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We consider the simple exclusion process with k particles on a segment
of length N performing random walks with transition p > 1/2 to the right
and q = 1 − p to the left. We focus on the case where the asymmetry in the
jump rates b = p − q > 0 vanishes in the limit when N and k tend to infinity,
and obtain sharp asymptotics for the mixing times of this sequence of Markov
chains in the two cases where the asymmetry is either much larger or much
smaller than (log k)/N . We show that in the former case (b � (log k)/N ), the
mixing time corresponds to the time needed to reach macroscopic equilib-
rium, like for the strongly asymmetric (i.e., constant b) case studied in (Ann.
Probab. 47 (2019) 1541–1586), while the latter case (b � (log k)/N ) macro-
scopic equilibrium is not sufficient for mixing and one must wait till lo-
cal fluctuations equilibrate, similarly to what happens in the symmetric case
worked out in (Ann. Probab. 44 (2016) 1426–1487). In both cases, conver-
gence to equilibrium is abrupt: we have a cutoff phenomenon for the total-
variation distance. We present a conjecture for the remaining regime when
the asymmetry is of order (log k)/N .

1. Introduction. The simple exclusion process is a model of statistical mechanics that
provides a simplified picture for a gas of interacting particles. Particles move on a lattice,
each of them performing a nearest neighbor random walk independently of the others, and
interact only via the exclusion rule that prevents any two particles from sharing the same site
(when a particle tries to jump on a site which is already occupied, this jump is cancelled).
In spite of its simplicity, this model displays a very rich behavior and has given rise to an
abundant literature both in theoretical physics and mathematics; see, for instance [8, 16] and
references therein.

In the present paper, we study relaxation to equilibrium for a particular instance of the
simple exclusion process in which the lattice is a segment of length N and particles feel a
bias towards the right that vanishes when N tends to infinity. This setup is often referred to
as the Weakly Asymmetric Simple Exclusion Process (WASEP): it interpolates between the
symmetric case (SSEP) and the asymmetric case (ASEP) where the bias is a positive constant.

While convergence to equilibrium for a particle system can be considered on a macro-
scopic scale via the evolution of the particle density or hydrodynamic profile (see, e.g., [8]
and references therein), an alternative and complementary viewpoint (when the system is of
finite size) consists in measuring the so-called ε-Total Variation Mixing Time [15]. It is de-
fined as the first time at which the total variation distance to the stationary measure, starting
from the “worst” initial condition, falls below a given threshold ε. Compared to the hydrody-
namic profile, this provides a much more microscopic information on the particle system.

The problem of mixing time of the simple exclusion process on the segment has been
extensively studied both in the symmetric [12, 13, 19] and the asymmetric setup [2, 11] and
it has been proved in [13] and [11] respectively that in both cases, the total variation distance
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drops abruptly from its maximal value 1 to 0, so that the mixing time does not depend at
first order on the choice of the threshold ε. A phenomenon known as cutoff and conjectured
to hold for a large class of Markov chains as soon as the mixing time is of a larger order
than the relaxation time (which is defined as the inverse of the spectral gap of the generator).
To be more precise, the mixing time being of a larger order than the relaxation time is a
necessary condition, which is not sufficient (there are known counter examples, reversible
and nonreversible), but it is believed that only a few additional assumptions are necessary.
What these additional assumptions should be is one of the major open question in the field
(see [15], Chapter 18).

However the patterns of convergence to equilibrium in the symmetric and asymmetric
cases are very different. Let us for simplicity focus on the case with a density of particles
k = αN , α ∈ (0,1). In the symmetric case, the time scale associated with the hydrodynamic
profile is N2 and the limit is given by the heat equation [9] (which takes an infinite time to
relax to its equilibrium profile which is flat) and microscopic mixing occurs on a larger time
scale N2 logN .

In the asymmetric setup the hydrodynamic limit is given by the inviscid Burgers’ equa-
tion with a shorter time scale N [18] (see also [10, 11] for adaptations of this result to the
segment). The equilibrium profile for this equation is reached after a finite time and in this
case, the mixing time is of order N and corresponds exactly to the time at which macroscopic
equilibrium is attained.

The aim of this paper is to understand better the role of the asymmetry in mixing and
how one interpolates between the symmetric and asymmetric regimes. This leads us to con-
sider the so-called Weakly Asymmetric Exclusion Process (WASEP) in which the asymmetry
vanishes with the scale of observation. While hydrodynamic limit [4, 7, 8] and fluctuations
scaling limits [3, 6, 10] for WASEP are now well understood, much less is known about how
a weak asymmetry affects the mixing time of the system.

A first step in this direction was made in [14]. Therein the order of magnitude for the
mixing time was identified for all possible intensities of vanishing bias, but with different
constants for the upper and the lower bounds. Three regimes were distinguished (under the
assumption that there is a density of particles):

(A) When bN ≤ N−1, the mixing time remains of the same order as that of the symmetric
case N2 logN .

(B) When N−1 ≤ bN ≤ N−1 logN , the mixing time is of order (bN)−2 logN .
(C) When N−1 logN ≤ bN ≤ 1, the mixing time is of order (bN)−1N .

The transition occurring around bN ≈ N−1 is the one observed for the hydrodynamic limit:
It corresponds to a crossover regime where the limit is given by a viscous Burger’s equation
[4, 7, 8] which interpolates between the heat and the inviscid Burgers’ equations. The one
occurring for bN ≈ N−1 logN is however not observed in the macroscopic profile as it cor-
responds to the crossover regime for the position of the leftmost particle at equilibrium: for
weaker asymmetries, the leftmost particle lies at a negligible distance (compared to N ) from
site 1 and for stronger asymmetries, it lies at a negligible distance (compared to N ) from site
N − k + 1 (which is the rightmost site at which this particle can lie).

In the present work, we identify the complete asymptotics of the mixing time (with the
right constant) when the bias is either negligible compared to, or much larger than N−1 logN

(or N−1 log k when the total number of particle is not of order N ). This implies cutoff in these
two regimes. Our result and its proof provide a better understanding of the effect of asym-
metry on microscopic mixing: When bN � N−1 logN , the pattern of relaxation is identical
to that of the fully asymmetric case and microscopic equilibrium is reached exactly when the
macroscopic profile hits its equilibrium state. When bN � N−1 logN the pattern of relax-
ation resembles that of the symmetric case, the mixing time corresponds to the time needed
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to equilibrate local fluctuations, in particular in the case (B) described above (or more pre-
cisely when N−1 � bN � N−1(logN)) this time does not correspond to the time needed to
reach macroscopic equilibrium.

The crossover regime bN ≈ N−1 logN remains an open problem: In this case the time to
reach macroscopic equilibrium and that to equilibrate local fluctuations are of the same order
and the two phenomena are difficult to separate. In Section 2.3 we provide a conjecture for
the mixing time in this regime in the case of vanishing density.

In the next section, we introduce precisely the model, state our main results and present
the outline of the article.

2. Model and results.

2.1. Mixing time for the WASEP. Given N ∈ N, k ∈ [[1,N − 1]] (we use the notation
[[a, b]] = [a, b] ∩ Z) and p ∈ (1/2,1], the Asymmetric Simple Exclusion Process on [[1,N]]
with k particles and parameter p is the random process on the state space

�0
N,k :=

{
ξ ∈ {0,1}N :

N∑
x=1

ξ(x) = k

}
,

associated with the generator

(1) LN,kf (ξ) :=
N−1∑
y=1

(q1{ξ(y)<ξ(y+1)} + p1{ξ(y)>ξ(y+1)})
(
f
(
ξy)− f (ξ)

)
,

where q = 1 − p and

(2) ξy(x) :=

⎧⎪⎪⎨⎪⎪⎩
ξ(y + 1) if x = y,

ξ(y) if x = y + 1,

ξ(x) if x /∈ {y, y + 1}.
In a more intuitive manner we can materialize the positions of 1 by particles, and say that
the particles perform random walks with jump rates p to the right and q = 1 − p to the left:
These random walks are independent from one another except that any jump that would put
a particle at a location already occupied by another particle is cancelled. Having in mind this
particle representation, we let for i ∈ [[1, k]], ξi denote the position of the ith leftmost particle

(3) ξi := min

{
y ∈ [[1,N]] :

y∑
x=1

ξ(x) = i

}
.

We let P
N,k
t denote the associated semi-group and (ηξ (t, ·))t≥0 denote the trajectory of the

Markov chain starting from initial configuration ξ ∈ �0
N,k . This Markov chain is irreducible,

and admits a unique invariant (and reversible) probability measure πN,k given by

(4) πN,k(ξ) := 1

ZN,k

λ−A(ξ),

where λ = p/q , ZN,k :=∑ξ∈�0
N,k

λ−A(ξ), and

(5) A(ξ) :=
k∑

i=1

(N − k + i − ξi) ≥ 0

denotes the minimal number of moves that are necessary to go from ξ to the configuration
ξmin where all the particles are on the right ξmin(x) := 1[N−k+1,N](x) (this terminology is
justified by the fact that ξmin is minimal for the order introduced in Section 3).
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Recall that the total-variation distance between two probability measures defined on the
same space � is defined by

‖α − β‖TV = sup
A⊂�

α(A) − β(A),

where the sup is taken over all measurable sets A.
The mixing time associated to the threshold ε ∈ (0,1) is defined by

(6) T
N,k

mix (ε) := inf
{
t ≥ 0 : dN,k(t) ≤ ε

}
,

where dN,k(t) denotes the total-variation distance to equilibrium at time t starting from the
worst possible initial condition

(7) dN,k(t) := max
ξ∈�0

N,k

∥∥P N,k
t (ξ, ·) − πN,k

∥∥
TV.

We want to study the asymptotic behavior of the mixing time for this system when both
the size of the system and the number of particles tend to infinity. A natural case to consider
is when there is a nontrivial density of particles, that is k/N → α ∈ (0,1), but we decide
to also treat the boundary cases of vanishing density (α = 0) and full density (α = 1). By
symmetry we can restrict to the case when k = kN ≤ N/2: indeed, permuting the roles played
by particles and empty sites boils down to reversing the direction of the asymmetry of the
jump rates. Note that we will always impose k ≥ 1 since when k = 0 the process is trivial (we
do not assume however in general that kN tends to infinity, this is only a requirement in the
small bias regime, cf. (12)).

The asymptotic behavior of T
N,k

mix (ε) in the case of constant bias (p > 1/2 is fixed when N

goes to infinity) has been obtained in a previous work.

THEOREM A (Theorem 2 in [11]). We have for every ε > 0, every α ∈ [0,1] and every
sequence kN such that kN/N → α

(8) lim
N→∞

T
N,kN

mix (ε)

N
= (

√
α + √

1 − α)2

p − q
.

The result implies in particular that at first order, the mixing time does not depend on
ε ∈ (0,1), meaning that on the appropriate time-scale, for large values of N the distance to
equilibrium drops abruptly from 1 to 0. This phenomenon is referred to as cutoff and was
first observed in the context of card shuffling [1, 5]. It is known to occur for a large variety
of Markov chains; see for instance [15]. In the context of the exclusion process, it has been
proved in [13] that cutoff holds for the Symmetric Simple Exclusion Process (SSEP) which
is obtained by setting p = 1/2 in the generator (1).

THEOREM B (Theorem 2.4 in [13]). When p = 1/2, for any sequence kN that tends to
infinity and satisfies kN ≤ N/2 for all N , we have

(9) lim
N→∞

T
N,kN

mix (ε)

N2 log kN

= 1

π2 .

While cutoff occurs in the two cases, it appears to be triggered by different mechanisms.
When p > 1/2, the mixing time is determined by the time needed for the particle density pro-
file to reach its macroscopic equilibrium: After rescaling time and space by N , the evolution
of the particle density has a nontrivial scaling limit (the inviscid Burgers’ equation with zero-

flux boundary conditions), which fixates at time (
√

α+√
1−α)2

p−q
. The first order asymptotic for

the mixing time is thus determined by the time the density profile needs to reach equilibrium.
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When p = 1/2, the right-time scale to observe a macroscopic motion for the particles is
N2, and it is worth mentioning that the scaling limit obtained for the particle density (the heat
equation) does not fixate in finite time. To reach equilibrium, however, we must wait for a
longer time, of order N2 log kN , which is the time needed for local fluctuations in the particle
density to come to equilibrium.

We are interested in studying the process when the drift tends to zero: this requires to
understand the transition between these two patterns of relaxation to equilibrium. Hence we
consider p to be a function of N which is such that the bias towards the right bN := pN −
qN = 2pN − 1 vanishes, that is,

(10) lim
N→∞bN = 0.

In this regime, the model is sometimes called WASEP for Weakly Asymetric Simple Exclu-
sion Process. Its convergence to equilibrium has already been studied in [10, 14]. In [14] the
authors identify the order of magnitude of the mixing time as a function of bN in full gener-
ality. However the approach used in [14] does not allow to find the exact asymptotic for the
mixing time nor to prove cutoff, and does not answer our question concerning the pattern of
relaxation to equilibrium.

2.2. Results. We identify two main regimes for the pattern of relaxation to equilibrium.
The large bias regime where

(11) lim
N→∞

NbN

(log kN) ∨ 1
= ∞

and the small bias regime where

(12)

⎧⎪⎨⎪⎩
lim

N→∞
NbN

log kN

= 0,

lim
N→∞kN = ∞.

We identify the asymptotic expression for the mixing time in both regimes. In the large bias
regime we show that the mixing time coincides with the time needed by the particle density
to reach equilibrium like in the constant bias case.

THEOREM 1. When (11) holds, and limN→∞ kN/N = α ∈ [0,1], we have for every ε ∈
(0,1)

(13) lim
N→∞

bNT
N,kN

mix (ε)

N
= (

√
α + √

1 − α)2.

To state our result in the small bias regime, let us introduce the quantity

(14) gapN := (
√

pN − √
qN)2 + 4

√
pNqN sin

(
π

2N

)2
,

which corresponds to the spectral gap associated with the generator (1) (see, e.g., [11] for a
proof). Notice that it does not depend on the number k of particles in the system. The pattern
of relaxation is similar to the one observed in the symmetric case.

THEOREM 2. When (12) holds, we have

(15) lim
N→∞

gapNT
N,kN

mix (ε)

logkN

= 1

2
.
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Using Taylor expansion for gapN we have, whenever bN tends to zero

(16) gapN

N→∞∼ 1

2

(
b2
N +

(
π

N

)2)
.

Thus in particular we have

(17) T
N,kN

mix (ε) ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

log kN

b2
N

if 1/N � bN � logkN/N,

1

π2 N2 log kN if 0 < bN � 1/N,

1

π2 + β2 N2 log kN if bN ∼ β/N.

Note that our classification of regimes (11)–(12) does not cover all possible choices of bN .
Two cases have been excluded for very different reasons:

• When bN = O(N−1) and kN is bounded, then we have a system of k diffusive interact-
ing random walks. This system does not exhibit cutoff and has a mixing time of order N2.
(The upper bound can actually be deduced from an argument presented in Section 5.2.2 and
the lower bound is achieved for example, by looking at the expectation and variance of the
number of particles on the right half of the segment, like what is done in [17], Section 6.)

• When bN is of order log kN/N the time at which the density profile reaches its equi-
librium and the time needed for local fluctuations to reach their equilibrium values are of
the same order and we believe that there is an interaction between the two phenomena. We
provide a more detailed conjecture in Section 2.3.

REMARK 1. We have not included here results concerning the biased card shuffling con-
sidered in [2, 11]. Let us mention that while our analysis should also yield optimal bounds for
the mixing time of this process when (11) holds (i.e., T

k,N
mix (ε) ∼ 2N/(pN − qN)), it seems

much more difficult to prove the equivalent of Theorem 2. The main reason is that the cou-
pling presented in Section A cannot be extended to a coupling on the permutation process.
Building on and adapting the techniques presented in [13], Section 5, it should a priori be
possible to obtain a result concerning the mixing time starting from an extremal condition
(the identity or its symmetric), but this is out of the scope of the present paper.

2.3. Conjecture in the regime bN � log kN/N . Let us here formulate, and heuristically
support a conjecture concerning the mixing-time in the crossover regime where

(18) lim
N→∞

bNN

log kN

= β

for some β ∈ (0,∞). For the ease of exposition, while it should be in principle possible to
extend the heuristic to the case of positive density (see Remark 3 below) we restrict ourselves
to the case limN→∞ kN/N = 0. The justification we provide for the conjecture might be
better understood after a first reading of the entire paper.

CONJECTURE 2. When bN and kN display the asymptotic behavior given by (18), we
have for every ε > 0

(19) lim
N→∞

T
N,kN

mix (ε) log kN

N2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

β
+ 1

β2 if β ≤ 1/2,(√
2 + 2

√
β

2β

)2
if β ≥ 1/2.
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To motivate this conjecture let us first describe the equilibrium measure and its dependence
on β . As we are in the low-density regime, the equilibrium measure is quite close to the
product measure one would obtain for the system without exclusion rules: the location of
the k particles are approximately IID distributed, the distance from the right extremity being

(also approximately) a geometric variable of parameter qN/pN ≈ e− 2β logk
N .

Hence the probability of having a particle at site �zN� for z ∈ [0,1] is roughly of order
k[1−2β(1−z)]+o(1)/N . Thus, under the equilibrium measure, while particles are concentrated
near the right extremity, the “logarithmic density” of particles exhibit a nontrivial profile in
the sense that for any z > 1 − (2β)−1 we have

(20) lim
ε→0

lim
N→∞

log(
∑(z+ε)N

i=(z−ε)N ξ(i))

log kN

= 1 − 2β(1 − z),

where the convergence holds in distribution under the equilibrium measure πN,k when N

tends to infinity and ε tends to zero in that order. The typical distance to zero of the left-most
particle at equilibrium is also given by this profile in the sense that it is typically o(N) when
β ≤ 1/2 and of order N(1 − 1

2β
) when β ≥ 1/2. While we only give heuristic justification

for these statements concerning equilibrium, it is worth mentioning that they can be made
rigorous by using the techniques exposed in Section 3.

To estimate the mixing time, we assume that the system gets close to equilibrium once the
number of particles on any “mesoscopic” interval of the form [(z − ε)N, (z + ε)N] is close
to its equilibrium value. While the mean number of particle is of order k1−2β(1−z) (cf. (20)),
the typical equilibrium fluctuation around this number should be given by the square root due

to near-independence of different particles and thus be equal to k
1
2 −β(1−z).

To estimate the surplus of particles in this interval at time tN2(log k)−1 for t > 1/β (note
that t = 1/β is the time of macroscopic equilibrium where most particles are packed on the
right), we consider the number of particles that end up there after keeping a constant drift
of order z(logk)/(Nt), which is smaller than bN . Neglecting interaction between particles
and making a Brownian approximation for the random walk with drift, we obtain that the
expected number of particles following this strategy is given by

k exp
(
− log k

(βt − z)2

2t

)
= k1− (βt−z)2

2t .

Hence equilibrium should be attained when this becomes negligible with respect to the

typical fluctuation k
1
2 −β(1−z) for all values of z where we find particles at equilibrium. That

is, when the inequality

(21) 1 − (βt − z)2

2t
<

1

2
− β(1 − z),

is valid for all z ∈ [0,1] if β ≤ 1/2 or for all z ≥ 1− 1
2β

if β ≥ 1/2. A rapid computation show

that one only needs to satisfy the condition for the smallest value of z (either 1 or 1 − 1
2β

),
which boils down to finding the roots of a degree two polynomial. This yields that we must
have t > t0 where

(22) t0 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

β
+ 1

β2 if β ≤ 1/2,(√
2 + 2

√
β

2β

)2
if β ≥ 1/2.
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REMARK 3. Describing the equilibrium “logarithmic profile” of particles when the sys-
tem has positive density is also possible (note that on the right of (1−α)N it is the density of
empty-sites that becomes the quantity of interest). It is thus reasonable to extend the heuristic
to that case. However the best strategy to produce a surplus of particles in that case becomes
more involved, as the zones with positive density of particles, which are described by the
hydrodynamic evolution given in Proposition 6, play a role in the optimization procedure.
For this reason we did not wish to bring the speculation one step further.

2.4. Organization of the paper. In the remainder of the paper we drop the subscript N

in kN in order to simplify the notation. The article is organised as follows. In Section 3,
we introduce the representation through height functions and collect a few results on the
invariant measure, the spectral gap and the hydrodynamic limit of the process. In Sections 4
and 5, we consider the large bias case and prove respectively the lower and upper bounds
of Theorem 1: While the lower bound essentially follows from the hydrodynamic limit, the
upper bound is more involved and is one of the main achievements of this paper. In Sections 6
and 7, we deal with the small bias case and prove respectively the lower and upper bounds of
Theorem 2. Here again, the lower bound is relatively short and follows from similar argument
as those presented by Wilson [19] in the symmetric case, while the upper bound relies on a
careful analysis of the area between the processes starting from the maximal and minimal
configurations and under some grand coupling.

3. Preliminaries and technical estimates.

3.1. Height function ordering and grand coupling. To any configuration of particles
ξ ∈ �0

N,k , we can associate a so-called height function h = h(ξ) defined by (see Figure 1)
h(ξ)(0) = 0 and

h(ξ)(x) =
x∑

y=1

(
2ξ(y) − 1

)
, x ∈ [[1,N]].

For simplicity, we often abbreviate this in h(x). The height function is a lattice path that
increases by 1 from 
 − 1 to 
 if there is a particle at site 
, and decreases by 1 otherwise. Its
terminal value therefore only depends on k and N . The set of height functions obtained from
�0

N,k through the above map is denoted �N,k .
The particles dynamics can easily be rephrased in terms of height functions: every upward

corner (h(x) = h(x −1)+1 = h(x +1)+1) flips into a downward corner (h(x) = h(x −1)−

FIG. 1. An example of height function with k = 6 particles over N = 14 sites. The interface lives within the grey
rectangle.
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1 = h(x +1)−1) at rate p, while the opposite occurs at rate q . We denote by (hζ (t, ·), t ≥ 0)

the associated Markov process starting from some initial configuration ζ ∈ �N,k .
It will be convenient to denote by ∧ the maximal height function:

∧(x) = x ∧ (2k − x), x ∈ [[1,N]],
and by ∨ the minimal height function:

∨(x) = (−x) ∨ (x − 2N + 2k), x ∈ [[1,N]].
Though the dependence on k is implicit in the notations ∧, ∨, this will never raise any con-
fusion as the value k will be clear from the context.

It is possible to construct simultaneously on a same probability space and in a Marko-
vian fashion, the height function processes (h

ζ
t , t ≥ 0) starting from all initial conditions

ζ ∈⋃k �N,k and such that the following monotonicity property is satisfied for all k and all
ζ, ζ ′ ∈ �N,k :

(23) ζ ≤ ζ ′ ⇒ h
ζ
t ≤ h

ζ ′
t , ∀t ≥ 0.

Here, ζ ≤ ζ ′ simply means ζ(x) ≤ ζ ′(x) for all x ∈ [[0,N]]. We call such a construction
a monotone Markovian grand coupling, and we denote by P the corresponding probability
distribution. The existence of such a grand coupling is classical; see, for instance, [11], Propo-
sition 4. In a portion of our proof, we require to use a specific grand coupling which is not the
one displayed in [11] and for this reason we provide an explicit construction in Appendix A.

Once a coupling is specified, by enlarging our probability space, one can also define the
process hπ

t which is started from an initial condition sampled from the equilibrium measure
πN,k , independently of h

ζ
t , ζ ∈ �N,k .

Let us end up this subsection introducing the (less canonical) notation

(24) ζ < ζ ′ ⇔ (
ζ ≤ ζ ′ and ζ �= ζ ′).

We say that a function f on �N,k is increasing (strictly) if f (ζ ) ≤ f (ζ ′) (f (ζ ) < f (ζ ′))
whenever ζ < ζ ′. The minimal increment of an increasing function is defined by

(25) δmin(f ) = min
ζ,ζ ′∈�N,k,ζ<ζ ′ f

(
ζ ′)− f (ζ ).

3.2. The equilibrium measure in the large-bias case. For ξ ∈ �0
N,k we set


N(ξ) = min
{
x ∈ [[1,N]] : ξ(x) = 1

}
,

rN(ξ) = max
{
x ∈ [[1,N]] : ξ(x) = 0

}
.

(26)

A useful observation on the invariant measure is the following. Given ξ , we define χ(ξ)

as the sequence of particle spacings (recall (3)):

χi := ξi+1 − ξi, for i ∈ [[1, k − 1]], χk = N + 1 − ξk.

From (5), under πN,k the probability of a given configuration is proportional to

(27) λ−χ1λ−2χ2 . . . λ−kχk .

In other terms, under the invariant measure the particle spacings (χi)1≤i≤k are distributed
like independent geometric variables, with respective parameters 1 − λ−i , conditioned to the
event

∑k
i=1 χk ≤ N .
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LEMMA 4. When (11) holds we have for any ε > 0

lim
N→∞πN,k

(

N ≤ (N − k) − εN

)= 0,

lim
N→∞πN,k

(
rN ≥ (N − k) + εN

)= 0.
(28)

PROOF. By symmetry it is sufficient to prove the result for 
N only, but for all k ∈
[[1,N − 1]]. Note that there is nothing to prove regarding 
N if α := limN→∞ k/N = 1,
so we assume that α ∈ [0,1).

Let (Xi)1≤i≤k be independent geometric variables, with respective parameters λ−i . The
sum of their means satisfies (recall that λ − 1 is of order bN )

k∑
i=1

1

1 − λ−i
= k +

k∑
i=1

λ−i

1 − λ−i
≤ k + Cb−1

N log min
(
k, b−1

N

)
,

for some constant C > 0. The large bias assumption ensures that b−1
N log min(kN, b−1

N ) =
o(N). Hence using the Markov inequality, we obtain that if (Xi)1≤i≤k is a sequence of such
geometric variables, and if (11) is satisfied, then for any ε > 0

P

(
k∑

i=1

Xi ≥ k + εN

)
≤ E[|∑k

i=1 Xi − k|]
εN

= E[∑k
i=1 Xi − k]
εN

,

so that

lim
N→∞P

(
k∑

i=1

Xi ≥ k + εN

)
= 0.

The above inequality for ε < 1 − α implies that P(
∑k

i=1 Xi ≤ N) ≥ 1/2 for all N large
enough meaning that the conditioning only changes the probability by a factor at most 2.
Then, we can conclude by noticing that 
N = ξ1 = N + 1 −∑k

i=1 χi . �

3.3. The equilibrium measure in the small-bias case. We aim at showing that with large
probability the density of particles everywhere is of order k1+o(1)/N . Given ξ ∈ �0

N,k we let
Q1(ξ), resp. Q2(ξ), denote the largest gap between two consecutive particles, resp. between
two consecutive empty sites.

Q1(ξ) := max
{
n ≥ 1 : ∃i ∈ [[0,N − n]],∀x ∈ [[i + 1, i + n]], ξ(x) = 0

}
,

Q2(ξ) := max
{
n ≥ 1 : ∃i ∈ [[0,N − n]],∀x ∈ [[i + 1, i + n]], ξ(x) = 1

}
,

(29)

and Q(ξ) = max(Q1(ξ),Q2(ξ)).

PROPOSITION 5. For all x ∈ [[1,N]], we have

(30)
k

N
λx−N ≤ πN,k

(
ξ(x) = 1

)≤ k

N
λx−1.

Furthermore, there exists a constant c > 0 such that for all choices of N ≥ 1, u > 1 and
pN ∈ (1/2,1] and all k ≤ N/2

(31) πN,k

(
Q(ξ) ≥ λNNu

k

)
≤ 2ke−cu.
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PROOF. We set Ax := {ξ(x) = 1}, we first prove that for all y ∈ [[1,N − 1]] we have

(32) πN,k(Ay) ≤ πN,k(Ay+1) ≤ λπN,k(Ay).

We observe that the map ξ �→ ξy defined in (2) induces a bijection from Ay to Ay+1 and that
for every ξ ∈ Ay ,

(33) πN,k(ξ) ≤ πN,k

(
ξy)≤ λπN,k(ξ).

The reader can check indeed that (from the detailed balance condition) πN,k(ξ
y) = λπN,k(ξ)

if ξ ∈ Ay \ Ay+1 and that ξy = ξ if ξ ∈ Ay ∩ Ay+1. The desired inequalities (32) are then
obtained by summing over ξ ∈ Ay .

By iterating (32) we obtain

(34) λx−NπN,k(AN) ≤ πN,k(Ax) ≤ λx−1πN,k(A1).

By monotony of πN,k(Ay) in y and the fact that there are k particles

NπN,k(A1) ≤
N∑

y=1

πN,k(Ay) = k ≤ NπN,k(AN),

and thus (30) can be deduced.
We pass to the proof of (31). We can perform the same reasoning as above but limiting

ourselves to configurations with no particles in some set I ⊂ [[1,N]]. Setting BI := {∀y ∈
I, ξ(y) = 0} we obtain similarly to (32) (exchanging directly the content of x and y instead
of nearest neighbors) that for every x, y ∈ [[1,N]] \ I with x < y

(35) πN,k(Ax ∩ BI ) ≤ πN,k(Ay ∩ BI ) ≤ λy−xπN,k(Ax ∩ BI ).

This allows us to deduce that

(36) πN,k

(
ξ(x) = 1|∀y ∈ I, ξ(y) = 0

)≥ k

N − |I |λ
x−N.

We have hence

(37) πN,k

(∀y ∈ I ∪ {x}, ξ(y) = 0
)≤ (1 − λ−N k

N

)
πN,k

(∀y ∈ I, ξ(y) = 0
)
,

which yields by induction

(38) πN,k

(∀x ∈ I, ξ(x) = 0
)≤ (1 − λ−N k

N

)|I |
≤ exp

(
−|I |λ−N k

N

)
.

Then noticing that {Q1(ξ) ≥ 2m} implies that an interval of the type [[mi + 1,m(i + 1)]] is
empty, a union bound yields that

(39) πN,k

(
Q1(ξ) ≥ 2m

)≤ ⌊N

m

⌋
exp
(
−mλ−N k

N

)
.

This remains true for Q2(ξ) upon replacing k by N − k, and this concludes the proof of (31)
if one choses m = λNNu

2k
. �
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3.4. Eigenfunctions and contractions. The exact expression of the principal eigenfunc-
tion/eigenvalue has been derived in previous works [11, 14]. It turns out that it can be obtained
by applying a discrete Hopf–Cole transform to the generator of our Markov chain. Let us re-
call some identities in that direction as they will be needed later on; the details can be found
in [11], Section 3.3. We set

(40) �N := (
√

pN − √
qN)2 ∼ b2

N

2
,

and we let aN,k be the unique solution of{
(
√

pNqN� − �N)a(x) = 0 x ∈ [[1,N − 1]],
a(0) = 1, a(N) = λ

2k−N
2 ,

where � denotes the discrete Laplace operator

(41) �(f )(x) = f (x + 1) + f (x − 1) − 2f (x), x ∈ [[1,N − 1]].
If (h

ζ
t , t ≥ 0) denotes the height function process starting from some arbitrary initial condi-

tion ζ ∈ �N,k , then the map

V (t, x) := E
[
λ

1
2 h

ζ
t (x) − aN,k(x)

]
, t ≥ 0, x ∈ [[0,N]],

solves

(42)

{
∂tV (t, x) = (

√
pNqN� − �N)V (t, x) x ∈ [[1,N − 1]].

V (t,0) = V (t,N) = 0.

The spectral decomposition of the operator
√

pNqN� − �N thus allows us (see [11], Sec-
tion 3.3) to identify N − 1 eigenvalues and eigenfunctions of the generator LN,k of the
Markov chain: for every j ∈ {1, . . . ,N − 1}, the map

(43) f
(j)
N,k(ζ ) =

N−1∑
x=1

sin
(

jxπ

N

)(
λ

1
2 ζ(x) − aN,k(x)

λ − 1

)
,

defines an eigenfunction with eigenvalue

−γj = −�N − 4
√

pNqN sin
(

jπ

2N

)2
.

The eigenvalue −γ1 corresponds to the spectral gap of the generator (this is related to the fact
that the corresponding eigenfunction is monotone (see [11], Section 3.3) for more details),
and for this reason we adopt the notation

gapN := γ1 = � + 4
√

pNqN sin
(

π

2N

)2
.

We also set fN,k := f
(1)
N,k(ζ ) for the corresponding eigenfunction. Notice that this is a strictly

increasing function (recall (24)). An immediate useful consequence of the eigenvalue equa-
tion is that

(44) E
[
fN,k

(
h

ζ ′
t

)− fN,k

(
h

ζ
t

)]= e−gapN t (fN,k

(
ζ ′)− fN,k(ζ )

)
.

To close this subsection, let us introduce another function which is not an eigenfunction,
but is also strictly increasing and enjoys a similar contraction property

f
(0)
N,k(ζ ) :=

N−1∑
x=1

λζ(x)/2 − aN,k(x)

λ − 1
.
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As a direct consequence of (42) at time zero, we have (using the notation introduced in (41))

(
LN,kf

(0)
N,k

)
(ζ ) = −�Nf

(0)
N,k(ζ ) + √

pNqN

N−1∑
x=1

�(λζ/2 − aN,k)(x)

λ − 1

= −�f
(0)
N,k(ζ ) −

√
pNqN

λ − 1

[
λ

ζ(N−1)
2 + λ

ζ(1)
2 − aN,k(N − 1) − aN,k(1)

]
.

(45)

In particular, we obtain for ζ ≤ ζ ′(
LN,kf

(0)
N,k

)(
ζ ′)− (LN,kf

(0)
N,k

)
(ζ )

= −�N

(
f

(0)
N,k

(
ζ ′)− f

(0)
N,k(ζ )

)− √
pNqN

λ − 1

[
λ

ζ ′(N−1)
2 + λ

ζ ′(1)
2 − λ

ζ(N−1)
2 − λ

ζ(1)
2
]

≤ −�N

(
f

(0)
N,k

(
ζ ′)− f

(0)
N,k(ζ )

)
.

Considering a monotone coupling between (h
ζ ′
t )t≥0 and (h

ζ
t )t≥0, we obtain that

∂tE
[
f

(0)
N,k

(
h

ζ ′
t

)− f
(0)
N,k

(
h

ζ
t

)]= E
[(
LN,kf

(0)
N,k

)(
h

ζ ′
t

)− (LN,kf
(0)
N,k

)(
h

ζ
t

)]
≤ −�NE

[
f

(0)
N,k

(
h

ζ ′
t

)− f
(0)
N,k

(
h

ζ
t

)]
,

(46)

and thus

(47) E
[
f

(0)
N,k

(
h

ζ ′
t

)− f
(0)
N,k

(
h

ζ
t

)]≤ e−�N t (f (0)
N,k

(
ζ ′)− f

(0)
N,k(ζ )

)
.

3.5. The hydrodynamic limit. We are interested in the macroscopic evolution of the
height function.

For α ∈ [0,1], we define ∨α : [0,1] →R, ∧α : [0,1] →R as

∨α(x) := max
(−x, x − 2(1 − α)

)
, ∧α(x) := min(x,2α − x),

and we let gα :R+ × [0,1] →R be defined as follows:

g0
α(t, x) :=

⎧⎪⎨⎪⎩α − t

2
− (x − α)2

2t
if |x − α| ≤ t,

∧α(x) if |x − α| ≥ t,

gα(t, x) := max
(∨α(x), g0

α(t, x)
)
.

PROPOSITION 6. Assume that NbN = N(pN − qN) → ∞ and that kN/N → α ∈ (0,1).
Then, after an appropriate space-time scaling, h∧(·, ·) converges to gα in probability as N →
∞. More precisely we have for any ε > 0, T > 0,

(48) lim
N→∞P

[
sup
t≤T

sup
x∈[0,1]

∣∣∣∣ 1

N
h∧
(

Nt

bN

,Nx

)
− gα(t, x)

∣∣∣∣≥ ε

]
= 0.

PROOF. This is essentially the content of [10], Th 1.3, where the hydrodynamic limit
of the density of particles is shown to be given by the inviscid Burgers’ equation with zero-
flux boundary conditions: when starting from the maximal initial condition, this yields (after
integrating the density in space) the explicit solution gα .

Actually the setting of [10], Th 1.3, is more restrictive as the number of particles is taken
to be k = N/2 and pN − qN = 1/Nα with α ∈ (0,1). However, a careful inspection of the
proof shows that we only require N1−α to go to infinity: this corresponds to the assumption
N(pN − qN) → ∞ which is in force in the statement of the proposition so that the proof
carries through mutatis mutandis. �
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4. Lower bound on the mixing time for large biases. In the large bias case, the last
observable that equilibrates is the position of the leftmost particle. Obtaining a lower bound
on the mixing time is thus relatively simple: we have to show that for arbitrary δ > 0 at time

sδ(N) := [(√α + √
1 − α)2 − δ

]
Nb−1

N ,

the leftmost particle has not reached its equilibrium position given by Lemma 4. This is
achieved by using the hydrodynamic limit for α > 0, and a simple comparison argument for
α = 0.

PROPOSITION 7. When (11) is satisfied, for every δ > 0 we have

(49) lim
N→∞

∥∥P(
N

(
η∧

sδ(N)

) ∈ ·)− πN(
N ∈ ·)∥∥TV = 1.

As a consequence for all ε > 0 and N sufficiently large

T
N,k
mix (1 − ε) ≥ sδ(N).

4.1. The case α = 0. Given δ > 0 we want to prove that the system is not mixed at
time sδ(N) := (1 − δ)Nb−1

N . We know from Lemma 4, that when α = 0 and (11) holds, at
equilibrium we have

lim
N→∞πN,k

(

N ≤ (1 − δ/2)N

)= 0.

On the other hand, observing that the position of the first particle is dominated by a random
walk on N with jump rates pN to the right and qN to the left, the reader can check that
whenever limN→∞ bNN = ∞ we have

(50) lim
N→∞P

(

N

(
η∧

sδ(N)

)≤ (1 − δ/2)N
)= 1.

If the stochastic comparison was with a random walk on Z, it would be sufficient to observe
that at time sδ(N) the expected value of the walk is bNsδ(N) = (1 − δ)N while the variance
equal to sδ � N2 which via Chebychev’s inequality would imply (50). The constraint to re-
main positive makes the analysis a bit more delicate but the argument remains quite standard.

4.2. The case α ∈ (0,1/2]. Setting xδ := 1 −α − cαδ, for some positive constant cα suf-
ficiently small, we observe that the hydrodynamic profile at the rescaled time corresponding
to sδ is above the minimum at xδ

gα

(
xδ, (

√
α + √

1 − α)2 − δ
)
> ∨α(xδ).

The reader can check that cα = 1/3 works for all α ∈ (0,1/2). Thus whenever
limN→∞ bNN = ∞ Proposition 6 yields that

(51) lim
N→∞P

(

N

(
η∧

sδ

)≤ (1 − α − cαδ)N
)= 1.

On the other hand, we know from Lemma 4 that when (11) holds, at equilibrium we have for
any δ > 0

lim
N→∞πN,k

(

N ≤ (1 − α − cαδ)N

)= 0.
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5. Upper bound on the mixing time for large biases. Let us recall how a grand cou-
pling satisfying the order preservation property (23) is of help to establish an upper bound on
the mixing time. Recall (7). By [15], Lemma 4.10, we have

(52) dN,k(t) ≤ max
ζ,ζ ′∈�N,k

∥∥P N,k
t

(
ζ ′, ·)− P

N,k
t (ζ, ·)∥∥TV.

On the other hand, if P is a monotone grand coupling, one observes that the extremal initial
conditions are the last to couple so that one has

(53)
∥∥P N,k

t

(
ζ ′, ·)− P

N,k
t (ζ, ·)∥∥TV ≤ P

[
h

ζ
t �= h

ζ ′
t

]≤ P
[
h∨

t �= h∧
t

]
.

Hence to establish an upper bound on the mixing time, it suffices to obtain a good control on
the merging time

(54) τ := inf
{
t > 0 : h∨

t = h∧
t

}
.

Let us set for this section

(55) tδ(N) := [(√α + √
1 − α)2 + δ

]
Nb−1

N .

PROPOSITION 8. When (11) is satisfied, for every δ > 0, and any monotone grand cou-
pling we have

(56) lim
N→∞P

(
τ ≤ tδ(N)

)= 1.

As a consequence for all ε > 0 and N sufficiently large T
N,k

mix (ε) ≤ tδ(N).

When α = 1/2, a sharp estimate on τ can be obtained directly from spectral considerations
(Section 5.1), but when α ∈ [0,1/2) we need a refinement of the strategy used in [11]: The
first step (Proposition 10) is to obtain a control on the position of the leftmost particle which
matches the lower bound provided by the hydrodynamic limit. This requires a new proof
since the argument used in [11] is not sharp enough to cover all biases. The second step is to
use contractive functions once the system is at macroscopic equilibrium, this is sufficient to
treat most cases. A third and new step is required to treat the case when the bias bN of order
N−1 logN or smaller: as we are working under the assumption (11) we only need to treat this
case when k = No(1). In this third step we use diffusive estimates to control the hitting time
of zero for the function f

(0)
N,k(h

∧
t ) − f

(0)
N,k(h

∨
t ) where f (0) was introduced in Section 3.4.

5.1. The special case α = 1/2. In the special case α = 1/2, a sharp upper-bound can
be deduced in a rather direct fashion from spectral estimates repeating the computation per-
formed in [19], Section 3.2, for the symmetric case. This fact is itself a bit surprising since
this method does not yield the correct upper bound in the small bias case (including the zero
bias symetric case) nor in the constant bias case.

Recall the definition of fN,k in equation (43) and below. It being a strictly monotone
function and P being a monotone coupling, we obtain using Markov’s inequality (recall (25))

(57) P(τ > t) = P
[
fN,k

(
h∧

t

)
> fN,k

(
h∨

t

)]≤ E[fN,k(h
∧
t ) − fN,k(h

∨
t )]

δmin(fN,k)
.

The expectation decays exponentially with rate gapN (44) and it is not difficult to check that

(58) δmin(fN,k) ≥ λ(k−N)/2 sin
(

π

N

)
≥ N−1λ(k−N)/2.
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Hence equation (57) becomes

(59) P(τ > t) ≤ Nλ
N−k

2 e−gapN t (fN,k(∧) − fN,k(∨)
)≤ N2λN/2

λ − 1
e−gapN t ,

where in the last inequality we used that

sin
(

xπ

N

)(
λ∧(x)/2 − λ∨(x)/2)≤ λ∧(x)/2 ≤ λk/2.

Recall that we assume that (11) holds and bN tends to zero. Recalling (16), we obtain the
following asymptotic equivalent:

(60) gapN

N→∞∼ b2
N/2 and logλN

N→∞∼ 2bN .

Furthermore for N sufficiently large we have (λ − 1)−1 ≤ N . Hence recalling that tδ = (2 +
δ)b−1

N N and using (60) in (59) we obtain for all N sufficiently large

(61) P(τ > tδ) ≤ N2

λ − 1
exp
(

N

2
logλ − gapNtδ

)
≤ N3e− δ

4 bNN,

and the left-hand side vanishes when N tends to infinity as a consequence of (11) (recall that
as α = 1/2, k is of order N ). �

REMARK 9. The reason why the computation above yields a sharp upper bound is be-
cause: (A) The difference of order between δmin(fN,k) and the typical fluctuation of fN,k

at equilibrium is negligible in the computation. (B) Until shortly before the mixing time the
quantity log[fN,k(h

∧
t ) − fN,k(h

∨
t )] has the same order of magnitude as logE[fN,k(h

∧
t ) −

fN,k(h
∨
t )]. In the case of symmetric exclusion, (A) does not hold, while when the bias is

constant, (B) fails to hold. In the weakly asymmetric case, when α �= 1/2, the reader can
check by combining Propositions 6 and 10 that (B) holds until time 4α (in the macroscopic
time-scale) after which gα(t, ·) stops to display a local maximum in the interval (lα(t), rα(t))

(defined in (63) below) and fN,k(h
∧
t )−fN,k(h

∨
t ) starts to decay much faster than its average.

5.2. The case α �= 1/2: Scaling limit for the boundary processes. In order to obtain a
sharp upper-bound for α �= 1/2, we rely on a scaling limit result in order to control the
value of fN,k(h

∧
t ) − fN,k(h

∨
t ) up to a time close to the mixing time, and then we use the

contractive estimate (44) to couple h∧
t with h∨

t . Note that Proposition 6 is not sufficient to
estimate fN,k(h

∧
t ): we also need a control on the positions of the left-most particle and right-

most empty site in our particle configuration.
In the case when α = 0 and the bias is of order logN/N or smaller (this is possible when

(11) is satisfied and k grows slower than any power of N ), we need an additional step, based
on diffusion estimates, to couple the two processes. In this last case also, the factor N−1 in
(58) causes some difficulty. For that reason we use f

(0)
N,k and (47) instead of fN,k and (44):

observe that δmin(f
(0)
N,k) = λ

k−N
2 .

Let us define [LN(t),RN(t)] to be the interval on which h∧
t and ∨ differ. More explicitly,

we set

LN(t) := max
{
x : h∧(t, x) = −x

}
,

RN(t) := min
{
x : h∧(t, x) = x − 2(N − k)

}
,

(62)

or equivalently LN(t) := 
N(η∧
t ) − 1 and RN(t) := rN(η∧

t ).
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We let 
α and rα denote the most likely candidates for the scaling limits of LN and RN

that can be inferred from the hydrodynamic behavior of the system (cf. Proposition 6):


α(t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t ≤ α,

(
√

t − √
α)2 if t ∈ (α, (

√
α + √

1 − α)2),
1 − α if t ≥ (

√
α + √

1 − α)2,

rα(t) =

⎧⎪⎪⎨⎪⎪⎩
1 if t ≤ 1 − α,

1 − (
√

t − √
1 − α)2 if t ∈ (1 − α, (

√
α + √

1 − α)2),
1 − α if t ≥ (

√
α + √

1 − α)2.

(63)

We prove that 
α and rα are indeed the scaling limits of LN and RN .

PROPOSITION 10. If (11) holds and kN/N → α then for every t > 0 we have the fol-
lowing convergences in probability:

(64) lim
N→∞

1

N
LN

(
b−1
N Nt

)= 
α(t), lim
N→∞

1

N
RN

(
b−1
N Nt

)= rα(t).

REMARK 11. The assumption (11) is optimal for the above result to hold. To see this, the
reader can check that when (11) fails, at equilibrium 
N and rN are typically at a macroscopic
distance from (1 − α)N . In other words, (28) does not hold.

The proof of Proposition 10 is presented in the next subsections. Let us now check that it
yields the right bound on mixing time. First, notice that the inequalities (57) still hold with
fN,k replaced by f

(0)
N,k since the latter is also a strictly increasing function in the sense of (24).

Next observe that Proposition 10 allows an acute control on the quantity

f
(0)
N,k(h

∧
t ) − f

(0)
N,k(h

∨
t )

δmin(f
(0)
N,k)

.

We summarize the argument in a lemma.

LEMMA 12. Set DN(ζ ) := max(|LN(ζ )−N +k|, |RN(ζ )−N +k|). We have for ζ ′ ≥ ζ

(65)
f

(0)
N,k(ζ

′) − f
(0)
N,k(ζ )

δmin(f
(0)
N,k)

≤ NkλDN(ζ ′).

PROOF. We assume that ζ ′ �= ζ . Then,

(66)
λ

1
2 ζ ′(x) − λ

1
2 ζ(x)

λ − 1
=

ζ ′(x)−ζ(x)
2 −1∑
n=0

λ
1
2 ζ(x)+n ≤ λ

ζ ′(x)
2

(ζ ′(x) − ζ(x))

2
.

Now for x ≤ LN(ζ ′) or x ≥ RN(ζ ′) we necessarily have ζ(x) = ζ ′(x) = ∨(x). For x ∈
[[LN(ζ ′) + 1,RN(ζ ′) − 1]], the fact that ζ ′ is 1-Lipschitz yields

(67) ζ ′(x) ≤ k − N + 2DN

(
ζ ′).

Recall that δmin(f
(0)
N,k) = λ(k−N)/2. Hence one obtains from (66)

f
(0)
N,k(ζ

′) − f
(0)
N,k(ζ )

δmin(f
(0)
N,k)

≤
N∑

x=1

λ
ζ ′(x)−(k−N)

2
(ζ ′(x) − ζ(x))

2

≤ λDN(ζ ′)
N∑

x=1

(ζ ′(x) − ζ(x))

2
≤ λDN(ζ ′)Nk.
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In the last inequality we simply used that ζ ′(x) − ζ(x) ≤ 2k (there are at most k sites where
the increment of ζ ′ is larger than that of ζ ). �

We can now apply Proposition 10 to obtain an estimate on the mixing time. For conve-
nience we treat the case of smaller bias separately.

5.2.1. Proof of Proposition 8 when bN � (logN)/N . We assume that

(68) lim
N→∞(bNN)/ logN = ∞.

We consider first the system at time t0(N) := (
√

α + √
1 − α)2Nb−1

N . From Proposition 10,
we know that at time t0, LN and RN are close to their equilibrium positions: we have for N

sufficiently large and arbitrary δ, ε > 0

(69) P
[
LN(t0) ≥ N − k − (δ/20)N;RN(t0) ≤ N − k + (δ/20)N

]=: P[AN ] ≥ 1 − (ε/2).

We let Ft denote the canonical filtration associated with the process. For t ≥ t0, repeating
(57) starting at time t0 for f

(0)
N,k and combining it with (47), we obtain that

(70) P[τ > t |Ft0] ≤ e−�(t−t0)
f

(0)
N,k(h

∧
t0
) − f

(0)
N,k(h

∨
t0
)

δmin(f
(0)
N,k)

.

Note that on the event AN , we have DN(h∧
t0
) ≤ δN/20. Thus using Lemma 12 to bound

the r.h.s. we obtain

(71) E

[
f

(0)
N,k(h

∧
t0
) − f

(0)
N,k(h

∨
t0
)

δmin(f
(0)
N,k)

∣∣∣∣AN

]
≤ kNλ

δN
20 .

Hence averaging (70) on the event AN one obtains

(72) P(τ > t) ≤ ε/2 + P[τ > t |AN ] ≤ ε/2 + e−�(t−t0)kNλ
δN
20 .

For t = tδ = t0 + δb−1
N N , replacing � and logλ by their equivalents given in (40) and (60),

one can check that for N sufficiently large one has

(73) Nkλ
δN
20 e−�(tδ−t0) ≤ Nke− δNbN

20 ≤ ε/2,

where the last inequality is valid for N sufficiently large provided that (68) holds.

5.2.2. Proof of Proposition 8: The general case. If we no longer assume that (68) holds,
then an additional step is needed in order to conclude: this step relies on diffusion estimates
proved in Appendix B. From (71) and (47), for any ε, δ > 0 we have for N sufficiently large
(recall (55))

(74) E

[f (0)
N,k(h

∧
tδ/2

) − f
(0)
N,k(h

∨
tδ/2

)

δmin(f
(0)
N,k)

∣∣∣∣AN

]
≤ e−�(tδ/2−t0)λ

δN
20 kN ≤ e− δNbN

40 kN ≤ e− δNbN
50 N,

where the second inequality relies on the the asymptotic equivalence in (60) and the last one
on (11).

Now we can conclude using Proposition 29(i) with a := 4ε−1e−δNbN/50N and

(Ms)s≥0 :=
(f

(0)
N,k(h

∧
tδ/2+s) − f

(0)
N,k(h

∨
tδ/2+s)

δmin(f
(0)
N,k)

)
s≥0

.
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Indeed Ms is a nonnegative supermartingale whose jumps are of size at least 1 (recall that
we have divided the weighted area by δmin(f

(0)
N,k) in the definition of M). Furthermore, up to

the merging time τ , the two interfaces h∧ and h∨ differ on some interval: on this interval h∧
makes an upward corner (�h∧ < 0) and h∨ makes a downward corner (�h∨ > 0). Conse-
quently, the jump rate of M is at least 1 up to its hitting time of 0. From Markov’s inequality
we have (recall (69))

(75) P[M0 > a] ≤ P
[
A�

N

]+ a−1
E[M0|AN ] ≤ 3ε/4.

Setting rδ := (δ/2)Nb−1
N and applying (138), we have for all N sufficiently large

(76) P[Mrδ > 0|M0 ≤ a] ≤ 4a(rδ)
−1/2 ≤ 16ε−1

√
δ/2

√
NbNe− δNbN

50 ≤ ε/4,

where the last inequality comes from the fact that NbN diverges. Hence we conclude by
observing that for N sufficiently large

(77) P[τ > tδ] = P[Mrδ > 0] ≤ P[M0 > a] + P[Mrδ > 0|M0 ≤ a] ≤ ε.

5.3. An auxiliary model to control the speed of the right-most particle. Our strategy to
prove Proposition 10 is to compare our particle system with another one on the infinite line,
for which a stationary probability exists. We consider n particles performing the exclusion
process on the infinite line with jump rate p and q (since the parameter N plays no role in
our auxiliary model, it makes no sense to write pN here, the presented results are valid for
any choice of p), and we add a “slower” n+1th particle on the right to enforce existence of a
stationary probability for the particle spacings. To make the system more tractable this extra
particle is only allowed to jump to the right (so that it does not feel the influence of the n

others). Note that in our application, the number of particles n does not necessarily coincide
with k.

The techniques developed in this section present some similarities to those used for the
constant bias case in [11], Section 6, but also present several improvements, the main con-
ceptual change being the addition of a slow particle instead of modifying the biases in the
process. This novelty presents two advantages: Firstly it considerably simplifies the compu-
tation since martingale concentration estimates are not needed any more. Second this allows
us to obtain control for the whole large bias regime (11), something that cannot be achieved
even by optimizing all the parameters involved in [11], Section 6.

More formally we consider a Markov process (η̂(t))t≥0 on the state space

�n := {ξ ∈ Z
n+1 : ξ1 < ξ2 < · · · < ξn+1

}
.

The coordinate η̂i(t) denotes the position of the ith leftmost particle at time t . The dynamics
are defined as follows: the first n particles, η̂i(t), i ∈ [[1, n]] perform an exclusion dynamics
with jump rates p to the right and q to the left while the last one η̂n+1(t) can only jump to
the right and does so with rate βb = β(p − q), for some β < 1.

We assume furthermore that initially we have η̂n+1(0) = 0. The initial position of the other
particles is chosen to be random in the following manner. We define

(78) μi := β + λ−i (1 − β),

and we assume that the spacings (η̂i+1(0) − η̂i(0))ni=1 are independent with Geometric dis-
tribution

(79) P
[
η̂i+1(0) − η̂i(0) = m

]= (1 − μi)μ
m−1
i , m ≥ 1.

Our aim is to prove the following control on the position of the first particle in this system,
uniformly in β and n. In Sections 5.4 and 5.5, we use this result in order to control the position
of LN(t).
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PROPOSITION 13. We have,

lim
A→∞ sup

t≥1,n∈N,β∈(0,1)

P

[
η̂1(t) ≤ tβb − A

(√
bt + 1

1 − β

[
n + b−1 log min

(
n,b−1)])]

= 0.

(80)

The statement is not hard to prove, the key point is to observe that the distribution of
particle spacings is stationary.

LEMMA 14. For all t ≥ 0, (η̂i+1(t) − η̂i(t))
n
i=1 are independent r.v. with distribution

given by (79).

PROOF. We use the notation (mi)
n
i=1 ∈ N

n to denote a generic element in the configu-
ration space for the process (η̂i+1(t) − η̂i(t))

n
i=1. We need to show that the measure defined

above is stationary.
A measure π is stationary if and only if we have

pπ(m1 + 1, . . . ,mn)

+
n−1∑
i=1

[
pπ(. . . ,mi − 1,mi+1 + 1, . . . ) + qπ(. . . ,mi−1 + 1,mi − 1, . . . )

]
1{mi≥2}

+ qπ(. . . ,mn−1 + 1,mn − 1)1{mn≥2} + βbπ(m1, . . . ,mn − 1)1{mn≥2}

= π(m1, . . . ,mn)

(
q +

n−1∑
i=1

(p + q)1{mi≥2} + p1{mn≥2} + βb

)
,

where in the sums, the dots stand for coordinates that are not modified (and mi−1 simply
has to be ignored when i = 1). If we assume that π is the product of geometric laws with
respective parameters 1 − μi (not yet fixed) then the equation above is equivalent to the
system

(81)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pμ1 = q + β(p − q),

q
μi−1

μi

+ p
μi+1

μi

= p + q, ∀i ∈ [[1, n − 1]],
q

μn−1

μn

+ β(p − q)

μn

= p,

where we have taken the convention μ0 = 1. One can readily check that μi given by (78)
satisfies this equation. �

REMARK 15. Note that the equations (81) can be obtained directly simply by using the
fact that the expected drifts of the particles starting from the geometric distributions are given
by pμi − qμi−1 for the i-th particle i ∈ [[1, n]] and β(p − q) for the n + 1-th particle, and
that stationarity implies that the drifts are all equal. However, the proof is necessary to show
that this condition is also a sufficient one.

PROOF OF PROPOSITION 13. Starting from stationarity allows us to control the distance
between the first and last particle at all times. In particular we have

E
[
η̂n+1(t) − η̂1(t)

]= E
[
η̂n+1(0) − η̂1(0)

]= n∑
i=1

1

1 − μi

= 1

1 − β

n∑
i=1

1

1 − λ−i

≤ 1

1 − β

(
n + C

λ − 1
log
(
min
(
n, |λ − 1|−1))),

(82)
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for some universal constant C. By union bound, the probability in the l.h.s. of (80) is smaller
than

(83) P
[
η̂n+1(t) ≤ tβb − A

√
bt
]+ P

[
η̂n+1(t) − η̂1(t) ≥ A

1 − β

[
n + b−1 log min

(
n,b−1)]].

The first term is small because, the r.v. η̂n+1(t) being Poisson of parameter tβb, its expecta-
tion and variance are equal to tβb. The second can be shown to be going to zero with A using
(82) and Markov’s inequality for η̂n+1(t) − η̂1(t). �

5.4. Proof of Proposition 10 in the case α = 0. We restate and prove the result in this
special case (observe that the result for RN is trivial for α = 0).

PROPOSITION 16. Assume that α = 0 and (11) holds. We have for any ε > 0

(84) lim
N→∞ sup

t≥0
P
[∣∣LN(t) − min(bN t,N)

∣∣≥ εN
]= 0.

PROOF. First let us remark that the convergence

(85) lim
N→∞ sup

t≥0
P
[
LN(t) ≥ min(bN t,N) + εN

]= 0

is obvious when t ≥ Nb−1
N and follows from the fact that the first particle is stochastically

dominated by a simple random walk with bias bN � N−1 on the segment, starting from
position 1 (recall the observation below (50)). It remains to prove that

(86) lim
N→∞ sup

t≥0
P
[
LN(t) ≤ min(bN t,N) − εN

]= 0.

We prove first

(87) lim
N→∞ sup

t∈[0,b−1
N N]

P
[
LN(t) ≤ bN t − εN

]= 0,

and then we briefly explain how to extend the result to times larger than b−1
N N . We couple

η∧(t) with the system η̂(t) of the previous subsection, choosing n = k and β = 1 − (ε/2).
The coupling is obtained by making the ith particle in both processes try to jump at the same
time (for i ∈ [[1, k]]) with rate p and q , and rejection of the moves occurs as consequences of
the exclusion rule or boundary condition (for η∧ only). Initially of course we have

(88) ∀i ∈ [[1, n]], η∧
i (0) ≥ η̂i(0),

because of the choice of the initial condition for η̂ (recall that by definition η∧
i (0) = i). The

boundary at zero, and the presence of one more particle on the right in η̂ gives η∧ only more
pushes towards the right, so that the ordering is preserved at least until η̂n+1 reaches the right
side of the segment and the effect of the other boundary condition starts to be felt:

(89) η∧
i (t) ≥ η̂i(t), ∀i ∈ [[1, n]],∀t ≤ T

where T := inf{t ≥ 0 : η̂n+1(t) = N + 1}. We have

(90) E
[
η̂n+1(t)

]= Var
(
η̂n+1(t)

)= tβbN .

Using the assumption (11), and the fact that β < 1, using the estimate on the variance and
expectation we have

lim
N→∞P

[
T ≤ b−1

N N
]= lim

N→∞P
[
η̂n+1

(
b−1
N N

)≥ N + 1
]= 0,
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and hence from (89)

(91) lim
N→∞ sup

t≤b−1
N N

P
[
η∧

1 (t) ≤ η̂1(t)
]= 0.

Therefore, it suffices to control the probability of η̂1(t) ≤ bN t − εN . Observe that the as-
sumptions (kN/N) → 0 and (11) imply that for any given A > 0, for all N sufficiently large
and for any t ≤ b−1

N N we have(√
bN t + 1

1 − β

[
kN + b−1

N log min
(
kN, b−1

N

)])≤ ε
N

2A
.

Furthermore (1 − β)bN t ≤ εN/2 for all t ∈ [0, b−1
N N ]. Thus applying Proposition 13 we

obtain that for N sufficiently large

sup
t∈[0,b−1

N N]
P
[
η̂1(t) ≤ bN t − εN

]

≤ sup
t∈[0,b−1

N N]
P

[
η̂1(t) ≤ βbNt − A

(√
bN t + kN + b−1

N log min(k, b−1
N )

1 − β

)]
≤ δ,

(92)

where δ can be made arbitrarily small by choosing A large. This concludes the proof of
(87). To check (86) for larger times it suffices to shift the particle system η̂(0) to the left by
�t − b−1

N N� and to apply the same arguments. �

5.5. Proof of Proposition 10 in the case α ∈ (0,1). The roles of LN and RN being sym-
metric, we only need to prove the result for LN (but we do not assume here that α ≤ 1/2). A
direct consequence of Proposition 6 is that for all s ∈R and ε > 0 we have

(93) lim
N→∞P

[
η∧

1
(
b−1
N Ns

)≥ N
(

α(s) + ε

)]= 0.

Hence to conclude we want to prove that

(94) lim
N→∞P

[
η∧

1
(
b−1
N Ns

)≤ N
(

α(s) − ε

)]= 0.

For the remainder of the proof s and ε are considered as fixed parameters. We set δ ∈ (0, α),
and n = �δN�. To prove (94), we are going to compare (η∧

i )ni=1 to the particle system con-
sidered in Section 5.3.

First we observe that as a consequence of Proposition 6, we have, for any T > 0

(95) lim
N→∞P

[∃t ∈ [0, T ], η∧
n+1
(
b−1
N Nt

)≤ N
α(t)
]= 0.

We define the process η̂ as in Section 5.3 with β = 1 − ε/(2s) but with a shifted initial
condition. More precisely we set

η̂n+1(0) = N
(

α(s) − s

)≤ 0,

and choose the initial particle spacings to be independent and with geometric distributions
given by (79). As (88) is satisfied, we can couple the two processes in such a way that

(96) ∀i ∈ [[1, n]],∀t ≤ T ′, η∧
i (t) ≥ η̂i(t),

where T ′ := inf{t : η̂n+1(t) = η∧
n+1(t)}. It is a simple exercise to show that for every T > 0

the position of η̂n+1 satisfies the following law of large numbers:

(97) lim
N→∞P

[
sup

t∈[0,T ]

∣∣∣∣ η̂n+1(b
−1
N Nt)

N
− (
α(s) − s

)− βt

∣∣∣∣≥ κ

]
= 0, ∀κ > 0,
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which, combined with (95), yields

(98) lim
N→∞P

[
T ′ ≥ b−1

N Ns
]= 1,

and thus we only need to prove (94) with η∧
1 replaced by η̂1. More precisely we prove that

given κ > 0, one can find δ sufficiently small such that

(99) P
[
η̂1
(
b−1
N Ns

)≤ N
(

α(s) − ε

)]≤ κ.

Using Proposition 13 for t = b−1
N Ns and A = δ−1/2 and taking into account the new initial

condition, the event{
η̂1
(
b−1
N Ns

)≤ N

(

α(s) − ε

2

)
− δ−1/2

(√
Ns + 2s

ε

[
δN + b−1

N logb−1
N

])}
has a probability which can be made arbitrarily small if δ is chosen sufficiently small. We
can then conclude that (99) holds by observing that for δ sufficiently small and N sufficiently
large

δ−1/2
(√

Ns + 2s

ε

[
δN + b−1

N logb−1
N

])≤ εN/2.

6. Lower bound on the mixing time for small biases. Until the end of the section, we
assume that the small bias assumption (12) holds.

Let us set sδ(N) := (1 − δ) log k/(2gapN). We show that at time sδ , equilibrium is not
reached if one starts from one of the extremal conditions (some moderate efforts allow to
replace max by min in the statement of the proposition).

PROPOSITION 17. When assumption (12) holds, we have

(100) lim
N→∞ max

ζ∈{∨,∧}
∥∥P(hζ

sδ(N)
∈ ·)− πN,k

∥∥
TV = 1.

As a consequence for every ε ∈ (0,1), T
N,k

mix (ε) ≥ sδ(N) for N sufficiently large.

The method to obtain a lower bound on the mixing time for small biases is similar to the
one used in the symmetric case (see [19], Section 3.3), and is based on the control of the two
first moments of fN,k(h

∧
t )−fN,k(ζ ) where ζ is independent of h∧

t and distributed according
to πN,k : if at time t the mean of fN,k(h

∧
t )−fN,k(ζ ) is much larger than its standard deviation,

then the system is not at equilibrium (cf [15], Proposition 7.12).
We present estimates for the first two moments that we prove at the end of the section.

This first moment bound is elementary.

LEMMA 18. We have

(101) fN,k(∧) − fN,k(∨) ≥ 1

8
λ(k−N)/2Nk,

and as a consequence, for every t ≥ 0

(102) max
(
fN,k(∧),−fN,k(∨)

)≥ 1

16
λ(k−N)/2Nk.

The second moment estimates rely on the control of a martingale bracket.
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LEMMA 19. For all t ≥ 0, N ≥ 1 and all k ∈ [[1,N/2]] we have

(103) Var(fN,k

(
h∧

t

)≤ kλk

2gapN

.

The same bound holds for Var(fN,k(h
∨
t )) and VarπN,k

(fN,k).

PROOF OF PROPOSITION 17. Let us assume for simplicity (recall (102)) that

(104) fN,k(∧) ≥ 1

16
λ(k−N)/2Nk,

(if not we apply the same proof to fN,k(∨) ≤ − 1
16λ(k−N)/2Nk). Recalling Section 3.4, fN,k

being an eigenfunction associated with the spectral gap we have

(105) E
[
fN,k

(
h∧

t

)]= e−gapN tfN,k(∧) ≥ 1

16
e−gapN tλ(k−N)/2Nk.

Applying [15], Proposition 7.12, for the probability measures P
N,k
t (∧, ·) and πN,k and the

function fN,k (recall that EπN,k
[fN,k] = 0), we obtain that

(106)
∥∥P N,k

t (∧, ·) − πN,k

∥∥
TV ≥ 1 − 2(Var(fN,k(h

∧
t )) + VarπN,k

(fN,k))

E[fN,k(h
∧
t )]2 .

Using Lemma 19 and (105), we obtain that

(107)
Var(fN,k(h

∧
t )) + VarπN,k

(fN,k)

E[fN,k(h
∧
t )]2 ≤ 162e2gapN tλN

gapNN2k
.

Now if we apply this inequality at time sδ = (1 − δ) logk/(2gapN), then we obtain for any
given ε > 0 and all N sufficiently large

(108) d(t1) ≥ 1 − 2
162λN

kδgapNN2 ≥ 1 − ε,

where we used the small bias assumption (12). This yields T
N,k

mix (ε) ≥ sδ . �

PROOF OF LEMMA 18. We have

fN,k(∧) − fN,k(∨) =
N−1∑
x=1

sin
(

xπ

N

)
λ

1
2 ∧(x) − λ

1
2 ∨(x)

λ − 1

≥
N−1∑
x=1

sin
(

xπ

N

)
λ

1
2 ∨(x)∧(x) − ∨(x)

2
,

where the last inequality is obtained similarly to (66). Since the terms inside the sum
are nonnegative for all x, we obtain a lower bound on this quantity by restricting x

to {N/4, . . . ,3N/4}. Since ∨(x) ≥ k − N for all x and ∧(x) − ∨(x) ≥ k for all x ∈
{N/4, . . . ,3N/4}, we conclude that

N−1∑
x=1

sin
(

xπ

N

)
λ

1
2 ∨(x) ∧(x) − ∨(x)

2
≥

√
2

2
λ

k−N
2

Nk

4
.

�

PROOF OF LEMMA 19. Using (cf. Section 3.4) the fact that fN,k is an eigenfuntion of
the generator of the process, we know that

Mt := fN,k

(
h∧

t

)
egapN t
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is a martingale. Its predictable bracket is given by

〈M·〉t =
∫ t

0

N−1∑
x=1

λh∧
s (x) sin

(
πx

N

)2
e2gapNs

× (pN1{�h∧
s (x)<0}λ−2 + qN1{�h∧

s (x)>0}
)

ds,

and M2
t − 〈M·〉t is again a martingale. This yields the identity

Var
(
fN,k

(
h∧

t

))= e−2gapN t
E
[〈M·〉t ].

To bound the predictable bracket of M , let us observe that the number of possible particle
transitions to the right and to the left (the number of sites x such that �h∧

s (x) < 0, resp. > 0)
is bounded by k, and that for any x and ζ ∈ �N,k we have λζ(x) ≤ λk . Therefore, we obtain
the bound

E
[〈M·〉t ]≤ ∫ t

0
e2gapNsλk

N−1∑
x=1

P
(
�h∧

s (x) �= 0
)

ds ≤ kλk e2gapN t

2gapN

,

which yields the asserted bound. The case of h∨
t is treated in the same manner by symmetry.

Since the distribution of h∧
t converges to πN,k when t tends to infinity we deduce that

VarπN,k
(fN,k) = lim

t→∞ Var
(
fN,k

(
h∧

t

))
,

which allows us to conclude. �

7. Upper bound on the mixing time for small biases. Until the end of the section we
assume that the small bias assumption (12) holds and that the different initial conditions are
coupled using the monotone grand coupling P defined in Appendix A. We set for all δ > 0

tδ(N) := (1 + δ)
log k

2gapN

.

Recall the definition of the merging time τ from (54).

PROPOSITION 20. Assume that (12) holds. We have

(109) lim
N→∞P

[
τ < tδ(N)

]= 1.

As a consequence, for every ε > 0 and all N sufficiently large, T
N,k
mix (ε) ≤ tδ(N).

Recall (see the paragraph after (23)) that hπ
t denotes the chain with stationary initial con-

dition. For practical reasons, it is simpler to couple two processes when at least one of them is
at equilibrium. We thus prove (109) by showing that limN→∞ P[τi < tδ(N)] = 1 for i ∈ {1,2}
where

(110) τ1 := inf
{
t > 0 : h∧

t = hπ
t

}
and τ2 := inf

{
t > 0 : h∨

t = hπ
t

}
.

The argument being completely symmetric, we focus only on τ1. As in Sections 5.2.1 and
5.2.2, we interpret τ1 as the time at which the weighted area At between the maximal and
equilibrium interface vanishes

(111) At := f
(0)
N,k(h

∧
t ) − f

(0)
N,k(h

π
t )

δmin(f
(0)
N,k)

= λ
N−k

2

N−1∑
x=1

λ
1
2 h∧

t (x) − λ
1
2 hπ

t (x)

λ − 1
.

A simple computation based on the identity (42) shows that A is a supermartingale.
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Our strategy to control τ1 is to control the rate at which At shrinks. In a first step (cf.
Section 7.1) we use the contractive estimates given by the spectral gap to show that after a
time of order 1

2(gapN)−1 log kN , At has shrunk from A0 (which is of order kN ) to
√

kN .
Then we need to show that in a time which is o((gapN)−1 log kN) At shrinks from

√
kN to

0. We prove this in Sections 7.2 and 7.3 by controlling the fluctuations of At , which implies
controlling the predictive bracket of the associated martingale. These computations rely on
diffusion bounds for continuous supermartingale (in Appendix B) which might have some
other applications.

While in the large bias case (Section 5) the choice of the grand coupling does not matter,
here it is crucial to use a coupling which maximizes in a certain sense the fluctuation of
the weighted area At , so that this process reaches zero as quickly as possible. The coupling
defined in Appendix A makes the transitions for the two processes h∧ and hπ as independent
as possible (some transitions must occur simultaneously for the two processes in order to
preserve monotonicity).

We consider η > 0 small and introduce the successive stopping times Ti by setting

T0 := inf
{
t ≥ tδ/2 : At ≤ k

1
2 − δ

5 N
}
,

and

Ti := inf
{
t ≥ Ti−1 : At ≤ k

1
2 −iη− δ

5 N
}
, i ≥ 1.

We also set for coherence T∞ := max(τ1, tδ/2) the first time at which At reaches 0. Notice
that some of these stopping times may be equal to tδ/2.

Set TN := min(b−2
N ,N2). To prove Proposition 20, we show first that At shrinks to k

1
2 − δ

5 N

by time tδ/2 and then that it only needs an extra time 2TN to reach 0. The second step is
performed by controlling each increment �Ti := Ti −Ti−1 separately for each i smaller than
some threshold K := �1/(2η)�.

LEMMA 21. Given δ, if η is chosen small enough and K := �1/(2η)�, we have

lim
N→∞P

(
{T0 = tδ/2} ∩

(
K⋂

i=1

{
�Ti ≤ 2−iTN

})∩ {T∞ − TK ≤ TN }
)

= 1.

Note that on the event defined in the lemma and for all N large enough, we have

τ1 ≤ T∞ ≤ tδ/2 + 2TN ≤ tδ.

Hence Proposition 20 follows as a direct consequence.
The bound on T0 is proved in Section 7.1, while that of on T∞ − TK follows from Lemma

23 in Section 7.2, the case of the other increments is more delicate and is detailed in Sec-
tion 7.3.

7.1. Contraction estimates. The approach used in the first step bears some similarity
with the one used in Section 5.2.1, the notable difference being that (47) is not sufficient here
and we must work a bit more to show that E[At ] decays with rate gapN .

LEMMA 22. Given δ > 0 we have P(T0 > tδ/2) → 0 as N → ∞.

PROOF. Note that a(t, x) := E[λ
1
2 h∧

t (x)−λ
1
2 hπ

t (x)

λ−1 ] is a solution of the equation

∂ta = (
√

pq� − �)a,
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with a(t,0) = a(t,N) = 0. Diagonalising the operator on the right-hand side (see Sec-
tion 3.4), we get the following bound on the 
2-norm of the solution:

N−1∑
x=1

a(t, x)2 ≤ e−2gapN t
N−1∑
x=1

a(0, x)2,

and using Cauchy–Schwartz inequality we obtain

(112) λ
k−N

2 E[At ] =
N−1∑
x=1

a(t, x) ≤ √
Ne−gapN t

√√√√N−1∑
x=1

a(0, x)2 ≤ 2e−gapN tNkλk/2.

Since λN/2 is, by the small bias assumption, asymptotically smaller than any power of k,
Markov’s inequality concludes the proof. �

7.2. Diffusion estimate after time tδ/2. Now this part is much more delicate than Sec-
tion 5.2.2. The reason being that since TN is extremely close to tδ , we need very accurate
control on the derivative of the predictable bracket of At . Our first task is to use Proposition
29 in order to control the increment of the bracket of A in between the Ti’s. Let us set

(113) �i〈A〉 := 〈A·〉Ti
− 〈A·〉Ti−1, �∞〈A〉 := 〈A·〉T∞ − 〈A·〉TK

,

and consider the event

AN := {∀i ∈ [[1,K]],�i〈A〉 ≤ k1−2(i−1)η− δ
4 N2}∩ {�∞〈A〉 ≤ TN

}
.

LEMMA 23. We have limN→∞ P[A�
N ] = 0.

PROOF. We apply Proposition 29(ii) to (At+Ti−1)t≥0, with a = k
1
2 −(i−1)η− δ

5 N , b =
k

1
2 −iη− δ

5 N . We obtain that for all N sufficiently large and every i ≤ K

P
[
�i〈A〉 ≥ k1−2(i−1)η− δ

4 N2]≤ k−δ/100.

Applying the same proposition to (At+TK
)t≥0 with a = k− δ

5 N and b = 0, we obtain

(114) P
[
�∞〈A〉 ≥ TN

]≤ 8Nk− δ
5 (TN)−1/2,

and the r.h.s. tends to zero by assumption (12). �

The next step is to compare �i〈A〉 with Ti − Ti−1. For the last increment this is easy: We
have ∂t 〈A·〉 ≥ 1 for any t ≤ T∞ (from our construction A changes its value at rate at least 1,
and its minimal increment in absolute value is 1). We have thus T∞ −TK ≤ �∞〈A〉, and thus
when AN holds we have

(115) T∞ − TK ≤ TN.

7.3. Control of intermediate increments. For all other increments we have to use a subtler
control of the bracket. Let us set

H(t) := λ
N−k

2 max
x∈[[0,N]]

λ
1
2 h∧

t (x) − λ
1
2 h∨

t (x)

λ − 1
,

which corresponds roughly (up to a multiplicative factor λN ) to the maximal height difference
maxh∧

t (x) − h∨
t (x) and thus provides a bound for maxx h∧

t (x) − hπ
t (x).

Recall Q(·) from Section 3.3, and set Q(hπ
t ) := Q(ηπ

t ) where ηπ
t is the particle configu-

ration associated with hπ
t .
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LEMMA 24. We have ∂t 〈A·〉 ≥ At

6H(t)Q(hπ
t )

.

PROOF. As mentioned above, all the jumps of At have amplitude larger than or equal
to 1. Moreover, At performs a jump whenever hπ

t performs a transition while h∧
t does not,

or when the opposite occurs. As any such transition occurs at rate larger than qN ≥ 1/3, only
considering the transitions for hπ

t , we obtain the following lower bound for the drift of 〈A·〉
(recall (41)):

(116) ∂t 〈A·〉 ≥ 1

3
#
{
x ∈ Ct : �(hπ

t

)
(x) �= 0

}=: 1

3
#Dt

where

Ct := {x ∈ [[1,N − 1]] : ∃y ∈ [[x − 1, x + 1]], h∧
t (y) > hπ

t (y)
}
.

Now let [[a, b]] be a maximal connected component of Ct , we claim that

(117) #
(
Dt ∩ [[a, b]])≥ max

(⌊
b − a

Q(hπ
t )

⌋
,1
)

≥ b − a

2Q(hπ
t )

.

To check the first inequality, notice that #(Dt ∩[[a, b]]) ≥ 1 because hπ
t cannot be linear on the

whole segment [[a, b]]. On the other hand, considering the particle configuration associated
to hπ

t and decomposing the segment [[a, b]] into maximal connected components containing
either only particles or only holes, we see that any two consecutive components corresponds
to a point in Dt : since Q(hπ

t ) is an upper bound for the size of these components, we deduce
that #(Dt ∩ [[a, b]]) ≥ � b−a

Q(hπ
t )

�.
Now we observe that

(118) λ
N−k

2

b∑
x=a

λ
h∧
t (x)

2 − λ
hπ
t (x)

2

λ − 1
≤ (b − a)H(t).

Combining (117) and (118) and summing over all such intervals [[a, b]], we obtain

(119) At ≤ 2#DtH(t)Q
(
hπ

t

)
,

and (116) allows us to conclude. �

The last ingredient needed is then a bound on H: The proof of this proposition is postponed
to Section 7.4. Recall that t0 = log k/(2gapN).

PROPOSITION 25. For any c > 0 we have

(120) lim
N→∞ sup

t≥t0

P
(
H(t) > k

1
2 +c)= 0.

PROOF OF LEMMA 21. By Lemma 22, Lemma 23 and equation (115), we already know
that

lim
N→∞P

({T0 ≤ tδ/2} ∩ {T∞ − TK ≤ TN })= 1.

We define HN to be the event on which particles are reasonably spread and H(t) is reasonably
small for most of the times within the interval [tδ/2, tδ/2 + TN ],

(121) HN :=
{∫ tδ/2+TN

tδ/2

1{ H(t) ≤ k
1
2 + δ

80 } ∩ {Q(hπ
t ) ≤ Nk

δ
80 −1 } dt ≥ TN

(
1 − 2−(K+1))}.
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We have

E

[
T −1

N

∫ tδ/2+TN

tδ/2

1{H(t)>k
1
2 + δ

80 }∪{Q(hπ
t )>Nk

δ
80 −1}

]
≤
(
πN,k

(
Q(ξ) > Nk

δ
80 −1)+ sup

t≥t0

PH(t) > k
1
2 + δ

80

)
.

(122)

By Proposition 5 and Proposition 25, the r.h.s. tends to zero and hence the variable in the
expecation tends to 0 in probability. As a consequence we have

lim
N→∞P(HN) = 1.

We now work on the event HN ∩AN ∩ {T0 ≤ tδ/2} whose probability tends to 1 according to
Lemmas 22, 23. We prove by induction that �Tj ≤ 2−jTN for all j ∈ [[1,K]]. Let us reason
by contradiction and let i be the smallest integer such that �Ti > 2−iTN . We have

(123) �i〈A〉 ≥
∫ Ti−1+2−iTN

Ti−1

∂t 〈A·〉1{ H(t) ≤ k
1
2 + δ

80 } ∩ {Q(hπ
t ) ≤ Nk

δ
80 −1 } dt.

Now, Lemma 24 and the restriction with the indicator function provides a uniform lower
bound on ∂t 〈A·〉. The assumption �Tj ≤ 2−jTN for j < i implies that Ti−1 ≤ tδ/2 + TN(1 −
2−(i−1)), and thus the assumption that HN holds implies that the indicator in (123) is equal
to one on a set of measure at least 2−i − 2−(K+1) ≥ 2−(K+1). All of this implies that

(124) �i〈A〉 ≥ 1

6
TN2−(K+1)k1−iη− δ

40 − δ
5 .

On the other hand, since we work on AN we have �i〈A〉 ≤ k1−2(i−1)η− δ
4 N2 so that we get a

contradiction as soon as η is small enough compared to δ. �

7.4. Bounding the maximum. Recall the function aN,k defined in Section 3.4. Set

H1(t, x) := λ
N−k

2
λ

1
2 h∧

t (x) − aN,k(x)

λ − 1
, H2(t, x) := λ

N−k
2

λ
1
2 h∨

t (x) − aN,k(x)

λ − 1
,

so that

H1(t, x) − H2(t, x) = λ
N−k

2
λ

1
2 h∧

t (x) − λ
1
2 h∨

t (x)

λ − 1
.

For every i = 1,2, we define

Hi (t) := max
x∈[[0,N]]

∣∣Hi(t, x)
∣∣.

Notice that H(t) ≤ H1(t) + H2(t) so that Proposition 25 is a consequence of the following
result.

PROPOSITION 26. For any c > 0, there exists c′ > 0 such that for all N large enough

sup
t≥t0

max
i∈{1,2}P

(
Hi (t) > k

1
2 +c)≤ e−kc′

.

The proof of this bound is split into two lemmas. First, we show that Hi(t, ·) can not
decrease too much.
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LEMMA 27. We have for all N sufficiently large, all x ∈ [[1,N − 1]], all t ≥ 0, every
i ∈ {1,2} and every y ≥ x

(125) Hi(t, y) − Hi(t, x) ≥ −k2(y − x)

4N
.

PROOF. It is of course sufficient to prove that

Hi(t, x) − Hi(t, x − 1) ≥ − k2

4N
.

We focus on i = 1, since similar arguments yield the inequality for i = 2. Since aN,k(x) =
EπN,k

[λh(x)/2] where aN,k was defined in Section 3.4, we have the identity

H1(t, x) − H1(t, x − 1) = λ
N−k

2
λ

1
2 h∧

t (x) − λ
1
2 h∧

t (x−1)

λ − 1

− λ
N−k

2
EπN,k

[λ 1
2 h(x) − λ

1
2 h(x−1)]

λ − 1
.

(126)

We have for any η ∈ �0
N,k , setting h = h(η),

(127)
λ

1
2 h(x) − λ

1
2 h(x−1)

λ − 1
= λ

1
2 (h(x−1)−1)

(
η(x) − 1√

λ + 1

)
.

Hence applying (127) for h∧
t and for h at equilibrium, we obtain

H1(t, x) − H1(t, x − 1)

= λ
N−k

2
EπN,k

[λh(x−1)−1
2 ] − λ

h∧
t (x−1)−1

2√
λ + 1

− λ
N−k

2
(
EπN,k

[
λ

h(x−1)−1
2 η(x)

]− λ
h∧
t (x−1)−1

2 η∧
t (x)

)
≥ λ

N−k
2

EπN,k
[λh(x−1)−1

2 ] − λ
h∧
t (x−1)−1

2√
λ + 1

− λ
N−k

2 EπN,k

[
λ

h(x−1)−1
2 η(x)

]
.

(128)

By Proposition 5 and the small bias assumption (12), we have for all N large enough

λ
N−k

2 EπN,k

[
λ

h(x−1)−1
2 η(x)

]≤ λ
N
2 EπN,k

[
η(x)

]≤ λ2N k

N
≤ k2

8N
.

Regarding the first term on the r.h.s. of (128), we simply notice that for ζ, ζ ′ ∈ �N,k , we have
ζ(x) − ζ ′(x) ≤ 2k so that

(129) λ
N−k

2
∣∣λζ(x)

2 − λ
ζ ′(x)

2
∣∣≤ (λ − 1)λ

N
2 k ≤ k2

8N
.

This is sufficient to conclude. �

Let us introduce the average of Hi(t, ·) over a box of size 
 = 
N,k = �N
k2 �

H̄i(t, y) := 1




y
∑
x=(
−1)y+1

Hi(t, x).
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As a consequence of Lemma 27 we have

(130) Hi (t) = max
x∈[[0,N]]

∣∣Hi(t, x)
∣∣≤ max

y∈[[1,N/
]]
∣∣H̄i(t, y)

∣∣+ 1.

The result is of course obvious when 
 = 1. For 
 ≥ 2, let us briefly explain why
maxHi(t, x) ≤ max |H̄i(t, y)| + 1 (the case for −min follows by symmetry). If xmax is the
smallest x at which the max is attained, we must distinguish two cases

(A) xmax > 
(�N/
� − 1) + 1 ≥ N − 2
, in which case (125) applied for xmax and N

implies that Hi(t, xmax) ≤ 1,
(B) xmax ≤ 
(�N/
� − 1) + 1 in which case one can compare Hi(t, xmax) with H̄i(t, y)

for the smallest y such that xmax ≤ y(
 − 1) + 1 using (125) again.

Then, Proposition 26 is a direct consequence of the following bound on the averages of Hi .

LEMMA 28. For any a > 0, there exists a′ > 0 such that for all N large enough

sup
t≥t0

max
i∈{1,2}P

(
max

y∈[[1,N/
]]
∣∣H̄i(t, y)

∣∣> k
1
2 +a
)
≤ e−ka′

.

PROOF. We treat in details the bound of H̄1, since the bound of H̄2 follows from the
same arguments. Using a decomposition of λ

k−N
2 H1(t, ·), which is a solution of (42), on the

basis of eigenfunction of the Laplacian formed by sin(iπ ·), i = 1, . . . ,N − 1, we obtain the
following expression for the mean:

E
[
H1(t, x)

]= λ
N−k

2

N−1∑
i=1

2

N
e−γi tf

(i)
N,k(∧) sin

(
iπx

N

)
,

and the fluctuation around it

(131) H1(t, x) −E
[
H1(t, x)

]= λ
N−k

2

N−1∑
i=1

2

N

(
f

(i)
N,k

(
h∧

t

)− e−γi tf
(i)
N,k(∧)

)
sin
(

iπx

N

)
.

We bound separately the contributions to H̄1 coming from these two terms. We start with the

mean. Since λ
1
2 ∧(y) ≥ aN,k(y) ≥ λ

1
2 ∨(y) for every y ∈ [[0,N]], we have (recall (66))

∣∣f (i)
N,k(∧)

∣∣≤ N−1∑
y=1

λ
1
2 ∧(y) − aN,k(y)

λ − 1
≤

N−1∑
y=1

λ
1
2 ∧(y)∧(y) − ∨(y)

2
≤ λ

k
2 kN.

Since, by the small bias assumption (12), λk/2 is negligible compared to any power of k, we
deduce that for all a > 0 and all t ≥ t0 we have for all N large enough

sup
x∈[[0,N]]

∣∣∣∣∣
N−1∑
i=1

2

N
e−γi tf

(i)
N,k(∧) sin

(
iπ

x

N

)∣∣∣∣∣≤ k(1+a)/2
N−1∑
i=1

e(γ1−γi)t0 .

Notice that there exists c > 0 such that for all i ≥ 2 and all N large enough

(132) γi − γ1 ≥ c
i2

N2 .

In addition, we have N2gapN � (log k)2 by the small bias assumption (12), so that we get
for i ≥ 2

e(γ1−γi)t0 ≤ e
−c i2

N2
logk

2gapN ≤ e
−c′ i2

logk ≤ e
−c′ i

logk ,
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so that for all N large enough we have

N−1∑
i=2

e(γ1−γi)t0 ≤
N−1∑
i=2

e
−c′ i

logk ≤ C logk.

Recall that 
 = �N/k2�. Putting everything together and using assumption (12), we get that
given a > 0 for N sufficiently large and all values of y we have

(133) E
[
H̄1(t, y)

]= 2λ
N−k

2

N


∣∣∣∣∣

y∑

x=
(y−1)+1

N−1∑
i=1

e−γi tf
(i)
N,k(∧) sin

(
iπ

x

N

)∣∣∣∣∣≤ 1

2
k

1
2 +a.

We turn to the contribution coming from the second term (131). To that end, we rewrite it
in the form

(134) H̄1(s, y) −E
[
H̄1(s, y)

]= λ
N−k

2

N−1∑
i=1

(
f

(i)
N,k

(
h∧

t

)− e−γisf
(i)
N,k(∧)

)
�y,i,

where (the second expression being obtained by summation by part)

�y,i = 2

N


y
∑
x=y(
−1)+1

sin
(

iπx

N

)

= 1

N
 sin( iπ
2N

)

[
cos
( [2y(
 − 1) + 1]iπ

2N

)
− cos

( [2y
 + 1]iπ
2N

)]
.

(135)

Note that for all N ≥ 1, y and i we have

|�y,i | ≤ 2 min
(

1

N
,

1

i


)
.

Now let us fix t and y and introduce the martingale

N(t,y)
s = λ

N−k
2

N−1∑
i=1

eγi(s−t)(f (i)
N,k

(
h∧

s

)− e−γisf
(i)
N,k(∧)

)
�y,i, s ∈ [0, t],

which satisfies

N
(t,y)
0 = 0 and N

(t,y)
t = H̄1(t, y) −E

[
H̄1(t, y)

]
.

We wish to apply Lemma 31 to the martingale N(t,y): the maximal jump rate of this process
is bounded by k and the maximal amplitude of the jump (cf. the notations introduced in
Appendix C) satisfies

∀s ∈ [0, t], S(s) ≤ λN
N−1∑
i=1

eγi(s−t)|�y,i |.

From (132) we have γi ≥ ci2N−2 for all i ≥ 1 for some positive constant c. We deduce that
for some adequate choice of the constants C,C′ > 0 we have∫ t

0
S(s)2 ds ≤ λ2N

N−1∑
i,j=1

1

γi + γj

|�y,i�y,j |

≤ Cλ2N

( ∑
1≤i≤j≤N




1

i2 + j2 + ∑
1≤i≤N



<j

N

j


1

i2 + j2 + ∑
N


<i≤j

N2

ij
2

1

i2 + j2

)

≤ C′λ2N log k.
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Consequently, setting γ = k− 1
2 −2a and using the fact that from (12) we have γC′λ2N logk <

1 for N sufficiently large, we apply (151) and obtain

P

(
N

(t,y)
t >

1

2
k

1
2 +a

)
≤ E
[
eγN

(t,y)
t
]
e− 1

2 γ k
1
2 +a

≤ eC′eγ 2kλ2N log k− 1
2 γ k

1
2 +a ≤ e− 1

4 k−a

.

(136)

A similar same computation for N
(t,y)
t < −1

2k
1
2 +a and a union bound yield

P

(
sup

y∈[[1,N/
]]
∣∣H̄i(t, y) −E

[
Hi(t, y)

]∣∣> 1

2
k

1
2 +a

)

= P

(
sup

y∈[[1,N/
]]
∣∣N(t,y)

t

∣∣> 1

2
k

1
2 +a

)
≤ Ck2e− 1

4 k−a

,

(137)

which combined with (133) allows us to conclude. �

APPENDIX A: A MONOTONE GRAND COUPLING

The construction below is similar to the one detailed in [13], Section 8.1, in the symmetric
case. We consider a collection of independent Poisson clock processes P(i,
) and Q(i,
) with
rate p and q respectively where i ∈ [[1,N]] and 
 ∈ [[−N, . . . ,N]]: For each (i, 
), P(i,
) resp.
Q(i,
) is a random increasing sequence of positive real numbers (or equivalently a random
locally finite subset of (0,∞)) whose first term and increments are independent geometric
variables of mean p−1 resp. q−1.

For every k and every ζ ∈ �N,k , we construct the process (h
ζ
t )t≥0 as follows: The process

is càd-làg and may only jump at the times specified by the clock process P and Q. We
enumerate these Poisson times in increasing order and if t ∈ P(i,
) and if h

ζ
t− displays a local

maximum at i and height 
, that is if

h
ζ
t−(i) = 
 = h

ζ
t−(i − 1) + 1 = h

ζ
t−(i + 1) + 1,

then we flip it downwards to a local minimum by setting, h
ζ
t (i) := h

ζ
t−(i) − 2, and h

ζ
t (j) =

h
ζ
t−(j) for j �= i. A similar transition occurs if Q(i, 
) rings and if h

ζ
t− displays local mini-

mum at i and height 
.
It is simple to check that under this construction, hζ indeed evolves according to the right

dynamics, and that monotonicity is preserved.

APPENDIX B: DIFFUSION BOUNDS FOR CONTINUOUS-TIME
SUPERMARTINGALES

In this section, we assume that (Mt)t≥0 is a pure-jump supermartingale with bounded jump
rate and jump amplitude. This implies in particular that, Mt is square integrable for all t > 0.
With some abuse of notation, we use the notation 〈M·〉t for the predictable bracket associated
with the martingale M̃t = Mt − At where A is the compensator of M .

PROPOSITION 29. Let (Mt)t≥0 be as above

(i) Set τ = inf{t ≥ 0 : Mt = 0}. Assume that Mt is nonnegative and that, until the ab-
sorption time τ , its jump amplitude and jump rate are bounded below by 1. Then we have for
any a ≥ 1 and all u > 0

(138) P
[
τ ≥ a2u|M0 ≤ a

]≤ 4u−1/2.
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(ii) Given a ∈R and b ≤ a, we set τb := inf{t ≥ 0 : Mt ≤ b}. If the amplitude of the jumps
of (Mt)t≥0 is bounded above by a − b, we have for any u ≥ 0

(139) P
[〈M·〉τb

≥ (a − b)2u|M0 ≤ a
]≤ 8u−1/2.

The important building block for the proof of the above proposition is the following result.

LEMMA 30. Let (Mt)t≥0 be as above

(i) If the amplitude of the jumps of (Mt)t≥0 and the jump rate are bounded below by 1
then for all λ ∈ (0,1), (

e−λMt− λ2t
4
)
t≥0

is a submartingale,
(ii) If the amplitude of the jumps of Mt is bounded above by a then for any λ ∈ (0, a−1),(

exp
(
−λMt − λ2

4
〈M·〉t

))
t≥0

is a submartingale.

PROOF OF PROPOSITION 29. The result only needs to be proved for u ≥ 4. Without loss
of generality one can assume for the proof of both statements that P [M0 ≤ a] = 1 and for the
second one that b = 0. We set λ = 2a−1u−1/2.

For (i), we apply the Martingale Stopping Theorem to the submartingale given by Lemma
30(i). It yields:

(140) E
[
e− λ2τ

4
]≥ E

[
e−λM0

]≥ e−λa = e−2u−1/2
.

On the other hand, one has

(141) E
[
e− λ2τ

4
]≤ 1 − (1 − e− λ2

4 a2u)
P
[
τ ≥ a2u

]≤ 1 − 1

2
P
[
τ ≥ a2u

]
.

The combination of the two yields

(142) P
[
τ ≥ a2u

]≤ 2
(
1 − e−2u−1/2)≤ 4u−1/2.

For (ii), the arguments of the previous case apply almost verbatim if one replaces τ by
T := 〈M·〉τ . The only thing one has to take into account is that Mτ is not necessarily equal to
0, but the assumption on the amplitude of jumps yields Mτ ≥ −a. The Martingale Stopping
Theorem gives us

(143) E
[
e− λ2T

4
]≥ e−λa

E
[
e−λMτ− λ2T

4
]≥ e−λa

E
[
e−λM0

]≥ e−4u−1/2
.

Repeating the rest of the computation yields

(144) P
[
T ≥ a2u

]≤ 2
(
1 − e−4u−1/2)≤ 8u−1/2. �

PROOF OF LEMMA 30. Until the end of the proof, we write Et for the conditional ex-
pectation given (Ms)s≤t .

Case (i). Take λ ∈ (0,1). The submartingale identity we need to prove can be written as
follows:

∀s, t ≥ 0, logEt

[
e−λ(Mt+s−Mt)

]≥ s
λ2

4
.
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Taking derivative, we deduce that it suffices to prove that for all t, s ≥ 0 we have

(145) lim
h↓0

1

h
Et

[
e−λ(Mt+s+h−Mt) − e−λ(Mt+s−Mt)

]≥ λ2

4
Et

[
e−λ(Mt+s−Mt)

]
.

Notice that for all x ∈R

(146) e−x + x − 1 ≥ min(1, x2)

4
.

Thus, using the supermartingale property of M we have for all λ ∈ (0,1)

Et

[
e−λ(Mt+s+h−Mt) − e−λ(Mt+s−Mt)

]
= Et

[
e−λ(Mt+s−Mt)Et+s

[
e−λ(Mt+s+h−Mt+s ) − 1

]]
≥ Et

[
e−λ(Mt+s−Mt)Et+s

[
e−λ(Mt+s+h−Mt+s ) + λ(Mt+s+h − Mt+s) − 1

]]
≥ λ2

4
Et

[
e−λ(Mt+s−Mt)Et+s

[
min
(
1, (Mt+s+h − Mt+s)

2)]].
The assumption on the jump rates and the jump amplitudes yield

(147) lim inf
h→0

1

h
Et+s

[
min
(
1, (Mt+s+h − Mt+s)

2)]≥ 1,

so that Fatou’s Lemma concludes the proof.
Case (ii). We can assume without loss of generality that a = 1. Here again, taking the

derivative of the submartingale identity that we want to establish, it suffices to prove that for
all t, s ≥ 0 we have

lim inf
h↓0

1

h
Et

[
e−λMt+s+h− λ2

4 〈M·〉t+s+h − e−λMt+s− λ2
4 〈M·〉t+s

]≥ 0.

Taking the conditional expectation w.r.t. Mt+s , we see that it suffices to prove the existence
of some deterministic constant C > 0 such that

(148) Et+s

[
e−λ(Mt+s+h−Mt+s )− λ2

4 (〈M·〉t+s+h−〈M·〉t+s ) − 1
]≥ −Ch2,

for all h small enough.
Without loss of generality, we can assume that t + s = 0 and M0 = 0. Recall that M̃ ≥ M

is the martingale which is obtained by subtracting the (negative) compensator. Thus

e−λMh− λ2
4 〈M·〉h − 1 ≥ e−λM̃h− λ2

4 〈M·〉h − 1

≥
(

1 − λM̃h + 1

4
min
(
1, λ2M̃2

h

))(
1 − λ2

4
〈M·〉h

)
− 1

≥ −λM̃h + λ2

4

(
M̃2

h − 〈M·〉h)− λ2

4

(
M̃2

h − λ−2)
+

+ λ2

4
〈M·〉h

(
λM̃h − 1

4
min
(
1, λ2M̃2

h

))
,

so that

E
[
e−λMh− λ2

4 〈M·〉h − 1
]≥ E

[
−λ2

4

(
M̃2

h − λ−2)
+

+ λ2

4
〈M·〉h

(
λM̃h − 1

4
min
(
1, λ2M̃2

h

))]
.
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Take λ ∈ (0,1). Our assumptions on the increments and jump rates imply that for some
constant C > 0 we have

E
[(

M̃2
h − λ−2)

+
]≤ Ch2,

〈M·〉h ≤ Ch,

max
(
E
[|M̃h|],E[min

(
1, λ2M̃2

h

)])≤ Ch,

(149)

(the compensator being of order h the estimates for M̃ can be deduced from that for M),
which allows us to conclude that (148) holds. �

APPENDIX C: EXPONENTIAL MOMENTS OF CONTINUOUS-TIME
MARTINGALES

Let (Mt)t≥0 be a martingale defined as a function of a continuous time Markov chain on a
finite state space

Mt = f (t,Xt),

where f is differentiable in time. We let B denote the maximal jump rate for X and let S(t)

denote the maximal amplitude for a jump of M at time t :

S(t) := max
ξ∼ξ ′
∣∣f (t, ξ) − f

(
t, ξ ′)∣∣.

LEMMA 31. For any λ > 0 we have

(150) E
[
eλMt

]≤ exp
(
B

∫ t

0

[
eλS(s) − λS(s) − 1

]
ds

)
.

In particular if λS(t) ≤ 1 for all t ≥ 0 then we have

(151) E
[
eλMt

]≤ exp
(
Beλ2

∫ t

0
S2(s)ds

)
.

PROOF. We are going to show that for all t ≥ 0

(152) ∂t logE
[
eλMt

]= ∂tE[eλMt ]
E[eλMt ] ≤ B

[
eλS(t) − λS(t) − 1

]
.

To that end, it is sufficient to show that almost surely

(153) ∂sE
[
eλ(Mt+s−Mt) − 1|Ft

]|s=0 ≤ B
[
eλS(t) − λS(t) − 1

]
.

Indeed (152) is obtained by multiplying both sides of (153) by eλMt and by taking expec-
tations. We let �sM = Mt+s − Mt denote the martingale increment and as in the previous
section write Et for the conditional expectation w.r.t. Mt . By the martingale property, and the
fact that ex − x ≤ e|x| − |x| for every x ∈R, we have

Et

[
eλ�sM − 1

]= Et

[
eλ�sM − λ�sM − 1

]≤ Et

[
eλ|�sM| − λ|�sM| − 1

]
.

Note that |�sM| is stochastically dominated by[
max

u∈[t,t+s]S(u)
]
W + s × max

u∈[t,t+s]
∥∥∂uf (u, ·)∥∥∞,

where W is a Poisson variable of parameter Bs. As S is Lipshitz we conclude that

(154) Et

[
eλ|�sM| − λ|�sM| − 1

s

]
≤ B
[
eλS(t) − λS(t) − 1

]+ cs. �
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