, we first consider two
arbitrary d-variate Archimax copulas C1 = Cψ1,�1 and C2 = Cψ2,�2 whose generators ψ1,
ψ2 are not necessarily from a parametric class. The lemmas below investigate the question
whether C1 = C2 implies that the generators and stdfs are equal. All proofs are reported in
Appendix B of the Online Supplement (Chatelain, Fougères and Nešlehová (2020)).

LEMMA 2.1. Suppose that C1 = C2 and ψ1 =ψ2 =ψ . Then �1 = �2.

LEMMA 2.2. Suppose that C1 = C2 and �1 = �2 = � is a d-variate stdf such that � �= �M ,
where for each x ∈ R

d+, �M(x) = max(x1, . . . , xd). Suppose also that ψ1 and ψ2 are 2-
monotone Archimedean generators. Then there exists a constant c > 0 such that, for all x ≥ 0,
ψ1(x)=ψ2(cx).

The first part of the following lemma is an extension of Theorem 4.5.1 in Nelsen (2006)
and has been shown by Hofert (2008) in the case where ψ is completely monotone. In the
following, for any β ∈ (0,1], ψβ is defined by ψβ(t) = ψ(tβ) for all t ≥ 0, and �β denotes

�β(x
1/β
1 , . . . , x

1/β
d ) for all x ∈ R

d+.

LEMMA 2.3.

(i) Let ψ be a d-monotone Archimedean generator and β ∈ (0,1]. Then ψβ is a d-
monotone Archimedean generator.

(ii) Let � be a d-variate stdf and β ∈ (0,1]. Then �β is a d-variate stdf.

Now suppose that ψ is a d-monotone Archimedean generator and � is an arbitrary d-
variate stdf. By Lemma 2.3, ψβ is a d-monotone Archimedean generator and �β is a d-
variate stdf for some β ∈ (0,1]. It is then easily seen that the Archimax copulas Cψβ,� and
Cψ,�β coincide. Thus one cannot expect � to be unique and ψ to be unique up to scaling. As
stated below, however, under a mild regularity condition on ψ , power transformations of ψ
and � are the only possible sources of nonidentifiability.

LEMMA 2.4. Suppose that �1 �= �M and �2 �= �M are arbitrary d-variate stdfs and
ψ1, ψ2 are d-monotone Archimedean generators with the property that for k ∈ {1,2},
1 − ψk(1/·) ∈ R−1/mk , with mk ≥ 1. Assuming, without loss of generality, that m1 ≤ m2,
Cψ1,�1 =Cψ2,�2 holds iff for all x ∈R

d+,

�1(x1, . . . , xd)= �m1/m2
2

(
x
m2/m1
1 , . . . , x

m2/m1
d

)
and there exists c > 0 such that, for all t ≥ 0, ψ1(ct

m1/m2)=ψ2(t).
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Lemma 2.4 allows us to formulate the following main result of this section that delin-
eates the conditions under which an Archimax copula model is identifiable assuming that the
Archimedean generator belongs to a parametric family. Its proof is a direct consequence of
Lemma 2.4.

PROPOSITION 2.1. Let C� be a class of d-variate Archimax copulas whose stdfs are
arbitrary with � �= �M and whose Archimedean generators belong to � = {ψθ, θ ∈ O}, O ⊂
R
p . Assume also that the following conditions hold:

(i) for all θ ∈ O, 1 −ψθ(1/·) ∈ R−1/mθ , with mθ ≥ 1;
(ii) for all θ ∈O, c > 0, and β > 0, ψθ(ctβ) ∈� holds iff c= β = 1.

Then for any Cψθ ,�,Cψθ ′ ,�′ ∈ C� , Cψθ ,� = Cψθ ′ ,�′ holds iff �= �′ and θ = θ ′.

Condition (i) in Proposition 2.1 returns as Condition 4.1 in Section 4, where it is dis-
cussed in detail. As shown by Charpentier and Segers (2009), it holds for many Archimedean
families, including those in Table 4.1 of Nelsen (2006). Condition (ii) is satisfied by most
commonly used one-parameter families of Archimedean generators, for example, the Ali–
Mikhail–Haq, Clayton and Frank models. The only exceptions we could find are Families
4.2.2, 4.2.4 (Gumbel), 4.2.12 and 4.2.18 in Nelsen (2006), and the outer power family φ1,β
from Theorem 4.5.1 therein. Lack of identifiability is not a concern for these models, how-
ever, because through Lemma 2.4, θ can be absorbed into the stdf so that the generator ψ
of the resulting Archimax model is fixed. For example, for the Gumbel generator given by
ψθ(x)= e−x1/θ

, and an arbitrary d-variate stdf �, the Archimax copula Cψθ ,� coincides with
the Archimax copula Cψ1,�θ , where the Archimedean generator ψ1(x)= e−x no longer con-
tains any parameters, and �θ (x)= �1/θ (xθ ).

3. Estimation of the stdf. In this section, we introduce two nonparametric estimators of
the stdf � of an Archimax copula Cψ,� under the assumption that the Archimedean generator
ψ is known. As stated in Section 2, � is unique under this assumption. Recall that � is uniquely
determined by the corresponding Pickands dependence function A, and hence it suffices to
estimate the latter. To see how to proceed, consider a random vector U with distribution Cψ,A
given by (2.1). For any w in the unit simplex �d , let

ξ(w)= min
{
φ(U1)/w1, . . . , φ(Ud)/wd

}
with φ(Uj )/wj = ∞ when wj = 0 for some j ∈ {1, . . . , d}. Then

Pr
{
ξ(w) > x

} =Cψ,A{
ψ(xw)

} =ψ{
xA(w)

}
.

If ψ(x) = e−x , ξ(w) is exponential with rate A(w). This leads to Pickands and Capéraà–
Fougères–Genest (CFG)-type estimators of A (Capéraà, Fougères and Genest (1997), Genest
and Segers (2009), Gudendorf and Segers (2011), Pickands (1981), Zhang, Wells and Peng
(2008)).

Now let Z denote a random variable with survival function ψ , that is, for all x ≥ 0, Pr(Z >
x) = ψ(x). Then for any w ∈�d , ξ(w) has the same distribution as Z/A(w). One finds in
particular that

(3.1) E
{
ξ(w)

} = E(Z)/A(w), E
[
log

{
ξ(w)

}] = E(logZ)− log
{
A(w)

}
.

When ψ is known, so are E(Z) and E(logZ). Provided the latter are finite, (3.1) leads to the
Pickands and CFG-type estimators of A, as explained next.

Let X1, . . . ,Xn be a random sample from a d-variate distribution H with continuous mar-
gins F1, . . . ,Fd and an Archimax copula Cψ,A with known ψ and unknown A. When the
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margins are unknown, a sample from Cψ,A is unavailable, but as in Genest and Segers (2009)
and Gudendorf and Segers (2012), one can base inference on normalized ranks given, for all
i ∈ {1, . . . , n} and j ∈ {1, . . . , d} by

(3.2) Ûij = nFnj (Xij )/(n+ 1),

where for any j ∈ {1, . . . , d}, Fnj is the empirical distribution function of X1j , . . . ,Xnj . Now
define for every w ∈�d and i ∈ {1, . . . , n},

ξ̂i (w)= min
{
φ(Ûi1)/w1, . . . , φ(Ûid)/wd

}
again with the convention that φ(Ûij )/wj = ∞ when wj = 0. However, note that for any
w ∈ �d , wj > 0 for at least one j , so that ξ̂i (w) is finite for every i ∈ {1, . . . , n}. Then,
provided that E(Z) exists, the Pickands-type estimator AP

n is defined, for any w ∈�d , by

(3.3) AP
n(w)= nE(Z)/

n∑
i=1

ξ̂i (w).

Similarly, if E(logZ) exists, the CFG-type estimator ACFG
n is defined through

(3.4) logACFG
n (w)= E logZ− 1

n

n∑
i=1

log ξ̂i (w).

If ψ(x) = e−x , then E(Z) = 1 and E(logZ) = −γ , where γ is the Euler–Mascheroni con-
stant, and AP

n and ACFG
n reduce to the rank-based Pickands and CFG estimators studied

by Genest and Segers (2009) in dimension d = 2 and extended to higher dimensions by
Gudendorf and Segers (2012).

In general, AP
n and ACFG

n are not Pickands dependence functions. In order to enforce the
endpoint constraints A(ej )= 1 for j ∈ {1, . . . , d}, introduce

μ̂= 1

n

n∑
i=1

φ

(
i

n+ 1

)
, ν̂ = 1

n

n∑
i=1

logφ
(

i

n+ 1

)
.

The endpoint-corrected Pickands and CFG-type estimators now arise by replacing E(Z) by
μ̂ in (3.3) and E(logZ) by ν̂ in (3.4), respectively, namely

(3.5) AP
n,c(w)= nμ̂/

n∑
i=1

ξ̂i (w), logACFG
n,c (w)= ν̂ − 1

n

n∑
i=1

log ξ̂i (w).

These corrected versions avoid the generally cumbersome computation of E(Z) or E(logZ).
In addition, the following holds, owing to the fact that μ̂ = ∑n

i=1 φ(Ûij )/n and ν̂ =∑n
i=1 logφ(Ûij )/n almost surely for all j ∈ {1, . . . , d}.
PROPOSITION 3.1. For j ∈ {1, . . . , d}, AP

n,c(ej ) = 1 and ACFG
n,c (ej ) = 1 almost surely.

Moreover, AP
n,c(w)≥ max(w1, . . . ,wd) and ACFG

n,c (w)≥ max(w1, . . . ,wd) almost surely for
all w ∈�d .

Note that when d = 2 andψ(x)= e−x ,AP
n,c is the corrected rank-based Pickands estimator

from Genest and Segers (2009) with end-point correction as in Hall and Tajvidi (2000).

4. Asymptotic behavior. In this section, we investigate the asymptotic behavior of the
Pickands and CFG-type estimators under the assumption that ψ is known. We first detail the
required conditions on ψ and � in Section 4.1, and study in Section 4.2, the limiting behavior
of the processes

(4.1) A
P
n = √

n
(
AP
n −A)

and A
CFG
n = √

n
(
ACFG
n −A)

.

The main ingredients of the proof are then made explicit in Section 4.3.
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4.1. Conditions. Conditions on ψ are stated, followed by conditions on �.

CONDITION 4.1. For d ≥ 2, ψ is a d-monotone Archimedean generator and 1 −
ψ(1/x) ∈ R−1/m for some m≥ 1.

Condition 4.1, which is equivalent to φ(1 − 1/x) ∈ R−m, is very general and satisfied by
virtually all d-monotone Archimedean generators (Charpentier and Segers (2009), Larsson
and Nešlehová (2011)). This is because it holds whenever 1/R with R as in (2.2) is in the
domain of attraction of the Fréchet (�α), Gumbel (�) or Weibull (�α) distributions for some
α > 0, in notation 1/R ∈M(�α), 1/R ∈ M(�) or 1/R ∈M(�α). Moreover, Condition 4.1
with m = 1 further holds as soon as E(1/R1+ε) <∞ for some ε > 0; see Proposition 2 in
Belzile and Nešlehová (2017).

CONDITION 4.2. For d ≥ 2, ψ is a d-monotone Archimedean generator that satisfies
either:

(a) ψ ∈ R−s for s > 0;
(b) Y ∈ M(�), where Y has distribution function 1 −ψ ;
(c) φ(0) <∞ and ψ(xψ − 1/x) ∈ R−α−d+1 for α > 0.

Most Archimedean generators satisfy Condition 4.2. As shown by Larsson and Nešlehová
(2011), Condition 4.2(a) holds whenever R in (2.2) is such that R ∈ M(�s) and is further
equivalent to φ(1/x) ∈ R1/s . Condition 4.2(b) is equivalent to 1/ψ being �-varying which
is in turn equivalent to φ(1/x) being �-varying, as defined and proved, for example, in
Section 0.4.3 in Resnick (1987). It is further shown by Larsson and Nešlehová (2011) that
Condition 4.2(b) holds whenever R ∈ M(�). Finally, Condition 4.2(c) is equivalent to R ∈
M(�α) and further to {φ(0)− φ(1/x)} ∈ R−1/(α+d−1).

CONDITION 4.3. For d ≥ 2, � is a d-variate stdf that is twice continuously differentiable
and for which there exists M > 0 such that for any i, j ∈ {1, . . . , d} with i �= j , and for any
x ∈ (0,∞)d ,

− ∂2

∂xi ∂xj
�(x1, . . . , xd)≡ −�̈ij (x1, . . . , xd)≤M

(
1

xi
∧ 1

xj

)
.

Condition 4.3 extends Condition 5.2 in Segers (2012) to the case d > 2. The following
example demonstrates that it is satisfied by the logistic stdf.

EXAMPLE 4.1. The logistic stdf is given for any x ∈ R
d+ and θ ≥ 1 by �θ (x1, . . . , xd)=

(xθ1 + · · · + xθd )1/θ . It is easily seen that for any x ∈ R
d+,

−�̈ij (x)= (θ − 1)xθ−1
i xθ−1

j

(
xθ1 + · · · + xθd

)1/θ−2 ≤ (θ − 1)
(

1

xi
∧ 1

xj

)
.

The following lemma, proved in Section D.1 of the Online Supplement (Chatelain,
Fougères and Nešlehová (2020)), explains that under Conditions 4.1 and 4.2, the Pickands
and CFG-type estimators are indeed well defined and have the same limiting behavior as their
end-point corrected versions.

LEMMA 4.1.

(i) Suppose that ψ is differentiable on (0,∞) and satisfies either Condition 4.2(a) with
s > 1, (b) or (c). Then E(Z) <∞ and μ̂→ E(Z) as n→ ∞.

(ii) Suppose that ψ is differentiable on (0,∞) and satisfies Conditions 4.1 and 4.2. Then
E(logZ) <∞ and ν̂→ E(logZ) as n→ ∞.
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4.2. Main results. First, note that the interior of the unit simplex is

�̊d = {
w ∈ [0,1]d :w1 + · · · +wd = 1,w(1) > 0

}
,

where w(1) = min(w1, . . . ,wd). To simplify notation, write for any x ∈ R
d+, ψ(x) =

(ψ(x1), . . . ,ψ(xd)). Furthermore, for any compact subset K of �̊d , let C(K) denote the space
of continuous functions on K equipped with the supremum norm. For a d-variate copula C,
let α be a C-Brownian bridge, that is, a tight, centered Gaussian process with covariance
function given, for all u,v ∈ [0,1]d by cov{α(u), α(v)} = ∑

i∈Z cov{1(U0 ≤ u),1(U i ≤ v)}.
For any j ∈ {1, . . . , d} and u ∈ [0,1]d , let also Ċj (u) = ∂C(u)/∂uj ; if the latter derivative
does not exist, set Ċj (u) = lim suph→0{C(u + hej )− C(u)}. Finally, let C be the process
defined, for any u ∈ [0,1]d , by

C(u)= α(u)−
d∑
j=1

Ċj (u)α
(
u(j)

)

with u(j) = (1, . . . ,1, uj ,1, . . . ,1). Theorems 4.1 and 4.2 below respectively specify the lim-
iting behavior of the processes ACFG

n and A
P
n defined in (4.1). These convergence results re-

quire an alpha-mixing sequence of random variables with a time-invariant Archimax copula.
This allows to forgo independence for a form of asymptotic independence in time.

DEFINITION 4.1. For −∞ ≤ a < b ≤ ∞, let Fba be the σ -field generated by the Xi

with i ∈ {a, a + 1, . . . , b}. For k ≥ 1, define α[X](k)= sup{|Pr(A∩B)− Pr(A)Pr(B)| :A ∈
F i−∞,B ∈ F∞

i+k, i ∈ Z} as the alpha-mixing coefficient of (Xi )i∈Z. The series is called alpha-
mixing (or strongly mixing) if α[X](k)→ 0 as k→ ∞.

THEOREM 4.1. Suppose that X1,X2, . . . is a stationary, alpha-mixing sequence with
α[X](k)=O(ak), as k→ ∞, for some a ∈ (0,1). Suppose that the marginals of the station-
ary distribution are continuous and the corresponding copula C = Cψ,� = Cψ,A is Archimax
with generator ψ that is q-monotone for some q ≥ 3 and such that ψ ′′ exists and is con-
tinuous on (0,∞). Further assume that Conditions 4.1 and 4.3 hold, and that either Con-
dition 4.2(a) is satisfied or Condition 4.2(b) is satisfied with the additional requirement that
− log(ψ) is concave on (0, xψ). Then for any compact set K ⊂ �̊d , ACFG

n � A
CFG as n→ ∞

in C(K), where for any w ∈ �̊d ,

A
CFG(w)=A(w)

∫ 1

0
C

[
ψ

{−w log(u)
}] du

u logu
.

THEOREM 4.2. Under the assumptions of Theorem 4.1 and the requirement that s > 2
when Condition 4.2(a) holds, one has that, for any compact set K ⊂ �̊d , AP

n � A
P as n→ ∞

in C(K), where for any w ∈ �̊d ,

A
P(w)= −A2(w)

E(Z)

∫ 1

0
C

[
ψ

{−w log(u)
}]du
u
.

First, observe that the conditions of Theorem 4.2 are stronger than those of Theorem 4.1;
this is further investigated in Section C.2 of the Supplementary Material (Chatelain, Fougères
and Nešlehová (2020)). Also note that the generator given, for all x ≥ 0, by ψ(x) = e−x is
completely monotone and satisfies Conditions 4.1 and 4.2(b) and is such that − log(ψ) is lin-
ear. Hence, Theorems 4.1 and 4.2 remain valid in the special case when C is an extreme-value
copula. Finally, note that because of Lemma 4.1, the asymptotic behavior of the endpoint cor-
rected versions of the CFG and Pickands-type estimators is the same, as stated below.
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COROLLARY 4.1. Theorems 4.1 and 4.2 also hold when A
CFG
n and A

P
n are respectively

replaced by A
CFG
n,c = √

n(ACFG
n,c −A) and A

P
n,c = √

n(AP
n,c −A).

4.3. Outline of the proofs of Theorems 4.1 and 4.2. To establish weak convergence of
A

CFG
n and A

P
n, the weak convergence of the empirical copula process with respect to weighted

metrics established by Berghaus, Bücher and Volgushev (2017) is used.
The result in Berghaus, Bücher and Volgushev (2017) requires smoothness assumptions

that already appear in Segers (2012). We start by verifying that these conditions indeed hold
for Archimax copulas under suitable assumptions on the generator and the stdf, and this is
nontrivial. Proposition 4.1 below follows from Propositions C1 and C2 that are stated and
proved in Section C.2 of the Supplementary Material (Chatelain, Fougères and Nešlehová
(2020)).

PROPOSITION 4.1. For i ∈ {1, . . . , d}, let Vd,i = {u ∈ [0,1]d : ui ∈ (0,1)}. Under the
assumptions of Theorem 4.1, the following conditions hold:

(S1) For each j ∈ {1, . . . , d}, the partial derivative Ċj given for all u ∈ [0,1]d by Ċj (u)=
∂C(u)/∂uj exists and is continuous on the set Vd,j .

(S2) For every i, j ∈ {1, . . . , d}, the second-order partial derivative C̈ij given for all u ∈
[0,1]d by C̈ij (u)= ∂2C(u)/∂ui ∂uj exists and is continuous on the set Vd,j ∩Vd,i , and there
exists a constant K > 0 such that for all u ∈ Vd,j ∩ Vd,i ,∣∣C̈ij (u)∣∣ ≤Kmin

[
1/

{
ui(1 − ui)},1/{uj (1 − uj )}].

REMARK 4.1. Proposition 4.1 also shows that Condition (4.1) in Segers (2012) holds for
an Archimedean copula Cψ if ψ is q-monotone for some q ≥ 3, ψ ′′ exists and is continuous
on (0,∞), Condition 4.1 holds, and either Condition 4.2(a) is satisfied or Condition 4.2(b) is
satisfied with the additional requirement that − log(ψ) is concave.

Following Genest and Segers (2009), we introduce the processes defined, for any w ∈�d ,
by

B
CFG
n (w)= √

n
{
logACFG

n (w)− logA(w)
}
,

B
P
n(w)=

√
n
{
1/AP

n(w)− 1/A(w)
}
.

The next lemma establishes that these processes are functionals of the empirical cop-
ula process defined by Ĉn(u) = √

n{Ĉn(u) − C(u)} for any u ∈ [0,1]d , where Ĉn(u) =
n−1 ∑n

i=1
∏d
j=1 1(Ûij ≤ uj ) denotes the empirical copula, in terms of the pseudo-observa-

tions Ûij specified in (3.2).

LEMMA 4.2. Fix an arbitrary w ∈�d . Then, provided E(logZ) exists,

B
CFG
n (w)=

∫ 1

0
Ĉn

[
ψ

{−w log(u)
}] du

u logu
.

Furthermore, provided E(Z) exists,

B
P
n(w)=

1

E(Z)

∫ 1

0
Ĉn

[
ψ

{−w log(u)
}]du
u
.

The proof is relegated to Section D.1 of the Supplementary Material (Chatelain, Fougères
and Nešlehová (2020)). Recall that the required existence of the expectations E(logZ) and
E(Z) is treated in Lemma 4.1 and is satisfied under the assumptions of Theorems 4.1 and 4.2,
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respectively. Weak convergence of BCFG
n and B

P
n is established next. The proof is provided

in Sections D.3 and D.4 of the Supplementary Material (Chatelain, Fougères and Nešlehová
(2020)).

PROPOSITION 4.2. Let K be any compact subset of �̊d .

(a) Under the assumptions of Theorem 4.1, BCFG
n � B

CFG as n→ ∞ in C(K), where for
any w ∈ �̊d ,

B
CFG(w)=

∫ 1

0
C

[
ψ

{−w log(u)
}] du

u logu
.

(b) Under the assumptions of Theorem 4.2, BP
n � B

P as n→ ∞ in C(K), where for any
w ∈ �̊d ,

B
P(w)= 1

E(Z)

∫ 1

0
C

[
ψ

{−w log(u)
}]du
u
.

The validity of Theorem 4.1 now follows directly from Proposition 4.2(a) and Theo-
rem 3.9.4 of van der Vaart and Wellner (1996), given that the map η : C(K)→ C(K) defined
by η(f )= exp(f ) is Hadamard differentiable. Similarly, Theorem 4.2 is a direct consequence
of Proposition 4.2(b) and Slutsky’s lemma, as for any w ∈�d ,

A
P
n(w)=

−A2
B

P
n(w)

1 + n−1/2A(w)BP
n(w)

.

REMARK 4.2. Theorems 4.1 and 4.2 can in fact be shown to hold for any compact subset
K of�∗

d = {w ∈ [0,1]d :w1 +· · ·+wd = 1,w(d) < 1}, wherew(d) = max(w1, . . . ,wd). Such
sets allow for several components of w to be equal to zero. Proposition 4.2 can be proved as
follows. Let K be any compact subset of �∗

d . For any w = (w1, . . . ,wd) ∈ K, let w� be the
subvector consisting of its nonzero components. Thus w� is a d�-dimensional vector, with
d� ≤ d , and

B
CFG
n (w)= −

∫ ∞
0

Ĉ
�
n

{
ψ

(
w�x

)}dx
x
,BP

n(w)=
1

E(Z)

∫ ∞
0

Ĉ
�
n

{
ψ

(
w�x

)}
dx,

where Ĉ
�
n = √

n(Ĉ�n − C�). Note that C� = Cψ,�� has the same Archimedean generator ψ
as C, and the marginal stdf �� defined as the original � with zero arguments corresponding
to the zeros of w. It is then possible to find K ∈ N such that K ⊂ B1/K = {w ∈ [0,1]d :
w1 + · · · + wd = 1,w�(1) ≥ 1/K}, where w�(1) = min{wj : wj > 0}. The rest of the proof is
identical to that of Proposition 4.2. Extending the weak convergence to the entire unit simplex
�d would require a different approach, and it remains to be seen whether such an extension
is possible at all.

5. Simulation study. We investigate the performance of the endpoint-corrected esti-
mators defined in (3.5) through simulations using R package simsalapar (Hofert and
Maechler (2016)). The design is as follows: (i) dimension d ∈ {2,4,10}; (ii) sample size
n ∈ {200,500,1000}; (iii) Archimedean generator from the Clayton, Gumbel, Frank and Joe
families (Nelsen (2006)); (iv) stdf from the following families: Logistic (LG), scaled nega-
tive extremal Dirichlet (NSD) of Belzile and Nešlehová (2017), and discrete spectral measure
(DSM) of Fougères, Mercadier and Nolan (2013). The definition of these models may be
found in Table 1.

The parameters of the Archimedean generator and the stdf were chosen as to cover vari-
ous scenarios in terms of association, lower/upper tail dependence, and asymmetry. We also
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TABLE 1
Archimedean generators and stdfs used in the simulation study in Section 5

Archimedean generators

Family ψθ (x) O Cond. 4.1 Cond. 4.2

Clayton (1 + θx)−1/θ (0,∞) � (m= 1) � (a; s = 1/θ )
Frank −(1/θ) log{1 + e−x(e−θ − 1)} R � (m= 1) � (b)
Gumbel exp(−x1/θ ) [1,∞) � (m= θ) � (b)
Joe 1 − {1 − e−x}1/θ [1,∞) � (m= θ) � (b)

Stable tail dependence functions

Family �(x1, . . . , xd ) Parameters

LG (x
�
1 + · · · + x�d )

1
� � ∈ [1,∞)

NSD �(α1+···+αd−ρ)
�(α1+···+αd) E{max1≤j≤d (

xjD
−ρ
j �(αj )

�(αj−ρ) )} (D1, . . . ,Dd)∼ Dirichlet(α1, . . . , αd)

α1, . . . , αd > 0, ρ ∈ (0,min(α1, . . . , αd))

DSM d
∑

w∈W max(x1w1, . . . , xdwd) W is a finite subset of �d with cardinality m
given in (F1)–(F3) in the Supplementary Material
(Chatelain, Fougères and Nešlehová (2020))

intentionally challenge Conditions 4.1–4.3 to explore the robustness of the convergence re-
sults. For the sake of brevity, we present the main conclusions of this simulation study and
provide representative illustrations; the complete results are available in Appendix F of the
Supplementary Material (Chatelain, Fougères and Nešlehová (2020)). To evaluate the perfor-
mance of the estimators, the integrated squared error (ISE) and integrated relative absolute
error (IRAE) defined below were used:

(5.1)

ISE(An)= 1

|�d |
∫
�d

{
An(w)−A(w)}2

dw,

IRAE(An)= 1

|�d |
∫
�d

|An(w)−A(w)|
A(w)

dw.

ISE and IRAE were computed using Monte Carlo integration with 10,000 uniformly dis-
tributed samples on �d . For each scenario, 1000 Monte Carlo replicates were deemed suffi-
cient to capture the behavior of ISE and IRAE.

Additionally, the finite-sample behavior of the estimators is compared to that of the asymp-
totic limits obtained in Section 4. Observe that from Theorems 4.1–4.2, varACFG(w) and
varAP(w) are respectively given by

{
A(w)

}2
∫ 1

0

∫ 1

0
cov

(
C

[
ψ

{−w log(u)
}]
,C

[
ψ

{−w log(v)
}]) du

u logu

dv

v logv
,

{A(w)}4

{E(Z)}2

∫ 1

0

∫ 1

0
cov

(
C

[
ψ

{−w log(u)
}]
,C

[
ψ

{−w log(v)
}])du

u

dv

v
,

whenever w ∈ �̊d . Plots of these asymptotic variances are provided in this section and cor-
roborate the conclusions drawn from the simulations. They are shown for d = 2 as functions
of w ∈ (0,1), where w = (w,1 −w).
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FIG. 1. Boxplots of IRAE(An,c) (left) and ISE(An,c) (right) for the Pickands (blue) and CFG (red) type esti-
mators for n= 200, d = 4, various Archimedean generators with τ (ψ)= 1/5 and the NSD stdf with parameters
α = (1,2,3,4), ρ = 0.59.

5.1. Comparisons between the Pickands and the CFG-type estimators. We first com-
pared the Pickands and the CFG-type estimators in various scenarios; the results are reported
in Tables F1–F6 in the Supplementary Material (Chatelain, Fougères and Nešlehová (2020)).
Figure 1 is representative of the overall pattern, namely that the CFG-type estimator performs
better on average both in terms of ISE and IRAE. The superiority of the CFG-type estimator
is further supported by Figure 2, which shows that in the bivariate case, varACFG(w,1 −w)
is smaller than varAP(w,1 − w) for any w ∈ (0,1). This is in agreement with Genest and
Segers (2009), who observed a similar behavior of the asymptotic variance of the CFG and
the Pickands estimator in the bivariate case. In higher dimensions, however, the Pickands es-
timator can sometimes outperform the CFG estimator, although the differences in IRAE and
ISE are small; see, for example, Table F5 for d = 10, small values of τ(ψ) and the Frank,
Gumbel and Joe generators. Figure 1 also shows that IRAE is more revealing than ISE, and
we concentrate on the former henceforth.

Given that the behavior of ψ at zero and infinity played a key role in the conditions of
Theorems 4.1 and 4.2, we next investigate the impact of the index of regular variation of ψ
and 1 −ψ(1/·). Figure 3 shows the performance of the estimators for the NSD stdf with pa-
rameters α = (1,2,3,4), ρ = 0.59. In the left panel, the generator is Clayton with parameter
θ ; the latter satisfies Condition 4.2(a) with s = 1/θ . This plot reveals that decreasing s has a
detrimental effect on AP

n,c while ACFG
n,c is hardly affected. When s ≤ 2, conditions of Theo-

rem 4.2 are no longer met; it is therefore not surprising that the behavior of AP
n,c deteriorates

quickly as s → 0. The middle panel of Figure 3 explores the effect of m when the generator
is Joe, which satisfies Condition 4.1 with θ =m. One can again see that AP

n,c performs worse
than ACFG

n,c , but this time, increasing m has a negative effect on both estimators. Finally, the

FIG. 2. Plots of varACFG(t) (dashed) and varAP(t) (dotted) for bivariate Archimax copulas with LG stdf
with parameter � = 2. Left: Clayton generator ψθ with θ = 1/s for values of s equal to 5 (black), 5/2 (red), 5/3
(green), 5/4 (blue). Middle: Joe generator ψθ with values of θ =m equal to 1.44 (black), 2.22 (red), 3.83 (green),
8.77 (blue). Right: Frank generator ψθ for values of τ (ψ) equal to 1/5 (black), 2/5 (red), 3/5 (green), 4/5 (blue).
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FIG. 3. Boxplots of IRAE for the Pickands (blue) and CFG (red) estimators for n= 200, d = 4 and the Clayton
generator ψ with θ = 1/s for various values of s (left), the Joe generator for various values of θ = m (middle)
and Frank for various values of τ (ψ)= 1 − (4/θ){1 −D1(θ)} (right), where D1 denotes the Debye function. The
stdf is NSD with α = (1,2,3,4), ρ = 0.59.

right panel of Figure 3 shows the effect of dependence of the Archimedean copula Cψ with
generator ψ measured by τ(ψ), Kendall’s tau of the bivariate Archimedean copula with gen-
erator ψ , for the Frank generator. In this case, m= 1, and increasing τ(ψ) negatively affects
both estimators, although ACFG

n,c is less sensitive. From Figure 2, the same conclusions can be
drawn about the asymptotic variances.

5.2. The effect of the sample size, dimension and dependence. Given that the CFG-type
estimator performed consistently better than AP

n,c, we concentrate on the former hereafter and
explore the effect of sample size, dimension and dependence. We choose the stdf to be either
LG with parameter � = 2 (all dimensions) or NSD with parameters α = (1,2), ρ = 0.59 (for
d = 2), α = (1,2,3,4), ρ = 0.59 (for d = 4) and α = (1,1,1,1,2,2,2,3,3,4), ρ = 0.69
(for d = 10). These parameters are chosen so that the average of pairwise Kendall’s taus
(also called the coefficient of agreement (Kendall and Smith (1940)) of the corresponding
d-variate extreme-value copula CA is 1/2. The Archimedean generator is chosen to be Gum-
bel with θ = 5/3, which corresponds to Kendall’s tau of 2/5 of the corresponding bivariate
Archimedean copula Cψ . The left panel in Figure 4 shows the IRAE for various sample sizes
when d = 4. It is clear that the performance of ACFG

n,c improves with sample size, but also
that it depends on the stdf; the CFG-type estimator performs worse when A is LG. Other
dimensions and Archimedean generators led to the same conclusions. It is worth noting that
the asymmetric stdf NSD does not lead to better or worse results overall.

The right panel of Figure 4 shows the effect of dimension. Unsurprisingly, the performance
of ACFG

n,c deteriorates with d . The choice of A has an effect; the latter is most pronounced

FIG. 4. Boxplots of IRAE of ACFG
n,c when d = 4 and n ∈ {200,500,1000} (left), and when d ∈ {2,4,10} and

n= 200 (right). The Pickands dependence functions are LG (red) and NSD (blue) with coefficient of agreement
1/2; the Archimedean generator is Gumbel with θ = 5/3.
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FIG. 5. Boxplots of IRAE of ACFG
n,c when n = 200, d = 10 and the Pickands dependence function is LG for

all panels. The Archimedean generators are Frank (left), Joe (middle) and Clayton (right). In the right panel,
ηL(A)= 1/{2A(1/2)} = 2−1/ρ is the lower tail dependence index of Ledford and Tawn (1996).

when d = 4, although this may be merely due to the choice of parameters. Again, the same
pattern was observed for other sample sizes and Archimedean generators. We also tried the
DSM Pickands dependence function, which does not satisfy Condition 4.3, because it is not
differentiable everywhere. The performance of the CFG-type estimator remained essentially
unaffected by this choice of A; see Tables F7–F9 in the Supplementary Material (Chatelain,
Fougères and Nešlehová (2020)). This is comforting, because Condition 4.3 is virtually im-
possible to verify from data.

Our next aim was to study the effect of dependence. We restricted ourselves to the LG
Pickands dependence function; in that case, Cψ,A is exchangeable and measuring dependence
can be reduced to the bivariate setting. The first study we conducted focused on Kendall’s
tau. For a bivariate Archimax copula Cψ,A, let τψ,A denote its Kendall’s tau τ(Cψ,A); let
also τ(A) = τ(CA) and τ(ψ) = τ(Cψ) denote Kendall’s tau of the corresponding bivariate
extreme-value and Archimedean copula, respectively. From Capéraà, Fougères and Genest
(1997),

(5.2) τψ,A = τ(ψ)+ τ(A)− τ(ψ)τ(A).
The left panel in Figure 5 shows the IRAE of the CFG-type estimator for various values of
τψ,A and τ(A) when n= 200 and d = 10. The observed trend is that for a fixed τψ,A, an in-
crease in τ(A), which implies a decrease in τ(ψ), results in lower IRAE. This is corroborated
in the asymptotic setting by the left panel of Figure 6. There is also a performance gain as
τψ,A increases. Conclusions for other Archimedean generators, dimensions and sample sizes
are the same; see Tables F10–F12 in the Supplementary Material (Chatelain, Fougères and
Nešlehová (2020)).

The second study focused on the effect of upper tail dependence as measured by λU in
(2.3). For a bivariate Archimax copula Cψ,A whose generator ψ satisfies Condition 4.1,
λU(Cψ,A) = 2 − {2A(1/2)}1/m. In the middle panel of Figure 5, the stdf is again LG with
parameter �, so that A(1/2)= 21/�−1, and the Archimedean generator is Joe with parameter
θ =m. Consequently, various values of λU(Cψ,A) can be obtained by varying � and θ . There
is a noticeable decrease in IRAE when the contribution of A to λU(Cψ,A) increases, and a
slight increase in error for a fixed θ when λU(Cψ,A) increases. A similar conclusion can be
drawn in terms of the asymptotic variances from Figure 6 (middle panel). The same pattern
was observed for other choices of n and d; see Table F13 in the Supplementary Material
(Chatelain, Fougères and Nešlehová (2020)).

The last study focused on the effect of lower tail dependence as measured by λL in
(2.4). For a bivariate Archimax copula Cψ,A whose generator ψ satisfies Condition 4.2(a),
λL(Cψ,A)= {2A(1/2)}−s . Again, we considered the LG Pickands dependence function. As
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FIG. 6. Plots of varACFG(t) (dashed) and varAP(t) (dotted) for bivariate Archimax copulas with stdf LG. Left:
Joe generator ψ , τ (A) set for values of 1/5 (black), 2/5 (red), 3/5 (green) and fixed τ (ψ,A) = 0.84. Middle:
Frank generator ψ , values of λU (A) equal to 1/5 (black), 2/5 (red), 3/5 (green) and fixed λU (ψ,A) = 0.6.
Right: Clayton generator ψ , values of η(A) equal to 0.57 (black), 0.66 (red), 0.76 (green), 0.87 (blue) and fixed
λL(ψ,A)= 0.4.

the Archimedean generator we choose the Clayton generator, which is such that s = 1/θ .
The right panel of Figure 5 shows that the effects of lower and upper tail dependence are
similar: an increase in the contribution of A to λL leads to lower IRAE. This agrees with the
right panel of Figure 6. There is also a slight decrease in performance when θ is fixed and
λL(Cψ,A) increases. The same pattern occurred for other choices of n and d; see Table F14
in the Supplementary Material (Chatelain, Fougères and Nešlehová (2020)).

6. Asymptotic behavior when ψ is unknown. Sections 3–5 focused on the nonpara-
metric estimation of the stdf under the assumption that the distortion function ψ is known.
Building upon these results, we can now relax this assumption by supposing instead that
ψ ∈ � = {ψθ, θ ∈ O}, O ⊂ R

p . In such a case, θ first needs to be estimated without the
knowledge of �, and we present an idea how to do this for one-parameter families in Sec-
tion 7. We now focus on the nonparametric estimator of A and its asymptotic properties
assuming that an estimator of θ is available.

Once θ has been estimated by θn in such a way that θn ∈ O for all n ∈ N, the Pickands or
CFG-type estimators of A can be constructed as in Section 3 with ψ replaced by ψθn . For
every w ∈�d , and i ∈ {1, . . . , n}, let

ξ̂i,n(w)= min
{
φθn(Ûij )/w1, . . . , φθn(Ûij )/wd

}
with the convention that φθn(Ûij )/wj = ∞ when wj = 0. As before, ξ̂i,n(w) is finite for
every i ∈ {1, . . . , n}. When E(logZ) and E(Z) exist, respectively, the CFG and Pickands-
type estimators are given, for each w ∈�d , by

log ÂCFG
n (w)= E logZ− 1

n

n∑
i=1

log ξ̂i,n(w), ÂP
n(w)= nE(Z)/

n∑
i=1

ξ̂i,n(w).

Because ψ is estimated by ψθn rather than fixed, the weak limit of

(6.1) Â
CFG
n = √

n
(
ÂCFG
n −A)

, Â
P
n = √

n
(
ÂP
n −A)

is no longer the process given in Theorems 4.1 and 4.2, respectively. Establishing weak con-
vergence of ÂCFG

n and Â
P
n also requires further regularity conditions which are listed in Ap-

pendix A. These conditions are sufficiently broad to cover, for example, the Clayton family,
as shown in Appendix E.5 of the Supplementary Material (Chatelain, Fougères and Nešle-
hová (2020)). Under these conditions, the following two results may be established. The
proofs are rather tedious and may be found in Appendix E of the Supplementary Material
(Chatelain, Fougères and Nešlehová (2020)). In the two results below, � denotes the weak
limit of

√
n(θn− θ0) and ψ̇θ (x) is the derivative of ψθ(x) with respect to θ . The existence of
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the latter for all x ∈ [0, xψθ ) is guaranteed by Condition A.2; we set ψ̇θ (x)≡ 0 for x ≥ xψθ
in order to simplify the expression of the limiting process.

THEOREM 6.1. Suppose that X1,X2, . . . is a stationary, alpha-mixing sequence with
α[X](k) = O(ak), as k → ∞, for some a ∈ (0,1). Suppose that the marginals of the sta-
tionary distribution are continuous and the corresponding copula belongs to the class of d-
variate Archimax copulas C� whose stdfs are arbitrary with � �= �M and whose Archimedean
generators belong to a parametric family � = {ψθ, θ ∈ O}, O ⊆ R

p . Assume that C� satis-
fies the conditions of Proposition 2.1. Suppose further that the true parameter value θ0 is in
the interior O̊ of O, that ψθ0 is q-monotone for some q ≥ 3 and such that ψ ′′

θ0
exists and is

continuous on (0,∞). Further assume that ψθ0 satisfies Conditions 4.1 and 4.3, as well as
either Condition 4.2(a) or Condition 4.2(b) with the additional requirement that − log(ψθ0)

is concave on (0, xψθ0 ). Finally, assume that Conditions A.1–A.4, A.6 and A.7 are satis-

fied. Then for any compact set K ⊂ �̊d , ÂCFG
n � Â

CFG as n→ ∞ in C(K), where for any
w ∈ �̊d ,

Â
CFG(w)=A(w)

∫ 1

0

(
C

[
ψθ0

{−w log(u)
}]

+
d∑
j=1

Ċj
[
ψθ0

{−w log(u)
}]
ψ̇�
θ0

{−wj log(u)
}
�

)
du

u logu
.

THEOREM 6.2. Under the assumptions of Theorem 6.1 with the additional assumption
that s > 2 in case ψθ0 satisfies Condition 4.2(a), and with Condition A.4 replaced by Condi-
tion A.5, one has that, for any compact set K ⊂ �̊d , ÂP

n � Â
P as n→ ∞ in C(K), where for

any w ∈ �̊d ,

Â
P(w)= −A2(w)

E(Z)

∫ 1

0

(
C

[
ψθ0

{−w log(u)
}]

+
d∑
j=1

Ċj
[
ψθ0

{−w log(u)
}]
ψ̇�
θ0

{−wj log(u)
}
�

)
du

u
.

With μ̂ and ν̂ as defined in Section 3, the end-point corrected versions of the CFG and
Pickands-type estimators estimators are

(6.2) ÂP
n,c(w)= nμ̂/

n∑
i=1

ξ̂i,n(w), log ÂCFG
n,c (w)= ν̂ − 1

n

n∑
i=1

log ξ̂i,n(w).

By Lemma 4.1, the asymptotic behavior of the uncorrected and end-point corrected versions
of the CFG and Pickands-type estimators is the same.

COROLLARY 6.1. Theorems 6.1 and 6.2 also hold when Â
CFG
n and Â

P
n are respectively

replaced by Â
CFG
n,c = √

n(ÂCFG
n,c −A) and Â

P
n,c = √

n(ÂP
n,c −A).

7. Estimation of the distortion function. We now discuss how ψ can be estimated
without the knowledge of �, again assuming that ψ ∈� where � = {ψθ, θ ∈ O}. Recall that
under the assumptions of Proposition 2.1, θ and � are then identifiable. In this section, we
propose a simple moment-based procedure for the most common scenario where O ⊆ R.
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First, consider an arbitrary bivariate copula C and a pair (U1,U2) ∼ C. The distribu-
tion function KC of the random variable WC = C(U1,U2) is called the Kendall distri-
bution (Barbe et al. (1996)). If C = Cψ,A is Archimax, it is known from equation (13)
in Capéraà, Fougères and Genest (2000) that for any w ∈ [0,1], KCψ,A(w) = KCψ (w) +
φ(w)/φ′(w)τ(A), where τ(A) is Kendall’s tau of CA. Hence for any k ∈ N, the kth moment
of WCψ,A satisfies

(7.1) mk = E
(
Wk
Cψ,A

) = τ(A) 1

k + 1
+ {

1 − τ(A)}E
(
Wk
Cψ

)
.

Equations (7.1) for k = 1 and k = 2 then lead to the following identity:

(7.2)
1 − 2E(WCψ )

1 − 3E(W 2
Cψ
)

= 1 − 2m1

1 − 3m2
.

The left-hand side depends only on the Archimedean generator and is thus a function of θ ,
say f . Assuming that ψ is twice differentiable, Theorem 4.3.4 in Nelsen (2006) and partial
integration yield that for any θ ∈ O,

(7.3) f (θ)= 1 − 2E(WCψθ )

1 − 3E(W 2
Cψθ
)

=
∫ xψθ

0 x{ψ ′
θ (x)}2 dx

3
∫ xψθ

0 xψθ(x){ψ ′
θ (x)}2 dx

.

The following example provides explicit expressions for f for three families of generators;
in each case, f is strictly monotone in θ .

EXAMPLE 7.1. For the Clayton generator given in Table 1, E(Wk
ψθ
) = (θ + 1)/{(k +

1)(θ + k+ 1)} for any k ∈N. Consequently,

f (θ)= θ + 3/
{
2(θ + 2)

}
.

Next, consider the Genest–Ghoudi family (Genest and Ghoudi (1994)) whose generator is
given, for any x ∈ [0,1], by ψθ(x)= (1−xθ )1/θ for θ ∈ (0,1]. Here, E(Wk

ψθ
)= (1−θ)/(k+

1 − θ), for any k ∈ N. Hence,

f (θ)= 3 − θ/(4 − 2θ).

Finally, consider the Frank generator given in Table 1. For j ∈ N, let Dj(θ) = (j/θj )×∫ θ
0 t

j /(et − 1) dt denote the Debye function (Abramowitz and Stegun (1964, Chapter 27)).
Here, (7.3) yields that for any θ ∈R,

f (θ)= 4θ − 4θD1(θ)

3{2θ − θD2(θ)+ 4D1(θ)− 4} .

If f is one-to-one, as was the case in Example 7.1, equation (7.2) can be used to construct
an estimator of θ . Following Ben Ghorbal, Genest and Nešlehová (2009), let Iij = 1(Xi ≤
Xj,Yi ≤ Yj ) for all i, j ∈ {1, . . . , n} and set

mn,1 = 1

n(n− 1)

∑
i �=j
Iij , mn,2 = 1

n(n− 1)(n− 2)

∑
i �=j �=k

Iij Ikj .

As mn,1 and mn,2 are U -statistics with square integrable kernels, the results of these authors
imply that

√
n{(mn,1,mn,2)− (E(WC),E(W 2

C))} � N (0,�) as n→ ∞; the entries of � are
given in Proposition 2 therein.

Next, provided f has an inverse f←, define h : R2 →R by

h(m1,m2)= f←
(

1 − 2m1

1 − 3m2

)
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and set θn = h(mn,1,mn,2). Assuming h has continuous partial derivatives that are nonzero at
(m1,m2) and using the delta method, one gets that

√
n(θn− θ)� N [0, Jh(m1,m2)�Jh(m1,

m2)
�], where Jh is the 2×1 Jacobian matrix of h. Consistent plug-in estimators of the entries

of� are provided in Ben Ghorbal, Genest and Nešlehová (2009). For small n, the calculations
presented in that paper can also be used to compute and estimate the finite-sample variance-
covariance matrix of (mn,1,mn,2).

EXAMPLE 7.2. For the Clayton family, θn = Sn/Rn, where

(7.4) Sn = 8mn,1 − 9mn,2 − 1, Rn = 1 − 4mn,1 + 3mn,2.

Then
√
n(θn − θ) = √

n{h(mn,1,mn,2) − h(m1,m2)} � N (0, σ 2), where σ 2 is defined as
follows as a function of S = 8m1 − 9m2 − 1 and R = 1 − 4m1 + 3m2:

(7.5)
σ 2 = 1

R4

{
R2(64�11 + 81�22 − 144�12)

+ S2(16�11 + 9�22 − 24�12)− 2RS(32�11 − 27�22 + 50�12)
}
.

Note that the numerator Sn in (7.4) is the quantity on which the test for bivariate extreme-
value dependence of Ghoudi, Khoudraji and Rivest (1998) is based. These authors showed
that when C is an extreme-value copula, 8E(WC)− 9E(W 2

C)− 1 = 0. When θ = 0, the Clay-
ton generator becomes ψ(t)= e−t and Cψ,A = CA is an extreme-value copula.

For the Genest–Ghoudi family, θn = −Sn/Rn, where Sn and Rn are as in (7.4). Hence√
n(θn − θ)� N (0, σ 2), where σ 2 is given by (7.5).
For the bivariate Frank family, the function f is one-to-one but its inverse is not explicit.

Therefore, both the estimator and the asymptotic variance are not explicit either. An estimate
of θ can be obtained numerically and its asymptotic variance can be studied via resampling.

In the multivariate case, a generalization of (7.1) does not seem possible. We thus propose
to use θn = 2

∑
j<k θn,jk/{d(d − 1)}, where θn,jk is the above moment-based estimator of θ

based on the bivariate sample (X1j ,X1k), . . . , (Xnj ,Xnk). A heuristic approach for checking
whether averaging the pairwise estimates is reasonable is presented in Section 8.

8. Data application. In this section, the practical usefulness of the proposed estimation
procedure for Archimax copula models is illustrated in the context of flood monitoring. The
data is a trivariate sample of daily precipitation amounts in French Brittany from 1976 to
2016 provided by Météo France. To avoid seasonality, the series is restricted to September to
February, during which most extreme events occur. The position of the three stations Belle-
Ile, Groix and Lorient is shown in the left panel of Figure 7.

To remove time dependence, and since our primary focus is on extreme precipitation, we
considered monthly maxima at each station, totalling 240 observations. Blocking the data by
months also eliminates ties; in particular, it avoids the large number of zeros in the sample of
daily maxima. This series shows no departures from stationarity; the Ljung and Box–Pierce
tests do not reject the hypothesis of temporal independence except at Groix, where there is
slight evidence of dependence at lags 1 and 2. As the asymptotic results hold for alpha-mixing
sequences, time dependence is allowed.

The pairs of the normalized componentwise ranks of monthly maxima are displayed in the
right panel of Figure 7. These plots show strong correlation between Lorient and Groix, which
is not surprising given their geographical proximity. Also apparent is asymmetry between
Belle-Ile on the one hand and both Lorient and Groix on the other, in the sense that large
precipitation amounts at Groix correspond to large precipitation amounts at Belle-Ile, but not
necessarily vice versa, and similarly for Lorient.



1044 S. CHATELAIN, A.-L. FOUGÈRES AND J. G. NEŠLEHOVÁ

FIG. 7. Satellite map of French Brittany, showing the sites Belle-Ile, Groix and Lorient (left). Rankplots of
monthly maximum precipitation for the months of September to February, from 1976 to 2016 (right).

Because the data at hand are monthly maxima, one might first think of fitting an extreme-
value copula model. However, the test of Kojadinovic, Segers and Yan (2011) clearly rejects
the hypothesis that the underlying copula is an extreme-value copula (p ≈ 5 × 10−5). This
may be explained by the presence of lower-tail dependence, which manifests itself by the
clumping of points in the bottom-left corner of the rankplots in the right panel of Figure 7. The
empirical estimates of the tail probabilities plotted against q in the bottom row of Figure 8
also indicate that λL in (2.4) for all pairs is likely greater than 0. This phenomenon is not
present in multivariate extreme-value distributions, whose pairwise lower tail dependence
coefficients are 0. Archimax copula models advocated in this paper may capture lower-tail as
well as extremal dependence. The Clayton–Archimax model is particularly well suited. The
latter assumes continuous marginals and an Archimax copula of the form Cψθ ,A, where A is
an arbitrary Pickands dependence function and ψθ is the Clayton generator given in Table 1.
Becauseψθ for any θ > 0 satisfies Condition 4.2(a) with s = 1/θ , λL of each bivariate margin
of Cψθ ,A equals {2A(1/2)}−1/θ . Furthermore, Condition 4.1 holds with m= 1, so that Cψθ ,A
is in the domain of attraction of the extreme-value copula CA. The Clayton–Archimax model
is fitted to the data in Section 8.1; comparisons with other estimators of the limiting A are
considered in Section 8.2.

8.1. Fitting the Clayton–Archimax model. We begin by estimating the Clayton distortion
using the moment-based method presented in Section 7. The pairwise estimates of θ are given
in Table 2, along with 90% confidence intervals. Because these intervals overlap, there is no
evidence against a trivariate Clayton–Archimax model with a common value of θ . The latter
is estimated by the average of the pairwise estimates to be θn = 1.31.

The next step consists of estimating A. We use the CFG-type estimator ÂCFG
n,c given in

(6.2) with ψ replaced by ψθn . The Pickands-type estimator is not well suited here, because
for the estimated value of θ , s ≈ 0.76< 2, so that the requirements of Theorem 6.2 are likely
not met. In contrast, assuming that Condition 4.3 holds, the assumptions of Theorem 6.1 are
fulfilled; Conditions A.1–A.7 are validated in Appendix E.5 in the Supplementary Material
(Chatelain, Fougères and Nešlehová (2020)). Comparing the limiting processes in Theorems
4.1 and 6.1, the additional uncertainty stemming from estimating θ clearly has an impact on
the variability of the estimator. To assess the latter in finite samples, we run a pilot simulation
which is detailed in Section 8.2 and the results of which are shown in Figure 9. The boxplots
AXC(1) and AXC(2) summarize the IRAE when ψ is known and estimated parametrically,
respectively. Unsurprisingly, parameter uncertainty increases the variability of the estimator.
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FIG. 8. Empirical estimates of χU (q) (top) and χL(q) (middle) plotted against q (Quantile) along with 95%
confidence bands (black). The red lines indicate the model-based estimates of λU (top) and λL (middle). Contour
plots (bottom) of the empirical copula (black dashed) and the fitted Clayton–Archimax copula (red). The plots
correspond to Belle-Ile and Groix (left), Belle-Ile and Lorient (middle) and Groix and Lorient (right).

A contour plot of ÂCFG
n,c is shown in the left panel of Figure 10. The contour levels of ÂCFG

n,c

show a clear global asymmetry, but axial symmetry with respect to Belle-Ile. This pattern
corroborates what was seen on the rankplots in Figure 7. This asymmetry may be explained
by the fact that Belle-Ile is located far off shore. This can lead to strong localized rainfall
which does not affect the stations at Groix and Lorient. Although Groix is also an island, it
lies much closer to the coast, and is hence not affected by the localized rainfall phenomenon.

TABLE 2
Pairwise estimates of θ along with 90% asymptotic confidence intervals in the Clayton–Archimax model,

model-based estimates of pairwise Kendall’s tau of C
ψθn ,Â

in the Clayton–Archimax model, and empirical

estimates τn of pairwise Kendall’s tau

θn,jk 90% C.I. τ (C
ψθn ,Â

) τn

Belle-Ile and Groix 1.58 (0.77, 2.39) 0.54 0.56
Belle-Ile and Lorient 1.08 (0.49, 1.67) 0.51 0.52
Groix and Lorient 1.27 (0.54, 1.99) 0.64 0.67
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FIG. 9. Left: NSD Pickands dependence function A from Table 1 with α = (1,2,3) and ρ = 0.9. Right: Boxplots
of IRAE(Ân) based on N = 1000 samples of size n= 240 from a 3-variate Clayton–Archimax copula Cψθ ,A with

θ = 1.31 and the NSD A with α = (1,2,3) and ρ = 0.9. AXC(1): ACFG
n,c from (3.5); AXC(2): ÂCFG

n,c from (6.2)
with θn from Example 7.2; CFG: the CFG estimator of Gudendorf and Segers (2011) based on block maxima
with 40 blocks; FHM: the estimator of Fougères, de Haan and Mercadier (2015); EKS: the estimator of Einmahl,
Kiriliouk and Segers (2018).

Furthermore, it can also be seen from pressure maps and radar images that heavy rainfall at
Groix and Lorient is mainly due to large-scale weather systems that affect Belle-Ile as well.

Finally, we check the fit of the Clayton–Archimax model. Because ÂCFG
n,c is nonparametric,

no existing formal goodness-of-fit test for copula models can be used. However, the contours
of the fitted trivariate Clayton–Archimax copula seem fairly close to the empirical copula,
as evidenced by the bottom panel of Figure 8. We also compared various sample depen-
dence measures to their model estimates. To assess the fit in the tails, we consider each pair
of stations j �= k, say. Following Coles, Heffernan and Tawn (1999), we plot the empirical
estimates of

χU(q)= 2 − log
[
Pr

{
Fj (Xj ) < q,Fk(Xk) < q

}]
/ log(q),

χL(q)= 2 − log
[
Pr

{
Fj (Xj ) > 1 − q,Fk(Xk) > 1 − q}]

/ log(q),

against q together with the model-based estimates of the lower and upper tail dependence
coefficients λL and λU for that pair, respectively. To compute the latter, we use that in a
bivariate Clayton–Archimax model,

λL = lim
q→1

χL(q)= {
2A(1/2)

}−1/θ
, λU = lim

q→1
χU(q)= 2 − 2A(1/2).

The top two panels of Figure 8 show that the model-based estimates approximate the empiri-
cal probabilities quite nicely when q → 1, which indicates a good fit in the tails. The contour
plots of the empirical copula and the fitted Clayton–Archimax model displayed in the bottom
panel of the same figure match nicely as well. Finally, we compared empirical estimates of

FIG. 10. AXC: CFG-type estimator ÂCFG
n,c based on monthly maxima and the Clayton–Archimax model. CFG:

Rank-based CFG estimator of Gudendorf and Segers (2011) based on seasonal maxima. FHM and EKS: Esti-
mators of Fougères, de Haan and Mercadier (2015) and Einmahl, Kiriliouk and Segers (2018) based on monthly
maxima.
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pairwise Kendall’s tau with model-based estimates. To compute the latter, we used (5.2) with
τψ = θ/(θ + 2) and τ(A)= ∫ 1

0 [{t (1 − t)}/A(t)]dA′(t), and approximated the integral in the
expression for τ(A) with finite differences. Table 2 shows that the empirical and model-based
estimates are very close. Overall, the fit of the Clayton–Archimax model seems adequate, and
allows to model the dependence in this trivariate precipitation dataset, not only in extremes,
but also in a medium size regime.

8.2. Comparison with other estimators of A. If the objective is to specifically assess the
joint risk of extreme precipitation, then the estimation of the Pickands dependence functionA
of the extreme-value attractor of the distribution of the monthly maxima at the three stations
is of interest. Because the Clayton–Archimax copula Cψ,A is in the domain of attraction of

CA, the estimator ÂCFG
n,c calculated in the preceding section is also an estimate of the limiting

Pickands dependence function. As such, it can be compared to other nonparametric estimators
considered in the literature.

The first idea would be to block the data by seasons and consider the maxima over the
period from September to February. This reduces the sample size to n= 40, but the hypoth-
esis that the underlying copula is an extreme-value copula is no longer rejected by the test of
Kojadinovic, Segers and Yan (2011) (p ≈ 0.43). Consequently, the multivariate rank-based
CFG estimator of Gudendorf and Segers (2012) can be used. Another option would be to use
nonparametric estimators of A that only assume that the underlying copula is in the domain
of attraction of CA. We consider the FHM and EKS estimators of Fougères, de Haan and
Mercadier (2015) and Einmahl, Kiriliouk and Segers (2018), respectively. The FHM estima-
tor is denoted as L̊agg in Section 5.1 of Fougères, de Haan and Mercadier (2015), built from
equation (15) therein, and its tuning parameters are κn = 239, a = 0.8, r = 0.8, kρ = 237.
The bias-corrected EKS estimator is denoted �̄n,k,k1 and its parameters were set to the default
choices from the R package tailDepFun.

The three competing estimators CFG, FHM and EKS are displayed in Figure 10 along
with ACFG

n,c from Section 8.1. The contours of the CFG estimator are rougher, which is not
surprising given that it is based on 40 observations. Although we expect this estimator to be
more variable because it is based on a smaller sample, it is comforting that it shows a similar
pattern as ÂCFG

n,c ; this further confirms that the Clayton–Archimax model is adequate for the
data at hand. The contours of the FHM and EKS estimators are much more irregular which
makes the plots difficult to interpret.

To compare these estimators further, we ran a pilot simulation study mimicking the data.
We generated N = 1000 samples of size n= 240 from a trivariate Clayton–Archimax copula
with θ = 1.31 and the scaled negative extremal Dirichlet Pickands dependence function pa-
rameters α = (1,2,3) and ρ = 0.9 whose shape roughly resembles ÂCFG

n,c ; see the left panel
of Figure 9. For each sample, we estimated A by: (i) the CFG-type estimator from (3.5) as-
suming ψ known; (ii) the CFG-type estimator from (3.5) with θ estimated by the moment
estimator θn from Section 8.1; (iii) the CFG estimator of Gudendorf and Segers (2011) based
on block maxima with 40 blocks; (iv) the FHM estimator of Fougères, de Haan and Mer-
cadier (2015); (v) the EKS estimator of Einmahl, Kiriliouk and Segers (2018). The boxplots
of the IRAE are shown in Figure 9. Even if ψ is estimated by ψθn , ÂCFG

n,c is superior to the
CFG, FHM and EKS estimators especially in terms of bias.

To sum up, this application on precipitation data demonstrates the feasibility of the pro-
posed inference techniques but more importantly illustrates the potential of Archimax copulas
to model joint risk in subasymptotic settings. Since the max domain of attraction of Archimax
copulas is known, one can check the performance of the latter model by comparing it to mod-
els using the max-stable assumption. In this particular data application, the Archimax model
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accurately captures the bulk and both tails of medium to high precipitation observations. Per-
formance at extreme levels is no doubt also due to the fact that the studied weather stations
are located in a relatively small area. To model extremes over larger spatial scales, however,
more flexible models than those studied herein are required in order to capture asymptotic
independence, as noted, for example, by Huser, Opitz and Thibaud (2017) and Wadsworth
et al. (2017).

APPENDIX A: REGULARITY CONDITIONS

The conditions on the parametric family� = {ψθ, θ ∈ O} are considered. In what follows,
‖ · ‖2 denotes the �2-norm and O̊ denotes the interior of O.

CONDITION A.1. For all θ ∈ O, φθ(0)= xψθ is identical and equal to x� .

CONDITION A.2. Let �n = √
n(θn − θ0). Whenever θ0 ∈ O̊, n → ∞, (Ĉn,�n) �

(C,�) in �∞([0,1]d)×R
p and the limit is centered Gaussian.

CONDITION A.3. For any θ ∈ O̊, the gradient

ψ̇θ (t)= (
ψ̇θ,1(t), . . . , ψ̇θ,p(t)

)� = (
∂ψθ(t)/∂θ1, . . . , ∂ψθ(t)/∂θp

)�
exists and is continuous for all t ∈ [0, x�).

The following condition is needed for the CFG-type estimator.

CONDITION A.4. For any θ ∈ O̊, there exists an ω ∈ (0,1/2) and a bounded, nonnega-
tive function hθ on [0, x�) such that for each j ∈ {1, . . . , p}, |ψ̇θ,j |/hθ is bounded on [0, x�),∫ x�

0
hωθ (t) dt/t <∞,

∫ x�

0
hθ(t) dt/t <∞,

and such that ϒθ(ε)→ 0 for ε→ 0, where for any ε > 0,

ϒθ(ε)= sup
θ ′∈O,‖θ ′−θ‖2≤ε

sup
t∈[0,x�)

∥∥ψ̇θ ′(t)− ψ̇θ (t)
∥∥

2/hθ (t).

The following condition pertains to the Pickands-type estimator.

CONDITION A.5. For any θ ∈ O̊, there exists an ω ∈ (0,1/2) and a bounded, nonnega-
tive function hθ on [0, x�) such that for each j ∈ {1, . . . , p}, |ψ̇θ,j |/hθ is bounded on [0, x�),∫ x�

0
hωθ (t) dt <∞,

∫ x�

0
hθ(t) dt <∞,

and such that ϒθ(ε)→ 0 for ε→ 0, where ϒθ(ε) is as in Condition A.4.

Finally, two more conditions are needed, each assuming Condition A.3.

CONDITION A.6. For any θ ∈ O̊, the Hessian ψ̈θ (t) = (ψ̈θ,jk(t))j,k = (∂2ψθ(t)/

∂θj ∂θk)j,k exists and is continuous for all t ∈ [0, x�). Furthermore, for each j, k ∈
{1, . . . , p}, ψ̈θ,jk(t)→ 0 as t → 0 and as t → x� , and

lim
ε↓0

sup
θ ′∈O,‖θ ′−θ‖2≤ε

sup
t∈[0,x�)

∥∥ψ̈θ ′(t)− ψ̈θ (t)
∥∥

E = 0,

where ‖ · ‖E denotes the entrywise 1-norm, that is, ‖A‖E = ∑
j,k |Ajk|.
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CONDITION A.7. For each j ∈ {1, . . . , p}, θ ∈ O̊ and any δ > 0 such that {θ ′ ∈ R
p :

‖θ − θ ′‖< δ} ⊂ O̊,

lim
u↓0

sup
θ ′:‖θ−θ ′‖2<δ

ψ̇θ ′,j
{
φθ ′(u)

}
/
√
u= lim

u↓0
sup

θ ′:‖θ−θ ′‖2<δ

ψ̇θ ′,j
{
φθ ′(1 − u)}/√u= 0.
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SUPPLEMENTARY MATERIAL

Supplement to “Inference for Archimax copulas” (DOI: 10.1214/19-AOS1836SUPPA;
.pdf). This file contains the proofs of Sections 2, 4 and 6. It also contains detailed results of
the simulation study from Section 5.

R code for “Inference for Archimax copulas” (DOI: 10.1214/19-AOS1836SUPPB;
.zip). The functions necessary for fitting the Clayton-Archimax model as was done in Sec-
tion 8 are provided.
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