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We study scenarii linked with the Swiss cheese picture in dimension 3
obtained when two random walks are forced to meet often, or when one ran-
dom walk is forced to squeeze its range. In the case of two random walks, we
show that they most likely meet in a region of optimal density. In the case of
one random walk, we show that a small range is reached by a strategy uni-
form in time. Both results rely on an original inequality estimating the cost of
visiting sparse sites, and in the case of one random walk on the precise large
deviation principle of van den Berg, Bolthausen and den Hollander (Ann. of
Math. (2) 153 (2001) 355–406), including their sharp estimates of the rate
functions in the neighborhood of the origin.

1. Introduction. In this note, we are concerned with describing the geometry of the
range of a random walk on Z3, when forced to having a small volume, deviating from its
mean by a small fraction of it, or to intersecting often the range of another independent
random walk.

These issues were raised in two landmark papers of van den Berg, Bolthausen and den
Hollander (referred to as BBH in the sequel) written two decades ago [10, 11]. Both papers
dealt with the continuous counterpart of the range of a random walk, the Wiener sausage.
They showed a large deviation principle, in two related contexts: (i) in [10] for the downward
deviation of the volume of the sausage, (ii) in [11] for the upward deviation of the volume
of the intersection of two independent sausages. They also expressed the rate function with a
variational formula.

Their sharp asymptotics are followed with a heuristic description of the optimal scenario
dubbed the Swiss cheese picture where, in case (i), the Wiener sausage covers only part of
the space leaving random holes whose sizes are of order 1 and whose density varies on space
scale t1/d , and in case (ii) both Wiener sausages form apparently independent Swiss cheeses.
However, they acknowledge that to show that conditioned on the deviation, the sausages
actually follow the Swiss cheese strategy requires substantial extra work.

Remarkably, the Swiss cheese heuristic also highlights a crucial difference between di-
mension 3 and dimensions 5 and higher. Indeed, in dimension 3 the typical scenario is time
homogeneous, in the sense that the Wiener sausage considered up to time t , would spend all
its time localized in a region of typical scale (t/ε)1/3, filling a fraction of order ε of every
volume element, when the deviation of the volume occurs by a fraction ε of the mean. On the
other hand in dimension 5 and higher, the typical scenario would be time inhomogeneous:
the Wiener sausage would localize in a smaller region of space with scale of order (εt)1/d ,
only during a fraction ε of its time and, therefore, would produce a localization region where
the density is of order one, no matter how small ε is.

Recently, Sznitman [9] suggested that the Swiss cheese could be described in terms of
so-called tilted random interlacements. In the same time, in [1] we obtained a first result in
the discrete setting, which expressed the folding of the range of a random walk in terms of
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its capacity. More precisely, we showed that a positive fraction of the path, considered up to
some time n, was spent in a subset having a volume of order n and a capacity of order n1−2/d ,
that is to say of the same order as the capacity of a ball with volume n.

In this note, we present a simple and powerful estimate on the probability a random walk
visits sites which are far from each others; see Proposition 1.3 below. We then deduce two
applications in dimension 3 that we state vaguely as follows:

• One random walk, when forced to have a small range, folds in a time-homogeneous way.
• Two random walks, when forced to meet often, do so in a region of optimal density.

To state our results more precisely, we introduce some notation. We denote by {Sn}n≥0 the
simple random walk on Zd (in most of the paper d = 3), and by R(I ) := {Sn}n∈I , its range in
a time window I ⊂ N, which we simply write as Rn, when I is the interval In := {0, . . . , n}.
We let Q(x, r) := (x + [−r, r[d) ∩Zd , be the cube of side length 2r , and then define regions
of high density as follows. First, we define the (random) set of centers, depending on a density
ρ, a scale r and a time window I as

C(ρ, r, I ) := {
x ∈ 2rZd : ∣∣R(I ) ∩ Q(x, r)

∣∣ ≥ ρ · ∣∣Q(x, r)
∣∣},

and then the corresponding region

V(ρ, r, I ) := ⋃
x∈C(ρ,r,I )

Q(x, r),

which we simply write Vn(ρ, r), when I = In. Thus, R(I ) ∩ V(ρ, r, I ) is the set of visited
sites around which the range has density, on a scale r , above ρ in the time window I .

Our first result concerns the problem of forcing a single random walk having a small
range. For ε ∈ (0,1), we denote by Qε

n the law of the random walk conditionally on the
event {|Rn| −E[|Rn|] ≤ −εn}, and for I ⊂ In, we set I c := In \ I .

THEOREM 1.1. Assume d = 3. There exist positive constants β , K0 and ε0, such that for
any ε ∈ (0, ε0), and any 1 ≤ r ≤ ε5/6n1/3,

lim
n→∞Qε

n

⎡⎣ ∣∣R(I ) ∩R
(
I c) ∩ Vn(βε, r)

∣∣ ≥ ε

8
|I |,

for all intervals I ⊆ In, with |I | = 
K0εn�

⎤⎦ = 1.

We note that the proof of the theorem gives in fact a stretched exponential speed of con-
vergence to 1. This result expresses the fact that under Qε

n, in any time interval of length of
order εn, the random walk intersects the other part of its range a fraction ε of its time, which
is in agreement with the intuitive idea that, if during some time interval, the walk moves in
a region with density of visited sites of order ε, it should intersect it a fraction ε of its time.
Note that it brings complementary information to the results obtained in [1], where it was
shown that for some positive constants β , C and ε0 ∈ (0,1), for any ε ∈ (0, ε0), and any
Cε−5/9n2/9 logn ≤ r ≤ 1

C

√
εn1/3,

(1.1) lim
n→∞Qε

n

[∣∣Vn(βε, r)
∣∣ ≥ n

Cε
and cap

(
Vn(βε, r)

) ≤ C

(
n

ε

) 1
3
]

= 1,

with cap(�) being the capacity of a finite set � ⊂ Zd . We refer to [7] for a definition, but

let us just recall that for any �, one has c|�|1− 2
d ≤ cap(�) ≤ |�|, with c > 0 some universal

constant, and that the lower bound is achieved (at least up to a constant) when � is a discrete
ball. Now by definition of Vn(βε, r), one can observe that (1.1) also shows that for some
constant α > 0 (independent of ε), one has |Rn ∩Vn(βε, r)| ≥ αn, with Qε

n-probability going
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to one. This is in a sense stronger than the result of Theorem 1.1, which only gives (by
summation over disjoint intervals) that with high Qε

n-probability, |Rn ∩Vn(βε, r)| ≥ 1
8εn. On

the other hand, (1.1) says nothing on the distribution of the times when the random walk visits
the sets Vn(βε, r), while Theorem 1.1 shows that they are in a sense uniformly distributed.
Both results are proved using different techniques: while (1.1) was obtained by using only
elementary arguments, Theorem 1.1 relies on the sharp and intricate results of [10] (which
have been obtained in the discrete setting by Phetpradap in his thesis [8]).

Our second result concerns the problem of intersection of two independent ranges. For
n ≥ 1, and ρ ∈ (0,1), we denote by Q̃

ρ
n the law of two independent walks S and S̃, both

starting from the origin, conditionally on the event {|Rn ∩ R̃n| > ρn}, where Rn and R̃n

denote the respective ranges of these two walks up to time n. We also let Ṽn(ρ, r) be the
corresponding high-density region for the walk S̃.

THEOREM 1.2. Assume d = 3. There exist positive constants c and κ , such that for any
n ≥ 1, ρ ∈ (0,1), δ ∈ (0,1) and r ≤ cδ2/3(ρn)1/3,

(1.2) lim
n→∞ Q̃ρ

n

[∣∣Rn ∩ R̃n ∩ Vn(δρ, r) ∩ Ṽn(δρ, r)
∣∣ > (1 − κδ)ρn

] = 1.

Recall that the heuristic picture is that as ρ goes to zero, under the law Q̃
ρ
n , both ran-

dom walks should localize in a region of typical diameter (n/ρ)1/3, during their whole time-
period. Thus, the occupation density in the localization region is expected to be of order ρ,
and (1.2) provides a precise statement of this picture. Let us stress that unlike Theorem 1.1,
the proof of this second result does not rely on BBH’s fine large deviation principle, but only
on relatively soft arguments.

Our main technical tool for proving both Theorems 1.1 and 1.2 is the following proposi-
tion, which allows us to estimate visits in a region of low density at a given space scale r .
For x ∈ Zd , we let Px be the law of the simple random walk starting from x, that we simply
denote by P when x is the origin.

PROPOSITION 1.3. Assume that � is a subset of Zd with the following property. For
some ρ ∈ (0,1), and r ≥ 1,

(1.3)
∣∣� ∩ Q(z, r)

∣∣ ≤ ρ · ∣∣Q(z, r)
∣∣, for all z ∈ 2rZd .

There is a constant κ > 1 independent of r , ρ and �, such that for any n ≥ ρ
2
d
−1r2, any

t ≥ κρn,

(1.4) P
[|Rn ∩ �| ≥ t

] ≤ exp
(
−ρ1− 2

d · t

2r2

)
.

Note that in (1.4) the smaller is the scale the smaller is the probability. Note also that this
result holds in any dimension d ≥ 3.

Now some remarks on the limitation of our results are in order. Let us concentrate on
Theorem 1.1 which is our main result. First, the size of the time-window is constrained by
the degree of precision in BBH’s asymptotics. The fact that one can only consider windows
of size order εn, and not say order εKn, for some K > 1, is related to the asymptotic of the
rate function in the neighborhood of the origin; see (2.3) below. From [10], one knows the
first-order term in dimension 3. However, pushing further the precision of this asymptotic
would allow to consider higher exponents K . On the other hand, it would be even more
interesting to allow time windows of smaller size, say of polynomial order nκ , with κ ∈
(2/3,1). Going below the exponent 2/3 does not seem reasonable, as the natural belief is
that strands of the path of length n2/3 should typically move freely, and might visit from
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time to time regions with very low occupation density. Thus, we believe that a result in the
same vein as Theorem 1.1 should hold for exponents κ ∈ (2/3,1). One would need however
a much better understanding of the speed of convergence in the large deviation principle; see
(2.2) below.

Similarly, one could ask whether our proof could show a kind of time inhomogeneity in
dimension 5 and higher. However, a problem for this is the following. Given two small time
windows (say of order εn), one would like to argue that the walk cannot visit regions with
high occupation density in both, unless these two time windows were adjacent. However,
even if they are not, the cost for the walk to come back at the origin at the beginning of
each of them is only polynomially small, which is almost invisible when compared to the
(stretched) exponentially small cost of the large deviations. Therefore, obtaining such result
seems out of reach at the moment.

Let us sketch the proof of Theorem 1.1. The first step, which reveals also the link between
[10] and [11] is to show that {|Rn| − E[|Rn|] < −εn} implies large mutual intersections
{|R(I ) ∩ R(I c)| > βε|I |} for some constant β as soon as the interval I ⊂ [0, n] is large
enough. This requires to show a LDP on the same precision as [10] for R(I c), where I c

typically consists of two subintervals: this step presents some subtleties, which we deal with
by wrapping parts of the two trajectories, and use that the intersection essentially increases
under such operation. Then one falls back on an estimate similar to Theorem 1.2.

The rest of the paper is organized as follows. In Section 2, we gather useful results on
the range: BBH’s results, as well as the upward large deviation principle of Hamana and
Kesten [4], and estimates on probability that the walk covers a fixed region with low density
for a long time. We then prove Proposition 1.3 and Theorem 1.2. In Section 3, we prove
an extension of BBH’s estimate when one considers two independent walks starting from
different positions. The proof of Theorem 1.1 is concluded in Section 4.

2. Visiting sparse regions. In this section, we prove our main tool, Proposition 1.3 and
then Theorem 1.2, after we recall well-known results.

2.1. Preliminaries. Dvoretzky and Erdős [3] established that there exists a constant κd >

0, such that almost surely and in L1,

lim
n→∞

|Rn|
n

= κd.

In addition, one has

(2.1)
∣∣E[|Rn|] − κdn

∣∣ =

⎧⎪⎪⎨⎪⎪⎩
O(

√
n) when d = 3,

O(logn) when d = 4,

O(1) when d ≥ 5.

Precise asymptotic of the variance and a central limit theorem are obtained by Jain and Orey
[5] in dimensions d ≥ 5, and by Jain and Pruitt [6] in dimensions d ≥ 3.

The analogue of the LDP of [10] has been established in the discrete setting by Phetpradap
in his thesis [8], and reads as follows: there exists a strictly positive function Id , such that for
any ε ∈ (0, κd),

(2.2) lim
n→∞

1

n1− 2
d

logP
[|Rn| −E

[|Rn|] ≤ −εn
] = −Id(ε).

Moreover, there exist positive constants C, μd and νd , such that for ε ∈ (0, νd),

(2.3)
μ3ε

2/3

μ4
√

ε

}
≤ Id(ε) ≤

{
μ3ε

2/3(1 + Cε) when d = 3,

μ4
√

ε
(
1 + Cε1/3)

when d = 4,
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and if d ≥ 5, Id(ε) = μdε1− 2
d . These results were first obtained in [10] for the Wiener

sausage: the lower bounds are given by their Theorem 4(ii) and Theorem 5(iii), respectively,
for dimensions 3, 4 and for dimension 5 and higher (note that their constants μd differs from
ours by a universal constant; see also [8] for details). The upper bound in dimension 5 and
higher is also provided by their Theorem 5(iii). The upper bound in dimension 3 and 4 is
obtained in the course of the proof of Theorem 4(ii); see their equations (5.73), (5.81) and
(5.82). Note that, as they use Donsker–Varadhan’s large deviation theory, their rate functions
Id are given by variational formulas.

Upward large deviations are obtained by Hamana and Kesten [4]. Their result implies that
there exists a strictly positive function Jd , such that for ε ∈ (0,1 − κd),

(2.4) lim
n→∞

1

n
logP

(|Rn| −E
[|Rn|] ≥ εn

) = −Jd(ε).

Finally, an elementary fact we shall need is the following.

LEMMA 2.1. There exists a constant C > 0, such that for any ρ ∈ (0,1), r ≥ 1 and
� ⊂ Zd , satisfying (1.3) one has for all n ≥ 1, and all x ∈ Zd ,

Ex

[|Rn ∩ �|] ≤ C
(
ρ2/dr2 + ρn

)
, and Ex

[|Rn ∩ �|2] ≤ C
(
ρ2/dr2 + ρn

)2
.

PROOF. The first moment estimate is a consequence of Lemma 2.2 in [1]. Indeed, one
has denoting by Hy the hitting time of a point y ∈ Zd ,

Ex

[|Rn ∩ �|] = ∑
y∈�

Px[Hy ≤ n] ≤ ∑
y∈�

Gn(y − x) = ∑
y∈(�−x)

Gn(y),

where Gn(y) := ∑n
k=0 P[Sn = y], is the restricted Green’s function. Now, for any x, the set

�−x also satisfies (1.3), with a possibly larger constant than ρ: at least with the constant 2dρ

instead of it. Then the aforementioned lemma gives the desired estimate for the first moment.
Concerning the second moment, using the Markov property, we get

Ex

[|Rn ∩ �|2] = ∑
y,y′∈�

Px[Hy ≤ n,Hy′ ≤ n]

≤ 2
∑

y,y′∈�

Px[Hy ≤ Hy′ ≤ n]

≤ 2
∑
y∈�

Px[Hy ≤ n] ∑
y′∈�

Py[Hy′ ≤ n]

≤ 2
(

sup
y∈Zd

Ey

[|Rn ∩ �|])2
,

and with the first moment estimate, we conclude the proof. �

2.2. Proof of Proposition 1.3. Let T := 
r2/ρ1− 2
d �, and Rj := |R[jT , jT + T ] ∩ �|.

Note first that

(2.5) |Rn ∩ �| ≤

n/T �+1∑

j=0

Rj .

Now, consider the martingale (M
)
≥0, defined by

M
 :=

∑

j=0

(
Rj −E[Rj | FjT ]),
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where we denote by (Fn)n≥0 the natural filtration of the walk (Sn)n≥0. By choosing κ ≥ 8C,
with C as in Lemma 2.1, we deduce from this lemma that for any t ≥ κρn and ρn ≥ ρ2/dr2

that

n/T �+1∑

j=0

E[Rj | FjT ] ≤ t/2.

Hence, using (2.5) we get

P
[|Rn ∩ �| ≥ t

] ≤ P[M
n/T �+1 ≥ t/2].
Moreover, the increments of the martingale (M
)
≥0 are bounded by T , and by Lemma 2.1
their conditional variance is bounded by Cρ2T 2. Thus, McDiarmid’s concentration inequality
(see Theorem 6.1 in [2]), gives

P[M
n/T �+1 ≥ t/2] ≤ exp
(
− t

2T

)
,

by taking larger κ if necessary. This proves the desired result. �

2.3. Proof of Theorem 1.2. Fix ρ ∈ (0,1) and δ ∈ (0,1). We proved in [1] a lower bound
for visiting a set of density ρ in dimension 3: Proposition 4.1 of [1] indeed establishes that
for some positive constants c and c′,

P
[|Rn ∩ �| > ρ|�|] ≥ exp

(−c′ρ2/3n1/3)
, for any � ⊂ B

(
0, c(n/ρ)1/3)

.

Moreover, it is well known that the probability for a random walk starting from the origin to
stay in a ball of radius R ≥ 1 (centered at the origin), for a time n ≥ 1 is at least exp(−c′′ n

R2 ),
for some positive constant c′′. Therefore, by forcing one of the two walks to stay inside the
desired ball, we deduce that for some positive constant c0 we have the following rough bound
on the intersection of two random walks:

(2.6) P
[|Rn ∩ R̃n| > ρn

] ≥ exp
(−c0ρ

2/3n1/3)
.

Now, the (random) set Rn ∩ Vc
n(δρ, r) satisfies the hypothesis (1.3) of Proposition 1.3 with

density δρ, thus giving with the constant κ of this proposition

P
[∣∣Rn ∩ R̃n ∩ Vc

n(δρ, r)
∣∣ > κδρn

] ≤ exp
(
−(δρ)1/3 κδρn

2r2

)
,

and similarly with Ṽc
n(δρ, r) in place of Vc

n(δρ, r). The proof follows after we observe that
this probability becomes negligible, compared to the one in (2.6), if we choose r , satisfying

r <

(
κ

2c0

)1/2
δ2/3(ρn)1/3.

3. Large deviation estimate for two random walks. In this section, we prove an ex-
tension of (2.2), when one considers two independent random walks starting from (possibly)
different positions. We show that the upper bound in (2.2) still holds, up to a negligible fac-
tor, uniformly over all possible starting positions. While this result could presumably be also
obtained by following carefully the proof of [10], we have preferred to follow here an alter-
native way and deduce it directly from (2.2), using no heavy machinery. We state the result
for dimension 3 only, since this is the case of interest for us here, but note that a similar result
could be proved in any dimension d ≥ 3, using exactly the same proof.

For x ∈ Z3, we denote by P0,x the law of two independent random walks S and S̃ starting
respectively from the origin and x. We write R and R̃ for their respective ranges. Further-
more, for an integrable random variable X, we set X := X−E[X], and for x ∈ Z3, we denote
by ‖x‖ its Euclidean norm.
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PROPOSITION 3.1. Assume that d = 3. There exists ε0 > 0, such that for any ε ∈ (0, ε0),
there exists n0(ε), such that for all n ≥ n0(ε) and k ≤ n,

sup
‖x‖≤n2/3

P0,x

[|Rk ∪ R̃n−k| ≤ −εn
] ≤ exp

(
−I3

(
ε

1 + ε2

)
n1/3

)
.

PROOF. Set m := 
ε2n�. First, using (2.2), we know that

lim
n→∞

1

n1/3 logP
(|Rn+m| ≤ −ε

(
1 − ε3)

n
) = −I3

(
ε(1 − ε3)

1 + ε2

)(
1 + ε2)1/3

.

Now consider x, with ‖x‖ ≤ ε5/2n2/3, and k ≤ n. Note that by (2.1), we get for ε > 0,∣∣R[0, n + m]∣∣ ≤ ∣∣R[0, k] ∪R[k + m,n + m]∣∣
+ |R[k, k + m] +O(

√
n).

Therefore, at least for n large enough,

P
(|Rn+m| ≤ −ε

(
1 − ε3)

n
)

≥ P
(∣∣Rk ∪R[k + m,n + m]∣∣ ≤ −εn,∣∣R[k, k + m]∣∣ ≤ ε5n,Sk+m − Sk = x

)
≥ P0,x

(|Rk ∪ R̃n−k| ≤ −εn
) · P(|Rm| ≤ ε5n,Sm = x

)
,

using the Markov property and reversibility of the random walk for the last inequality.
Now using Hamana and Kesten bound (2.4), the local central limit theorem (see Theorem

2.3.11 in [7]), and that ‖x‖ ≤ ε5/2n2/3, we get that for some constant c > 0 (independent of
x), and for all n large enough,

P
(|Rm| ≤ ε5n,Sm = x

)
≥ P(Sm = x) − P

(|Rm| ≥ ε5n
)

≥ exp
(−cε3n1/3) − exp

(−Jd

(
ε3)

(1 − ε)ε2n
)

≥ 1

2
exp

(−cε3n1/3)
.

Moreover, it follows from (2.3), that for ε small enough,

I3

(
ε(1 − ε3)

1 + ε2

)(
1 + ε2)1/3 − cε3 ≥ I3

(
ε

1 + ε2

)(
1 + 1

4
ε2

)
.

Therefore, for ε small enough, and then for all n large enough,

sup
‖x‖≤ε5/2n2/3

P0,x

(|Rk ∪ R̃n−k| ≤ −εn
)

≤ exp
(
−I3

(
ε

1 + ε2

)(
1 + 1

5
ε2

)
n1/3

)
.

(3.1)

It remains to consider x satisfying ε5/2n2/3 ≤ ‖x‖ ≤ n2/3. Our strategy is to show that there
exists a constant ρ ∈ (0,1), such that for any such x, the probability of the event

(3.2) A := {|Rk ∪ R̃n−k| ≤ −εn
}
,
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under P0,x is bounded by the probability of the same event under P0,x′ , with x′ satisfying
‖x′‖ ≤ ρ‖x‖, up to some negligible error term. Applying this estimate at most order log(1/ε)

times, and using (3.1), will give the result.
Fix x such that ε5/2n2/3 ≤ ‖x‖ ≤ n2/3, and assume, without loss of generality, that its

largest coordinate in absolute value is the first one, say x1, and that it is positive. In this case,
‖x‖ ≥ x1 ≥ ‖x‖/√3. Recall next that we consider two random walks S and S̃, one starting
from the origin and running up to time k, and the other one starting from x and running up
to time n − k. For x1/3 ≤ y ≤ 2x1/3, consider the hyperplane Hy of vertices having first
coordinate equal to y. Call excursion away from Hy (for any of the two walks), any part of
their trajectory (of length at least two) whose starting and ending points belong to Hy and
whose other points are outside this hyperplane. By extension, let us also call initial excursion
the part of the trajectory from time 0 up to the hitting time of Hy . Denote by Ny the number
of excursions away from Hy , made by any of the two walks S or S̃, which hit the hyperplane
Hy+[ε−10]. Note that one can order them by time of arrival, considering first those made by S

and then those made by S̃. Let N ′
y be the number of excursions among the first Ny ∧(2ε3n1/3)

previous ones, which spend a time at least ε−17 in the region between Hy and Hy+[ε−10]. Note
that for a single excursion, the probability to hit Hy+[ε−10] in less than ε−17 steps, is of order
exp(−cε−3), for some constant c > 0. By independence between the first 2ε3n1/3 excursions,
we deduce that

(3.3) P0,x

(
N ′

y ≤ ε3n1/3,Ny ≥ 2ε3n1/3) ≤ exp
(−cn1/3)

,

for some possibly smaller constant c > 0. On the other hand, let Ty be the cumulated total
time spent by S and S̃ in the region between Hy and Hy+[ε−10]. Observe that the number of
levels y between x1/3 and 2x1/3 which are integer multiples of [ε−10] is of order ε10x1/3,
and that the latter is (at least for ε small enough) larger than ε13n2/3. Thus, for at least one
such y, one must have both N ′

y ≤ ε3n1/3 and Ty ≤ ε−13n1/3 (otherwise the total time spent
in the region between the hyperplanes Hx1/3 and H2x1/3 would exceed n). Using (3.3), we
deduce that

P0,x

(
Ny ≥ 2ε3n1/3 or Ty ≥ ε−13n1/3, for all y ∈ {x1/3, . . . ,2x1/3})

≤ x1 exp
(−cn1/3)

,

for some constant c > 0. Then as a consequence of the pigeonhole principle, there exists (a
deterministic) y0 ∈ {x1/3, . . . ,2x1/3}, such that

P0,x

(
Ny0 ≤ 2ε3n1/3, Ty0 ≤ ε−13n1/3,A

) ≥ 1

x1
P0,x(A) − exp

(−cn1/3)
,

with the event A as defined in (3.2).
Denote now by x′ the symmetric of x with respect to Hy0 . First, observe that since x1 ≥

‖x‖/√3, and x1/3 ≤ y0 ≤ 2x1/3, there exists ρ ∈ (0,1) (independent of x), such that ‖x′‖ ≤
ρ‖x‖. Next, recall that any excursion away from Hy0 and its symmetric with respect to Hy0

has the same probability to happen under the law P0,x′ (and note that this is even true for
the initial excursion made by S̃, from time 0 up to the hitting time of Hy0 ). Moreover, by
reflecting (with respect to Hy0 ) all the excursions away from Hy0 (including the initial one)
which hit Hy0+[ε−10], one can only increase the size of the range by at most Ty0 . Therefore,

P0,x′
(
Ny0 = 0, |Rk ∪ R̃n−k| ≤ −εn + ε−13n1/3)

≥ 2−2ε3n1/3 · P0,x

(
Ny0 ≤ 2ε3n1/3, Ty0 ≤ ε−13n1/3,A

)
.
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Combining the last two displays, we conclude that for n large enough,

P0,x(A) ≤ 24ε3n1/3
P0,x′

(|Rk ∪ R̃n−k| ≤ −εn + ε−13n1/3)
+ exp

(−cn1/3)
,

for some (possibly smaller) constant c > 0. Repeating the same argument (5/2) log ε/(logρ)

times, and using (3.1) and (2.3), we obtain the desired result. �

4. Proof of Theorem 1.1. Let k ≤ 
 ≤ n be given, satisfying 
 − k = 
K0εn�, with K0
a constant to be fixed later. Write I = {k, . . . , 
}. Using that

|Rn| =
∣∣R(I )

∣∣ + ∣∣R(
I c

)∣∣ − ∣∣R(I ) ∩R
(
I c

)∣∣,
we have, with ν := 1 − K0ε

3 ,

(4.1)
P

(|Rn| ≤ −εn
) ≤ P

(∣∣R(I )
∣∣ + ∣∣R(

I c
)∣∣ ≤ −νεn

)
+ P

(∣∣R(I ) ∩R
(
I c)∣∣ ≥ K0

3
ε2n

)
.

We start by showing that the first probability on the right-hand side is negligible (when com-
pared to the probability on the left-hand side). For this let N = 
ε−2�, and for i = 0, . . . ,N ,
let αi := iε2. Then note that for n large enough,

P
(∣∣R(I )

∣∣ + ∣∣R(
I c

)∣∣ ≤ −νεn
)

≤
N∑

i=0

P
(∣∣R(I )

∣∣ ≤ −ναiεn,
∣∣R(

I c
)∣∣ ≤ −ν(1 − αi+1)εn

)
+ P

(∣∣R(
I c

)∣∣ ≤ −νεn
)

≤
N∑

i=0

∑
‖x‖≤n2/3

P
(∣∣R(I )

∣∣ ≤ −ναiεn,

∣∣R(
I c

)∣∣ ≤ −ν(1 − αi+1)εn,S
 − Sk = x
)

+ P
(∣∣R(

I c
)∣∣ ≤ −νεn

) +O
(
exp

(−cn1/3))
,

(4.2)

using Chernoff’s bound for the last inequality (see, for instance, Theorem 3.1 in [2]). Now
applying the Markov property and using Proposition 3.1 and (2.2), we get that for any i ≤ N ,
there exists ni ≥ 1, such that for all n ≥ ni ,∑

‖x‖≤n2/3

P
(∣∣R(I )

∣∣ ≤ −ναiεn,
∣∣R(

I c
)∣∣ ≤ −ν(1 − αi+1)εn,S
 − Sk = x

)
≤ ∑

‖x‖≤n2/3

P
(∣∣R(I )

∣∣ ≤ −ναiεn,S
 − Sk = x
)

(4.3)

· exp
(
−I3

(
εi

1 + ε2
i

)
(1 − K0ε)

1/3n1/3
)

≤ exp
(
−I3(̃εi)

(
1 − ε2)

(K0εn)1/3 − I3

(
εi

1 + ε2
i

)
(1 − K0ε)

1/3n1/3
)
,

with

εi := ν
(1 − αi+1)ε

1 − K0ε
, and ε̃i := ναi

K0
.
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Note that by choosing larger ni if necessary, one can also assume that (4.2) holds for n ≥ ni .
Note furthermore that by (2.3), the first term in the exponential in (4.3) is already larger
than 2I3(ε)n

1/3, when αi ≥ K0
√

ε, at least provided K0 is large enough and ε small enough.
Thus in the following, one can assume that αi ≤ K0

√
ε. We will also assume that ε is small

enough, so that K0
√

ε < 1/2. Then, using in particular that αi+1 = αi + ε2, we get (recall
that ν = 1 − K0ε

3 )

I3(̃εi)
(
1 − ε2)

(K0ε)
1/3 + I3

(
εi

1 + ε2
i

)
(1 − K0ε)

1/3

≥ μ3

(
1 − K0ε

3

)2/3(
α

2/3
i

K
1/3
0 ε1/3

+ (1 − αi)
2/3

(1 − K0ε)1/3

)
ε2/3 −O

(
ε2)

.

Now we claim that the bound in the parentheses above reaches its infimum when i = 0, or
equivalently when αi = 0. To see this, it suffices to consider the variations of the function f

defined for u ∈ (0,1) by f (u) = c
1/3
1 u2/3 +c

1/3
2 (1−u)2/3, with c1 = (K0ε)

−1, and c2 = (1−
K0ε)

−1. A straightforward computation shows that f ′(u) > 0 on (0, u0), with u0 = 1 −K0ε.
Since we assumed that u0 > 1/2 > K0

√
ε, this proves our claim. By taking K0 = 100C, with

C the constant appearing in the upper bound of I3 in (2.3), one deduces that for ε small
enough,

I3(̃εi)
(
1 − ε2)

(K0ε)
1/3 + I3

(
εi

1 + ε2
i

)
(1 − K0ε)

1/3

≥ μ3

(
1 + K0ε

10

)
ε2/3 −O

(
ε2)

≥ I3(ε)

(
1 + K0ε

20

)
.

As a consequence, letting N(ε) := maxi ni , we get that for ε small enough, for all n ≥ N(ε),

N∑
i=0

P
(∣∣R(I )

∣∣ ≤ −ναiεn,
∣∣R(

I c
)∣∣ ≤ −ν(1 − αi+1)εn

)
≤ exp

(
−I3(ε)

(
1 + K0ε

20

)
n1/3

)
.

One can obtain similarly the same bound for the term P(|R(I c)| ≤ −νεn), also for all n ≥
N(ε), possibly by taking a larger constant N(ε) if necessary. Finally, using again (2.2), we
get that for all ε small enough,

P
(∣∣R(I )

∣∣ + ∣∣R(
I c

)∣∣ ≤ −νεn
) = o

(
1

n
P

(|Rn| ≤ −εn
))

.(4.4)

It remains to estimate the second term in the right-hand side of (4.1). This is similar to the
proof of Theorem 1.2. Assume given 1 ≤ r ≤ ε5/6n1/3, and β > 0, whose value will be made
more precise in a moment. To simplify notation, write R1 = R[0, k] and R2 := R[
,n].
Next, set

�1 = ⋃
x∈C1

Q(x, r), and �2 = ⋃
x∈C2

Q(x, r),

with

C1 := {
x ∈ 2rZd : ∣∣Q(x, r) ∩R1

∣∣ ≥ βεrd}
,
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and

C2 := {
x ∈ 2rZd : ∣∣Q(x, r) ∩R2

∣∣ ≥ βεrd}
.

Since R(I c) = R1 ∪R2, one has∣∣R(I ) ∩R
(
I c)∣∣ ≤ ∣∣R(I ) ∩R1

∣∣ + ∣∣R(I ) ∩R2
∣∣

and, therefore,

P

(∣∣R(I ) ∩R
(
I c)∣∣ ≥ K0

3
ε2n

)
≤ P

(∣∣R(I ) ∩R1
∣∣ ≥ K0

6
ε2n

)
+ P

(∣∣R(I ) ∩R2
∣∣ ≥ K0

6
ε2n

)
.

Both terms on the right-hand side are treated similarly. We first fix β < 1/(24κ), with κ

the constant appearing in statement of Lemma 1.3. Then applying Lemma 1.3 with ρ = βε,
n = 
K0εn�, and t = K0

24 ε2n, we get (using also the Markov property at time k),

P

(∣∣R(I ) ∩R1 ∩ �c
1

∣∣ ≥ K0

24
ε2n

)
≤ exp

(
−(βε)1/3 K0ε

2n

48r2

)

≤ exp
(
−β1/3K0

48
ε2/3n1/3

)
,

using that r ≤ ε5/6n1/3, for the last inequality. By taking larger K0 if necessary, one can
ensure that this bound is o((1/n) · P(|Rn| ≤ −εn)). This way we obtain

(4.5)

P

(∣∣R(I ) ∩R1 ∩ �c
1

∣∣ ∨ ∣∣R(I ) ∩R2 ∩ �c
2

∣∣ ≥ K0

24
ε2n

)
= o

(
1

n
P

(|Rn| ≤ −εn
))

.

Coming back to (4.1), dividing both sides of the inequality by the term on the left-hand side,
and using (4.4) and (4.5), we get that for all ε small enough,

Qε
n

(∣∣R(I ) ∩ �1 ∩R1
∣∣ ≥ K0

8
ε2n, or

∣∣R(I ) ∩ �2 ∩R2
∣∣ ≥ K0

8
ε2n

)
≥ 1 − o

(
1

n

)
.

Since both

�1 ∩R1 ⊆ Vn(βε, r) ∩R
(
I c), and �2 ∩R2 ⊆ Vn(βε, r) ∩R

(
I c),

we get

Qε
n

(∣∣R(I ) ∩R
(
I c) ∩ Vn(βε, r)

∣∣ ≥ K0

8
ε2n

)
≥ 1 − o

(
1

n

)
.

The proof of Theorem 1.1 follows by a union bound, since there are at most n intervals I of
fixed length in In. �
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