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Let d ≥ 2. The Cheeger constant of a graph is the minimum surface-
to-volume ratio of all subsets of the vertex set with relative volume at most
1/2. There are several ways to define surface and volume here: the simplest
method is to count boundary edges (for the surface) and vertices (for the vol-
ume). We show that for a geometric (possibly weighted) graph on n random
points in a d-dimensional domain with Lipschitz boundary and with distance
parameter decaying more slowly (as a function of n) than the connectivity
threshold, the Cheeger constant (under several possible definitions of sur-
face and volume), also known as conductance, suitably rescaled, converges
for large n to an analogous Cheeger-type constant of the domain. Previously,
García Trillos et al. had shown this for d ≥ 3 but had required an extra con-
dition on the distance parameter when d = 2.

1. Introduction. A significant recent theme in topological/geometrical data analysis and
machine learning is the reconstruction of topological/geometrical properties of a continuous
space such as a manifold from a random sample of points in that space via a graph, or more
generally a simplicial complex, derived from the sample by connecting nearby points; see for
example [9, 13, 18, 21, 24]. A prototypical graph of this type is the random geometric graph,
where one connects every pair of points up to a specified distance r apart (we shall consider
generalization of this to allow for weighted graphs).

One quantity of considerable interest in both the continuum and discrete settings is the
Cheeger constant. For a d-dimensional Euclidean domain D (or more generally, a manifold),
the Cheeger constant is the minimum perimeter-to-volume ratio of all subregions of D with
relative volume at most 1/2 (here, when measuring the perimeter of a subregion of D, only
the part of the boundary that is interior to D is included). It can be used to provide useful
bounds for the first eigenvalue gap of the Laplacian on D (with Dirichlet boundary condition)
[8, 11]. The analogous quantity for a graph (there are several possible definitions, as we shall
describe below) similarly provides bounds for the eigengap of the graph Laplacian, and is
therefore important in, among other things, the study of the mixing time of a random walk on
the graph (see [4, 25] and [12], Chapter 2, e.g.). Cheeger constants provide a natural measure
of the quality of the partition in cluster analyisis, and are important in graph-based spectral
clustering methods [33].

Given the above, it is of interest mathematically, but also from the point of view of cluster
analysis and machine learning, to know whether one can “learn” about the Cheeger con-
stant of the region D from that of the random geometric graph on a sample of points in D.
More formally, is the discrete Cheeger constant based on a geometric graph on a sample
of n random points with distance parameter rn, suitably rescaled, a consistent estimator of
the continuum Cheeger constant? If so, for which choices of the sequence (rn)n≥1 is this
the case? In practical terms, one would like to use small values of rn to reduce the com-
putational cost of computing the Cheeger constant of the graph, but if rn is too small then
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the graph will not be connected and its Cheeger constant will be zero. At least for regions
D with well-behaved boundary, the asymptotic threshold for connectivity is known to be at
rn = const. × ((logn)/n)1/d [28, 29].

Such questions were first raised and partially answered by Arias–Castro et al. in [2].
A more complete answer was given by García Trillos et al. in [22]; they established con-
sistency in dimensions d ≥ 3 for all sequences (rn) tending to zero more slowly than the
connectivity threshold, but left a gap when d = 2, as described in the next section. In the
present paper we provide an alternative proof of consistency which fills this gap. We also
provide more detail than [22] for the proof in the case of some of the choices of definition of
Cheeger constant of a graph.

Our argument has the potential to provide a method of showing convergence for a number
of other graph optimization problems, such as those described in [30], in the spirit of the
celebrated BHH result [3] for the travelling salesman problem. To illustrate this, we also give
a BHH type result for the the minimal bisection of a random geometric graph; that is, the
partition of the vertices into two equal pieces which minimises the total weight of cut edges.
Finding the minimal bisection is a classic problem in computer science with applications, for
example, in parallel processing and Very Large Scale Integration; see, for example, [5, 15,
17].

We briefly discuss some of the sources of difficulty in these problems and the techniques
used to overcome them. In the bisection problem, for example, the main difficulty is to find
a good lower bound on the cost of all possible bisections of the point process. By matching
the points of the sample to those of a rectangular grid with the same number of points in D,
one may identify each such bisection with a bisection of the domain, and hence identify its
cut weight with a suitably smoothed measure of the perimeter of the bisection of the domain.
Using a “liminf” Gamma-convergence bound from [20] one may then asymptotically lower
bound the cost of the point process bisection by the minimal perimeter of bisections of the
domain.

Loosely speaking, this is the approach of [22]. Its reliance on grid matching results means
that one requires rn to be larger than the distances involved in the grid matching, and in d = 2
this is known to be a stronger condition than connectivity.

Our contribution is to circumvent the need for any grid matching. To do this, we use a
coarser granulation of space into boxes which are large enough for the number of points in
a box to be concentrated about its mean (but which are smaller than rn). We develop a local
optimization technique to show that in every optimal bisection (Y,Y c) of the point set, each
box contains mostly points of Y or mostly points of Y c so every optimal bisection of the point
process may be identified with a collection of boxes whose union bisects the domain. One
may then use the Gamma-convergence techniques as before.

2. Statement of results. Let d ∈ {2,3, . . .} and let D ⊂ R
d be open. Let (rn)n≥1 be an

R+-valued sequence, where R+ := [0,∞). Let X1,X2, . . . be a sequence of independent
random d-vectors taking values in D with common probability density function denoted ρ.
For n ∈ N let Xn := {X1, . . . ,Xn}. Given a function φ : R+ → R+, let Gφ(Xn, rn), the φ-
weighted random geometric graph on the point set Xn with distance parameter rn, be the
complete graph on vertex set Xn, with the weight of the edge {X,Y } given by φ(‖Y −X‖/rn)

for each X,Y ∈ Xn with X �= Y , where ‖ · ‖ denotes the Euclidean norm.
Two important special cases of φ are

φU(t) := 1[0,1](t); φN(t) := exp
(−t2)

.

The graph GφU
(Xn) amounts to the classic Euclidean (unweighted) random geometric graph

(also known as the Gilbert graph); see [28] for an overview of such graphs. The Gaussian
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(Normal) weight function φN is often used in spectral clustering algorithms; see, for example,
[33]. We shall consider a general class of φ satisfying mild monotonicity and integrability
conditions, which includes the two examples just mentioned.

Given Y ⊂ Xn, set

Cutn,φ(Y) := ∑
y∈Y

∑
x∈Xn\Y

φ

(‖x − y‖
rn

)
,

which is the total weight in Gφ(Xn, rn) of the cut edges induced by Y , that is, the edges
from Y to its complement. We are interested in choosing Y to make Cutn,φ(Y) small but
with some penalty for choices of Y for which Y or its complement is disproportionately
small. This penalty takes the form of dividing Cutn,φ(Y) by a “balance term” based on the
“volume” of Y and its complement, where “volume” may be measured by counting either
vertices or (weighted) edges. Several choices of balance term have thus been proposed in the
literature, including

(2.1) Baln,v,1(Y) := min(Voln,v(Y),Voln,v(Xn \Y))

Voln,v(Xn)
, v ∈ {1,2},

and

(2.2) Baln,v,2(Y) := Voln,v(Y)Voln,v(Xn \Y)

(Voln,v(Xn))2 , v ∈ {1,2},

where, with |Y| denoting the number of elements of Y , we set

Voln,1(Y) := |Y|; Voln,2(Y) := ∑
y∈Y

∑
x∈Xn\{y}

φ

(‖x − y‖
rn

)
.

(Some authors include an extra factor of 2 in the right hand side of (2.2).) In this paper we
consider the Cheeger-type functionals

(2.3) CHEv,b

(
Gφ(Xn, rn)

) := min
Y⊂Xn:Y �=∅,Y �=Xn

(
Cutn,φ(Y)

Baln,v,b(Y)

)
, (v, b) ∈ {1,2}2.

The quantity being minimized in (2.3) is sometimes called the Cheeger cut of Y for
(v, b) = (1,1), the ratio cut for (v, b) = (1,2), the normalized cut for (v, b) = (2,1)

and the sparsest cut for (v, b) = (2,2); see [22] and references therein. The terms
Cheeger constant and conductance with reference to a graph are used with little unanim-
ity in the literature; all three of CHE1,1(Gφ(Xn, rn)), CHE2,1(Gφ(Xn, rn))/Voln,2(Xn) and
CHE2,2(Gφ(Xn, rn))/(Voln,2(Xn))

2 could be called the Cheeger constant or conductance of
the graph Gφ(Xn, rn); see, for example, [2, 4, 22, 25].

One may also consider continuum analogues. Let B(D) denote the Borel σ -field on D.
Let ν be the measure on (D,B(D)) with Lebesgue density ρ (i.e., the distribution of X1).
For u ∈ L1(ν) set

TV(u) := sup
{∫

D
u(x)div(�)(x) dx : � ∈ C1

c

(
D : Rd)

,
∣∣�(x)

∣∣ ≤ ρ2(x) ∀x ∈ D

}
.

Here C1
c (D :Rd) denotes the class of all continuously differentiable functions from D to R

d

having support that is compact and contained in D. For � = (�1, . . . ,�d) ∈ C1
c (D : Rd),

and x = (x1, . . . , xd) ∈ D, we define div(�)(x) = ∑d
i=1

∂�i

∂xi
|x . We shall assume throughout

that D is bounded and connected, and that D has Lipschitz boundary, which means that each
x ∈ ∂D (the boundary of D) has a neighbourhood U such that the restriction of ∂D to U is the
graph of a Lipschitz function after a suitable rotation. We shall also assume that the density
ρ : D → R+ is continuous with ρmax := supx∈D ρ(x) < ∞ and ρmin := infx∈D ρ(x) > 0.
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Then, according to (3.3) of [20] (see also Proposition 2.33 of [23]), if u = 1A is the indicator
function of a set A ⊂ R

d with C1 boundary (defined analogously to the Lipschitz boundary
above), then

(2.4) TV(1A) =
∫
∂A∩D

ρ2(x)Hd−1(dx),

where Hd−1 is the (d − 1)-dimensional Hausdorff measure. More generally than (2.4), we
assert for all A ∈ B(D) with TV(1A) < ∞ that

(2.5) TV(1A) =
∫
∂∗A∩D

ρ2(x)Hd−1(dx),

where ∂∗A is the De Giorgi reduced boundary of A (see [7], Definition 1.54). This asser-
tion follows from (3.5) of [22] and Theorem 1.55 of [7]. We define the continuum Cheeger
functionals of (D,ρ) by

(2.6) CHEv,b(D,ρ) := inf
A∈B(D):0<ν(A)<1

(
TV(1A)

Balν,v,b(A)

)
, (v, b) ∈ {1,2}2,

where for A ∈ B(D) we set

Balν,v,1(A) := min(Volν,v(A),Volν,v(D \ A))

Volν,v(D)
;

Balν,v,2(A) := Volν,v(A)Volν,v(D \ A)

(Volν,v(D))2 ,

with

Volν,v(A) :=
∫
A

(
ρ(x)

)v
dx, v ∈ {1,2}.

Under mild conditions on D and ρ, for (v, b) ∈ {1,2}2 the minimum in the definition
of CHEv,b(D) is achieved for some A; this is part of the statement of Theorem 2.2 be-
low (and was already known). Using (2.4), it is easy to see that CHEv,b(D,ρ) < ∞. Also
CHEv,b(D,ρ) > 0; although this is a known result, we sketch a proof in Section 7, since it
might not be well known to all readers.

It may be the case that in some circumstances, the definition of CHEv,b(D,ρ) is unaf-
fected by restricting the minimum to sets A with smooth boundary, for which we can use
the definition (2.4) of TV(1A). A result along these lines (for constant ρ and under a fur-
ther smoothness condition on ∂D) appears in [10], but to give such a result in the generality
considered here would be beyond the scope of the present paper.

We shall assume φ satisfies the following conditions:

φ(r) ≥ φ(s) ∀r, s ∈ R+ with r ≤ s;(2.7)

φ(0) > 0 and φ is continuous on [0, δ] for some δ > 0;(2.8)

σφ :=
∫
Rd

φ
(‖x‖)|x1|dx < ∞,(2.9)

where here x1 denotes the first co-ordinate of x. The quantity σφ is sometimes called the
“surface tension” of φ. In particular σφU

is twice the quantity denoted γd in equation (4) of
[2]. We have

(2.10) σφU
= 2π(d−1)/2

(d + 1)�((d + 1)/2)
; σφN

= π(d−1)/2.

The first identity of (2.10) is derived in [2], and the second is standard. For any two
R+-valued sequences (an)n≥1 and (bn)n≥1 we write an 
 bn or bn � an or bn = o(an)
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if limn→∞(bn/an) = 0 (defining 0/0 := 1). We also sometimes write bn = O(an) if
lim supn→∞(bn/an) < ∞, and write bn = �(an) if both bn = O(an) and an = O(bn). We
use the term “almost surely” (or “a.s.”) to denote “with probability one” (rather than “with
probability tending to one”). The following is our main result.

THEOREM 2.1. Suppose that D is a nonempty, open, bounded, connected subset of Rd

with Lipschitz boundary, and ρ : D → R+ is a continuous probability density function satis-
fying ρmax < ∞ and ρmin > 0. Suppose that φ satisfies (2.7)–(2.9), and that (rn)n≥1 satisfies
nrd

n 
 logn and rn � 1. Let (v, b) ∈ {1,2}2. Then

(2.11) lim
n→∞

(
CHEv,b(Gφ(Xn, rn))

n2rd+1
n

)
= (σφ/2)CHEv,b(D,ρ) a.s.

This was already shown by García Trillos et al. in [22], Theorem 9, except that in the case
d = 2 they require the extra condition that nr2

n 
 (logn)3/2; our result answers a question
raised in Remark 2 of [22] as to whether we can do without this extra condition (yes we can).
Moreover, in [22] the proof is provided only for the case v = 1. Previously Arias-Castro et al.
[2] asked about the limiting behaviour when (v, b) = (2,1). To relate the case (v, b) = (2,1)

of the above result to the limiting behaviour of the Cheeger constant as defined in [2], note
that as a special case of Lemma 4.2 below we have

(2.12) lim
n→∞

(
n2rd

n

)−1 Voln,2(Xn) =
∫
D

ρ(x)2 dx

∫
Rd

φ
(‖y‖)

dy.

The case φ = φU of (2.12) was proved in Theorem 3.17 of [28]. Note that the right hand side
of (2.12) is finite by (2.9) and the assumptions on D and ρ.

Our next theorem shows that under the same hypotheses as in Theorem 2.1, the empirical
measure of the optimising choice of Y in (2.3) converges subsequentially to the restriction of
ν to an optimising set in the definition (2.6). We use the standard notion of weak convergence
of probability measures on a metric space, as described in [6], for example. Given A ∈ B(D),
let ν|A denote the restriction of the measure ν to A, that is, the measure on D with density
ρ(·)1A(·).

THEOREM 2.2. Suppose the hypotheses of Theorem 2.1 hold. Almost surely, for any
sequence of minimisers Yn in the definition (2.3) of CHEv,b(Gφ(Xn, rn)) and any infinite
N ⊂ N, there exists an infinite N ′ ⊂ N and a minimising set A in the definition (2.6), such
that we have the weak convergence of measures

(2.13)
∑

y∈Yn

n−1δy → ν|A as n → ∞ through N ′.

When the minimising set A is essentially unique up to complementation, one can re-phrase
the preceding result without needing to take subsequences, as follows.

THEOREM 2.3. Suppose that the hypotheses of Theorem 2.1 hold, and also that the min-
imising set A in the definition (2.6) of CHEv,b(D,ρ) is unique, up to complementation and
adding or removing sets of (d − 1)-dimensional measure zero.

Then, almost surely, for any sequence of minimisers Yn in the definition (2.3) of
CHEv,b(Gφ(Xn, rn)) there exists a sequence (j (n), n ∈ N) taking values in {0,1}, such that
setting Yn = Yn if j (n) = 1 and Yn =Xn \Yn if j (n) = 0, we have

(2.14)
∑

y∈Yn

n−1δy → ν|A as n → ∞.
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The Prohorov distance on probability measures on D is a metrization of weak convergence
(see [6]). Another interpretation of Theorem 2.2 is that, almost surely, for any sequence of
minimisers Yn the Prohorov distance from

∑
y∈Yn

n−1δy to the set of measures of the form
νA with A a minimising set in the definition (2.6) of CHEv,b(D,ρ), tends to zero.

A result resembling Theorem 2.2 is provided in [22], Theorem 9, but again under the extra
condition nr2

n 
 (logn)3/2 when d = 2, and again with proofs given only for v = 1. The
relation between the notion of weak convergence in [22], and that used here, is discussed at
(2.6) of [22].

Next we describe a similar result for the minimum bisection functional

(2.15) MBIS
(
Gφ(Xn, rn)

) := min
{
Cutn,φ(Y) : Y ⊂ Xn, |Y| = �n/2�}.

This functional has been considered on random geometric graphs in [16, 28] and elsewhere.
For the regime considered here with nrd

n 
 logn (in fact for a greater range of regimes for
(rn)), it was shown in [30] for φ = φU , under the additional assumption that D is the unit
cube and ν is the uniform distribution on D, that MBIS(GφU

(Xn, rn)) = �(n2rd+1
n ), almost

surely. Under the further assumption that d = 2 and using the 
∞ distance to define the
random geometric graph, explicit upper and lower bounds are given in [16] for the limits
superior and inferior of MBIS(GφU

(Xn, rn))/(n
2rd+1

n ) which differ by a factor of 4. We now
give a BHH-type result for this problem (for general d and D, using the Euclidean distance),
that is, a strong law for MBIS(Gφ(Xn, rn)) in the regime nrd

n 
 logn. The result goes as
follows.

THEOREM 2.4. Suppose the hypotheses of Theorem 2.1 hold. Then

(2.16) lim
n→∞

(
MBIS(Gφ(Xn, rn))

n2rd+1
n

)
= (σφ/2)MBISν(D) a.s.,

where we set

(2.17) MBISν(D) := inf
A∈B(D):ν(A)=1/2

TV(1A).

In Section 1.4 of [20], a convergence result for the bisection problem along the lines of
Theorem 2.4 (but again requiring nr2

n 
 (logn)3/2 when d = 2) is discussed (but not stated
explicitly).

More generally, one might consider a minimal K-section problem, viz. minimize the total
(graph) perimeter over partitions of the sample into K sets of equal size, for fixed K ≥ 2. In
fact, a related K-section problem has recently been considered in the context of modularity
clustering by Davis and Sethuraman [14] (see also references therein). Taking α = 0 and K =
2 in [14], the discrete problem considered there amounts to minimising (over all Y ⊂Xn, not
just those of size n/2) the cut plus a certain further penalty for an unbalanced partition. It is
shown there that the optimal cut is aymptotically a balanced one, so the limiting cost in the
setting of [14] is similar to that in (2.16).

One might also consider these problems for geometric graphs on other sequences of point
process besides the binomial point process Xn. For example, the results should carry through
if instead of Xn one considered a Poisson point process XNn with Nn Poisson(n) distributed
and independent of (X1,X2, . . .). They should carry through because the main probabilis-
tic tools used are the Chernoff bounds (3.10) and (3.11) for the binomial distribution, and
analogous bounds are also available for the Poisson distribution.

Another possibility would be to consider instead of Xn a deterministic rectilinear grid
with spacings of size n−1/d . In this case one might be able to get the same results with the
condition nrd

n 
 logn weakened to nrd
n 
 1.
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Another natural extension of the results would be to consider Riemannian manifolds,
which is the setting of the original work of Cheeger [11]. We have not attempted this but
it seems likely that our methods can be extended to the manifold setting. One reason to in-
clude nonuniform ρ in our results is that this may be useful in extending them the manifold
setting.

For the rest of this paper we assume that D, ρ and φ satisfy the conditions assumed in the
statement of Theorem 2.1. We also assume that rn � 1, and that nrd

n 
 logn.
Here is an overview of our method of proof of the “liminf” part of (2.11) and (2.13). We

divide D into boxes of side γnrn, where γn → 0 slowly. By Chernoff bounds (Lemma 3.2),
the number of points in each box is close to its expected value. Given an optimal subset
Y ⊂ Xn, we adjust Y to a set Y ′ ⊂ Xn that is not too different from Y , such that all boxes
have mostly points in Y ′ or mostly points in Xn \ Y ′, and which is also close to optimal.
Then we approximate to Y by the union of boxes containing mostly points of Y ′ and estimate
the discrete cut of Y by an approximation to the perimeter for this union of boxes. We then
use a Gamma-convergence result from [20] (Lemma 3.3 below) to derive the desired liminf
inequality.

The method of [22] is related, but relies (via the paper [20]) on results of Shor et al.
[26, 32], extended in [19] to the class of domains considered here, on the existence of a
matching of a grid of side �(n−1/d) to the random point set Xn, with maximum displacement
at most O(((logn)/n)1/d) (for d ≥ 3) or O(((logn)3/2/n)1/d) (for d = 2). (It also requires
a notion of weak convergence of pairs (μn,Tn) where μn is a measure and Tn a functional.)
As mentioned earlier, our method avoids relying on grid matchings enabling us, when d = 2,
to relax the condition rn 
 (logn)3/4n−1/2 (required in [22]) to rn 
 (logn)1/2n−1/2.

The analogous result on modularity clustering in [14], Theorem 2.3, also requires the con-
dition rn 
 (logn)3/4n−1/2 when d = 2, for the same reason. It seems plausible that one
might be able to adapt our methods to relax this condition in the setting of [14] too, although
this is beyond the scope of the present paper.

To prove Theorem 2.1 we need to show that the right hand side of (2.11) is an upper bound
for the limsup of the left hand side, and a lower bound for the liminf. After some preparation
in Section 3, we prove the upper bound in Section 4, and the lower bound in Section 5. We
prove Theorems 2.2 and 2.3 at the end of Section 5, and Theorem 2.4 in Section 6.

We have included the cases with v = 2 in our proofs. This entails extra work; see, for
example, Lemmas 4.3 and 5.6. We suspect that a similar amount of work would be needed to
fill in the details of proof for v = 2 of the corresponding results in [22].

3. Preliminaries. Since we assume that nrd
n 
 logn and rn � 1, we can and do choose

a sequence (γn)n≥1 of constants, such that γn � 1 and also

(3.1) nγ d+2
n rd

n 
 logn; γ d+4
n 
 rn.

In other words the γn tend to zero, but possibly very slowly.
Given n ∈ N, divide R

d into half-open rectilinear cubes Q′
1,n,Q

′
2,n, . . . of side γnrn, with

the centre of Q′
i,n denoted zi,n. To be definite, assume the origin is one of the points zi,n. Let

Sn := {i ∈ N : Q′
i,n ⊂ D} (which is a nonempty set for large enough n), and let Dn := {zi,n :

i ∈ Sn}.
Suppose n is such that Sn �= ∅. For j ∈ N, let i = I (j, n) ∈ Sn be chosen so that zi,n is

the nearest point of Dn to zj,n, using the lexicographic ordering on R
d to break any ties. (In

particular, if j ∈ Sn then I (j, n) = j .) Then for each i ∈ Sn, define the set

(3.2) Qi,n := ⋃
{j :i=I (j,n)}

(
Q′

j,n ∩ D
)
.
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That is, Qi,n is the union of Q′
i,n itself, and those boundary cubes Q′

j,n which have Q′
i,n

as the nearest interior cube (intersected with D). We shall refer to the sets Qi,n, i ∈ Sn as
boxes, even though only those sets Qi,n lying away from the boundary of D are necessarily
cubes.

Since D has Lipschitz boundary, using a compactness argument we can find constants
C ≥ d and n0 ∈ N such that for all n ≥ n0, for all boundary boxes Qj,n there is an interior
box within distance (C/3)γnrn, and hence

(3.3) ‖x − y‖ ≤ Cγnrn ∀i ∈ Sn, x, y ∈ Qi,n.

For each n ∈ N we define a function φn(x, y) (respectively φ(n)(x, y)) that approximates the
weight function φ(‖x − y‖/rn) from below (respectively, from above) and is constant on
each product of boxes, as follows: for each i, j ∈ Sn set

φn(x, y) := inf
x′∈Qi,n,y′∈Qj,n

φ
(∥∥x′ − y′∥∥/rn

)
, x ∈ Qi,n, y ∈ Qj,n;(3.4)

φ(n)(x, y) := sup
x′∈Qi,n,y′∈Qj,n

φ
(∥∥x′ − y′∥∥/rn

)
, x ∈ Qi,n, y ∈ Qj,n.(3.5)

LEMMA 3.1. There exist constants C′ ∈ (0,∞), n1 ≥ n0, and (γ̃n)n∈N with γ̃n � 1,
depending only on D and φ, such that for all n ≥ n1 and all x, y ∈ D we have

(3.6) φ
(‖x − y‖/rn

) ≥ φn(x, y) ≥ (1 − γ̃n)φ
(‖x − y‖/r̃n)

and

(3.7) φ
(‖x − y‖/rn

) ≤ φ(n)(x, y) ≤ (1 + γ̃n)φ
(‖x − y‖/r ′

n

)
,

where we set r̃n := (1 − C′γn)rn and r ′
n := (1 + C′γn)rn.

PROOF. The first inequality of (3.6) is clear from the definition (3.4). To prove the second
inequality, observe that for any i, j ∈ Sn, for x, x′ ∈ Qi,n and y, y′ ∈ Qj,n, by (3.3) we have
‖y′ − x′‖ ≤ ‖y − x‖ + 2Cγnrn, so that using (2.7) we have

(3.8) φn(x, y) ≥ φ

(‖x − y‖
rn

+ 2Cγn

)
.

Using assumption (2.8), choose a > 0 with φ continuous (and hence uniformly continuous)
on the interval [0,2a] and φ(2a) > 0. Then by the uniform continuity, there is a function
h : R+ → R+ with h(u) → 0 as u ↓ 0 such that for all t, u ∈ [0, a] we have φ(t + u) ≥
φ(t) − h(u).

For 0 ≤ t ≤ a, and for n large enough so that γn ≤ a/(2C), we have that

φ(t + 2Cγn)

φ(t)
≥ φ(t) − h(2Cγn)

φ(t)
≥ 1 − h(2Cγn)

φ(2a)
.

Setting γ̃n := h(2Cγn)/φ(2a), by (3.8) we have for ‖x − y‖ ≤ arn that

(3.9) φn(x, y) ≥ (1 − γ̃n)φ

(‖x − y‖
rn

)
≥ (1 − γ̃n)φ

(‖x − y‖
r̃n

)
.

Take C′ > 2C/a. Then for t > arn, if n is large enough so that C′γn < 1 we have

t

(1 − C′γn)rn
> (t/rn)

(
1 + C′γn

)
> (t/rn) + aC′γn > (t/rn) + 2Cγn.
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Hence by (3.8), for ‖x − y‖ > arn we have

φn(x, y) ≥ φ
(‖x − y‖/r̃n) ≥ (1 − γ̃n)φ

(‖x − y‖/r̃n)
.

Combined with (3.9) for ‖x − y‖ ≤ arn, this gives us (3.6).
The proof of (3.7) is similar. �

For n ∈ N and p ∈ [0,1] let Bi(n,p) denote a binomial random variable with parameters
n, p. Also let H(x) = 1 − x + x logx for x > 0, and let H(0) = 1. The following Chernoff-
type bounds are well known (see, e.g., Lemma 1.1 of [28]):

P
[
Bi(n,p) ≥ k

] ≤ exp
(
−npH

(
k

np

))
, k ≥ np;(3.10)

P
[
Bi(n,p) ≤ k

] ≤ exp
(
−npH

(
k

np

))
, k ≤ np.(3.11)

LEMMA 3.2. There exists an almost surely finite random variable N such that for all
n ≥ N and all i ∈ Sn we have

(3.12) |Xn ∩ Qi,n| ≤ (1 + γn)nν(Qi,n)

and

(3.13) |Xn ∩ Qi,n| ≥ (1 − γn)nν(Qi,n).

PROOF. By Taylor’s theorem, for x ∈ R with |x| sufficiently small we have that H(1 +
x) > (1/3)x2, and hence for large enough n we have for all i ∈ Sn by (3.10) that

P
[|Xn ∩ Qi,n| > (1 + γn)nν(Qi,n)

] ≤ exp
(−nν(Qi,n)H(1 + γn)

)
≤ exp

(−nρminr
d
n γ d+2

n /3
)(3.14)

and by (3.1) this bound is O(n−3). Since D is bounded and n(γnrn)
d → ∞ by (3.1), we have

that |Sn| = O(n). Therefore it follows by (3.14), the union bound and the Borel–Cantelli
lemma that (3.12) holds for all but finitely many n, almost surely. The proof of (3.13) is
similar, this time using (3.11). �

We shall repeatedly use the following result, taken from García Trillos and Slepčev [20]
(their proof is based in turn on work in [1] and [31]). Given r > 0 define the functional TVφ,r

on L1(ν) by

(3.15) TVφ,r (u) := r−d−1
∫
D

∫
D

φ

(‖x − y‖
r

)∣∣u(x) − u(y)
∣∣ν(dx)ν(dy),

as in (1.9) on page 203 of [20] (see page 195 of [20] for the definition of φr used there). Note
that TVφ,r (au) = a TVφ,r (u) for all a > 0. For u of the form u = 1A for some A ∈ B(D), the
functional TVφ,r (u) may be viewed as providing a smoothed measure of the perimeter of A.

LEMMA 3.3. Let (εn)n≥1 be a (0,1)-valued sequence with εn � 1. Then:

(i) [liminf lower bound] for any L1(ν)-valued sequence (un)n≥1 converging in L1(ν) to
some u ∈ L1(ν), we have

(3.16) lim inf
n→∞ TVφ,εn(un) ≥ σφ TV(u).
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(ii) For any u ∈ L1(ν),

(3.17) lim
n→∞ TVφ,εn(u) = σφ TV(u).

(iii) [Compactness] If (un)n≥1 is an L1(ν)-valued sequence that is bounded in L1(ν), and
TVφ,εn(un) is bounded, then there is a subsequence (nk) along which unk

→ u in L1(ν) for
some u ∈ L1(ν).

PROOF. Part (i) is from Theorem 4.1 of [20] and the definition of Gamma-convergence
(also in [20], e.g.). Part (ii) is from Remark 4.3 of [20]. Part (iii) is also from Theorem 4.1 of
[20]. �

For the reader’s convenience, we offer the following clarifications to [20], kindly provided
by Nicolás García Trillos. In (4.9) of that paper, the constant C needs to be allowed to depend
on δ but this does not affect the subsequent argument there. Also, the first display of page 230
of [20] is incorrect; one can avoid needing to use this display by changing ηε to ηε/4 in (4.22)
of [20] and then changing ηε to ηε/4 and η4ε to ηε throughout page 229 of [20].

4. Upper bound. Throughout this section we assume D, ρ, φ and (rn)n≥1 satisfy the
assumptions of Theorem 2.1. We prove the following result, which is the easier half of The-
orem 2.1.

PROPOSITION 4.1. Given (v, b) ∈ {1,2}2, we have

(4.1) lim sup
n→∞

(
CHEv,b(Gφ(Xn, rn))

n2rd+1
n

)
≤ (σφ/2)CHEv,b(D,ρ).

The proof of this in the case v = 2 requires the following result which also justifies our
earlier assertion (2.12):

LEMMA 4.2. Let A ∈ B(D). Then, almost surely,

(4.2) lim
n→∞

(
n2rd

n

)−1 Voln,2(Xn ∩ A) =
∫
A

ρ(x)2 dx

∫
Rd

φ
(‖y‖)

dy.

Moreover, there exists a constant C′′ ∈ (0,∞) such that a.s., for all large enough n and all
Y ⊂Xn,

(4.3)
(
C′′)−1

nrd
n |Y| ≤ Voln,2(Y) ≤ C′′nrd

n |Y|.
PROOF. Let N be as in Lemma 3.2. Then for all n ≥ N , using the first inequality of (3.7),

then (3.12) followed by the second inequality of (3.7), we have for all X ∈ Xn that

Voln,2
({X}) ≤ (1 + γn)n

∫
φ(n)(X,y)ν(dy)

≤ (1 + γn)(1 + γ̃n)n

∫
φ

(‖y − X‖
r ′
n

)
ν(dy).

(4.4)

Also, using (3.6) and (3.13) we have for all n large enough so that n ≥ N and γnnν(Qi,n) ≥ 1
for all i ∈ Sn, and all X ∈ Xn, that

Voln,2
({X}) ≥ (1 − 2γn)n

∫
φn(X,y)ν(dy)

≥ (1 − 2γn)(1 − γ̃n)n

∫
φ

(‖y − X‖
r̃n

)
ν(dy).

(4.5)
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Defining ρ(·) ≡ 0 on R
d \ D and recalling the definition of r ′

n from Lemma 3.1, for x ∈ D

let us set

(4.6) hn(x) := r−d
n

∫
Rd

φ

(‖y − x‖
r ′
n

)
ρ(y) dy =

(
r ′
n

rn

)d ∫
Rd

φ
(‖u‖)

ρ
(
x + r ′

nu
)
du.

By (4.4), it is almost surely the case that for large enough n we have

(4.7) Voln,2(Xn ∩ A) ≤ (1 + γ̃n)(1 + γn)n
∑

X∈Xn∩A

rd
n hn(X).

Since ρ is continuous on D, ρmax < ∞ and Iφ := ∫
Rd φ(‖x‖) dx is finite by (2.9), by dom-

inated convergence we have hn(x) → ρ(x)Iφ =: h(x) for all x ∈ D. Moreover hn(x) is
bounded uniformly in (n, x). Therefore by a version of the strong law of large numbers,

lim
n→∞n−1

n∑
i=1

hn(Xi)1A(Xi) = E
[
h(X1)1A(X1)

] = Iφ

∫
A

ρ(x)2 dx.

Hence by (4.7) we have

(4.8) lim sup
n→∞

n−2r−d
n Voln,2(Xn ∩ A) ≤ Iφ

∫
A

ρ(x)2 dx.

A similar argument using (4.5) instead of (4.4) shows that

lim inf
n→∞ n−2r−d

n Voln,2(Xn ∩ A) ≥ Iφ

∫
A

ρ(x)2 dx,

and together with (4.8) this gives us (4.2) as asserted.
Finally, observe that the proof of (4.7) above shows also for all Y ⊂ Xn that

Voln,2(Y) ≤ (1 + γ̃n)(1 + γn)n
∑
X∈Y

rd
n hn(X).

Since hn is bounded uniformly in x and n, this implies the second inequality of (4.3). The first
inequality of (4.3) is obtained similarly from (4.5): note that hn can be shown to be uniformly
bounded away from zero, using the assumptions that ρmin > 0 and D has Lipschitz boundary.

�

By adapting the proof of Lemma 4.2, we can obtain the following, which will be used in
Section 5. The sequence (γn)n≥1 is chosen as described at the start of Section 3. We shall
need the factor of (1 − 2γn) (rather than just 1 − γn) in (4.9) when we use this result later on.

LEMMA 4.3. Almost surely, the following holds. For any infinite N ⊂ N and any se-
quence (In)n∈N of subsets of Sn such that the set Bn := ⋃

i∈In
Qi,n satisfies infn∈N ν(Bn) >

0, and any sequence (Un)n∈N of subsets of Xn ∩ Bn with

(4.9) (1 − 2γn)nν(Qi,n) ≤ |Un ∩ Qi,n| ≤ (1 + γn)nν(Qi,n) ∀i ∈ In, n ∈ N ,

it is the case that

(4.10) lim
n→∞,n∈N

(
Voln,v(Un)Volν,v(D)

Voln,v(Xn)Volν,v(Bn)

)
= 1, v = 1,2.

PROOF. The result is trivial for v = 1, so it suffices to consider the case with v = 2.
Given ε > 0, let Dε denote the set of points x ∈ D lying at Euclidean distance at least ε from
R

d \ D. Then Dε/2 is compact so ρ is uniformly continuous on Dε/2. Set

Bn,ε := ⋃{Qi,n : i ∈ In,Qi,n ∩ Dε �= ∅},
which is contained in Dε/2 for large enough n.
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In the proof of Lemma 4.2, note that if X ∈ Xn and Qi,n is the box containing X, then for
any z ∈ Qi,n the inequalities (4.4) hold with the X on the right replaced by z (both times)
because the function φ(n) is constant on products of boxes. Therefore setting

hn(x) := inf
z∈Qi,n

hn(z), x ∈ Qi,n,

we have as in (4.7) that

Voln,2(Un ∩ Bn,ε) ≤ (1 + γ̃n)(1 + γn)nrd
n

∑
X∈Un∩Bn,ε

hn(X)

≤ (1 + γ̃n)(1 + γn)
2n2rd

n

∫
Bn,ε

hn(x)ν(dx),

where the last line comes from (4.9).
As discussed in the proof of Lemma 4.2, we have hn(x) → h(x) := ρ(x)I (φ) for

all x ∈ D, where I (φ) := ∫
φ(‖z‖) dz. Moreover, we have the uniform convergence

supx∈Bn,ε
|h(x) − hn(x)| → 0. This can be seen from (4.6), using the fact that ρ is uniformly

continuous on Dε/2 (most easily by first considering the case where φ has bounded support).
We therefore have that

(4.11) Voln,2(Un ∩ Bn,ε) ≤ (
1 + o(1)

)
n2rd

n

∫
Bn,ε

h(x)ν(dx).

Since ν(D \ Dε) → 0 as ε ↓ 0, given δ > 0, using (4.3) we may choose ε > 0 so that

lim sup
n→∞

(
n−2r−d

n Voln,2(Un \ Bn,ε)
)
< δ.

Combined with (4.11) and using the assumption that ν(Bn) is bounded away from zero for
n ∈N, this shows that

(4.12) lim sup
n→∞,n∈N

(
Voln,2(Un)

n2rd
n

∫
Bn

h(x)ν(dx)

)
≤ 1.

By a similar argument one may show an inequality the other way for the limit inferior, and
therefore the fraction in the left hand side of (4.12) actually tends to 1 as n → ∞ through N .
Hence by (2.12),

Voln,2(Un)Volν,2(D)

Voln,2(Xn)Volν,2(Bn)
∼ Voln,2(Un)

n2rd
n I (φ)

∫
Bn

ρ(x)2 dx
→ 1

as n → ∞ through N . Thus we have the case v = 2 of (4.10). �

LEMMA 4.4. Let A ∈ B(D) with 0 < ν(A) < 1. Let (v, b) ∈ {1,2}2. For n ∈ N set Yn :=
Xn ∩ A. Then as n → ∞,

(
n2rd+1

n

)−1
(

Cutn,φ(Yn)

Baln,v,b(Yn)

)
→ (σφ/2)TV(1A)

Balν,v,b(A)
a.s.

PROOF. By the strong law of large numbers (for v = 1) or by Lemma 4.2 (for v = 2),

lim
n→∞ Baln,v,b(Yn) = Balν,v,b(A), (v, b) ∈ {1,2}2.

Therefore it suffices to show that

(4.13)
(
n2rd+1

n

)−1 Cutn,φ(Yn) → (σφ/2)TV(1A) a.s.

The convergence of expectations corresponding to (4.13) follows from taking u = 1A in
Part (ii) of Lemma 3.3.
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The almost sure convergence in (4.13) was proved in [21] for the case where ρ is constant
on D and φ = φU . In Remark 1.10 of [21] it is stated that the proof carries through to more
general ρ and to all weight functions φ satisfying (2.7)–(2.9). A similar result, with a more
restricted range of sequences (rn) than we consider here, is given in Theorem 1 of [2].

The result (4.13) can alternatively be proved using a similar argument to the proof of
Theorem 3.17 of [28], at least when φ has bounded support. �

PROOF OF PROPOSITION 4.1. Immediate from Lemma 4.4. �

5. Lower bound. In this section we complete the proof of Theorem 2.1. We shall also
prove Theorem 2.2. Let D, ρ, φ and (rn)n≥1 be given, satisfying the assumptions of Theo-
rem 2.1. Let (v, b) ∈ {1,2}2. As explained in Section 7, we have CHEv,b(D,ρ) > 0.

Our argument is related to one seen in [16]. Given Y ⊂ Xn, think of points in Y as being
black and points of Xn \ Y as being white. For n ∈ N and i ∈ Sn (defined in Section 3), we
shall say that the box Qi,n is grey (with respect to Y) if both the number of black points in
Qi,n, and the number of white points in Qi,n, exceed γnnν(Qi,n). We shall say the box Qi,n

is black (with respect to Y) if it is not grey and |Y ∩Qi,n| ≥ (1 − 2γn)nν(Qi,n). We shall say
Qi,n is white (with respect to Y) if it is not grey and |Xn \ Y| ∩ Qi,n ≥ (1 − 2γn)nν(Qi,n).
By (3.13), for n ≥ N every box is either black, white or grey.

Let gn(Y) denote the number of grey boxes with respect to Y . In other words, set

gn(Y) := ∑
i∈Sn

1
{
min

(|Y ∩ Qi,n|,
∣∣(Xn \Y) ∩ Qi,n

∣∣) > γnnν(Qi,n)
}
.

Define the within-box edges of Gφ(Xn, rn) to be those edges {x, y} such that {x, y} ⊂ Qi,n

for some i (i.e., such that both endpoints lie in the same box), and let all other edges of
Gφ(Xn, rn) be called between-box edges.

By (3.3) there exists n2 ∈N such that for n ≥ n2, every within-box edge has weight at least
φ(0)/2 in Gφ(Xn, rn), that is,

(5.1) φ

(‖x − y‖
rn

)
≥ φ(0)

2
∀i ∈ Sn, x, y ∈ Qi,n, n ≥ n2.

Let (Yn)n∈N be a sequence of nonempty proper subsets of Xn, each of which satisfies
Voln,v(Yn) ≤ Voln,v(Xn)/2 and achieves the minimum in (2.3), that is,

(5.2)
Cutn,φ(Yn)

Baln,v,b(Yn)
= CHEv,b

(
Gφ(Xn, rn)

)
.

LEMMA 5.1. Almost surely, it is the case that

(5.3) lim sup
n→∞

(
Cutn,φ(Yn)

n2rd+1
n Baln,v,b(Yn)

)
≤ (σφ/2)CHEv,b(D,ρ),

and that there exists n3 ∈ N such that for all n ∈N with n ≥ n3, at least one box is black and
at least one box is white with respect to Yn.

PROOF. The first statement (5.3) follows from (5.2) and (4.1).
First suppose v = 1. Suppose for infinitely many n that there is no black box with respect

to Yn. Then every box is grey or white, so each vertex in Yn has at least γnρminn(γnrn)
d

within-box white neighbours, and therefore by (5.1),

(n2rd+1
n )−1 Cutn,φ(Yn)

(|Yn|/n)
≥ γ d+1

n ρminr
−1
n φ(0)/2,
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and by (3.1) this contradicts (5.3), whether we take b = 1 or b = 2, since the right hand side
of (5.3) is finite. Similarly, for large enough n ∈ N at least one box is white.

Now suppose instead that v = 2. By (4.3) and (2.12),

Voln,2(Yn)

Voln,2(Xn)
= O

( |Yn|
n

)
,

so we can argue similarly to the case already considered. �

We now define a modification Voln,v of the set function Voln,v with better linearity prop-
erties. For x, y ∈ D, recalling the definition (3.4) of the function φn(x, y), define

φ̃n(x, y) =
{

0 if x, y lie in the same box,

φn(x, y) otherwise.

For Y ⊂ Xn, define

(5.4) Voln,v(Y) :=
⎧⎪⎨
⎪⎩

∑
y∈Y

∑
x∈Xn\{y}

φ̃n(x, y) if v = 2,

Voln,1(Y) if v = 1.

LEMMA 5.2. There exist constants δn ↓ 0 such that almost surely, for all n and all Y ⊂
Xn,

(5.5) Voln,v(Y) ≤ (1 + δn)Voln,v(Y), v = 1,2.

PROOF. It suffices to consider the case v = 2. For x ∈ D, α ∈ (0, π) and e ∈ R
d with

‖e‖ = 1, let K(x, e,α) denote the open cone consisting of those y ∈ R
d \ {x} such that the

vector y − x makes an angle less than α with e. For r > 0 let B(x; r) := {y ∈R
d : ‖y − x‖ ≤

r}, and let ωd denote the Lebesgue measure of B(x;1).
By the assumption that D has Lipschitz boundary, and a compactness argument, we can

(and do) choose α ∈ (0,1/6) and r0 > 0 such that for all x ∈ D there exists e(x) ∈ R
d with

‖e(x)‖ = 1 such that K(x, e(x),3α) ∩ B(x; r0) ⊂ D.
Choose a ∈ (0,1/4) with φ(2a) > 0. For x ∈ D, and n ∈ N large enough so that arn <

r0/2, note that B(x +arne(x);3aαrn) ⊂ D. Then for large enough n and all x ∈ D, for every
i ∈ Sn such that Qi,n ∩ B(x + arne(x);aαrn) �= ∅, we have that Qi,n ⊂ D and moreover
Qi,n = Q′

i,n (i.e., Qi,n does not touch the boundary of D), and furthermore for all y ∈ Qi,n

we have (a/2)rn ≤ ‖y − x‖ ≤ 2arn so that φn(x, y) ≥ φ(2a). Therefore summing over all
such i and using (3.13), we obtain for all x ∈ Xn that

Voln,2
({x}) ≥ (1 − γn)nρminφ(2a)ωd(aαrn)

d,

while using (3.3) and (3.12) we have that

Voln,2
({x}) − Voln,2

({x}) ≤ 2nρmax(2Cγnrn)
d .

Summing over x ∈ Y we obtain that

Voln,2({Y}) − Voln,2({Y})
Voln,2({Y}) ≤ 21+dρmaxC

dγ d
n

(1 − γn)ρminφ(2a)ωd(αa)d

which tends to zero, as required. �

For n ∈ N and Y ⊂ Xn, define the modified cut function

(5.6) Cut′n,φ(Y) := ∑
x∈Y

∑
y∈Xn\Y

φn(x, y).
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Denote by N ∗ the set of n ∈ N such that Voln,v(Yn)/Voln,v(Xn) ∈ [γn,1/2]. The next
lemma is a key part of our proof. It provides a method of “greyscale removal” whereby we
modify Y slightly in a manner that makes all the boxes black or white.

LEMMA 5.3. Almost surely, there exists a sequence of subsets Y ′
n ⊂ Xn, defined for

n ≥ 1, satisfying

(5.7) n−1∣∣Y ′
n�Yn

∣∣ � γ 2
n ,

and a (random) number n4 ∈ N such that for all n ∈ N with n ≥ n4 we have that

(5.8) gn

(
Y ′

n

) = 0,

and that the union Bn of black boxes induced by Y ′
n satisfies Bn �= ∅ and D \ Bn �= ∅, and

moreover that

(5.9) Cutn,φ(Yn) ≥ Cut′n,φ

(
Y ′

n

)
if n ∈N ∗

and

(5.10)
Cutn,φ(Yn)

Voln,v(Yn)
≥ Zn

Voln,v(Y ′
n ∩ Bn)

if n ∈ N \N ∗,

where Zn denotes the contribution to Cut′n,φ(Y ′
n) from edges with exactly one endpoint in Bn.

PROOF. Set Kn := 5ρ−2
minγ

−2d−2
n σφ CHEv,b(D,ρ)/φ(0), which tends to infinity since

γn tends to zero. Suppose there is an infinite set N1 ⊂ N such that gn(Yn) ≥ Knr
1−d
n for all

n ∈ N1. Then by considering only the within-box edges and using (5.1), we have for large
enough n ∈ N1 that

Cutn,φ(Yn) ≥ gn(Yn)
(
γ d+1
n ρminnrd

n

)2
φ(0)/5

≥ Knγ
2d+2
n ρ2

minn
2rd+1

n φ(0)/5

= n2rd+1
n σφ CHEv,b(D,ρ),

which would contradict (5.3) since Baln,v,b(Yn) ≤ 1. Therefore there exists n5 ∈ [n0,∞)

such that

(5.11) gn(Yn) < Knr
1−d
n for all n ≥ n5.

Suppose N ∗ is infinite and let n ∈ N ∗ (so that Voln,v(Yn)/Voln,v(Xn) ∈ [γn,1/2]). As-
sume also that n ≥ max(N,n5), where N is as in Lemma 3.2. We consider the effect of
changing the colour of some of the vertices in a given box, on the contribution of between-
box edges to the cut. Let i ∈N. Suppose there are 
 black vertices (with respect to Yn) and w

white vertices in the box Qi,n, and recalling the definition of zi,n from the start of Section 3,
set


′ := ∑
j∈Sn\{i}

φn(zi,n, zj,n)|Yn ∩ Qj,n|;(5.12)

w′ := ∑
j∈Sn\{i}

φn(zi,n, zj,n)
∣∣(Xn \Yn) ∩ Qj,n

∣∣.(5.13)

Let m := 
+w, the total number of vertices in Qi,n. Then the total contribution to Cut′n,φ(Yn)

from between-box edges with one endpoint in Qi,n is equal to the expression


w′ + w
′ = 
w′ + (m − 
)
′ = 

(
w′ − 
′) + m
′.
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This expression is a linear function of 
, if we consider m, w′ and 
′ as being fixed. Therefore
as a function of 
 it is minimised over the range [0,m] either at 
 = 0 or at 
 = m (or both).
Moreover, taking 
 = 0 or 
 = m reduces the number of within-box edges in this box to zero.
Hence we can (and do) modify the colour of vertices in Qi,n to make all vertices in Qi,n

have the same colour, in such a way that resulting set Ỹn of black vertices has Cut′n,φ(Ỹn) ≤
Cut′n,φ(Yn).

Repeating this process for each of the i such that Qi,n is grey with respect to the original
set Yn, considered one by one, we end up with a new set of black vertices, denoted Y ′

n, with
gn(Y ′

n) = 0, such that Cut′n,φ(Y ′
n) ≤ Cut′n,φ(Yn). Also Cut′n,φ(Yn) ≤ Cutn,φ(Yn) by (5.6) and

(3.6), so we have (5.9).
Next we prove (5.10). Suppose N \ N ∗ is infinite (else (5.10) holds vacuously for large

enough n). Let n ∈ N \N ∗. Assume n ≥ n3 with n3 given by Lemma 5.1, so there is at least
one black box and at least one white box with respect to Yn. Let us write xn,1 for the total
weight (using weight function φn) of between-box cut edges involving black vertices in black
boxes, xn,2 for the total weight of between-box cut edges involving black vertices in grey
boxes and xn,3 for the total weight of within-box cut edges involving black vertices in white
boxes. Let yn,1, yn,2, yn,3 be the total volume Voln,v (as defined in (5.4)) of the set of black
vertices in black boxes, in grey boxes and in white boxes respectively. Set Vn := Voln,v(Xn).

Then

Cut′n,φ(Yn)

Voln,v(Yn)/Vn

≥ Vnxn,1 + Vnxn,2 + Vnxn,3

yn,1 + yn,2 + yn,3
≥ min

(
Vnxn,1 + Vnxn,2

yn,1 + yn,2
,
Vnxn,3

yn,3

)
.

By a similar argument to the proof of Lemma 5.1 (see also Lemma 4.2), we have that
(n2rd+1

n )−1(Vnxn,3/yn,3) exceeds a strictly positive constant times γ d+1
n r−1

n , and therefore
by (5.3), for large enough n ∈ N \ N ∗ the above minimum must be achieved by the first of
the two ratios.

We now look again at the effect of changing the colour of vertices in a grey box Qi,n. With
w′ defined by (5.13), let 
′′ be defined similarly to 
′ in (5.12) but with the sum restricted to
those j ∈ Sn \ {i} for which the box Qj,n is black or grey. Then set α := w′ − 
′′. Write x

for the expression denoted xn,1 + xn,2 above and y for yn,1 + yn,2. If we change the number
of black vertices in the box by amount k, keeping the total number of vertices the same (in
fact we shall consider just two possible values of k below), then the value of x changes to
x + αk := x′ and y changes to y + βk := y′, where we set

β =
⎧⎪⎨
⎪⎩

1 if v = 1,∑
j∈Sn

φ̃n(zi,n, zj,n)|Yn ∩ Qj,n| if v = 2.

Then

x′

y′ − x

y
= x + αk

y + βk
− x

y
= (x + αk)y − x(y + βk)

(y + βk)y
= k(αy − βx)

(y + βk)y
,

which can be made nonpositive either by taking k = |(Xn \ Yn) ∩ Qi,n| or by taking k =
−|Yn ∩ Qi,n| (depending on the sign of αy − βx). Note that since there is at least one black
box and every box has at least one neighbouring box, we have y + βk > 0 for both of these
choices of k.

Therefore we can choose a colour (white or black) and change all the vertices in Qi,n to
that colour, without increasing the ratio x/y. Repeating this for each of the grey boxes in
turn, we end up with a set Y ′

n that induces no grey boxes and has a reduced (or at least not
increased) value of x/y compared to Yn. Also, this procedure does not affect the value of
xn,3 or yn,3 because, while some new white boxes might be created, none of them contains
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black vertices at all. Let y′
n,1 be the number of black vertices in black boxes induced by Y ′

n,
and let x′

n,1 be the total φn-weight of between-box cut edges involving these vertices. Then

Cutn,φ(Yn)

Voln,v(Yn)/Vn

≥ Vnxn,1 + Vnxn,2

yn,1 + yn,2
≥ Vnx

′
n,1

y′
n,1

,

and (5.10) follows because x′
n,1 ≥ Zn.

Finally, in both cases considered above (n ∈ N ∗ and n ∈ N \N ∗), the modification of Yn

to obtain Y ′
n involves changing the colour only of vertices in grey boxes (with respect to Yn),

so every black (respectively white) box with respect to Yn is also black (respectively white)
with respect to Y ′

n. It then follows from Lemma 5.1 that almost surely, Bn and D \ Bn are
nonempty for large enough n. Moreover, for large enough n, by (5.11) and (3.12),

n−1∣∣Y ′
n�Yn

∣∣ ≤ 2Knγ
d
n ρmax(2C)drn

= O
(
γ −d−2
n rn

)
.

Thus by (3.1) we have (5.7). �

As in the statement of Lemma 5.3, for n ∈ N let Bn denote the union of the black boxes
induced by Y ′

n, let Zn be the contribution to Cut′n,φ(Y ′
n) from edges with one endpoint in Bn

and the other endpoint in Wn := D \ Bn, the union of the white boxes. Then by (3.13),

Zn ≥ (1 − 2γn)
2n2

(∫
Bn

∫
Wn

φn(x, y)ν(dx)ν(dy)

)
.

Therefore by Lemma 3.1, with C′, γ̃n and r̃n as defined in that result,

Zn ≥ (1 − 2γn)
2(1 − γ̃n)n

2
(∫

Bn

∫
Wn

φ

(‖y − x‖
r̃n

)
ν(dx)ν(dy)

)

= (1 − 2γn)
2(1 − γ̃n)n

2r̃d+1
n

(
(1/2)TVφ,r̃n(1Bn)

)
,

(5.14)

where TVφ,r (u) is as defined in (3.15).

LEMMA 5.4. Almost surely N \N ∗ is finite.

PROOF. Suppose N \N ∗ is infinite. Let n ∈N \N ∗, so Voln,v(Yn) < γn Voln,v(Xn). Set
Vn := Voln,v(Xn). By (2.1), (2.2) and (5.5),

Baln,v,b(Yn) ≤ Voln,v(Yn)/Vn ≤ (1 + δn)Voln,v(Yn)/Vn.

Therefore using (5.2) and (5.10), we have for b = 1,2 that

(5.15) CHEv,b

(
Gφ(Xn, rn)

) ≥ (1 + δn)
−1 Cutn,φ(Yn)

Voln,v(Yn)/Vn

≥ (1 + δn)
−1Zn

Voln,v(Y ′
n ∩ Bn)/Vn

.

By (3.12), if v = 1 then Voln,1(Y ′
n ∩ Bn) ≤ 2nν(Bn) for n large; if v = 2 then using (4.3) and

(2.12) we can find a constant C′′′ such that for all large enough n we have

Voln,2
(
Y ′

n ∩ Bn

)
/Vn ≤ C′′|Y ′

n ∩ Bn|
n

∫
ρ(x)2 dx

∫
φ(‖y‖) dy

≤ C′′′(1 + γn)ν(Bn).

Hence by (5.14) and (5.15), for every (v, b) ∈ {1,2}2 there exists a constant c > 0 such that
for all large enough n,

CHEv,b(Gφ(Xn, rn))

n2rd+1
n

≥ c TVφ,r̃n(1Bn)

2ν(Bn)
.



OPTIMAL CHEEGER CUTS OF RGGS 1475

Since the functions 1Bn/ν(Bn) are L1(ν)-bounded, uniformly in n, this shows by (4.1) and
compactness (part (iii) of Lemma 3.3) that the functions 1Bn/ν(Bn) converge in L1(ν) along
a subsequence to a limiting function of the form 1B/ν(B) with B ∈ B(D) and 0 < ν(B) < 1;
see Lemma 6 of [22].

However, by (5.7) and (in the case v = 2) (4.3) we have that n−1|Y ′
n| → 0 as n → ∞

through N \N ∗. Then by (3.13), as n → ∞ through N \N ∗ we have

ν(Bn) ≤ (1 − γn)
−1n−1∣∣Y ′

n

∣∣ → 0,

which contradicts the conclusion above that 1Bn/ν(Bn) converges in L1 to a limit of the form
1B , for some Borel B ⊂ D with 0 < ν(B) < 1. Therefore N \N ∗ must be finite. �

LEMMA 5.5. Let Y ′
n and Bn be as in Lemma 5.3. Set Y ′

n,B := Y ′
n ∩ Bn. Then

(5.16)
TVφ,r̃n(1Bn)

Baln,v,b(Y ′
n,B)

≤ (
2 + o(1)

)(CHEv,b(Gφ(Xn, rn))

n2rd+1
n

)
,

and

(5.17) lim sup
n→∞

(
TVφ,r̃n(1Bn)

Baln,v,b(Y ′
n,B)

)
≤ σφ CHEv,b(D,ρ) < ∞.

PROOF. Set Vn := Voln,v(Xn) as before. For all but finitely many n ∈ N we have by
Lemma 3.2 that n ≥ N , and by Lemma 5.4 that n ∈ N ∗ (so that Voln,v(Yn)/Vn ∈ [γn,1/2]),
and by Lemma 5.3 that gn(Y ′

n) = 0 so that for each i ∈ Sn the box Qi,n is either black or
white but not both (with respect to Y ′

n), and the sets Bn and Wn := D \ Bn are nonempty.
Consider such n.

We claim next that whichever value of (v, b) ∈ {1,2}2 we are considering, we have for
large enough n that

(5.18) Baln,v,b

(
Y ′

n

)
/Baln,v,b(Yn) ≥ 1 − γn.

If v = 1 this follows from (5.7) and the fact that n ∈ N ∗. If v = 2, to see (5.18) we use also
the fact that by (5.7) and (4.3) we have∣∣Voln,2,b

(
Y ′

n

) − Voln,2,b(Yn)
∣∣ � n2rd

n γ 2
n

while Voln,2(Yn) ≥ cγnn
2rd

n for some constant c > 0, by the fact that n ∈N ∗, and (2.12).
Hence for large enough n, by (5.2) and (5.9) we have

(5.19) CHEv,b

(
Gφ(Xn, rn)

) ≥ (1 − γn)Cut′n,φ(Y ′
n)

Baln,v,b(Y ′
n)

.

Let Y ′
n,B := Y ′

n ∩Bn and Y ′
n,W := Y ′

n ∩Wn. Let ∂W
n,φ(Y ′

n) be the total φn-weight of within-box
edges from Y ′

n,W to Xn \Y ′
n. Then

Cut′n,φ(Y ′
n)

Voln,v(Y ′
n)

≥ Zn + ∂W
n,φ(Y ′

n)

Voln,v(Y ′
n,B) + Voln,v(Y ′

n,W )
≥ min

(
Zn

Voln,v(Y ′
n,B)

,
∂W
n,φ(Y ′

n)

Voln,v(Y ′
n,W )

)
.

Hence

(5.20)
(n2rd+1

n )−1 Cut′n,φ(Y ′
n)

Baln,v,1(Y ′
n)

≥ min
(

(n2rd+1
n )−1Zn

Voln,v(Y ′
n,B)/Vn

,
(n2rd+1

n )−1∂W
n,φ(Y ′

n)

Voln,v(Y ′
n,W )/Vn

)
.

Each vertex x ∈ Y ′
n,W has at least γ d

n (1 − 2γn)ρminnrd
n within-box neighbours in Xn \ Y ′

n.
Therefore there is a constant c′ > 0 such that for n large enough, the second ratio inside the
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minimum in the right hand side of (5.20) is at least c′γ d
n (1 − 2γn)ρminr

−1
n φ(0); we may take

c′ = 1/2 for v = 1 and otherwise use the fact that by (4.3) and (2.12) we have

Voln,2
(
Y ′

n,W

)
/Voln,2(Xn) ≤ const. × Voln,1

(
Y ′

n,W

)
/Voln,1(Xn).

Hence this second ratio tends to infinity by (3.1). By (5.19) and (4.1), if b = 1 then the left
hand side of (5.20) is bounded, so for large enough n the minimum is achieved by the first of
the two ratios in the right hand side of (5.20).

Also,

Cut′n,φ(Y ′
n)

(
Voln,v(Y ′

n)

Vn
)(1 − Voln,v(Y ′

n)

Vn
)

≥ Zn + ∂W
n (Y ′

n)

(
Voln,v(Y ′

n,B)

Vn
+ Voln,v(Y ′

n,W )

Vn
)(1 − Voln,v(Y ′

n)

Vn
)

≥ min

⎛
⎜⎝ Zn

(
Voln,v(Y ′

n,B)

Vn
)(1 − Voln,v(Y ′

n)

Vn
)

,
∂W
n (Y ′

n)

Voln,v(Y ′
n,W )

Vn

⎞
⎟⎠ ,

(5.21)

and similarly to before, if b = 2 then for large enough n the minimum is achieved by the first
term. Thus using (5.20) for b = 1 and (5.21) for b = 2, in both cases we have for large enough
n that

Cut′n,φ(Y ′
n)

Baln,v,b(Y ′
n)

≥ Zn

Baln,v,b(Y ′
n,B)

.

Therefore using (5.14) followed by (5.19) we have that

TVφ,r̃n(1Bn)

Baln,v,b(Y ′
n,B)

≤ TVφ,r̃n(1Bn)Cut′n,φ(Y ′
n)

Zn Baln,v,b(Y ′
n)

≤ (2 + o(1))(n2rd+1
n )−1 Cut′n,φ(Y ′

n)

Baln,v,b(Y ′
n)

≤ (
2 + o(1)

)(
n2rd+1

n

)−1 CHEv,b

(
Gφ(Xn, rn)

)
.

This gives us (5.16), and then (5.17) follows from Proposition 4.1. �

Using Lemma 4.3 we obtain the following.

LEMMA 5.6. Let Bn and Y ′
n,B be as in the preceding lemma. Then:

(i) It is the case that lim supn→∞ ν(Bn) < 1.
(ii) For every subsequence of N such that ν(Bn) is bounded away from zero along the

subsequence, we have along that subsequence that

(5.22) lim
n→∞

(Baln,v,b(Y ′
n,B)

Balν,v,b(Bn)

)
= 1.

PROOF. (i) It is enough to prove that for every infinite subsequence N of N with
infn∈N ν(Bn) > 0 we have lim supν(Bn) < 1 as n → ∞ through N . By (5.7) and (in the
case v = 2) (4.3) we have

Voln,v(Y ′
n) − Voln,v(Yn)

Voln,v(Xn)
→ 0,

and since we assume Voln,v(Yn) ≤ Voln,v(Xn)/2, by Lemma 4.3 we have for large enough n

that

(2/3) ≥ Voln,v(Y ′
n)

Voln,v(Xn)
≥ Voln,v(Y ′

n,B)

Voln,v(Xn)
= (

1 + o(1)
)(∫

Bn
ρ(x)v dx∫

D ρ(x)v dx

)
,

which gives us part (i).
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(ii) Let N ⊂ N be infinite with infn∈N ν(Bn) > 0. By Lemma 4.3 we have

(5.23) lim
n→∞,n∈N

(Voln,v(Y ′
n,B)Volν,v(D)

Voln,v(Bn)Voln,v(Xn)

)
= 1.

Set Wn := D \ Bn and Y ′
n,W := Y ′

n ∩ Wn. By part (i), ν(Wn) is bounded away from zero and
therefore by applying Lemma 4.3 again, we have

(5.24) lim
n→∞,n∈N

(Voln,v(Y ′
n,W )Volν,v(D)

Voln,v(Wn)Voln,v(Xn)

)
= 1.

Moreover, since the number of white points in black boxes is at most nγn, using also (4.3)
(in the case v = 2) we have

Voln,v(Xn \Y ′
n,B) − Voln,v(Y ′

n,W )

Voln,v(Xn)
= Voln,v((Xn \Y ′

n) ∩ Bn)

Voln,v(Xn)
≤ const. × γn

which tends to zero, and hence by (5.24) we have

lim
n→∞,n∈N

(Voln,v(Xn \Y ′
n,B)Volν,v(D)

Voln,v(Wn)Voln,v(Xn)

)
= 1.

By using this, along with (5.23), we can obtain (5.22). �

LEMMA 5.7. For n ∈ N, let Bn and Y ′
n,B be as in the preceding lemma, and define the

function un := 1Bn/Balν,v,b(Bn). For any subsequence of N there is a further subsequence
along which the functions un converge in L1(ν) to 1A/Balν,v,b(A), and also 1Bn convege to
1A, for some A ∈ B(D) with 0 < ν(A) < 1.

PROOF. We claim that it suffices to prove that

(5.25) lim sup
n→∞

(Baln,v,b(Y ′
n,B)

Balν,v,b(Bn)

)
< ∞.

Indeed, suppose (5.25) holds. Then by (5.25) and (5.17) the sequence TVφ,r̃n(un) is bounded,
so we can apply Lemma 3.3(iii), to deduce that for any subsequence of N there exists a further
subsequence along which the functions 1Bn/Balν,v,b(Bn) converge in L1(ν) to a limiting
function which must necessarily be of the form 1A/Balν,v,b(A) with A ∈ B(D) and 0 <

ν(A) < 1 (see Lemma 7 of [22]). Then, also, 1Bn → 1A in L1(ν).
It remains to prove (5.25). First suppose v = 1. By (3.12) we have for large enough n that

(5.26)
∣∣Y ′

n,B

∣∣ ≤ 2nν(Bn).

Also, by (3.12) and Lemma 5.6, for large enough n we have∣∣Xn \Y ′
n,B

∣∣ ≤ 2nν(Wn) + γnnν(Bn) ≤ 3nν(Wn),

and combined with (5.26) this gives us (5.25) in the case v = 1 (either for b = 1 or b = 2).
Now suppose v = 2. Set Vn := Voln,2(Xn). Using (5.26) and (4.3) we have that

(5.27) V −1
n Voln,2

(
Y ′

n,B

) ≤ const. × ν(Bn).

Since ν(Bn) is bounded away from 1 by Lemma 5.6(i), using (4.3) and (3.12) we have

lim sup
(

Voln,2(Xn \Y ′
n)

ν(Wn)Vn

)
< ∞

and combined with (5.27) this gives us (5.25) for v = 2. �
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PROOF OF THEOREM 2.1. For n ∈ N, let Yn be as defined at (5.2). That is, let Yn ⊂ Xn be
a minimiser as in the definition (2.3) of CHEv,b(Gφ(Xn, rn)) with Voln,v(Yn)/Voln,v(Xn) ≤
1/2. Let Y ′

n and Bn be as defined in Lemma 5.3, let Ỹ ′
n,B := Y ′

n ∩ Bn as in Lemma 5.5 and
let r̃n be as defined in Lemma 3.1.

By Lemma 5.7, for any subsequence of N there exists a further subsequence along
which the functions 1Bn/Balν,v,b(Bn) converge in L1(ν) to a limiting function of the form
1A/Balν,v,b(A) with A ∈ B(D) and 0 < ν(A) < 1. Then ν(Bn) is bounded away from zero.

Then by part (i) of Lemma 3.3, and Lemma 5.6, we have along this subsequence that

σφ TV
(
1A/Balν,v,b(A)

) ≤ lim inf
n→∞ TVφ,r̃n

(
1Bn/Balν,v,b(Bn)

)
≤ lim inf

n→∞ TVφ,r̃n

(
1Bn/Baln,v,b

(
Y ′

n,B

))
.

Therefore by (5.16), followed by (4.1), we have along this subsequence that

(σφ/2)TV
(
1A/Balν,v,b(A)

) ≤ lim inf
n→∞

(
CHEv,b(Gφ(Xn, rn))

n2rd+1
n

)

≤ lim sup
n→∞

(
CHEv,b(Gφ(Xn, rn))

n2rd+1
n

)
≤ CHEv,b(D,ρ)σφ/2.

(5.28)

By the definition (2.6) the inequalities in (5.28) are all equalities and the set A is a minimiser
in (2.6). This gives us the asserted convergence (2.11). �

PROOF OF THEOREM 2.2. To prove this we re-examine the preceding proof. For n ∈ N,
again let Yn be as defined at (5.2). Again let Y ′

n and Bn be as defined in Lemma 5.3. By
Lemma 5.7, for every subsequence there is a further subsequence along which 1Bn → 1A in
L1(ν) for some optimising set A.

Let μn := ∑
y∈Yn

n−1δy and let μ′
n := ∑

y∈Y ′
n
n−1δy . To demonstrate (2.13), we need to

show that the sequence (μn) of measures converges weakly to the restriction of ν to A. By
the Portmanteau theorem [6], it is enough to show that for any uniformly continuous function
f on D we have μn(f ) → ν(f 1A). Since any such f is bounded, we have by (5.7) that
n−1|μ′

n(f ) − μn(f )| → 0.
On Wn := D \ Bn the density of points relative to the measure nν is at most γn; that is,

μ′
n(Wn) ≤ γnν(D) which tends to zero.
Since f is uniformly continuous, given ε > 0 we can find n0 such that for n ≥ n0 we have

for all i ∈ Sn that f i,n := supQi,n
f and f

i,n
:= infQi,n

f satisfy f i,n − f
i,n

< ε. Let N be as
in Lemma 3.2. Then for n ≥ max(n0,N), setting fmax = supx∈D f (x) and using (3.12), we
have

μ′
n(f ) ≤

( ∑
{i:Qi,n⊂Bn}

(1 + γn)ν(Qi,n)f i,n

)
+ fmaxμ

′
n(Wn)

≤ (1 + γn)

∫
A

(
f (x) + ε

)
ν(dx) + o(1),

and therefore

(5.29) lim sup
n→∞

μ′
n(f ) ≤

∫
A

(
f (x) + ε

)
ν(dx).

Also, by the definition of black boxes (with respect to Y ′
n) given at the start of this section,

μ′
n(f ) ≥ ∑

{i:Qi,n⊂Bn}
(1 − 2γn)ν(Qi,n)f i,n

≥ (1 − 2γn)

∫
Bn

(
f (x) − ε

)
ν(dx)
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so that

(5.30) lim inf
n→∞ μ′

n(f ) ≥
∫
A

(
f (x) − ε

)
ν(dx).

Combining this with (5.29) gives us (2.13). �

PROOF OF COROLLARY 2.3. Assume that the hypotheses of Theorem 2.1 apply, and
also that the minimising set A in the definition (2.6) of CHEv,b(D,ρ) is unique, up to com-
plementation and adding or removing sets of (d − 1)-dimensional measure zero. We shall
use the following. Set νn := ∑

y∈Xn
n−1δy . Given any uniformly continuous function f on

D, similarly to (5.29) and (5.30) it can be shown using (3.12) and (3.13) that

(5.31) νn(f ) → ν(f ).

We also use the fact that the topology of weak convergence of probability measures on D is
metrizable by the Prohorov metric (here denoted dπ ) on the space of such measures. See [6],
page 72, where a definition of this metric can also be found.

Let Yn be a sequence of minimisers in the definition (2.3) of CHEv,b(Gφ(Xn, rn)). Then
we claim that

(5.32) min
(
dπ(μn, ν|A), dπ(μn, ν|Ac)

) → 0.

To see this, note that if we add or remove a Lebesgue-null set to/from A, the measure ν|A is
unchanged. Thus by our uniqueness assumption regarding A, the only two measures of the
form ν|

Ã
with Ã a minimiser in the definition (2.6) are ν|A and ν|Ac . If (5.32) fails, then there

is an infinite sequence N ⊂ N and an ε > 0 such that

min
(
dπ(μn, ν|A), dπ(μn, ν|Ac)

)
> ε, n ∈ N .

But then for any further subsequence N ′ ⊂ N , we do not have either the weak convergence
μn → ν|A or μn → ν|Ac as n → ∞ through N ′, contradicting Theorem 2.2, so our claim is
justified.

Now take

j (n) =
{

1 if d(μn, ν|A) ≤ d(μn, ν|Ac),

0 otherwise.

On the sequence of n for which j (n) = 1 (if this sequence is infinite), by (5.32) we have
dπ(μn, ν|A) → 0 so μn converges weakly to ν|A.

On the sequence of n for which j (n) = 0 (if this sequence is infinite), by (5.32) we have
dπ(μn, ν|Ac) → 0 so μn converges weakly to ν|Ac . Then using (5.31), we have for any uni-
formly continuous function f on D that (νn − μn)(f ) → ν|A(f ), so νn − μn converges
weakly to ν|A.

Putting the last two paragraphs together gives us the desired conclusion. �

6. The bisection problem. In this section we prove Theorem 2.4. The result is imme-
diate from Lemmas 6.1 and 6.2. We assume throughout this section that the assumptions of
Theorem 2.4 apply.

LEMMA 6.1. It is the case that

(6.1) lim sup
n→∞

(
MBIS(Gφ(Xn, rn))

n2rd+1
n

)
≤ (σφ/2)MBISν(D) a.s.
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PROOF. Let A ∈ B(D) with ν(A) = 1/2. Set Yn = Xn ∩ A. Then by (4.13),

(6.2)
(
n2rd+1

n

)−1 Cutn,φ(Yn) → (σφ/2)TV(1A).

Also n−1|Yn| → 1/2 by the strong law of large numbers, but of course this does not tell us
that |Yn| = �n/2�. Set Mn := |Yn| − �n/2�. Using the Chernoff bounds (3.10) and (3.11),
Taylor’s Theorem (as in the proof of Lemma 3.2) and the Borel–Cantelli lemma, we have
almost surely that for large enough n,

(6.3) |Mn| ≤ 3(n logn)1/2.

As in the preceding section, we shall say that points in Yn are black and points in Xn \Yn

are white. If Mn < 0 let us pick |Mn| points in Xn \ Yn, and add them to Yn (i.e., change
their colour from white to black). If Mn > 0, pick Mn points in Yn, and remove them from
Yn (i.e., change their colour from black to white). In both cases let Y ′

n be the resulting set of
black points. Then |Y ′

n| = �n/2�.
By (4.3), the total weight of cut edges created or destroyed by changing from Y to Y ′ is at

most a constant times nrd
n |Mn|. Therefore using (6.3) we have(

n2rd+1
n

)−1∣∣Cutn,φ

(
Y ′

n

) − Cutn,φ(Yn)
∣∣ = O

((
n−1 logn

)1/2
r−1
n

)
= O

((
nrd

n / logn
)−1/2

r(d−2)/2
n

)
which tends to zero by the assumptions nrd

n 
 logn and d ≥ 2. Combined with (6.2) this
shows that

lim sup
n→∞

(
MBIS(Gφ(Xn, rn))

n2rd+1
n

)
≤ lim sup

n→∞

(
Cutn,φ(Y ′

n)

n2rd+1
n

)
= (σφ/2)TV(1A).

Taking the infimum over all A and using (2.17), this gives us (6.1). �

LEMMA 6.2. It is the case that

(6.4) lim inf
n→∞

(
MBIS(Gφ(Xn, rn))

n2rd+1
n

)
≥ (σφ/2)MBISν(D) a.s.

PROOF. We argue similarly to the proof in Section 5. For each n ∈ N let Yn be a bisection
of Xn (i.e., a subset with �n/2� elements) that achieves the minimum in the definition (2.15).
Define the boxes Qi,n as in Section 5, and define black, grey and white boxes as we did there.
By Lemma 5.3, there is a set Y ′

n satisfying (5.7) and inducing no grey boxes, such that

MBIS
(
Gφ(Xn, rn)

) = Cutn,φ(Yn) ≥ Cut′n,φ

(
Y ′

n

) ≥ Zn,

where Zn denotes the contribution to Cut′n,φ(Y ′
n) from edges with exactly one endpoint in

Bn, and Bn denotes the union of the black boxes induced by Y ′
n. Then by (5.14),

(6.5) lim sup
n→∞

(
MBIS(Gφ(Xn, rn))

n2rd+1
n

)
≥ (1/2) lim sup

n→∞
TVφ,r̃n(1Bn),

and the left side of (6.5) is finite by Lemma 6.1. By the compactness property (Lem-
ma 3.3(iii)), for any infinite subsequence N ⊂ N, we may find an infinite subsequence
N ′ ⊂ N such that as n → ∞ through N ′, the functions 1Bn converge in L1(ν) to a limit,
necessarily of the form 1B for some B ∈ B(D).

Using (5.7) and the fact that the original Yn was a bisection, we have that n−1|Y ′
n| →

1/2. Then using (3.12), (3.13) and the fact that we take γn → 0 so the proportion of black
vertices in white boxes or white vertices in black boxes vanishes, we have that ν(Bn) → 1/2.
Therefore ν(B) = 1/2.
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By the definition in (2.17), and the liminf lower bound from Lemma 3.3(i), we have as
n → ∞ through N ′ that

(σφ/2)MBISν(D) ≤ (σφ/2)TV(1B) ≤ lim inf
n→∞ (1/2)TVφ,r̃n(1Bn),

and since (6.5) still holds with lim sup replaced by lim inf on both sides, we thus obtain (6.4).
�

7. Strict positivity of the Cheeger constant. We sketch a proof here that CHEv,b(D,

ρ) > 0, as claimed in Section 2, whenever the conditions of Theorem 2.1 apply. It suffices
to consider the case where ρ is constant, and in fact we assume ρ ≡ 1 on D. By Theo-
rem 2.2, we can and do choose a set A which achieves the minimum in the definition (2.6) of
CHEv,b(D,ρ).

Then ν(A) > 0 and ν(D \A) > 0. Since we assume D is bounded and connected, by [28],
Lemma 11.12, we can find a compact, path-connected set F ⊂ D (a union of cubes with
dyadic rational coordinates) such that ν(F ∩ A) > 0 and ν(F \ A) > 0. Then we can and do
choose δ > 0 such that

⋃
x∈F B(x; δ) ⊂ D. Moreover, by compactness we can and do choose

a finite set S ⊂ F such that F ⊂ ⋃
x∈S B(x, δ).

The function g(x) := ν(B(x; δ) ∩ A) is continuous on F , and takes values in the range
[0,ωdδd ]. Also g(x) > 0 for some x ∈ S; otherwise we would have ν(F ∩A) ≤ ∑

x∈S g(x) =
0 contrary to earlier assumption. Similarly g(x) < ωdδd for some x ∈ S; otherwise we would
have ν(F \ A) ≤ ∑

x∈S(ωdδd − g(x)) = 0, contrary to earlier assumption.
Now we claim there is some z ∈ F with 0 < g(z) < ωdδd . For if not, by the preceding

arguments there exist x, y ∈ S with g(x) = 0 and g(y) = ωdδd , but then taking a continuous
path from x to y in F , by continuity of g we see the claim is true after all for some z in the
path.

Let B denote the interior of B(z; δ). Then 0 < ν(A∩B) < ν(B). We now use results from
[27] (in [27] the notation B(x, r) represents an open ball rather than a closed one). By [27],
Proposition 12.37, we have P(A;B) > 0, where the relative perimeter P(A;B) is given (see
[27], page 122, and [27], equation (15.10)) by

P(A;B) = Hd−1(
B ∩ ∂∗A

)
.

Thus Hd−1(B ∩ ∂∗A) > 0, and hence by (2.5) we have TV(1A) > 0. Since A is a minimizer
in the definition (2.6), this gives us the result.
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