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This paper considers the problem of reconstructing n independent uni-
form spins X1, . . . ,Xn living on the vertices of an n-vertex graph G, by ob-
serving their interactions on the edges of the graph. This captures instances of
models such as (i) broadcasting on trees, (ii) block models, (iii) synchroniza-
tion on grids, (iv) spiked Wigner models. The paper gives an upper bound on
the mutual information between two vertices in terms of a bond percolation
estimate. Namely, the information between two vertices’ spins is bounded
by the probability that these vertices are connected when edges are opened
with a probability that “emulates” the edge-information. Both the informa-
tion and the open-probability are based on the Chi-squared mutual informa-
tion. The main results allow us to re-derive known results for information-
theoretic nonreconstruction in models (i)–(iv), with more direct or improved
bounds in some cases, and to obtain new results, such as for a spiked Wigner
model on grids. The main result also implies a new subadditivity property
for the Chi-squared mutual information for symmetric channels and general
graphs, extending the subadditivity property obtained by Evans–Kenyon–
Peres–Schulman (Ann. Appl. Probab. 10 (2000) 410–433) for trees. Some
cases of nonsymmetrical channels are also discussed.

1. Introduction.

The model. We consider the problem of reconstructing n uniform spins X1, . . . ,Xn
IID∼

Rad(1/2) living on the vertices of an n-vertex graph G, by observing their interactions on
the edges of the graph. Formal definitions are in Section 2. Depending on the choices of the
graph and the interaction channel, this captures models such as (i) broadcasting on trees [17,
22] (ii) censored block models [2, 20], (iii) synchronization on grids [3], (iv) spiked Wigner
models [13]. Here we refer to these as synchronization problems on different graph/channel
models.

To set a running example, consider the case where G = Kn is the complete graph, and
where the channel on each edge is BSCp: a binary symmetric channel with flip probability
p ∈ [0,1]. In other words, for each 1 ≤ u < v ≤ n, we observe the product Yuv = XuXvZuv ,
where {Zuv}1≤u<j≤n are i.i.d. Rad(p), mutually independent of {Xu}u∈[n].

Note that the above model is also related to the Ising model in statistical physics; con-
ditioned on the edge observations, the posterior distribution of the vertex spins is given by
an Ising model. However, we will be interested here in the average-case behavior over the
edge variables in the model, while results on Ising models (e.g., Dobrushin conditions for
correlation decay [14]) typically focus on worst-case behavior over the edge variables.

The problem. Depending on how “rich” the graph is, and how “noisy” the channel is, one
may or may not be able to obtain a nontrivial reconstruction of the spins. We focus here on
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understanding when it is information-theoretically impossible to obtain a nontrivial recon-
struction. For this purpose, we are interested in conditions for which the mutual information
between the spins Xu,Xv of two arbitrary vertices u, v ∈ [n], given all the edge interaction
variables YE(G), is vanishing as n diverges:

IKL(Xu;Xv | YE(G)) = o(1).(1)

For the models mentioned above, this implies in particular that there is no estimator of the
spins that solves the so-called weak recovery problem, that is, that gives an asymptotic cor-
relation with the ground truth that is nontrivial; see [1] for discussions on weak recovery.

For the running example, if p is bounded away from 1/2, then for any pair of vertices,
the information on their direct edge suffices to prevent (1) from taking place. If p tends to
1/2 fast enough, this may break down, but it is not enough to inspect the direct edge as the
information may propagate along other paths in the graph.

Known techniques. Different techniques have been developed to upper-bound quantities
such as the mutual information of (1). In particular,

• (1) Upgrading the graph. This approach was developed for instance for the broadcasting
on trees (BOT) problem in [17]. In the BOT model, a random variable is broadcast from
the root down the edges of a tree, with each edge potentially flipping the variable, and
the goal is to reconstruct the root variable from the leaf variables at infinite depth. See
Section 4.1 for formal definitions. One can view this as a synchronization problem using
an extra vertex that interacts noiselessly with all the leaf variables; see Section 4.1 for the
formal connection. To upper-bound the mutual information (corresponding to (1)) from
the root to the leaves in the case of binary variables and symmetric channels, [17] shows a
subadditivity property of the mutual information over all paths from the root to the leaves,
which implies the impossibility part (the “difficult” part) of the Kesten–Stigum threshold.
This subadditivity is a crucial component to establish the uniqueness of a threshold in this
context, and is proved in [17] using an upgradation of the BOT ensemble on an arbitrary
tree to a BOT ensemble on a “stringy” tree, where the branches of the tree are “separated”.
One of the open problems/directions mentioned in [17] is to extend such results to more
general graphs that contain cycles, finding the right model. Part of the results in this paper
can be viewed as such an attempt.

• (2) Using an oracle to change the graph. This approach was developed for instance for the
stochastic block model in [24]. We consider here the close variant called the censored block
model (CBM). Take an Erdős–Rényi random graph in the sparse regime, Gn ∼ G(n, c/n),
and on edge of the graph, observe the product of the adjacent spins on an independent BSCε

(as in the running example). This gives an instance of the CBM. It models scenarios where
one observes a random measurement that gives positive or negative indication that the two
incident “people” are in the same community or not. The model is closely related1 to the
SBM(n, a/n, b/n) (with the parameters c = (a + b)/2 and ε = b/(a + b)), where each
vertex in the graph is connected by an edge with probability a/n if the adjacent vertices
are in the same community, and b/n otherwise. To show that it is not possible to reconstruct
the communities in the SBM, [24] upper-bounds (1) with an oracle that reveals the labels of
the vertices at small depth from vertex u. Using then the fact that the Erdős–Rényi model
is locally tree-like, [24] reduces the problem to the BOT model discussed previously. The

1In the SBM, the presence of an edge makes the two incident vertices be in different communities with proba-
bility ε = b/(a + b), and each vertex has an expected number of (a + b)/2 = c neighbors; the difference between
the SBM and the CBM is that a nonedge in the SBM carries a slight repulsion probability towards having the
incident vertices in the same community, although the latter is negligible in various aspects.
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same proof technique applies to the CBM, as also obtained in [23]. Note that this proof
technique is particularly helpful in the CBM/SBM because the local neighborhood of a
vertex is “simpler,” that is, tree-like, allowing us to reduce the model from a loopy graph to
known results for trees [17]. Such an approach may not help in the model discussed next.

• (3) Upgrading the channel. This approach was used for instance for the synchronization
problem on grids in [3]. Consider the case of BSC channels as in the running example, that
flip the spins’ product with probability p on each edge, and upgrade each channel with
an erasure channel that instead erases the product with probability 2p, revealing otherwise
the exact value. This erasure model is clearly an upgradation of the BSC model, since one
can always draw a random spin in replacement to an erasure symbol, which gives a BSC
of flip probability 2p/2 = p. As further discussed below, for an erasure model, the mutual
information in (1) becomes exactly the probability that u and v are connected in a bond
percolation model. In graph models like the grid, this has either a sharp threshold or some
known bounds [18], and the overall approach gives a bound for synchronization problems
on grids, developed in [3] beyond the case of BSCs. Note however that this approach is
unlikely to give a sharp bound, due to the upgradation, but it allows for a direct application
of percolation bounds.

• (4) Interpolation, message-passing and second-moments. Interpolation techniques take dif-
ferent forms; one consists in establishing a bound between two quantities by parametrizing
each quantity with a relevant parameter, typically a notion of signal-to-noise ratio (SNR),
establishing the bound for the boundary cases, and interpolating other cases with a “mono-
tonicity” argument (inspecting a derivative). This approach has long been used in different
contexts; for example, to establish the “entropy power inequality” in [30]. More closely
related to us, it is used in [4] to establish a subadditivity property of the mutual informa-
tion of graphical channels, where the subadditivity acts on the vertex-set rather than the
edge-set as considered here. For the spiked Wigner model with Rademacher inputs, which
corresponds to a complete graph with a Gaussian noise channel, one can use the I-MMSE
formula from [19] to equate the derivative of the mutual information in (1) to the MMSE,
and express the latter using an approximate message passing (AMP) estimate [15]. This
allows [13] to establish a limiting expression for the mutual information, and in particular,
a tight condition for when the latter vanishes. Similar techniques have been used in various
other spiked Wigner models, such as in [8, 25, 26], and block models [10]. It is worth not-
ing that if the goal is to only obtain a condition for when the mutual information vanishes,
it may not be necessary to employ such elaborate estimates. In particular, one may rely on
second-moment estimates as used in [6, 7] for block models and [8, 26] for Spiked Wigner
models. Second-moment estimates typically give conditions on when the distribution of
the planted ensemble (where the edge variables depend on the Xi variables) is contiguous
to the unplanted ensemble (where the edge variables are independent), and depending on
the model, this can be turned into a condition for weak recovery being not solvable, such
as in [6–8, 26] (although the implication may not be true in general).

This paper. As apparent in previous discussion, some of the known techniques are fairly
graph- and channel-dependent. The goal of this paper is to introduce a general method to
upper-bound the mutual information (1) in terms of bond percolation estimates, namely, in
terms of the probability that vertices u and v are connected by an “open” path in a model
where each edge of G is kept open with some probability.

Note that if the channel on each edge is an erasure channel, that is, if Yuv = XuXv with
probability q and Yuv = � (an erasure symbol) with probability 1 − q , then

IKL(Xu;Xv | YE(G)) = connG,q(u, v),(2)
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where connG,q(u, v) denotes the probability that u and v are connected in a bond percolation
model on G where each edge is open independently with probability q .

Our main result shows how to turn the previous equality into an inequality beyond the case
of erasures, covering a fairly general family of channels that contains models (i)–(iv). The
crucial part is to find how to set the openness probabilities on each edge in order to “emulate”
the right amount of information, rather than using a degradation argument as discussed in
(3) above, that produces loose bounds on models (i)–(iv). For this purpose, we will use an
interpolation technique. In a sense, our bound can thus be viewed as an hybrid between the
techniques of [4] and [3], as it uses an interpolation technique for a percolation bound.

The main feature of the bound is that it applies to any graph. The derived bound subsumes
the known results for (1)–(4) (with slight improvements for (3)) and gives also a few new
results. These are presented in Section 4. Discussions on how the bound could be extended
beyond the binary setting are provided in Section 5. We underline here two aspects of the
main results:

• A Chi-squared bound. A natural attempt to estimate the information between two vertices
in terms of the probability that these vertices are connected in a bond percolation model,
is to open each edge with a probability that “emulates” the information of the edge. How
should this be formalized?

Consider the case of G = �n, a path on the vertices 1,2, . . . , n, with a binary symmetric
channel (BSC) of flip probability p = (1 − δ)/2 on each edge as in the running example.
The channel between the first and last vertex (1 and n) is a concatenation of BSCs, each
with a flip probability either p or 1−p (depending of the value of Yi,i+1 for edge (i, i+1)).
Thus we can explicitly compute the LHS of (1):

IKL(X1;Xn | YE(�n)) = 1 − H
((

1 − δn−1)
/2

)
.(3)

On the other hand, if we open each edge in the path with probability equal to the mutual
information of a BSCp (or BSC(1−p)), that is, with q = 1 − H((1 − δ)/2), vertex u and v

are connected with probability

conn�n,q(1, n) = (
1 − H

(
(1 − δ)/2

))n−1
.(4)

Unfortunately, the bound

IKL(X1;Xn | YE(�n)) ≥ conn�n,q(1, n)

that this gives is in the reverse direction of (1)! Note also that one cannot hope for a general
bound in this reverse direction for the mutual information (e.g., one can get a counterex-
ample on a triangle graph2).

In order to obtain a bound that holds for arbitrary finite graphs, we will change our
measure of information, using not the KL-divergence but the Chi-squared divergence, that
is,

I2(X;Y) ≡ Dχ2
(
pX,Y ‖ pXpY

)
,(5)

where Dχ2 is the Chi-squared f -divergence with f (t) = (t − 1)2. In particular, it is easily
shown that that for the path example,

I2(X1;Xn | YE(�n)) = δ2(n−1).(6)

2Consider the graph G with two vertices u,v and two parallel edges e, f equipped with BSCp channels.
Then the mutual informations for the individual edges are q = 1 − H(p), so connG,q(u, v) = 2(1 − H(p)) −
(1 − H(p))2, but IKL(Xu;Xv |Ye,Yf ) = (p2 + (1 − p)2)(1 − H(p2/(p2 + (1 − p)2))). One may verify that
IKL(Xu;Xv |Ye,Yf ) ≤ connG,q(u, v). To avoid parallel edges and get a triangle graph, simply replace the edge
f with two concatenated edges f1 and f2, where f1 has a noiseless channel and f2 has a BSCp channel.
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Therefore, opening edge with probability equal to the Chi-squared mutual information of
a BSC((1−δ)/2), that is, δ2, gives the desired upper bound with equality.

In general, we obtain that for any graph G and for a class of symmetric channels on the
edges,

I2(Xu;Xv | YE(G)) ≤ connG,I2(Xe;Ye)(u, v) (main result) ,(7)

where the RHS is the probability that u and v are connected in a bond percolation model
on G where each edge e ∈ E(G) is open with probability I2(Xe;Ye), where Xe denotes
the product, Xi · Xj , of the spins incident to edge e = (i, j).

Further, one can obtain an upper bound when the LHS is the classical mutual informa-
tion, since the classical mutual information is upper-bounded by the Chi-squared mutual
information (for uniform binary variables); it is however important to keep the Chi-squared
mutual information on the RHS. (See Lemma A.9.)

• Subadditivity for general graphs. Note that the RHS of (7) can be upper-bounded with the
union bound over all paths between u and v, and using (6), we obtain as a corollary the
following subadditivity property for general graphs:

I2(Xu;Xv | YE(G)) ≤ ∑
P∈PG(u,v)

I2(Xu;Xv | YE(P )),(8)

where PG(u, v) denotes the set of paths (i.e., self-avoiding walks) from u to v in G. This
gives an extension via the synchronization model of the subadditivity obtained for trees in
[17] (see point (1) above) to general graphs.

A recent concurrent work of Polyanskiy and Wu [27] also gives an information-percolation
bound. We discuss the relationship between our results in detail in Section 3.5.

2. Model. We begin by defining a “graphical channel” similarly to the definition in [4],
but tailored to the case in which vertex labels are binary:

• Let g = (V ,E(g)) be a finite graph with vertex set V = [n] and edge set E(g).
• For each e ∈ E(g), let Qe(· | ·) be a probability transition function (channel) from the

binary input alphabet {−1,+1} to an output alphabet Ye, such that Qe|+(·) ≡ Qe(· | +1)

and Qe|−(·) ≡ Qe(· | −1) are probability measures on a measurable space (Ye,Ae).
• Assign a vertex label xi ∈ {−1,+1} to each vertex i ∈ V . Assign an edge label ye ∈ Ye to

each edge e ∈ E(g). Then define the channel Pg,Q(· | ·) with input alphabet {−1,+1}V and
output alphabet YE(g) as follows: for each measurable set A = ∏

e∈E(g) Ae ∈ ∏
e∈E(g)Ae,

let

Pg,Q(A | x) ≡ ∏
e∈E(g)

Qe(Ae | xe),

where we use the notation xe = xu · xv for e = (u, v).

DEFINITION 2.1 (Graphical channel, deterministic graph). Let g,Q and Pg,Q be as
above. We call Pg,Q a graphical channel with graph g and channels Q.

DEFINITION 2.2 (Graphical channel, random graph). Let G = (V ,E(G)) be a random
graph with vertex set V = [n], and let Q be a collection of edge channels (as above) so
that for any edge e, Qe is defined if P(e ∈ E(G)) > 0. Let PG,Q be the random channel with
output alphabet

∏
e∈E(G)Ye and input alphabet {−1,+1}V given by Pg,Q for each realization

G = g.
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DEFINITION 2.3 (Binary synchronization instance). Let PG,Q be an n-node graphical
channel, and let X be uniformly drawn in {−1,+1}n. Let Y be the output of X through the
graphical channel PG,Q. The pair (X,Y ) is an instance of a binary synchronization problem
drawn from PG,Q.

3. Main results. In this paper, we provide progress towards answering the following
question: given a binary synchronization instance (X,Y ) drawn from PG,Q, for u, v ∈ V , if
we know Xv and we know Y , then when is it impossible to reconstruct Xu?

3.1. Chi-squared mutual information. In particular, we provide an upper bound on the
information that Xv and Y give about Xu. This information is quantified by the Chi-squared
mutual information

I2(Xu;Xv,YE(G)),

which is the f -mutual information based on the Chi-squared divergence, Dχ2 —see the Ap-
pendix for a reminder on the definitions and properties of these functionals.

PROPOSITION 3.1. If (X,Y ) is a binary synchronization instance with underlying graph
G, and u ∈ V (G),S ⊆ V (G), then following equality holds:

(9) I2(Xu;XS,YE(G)) = I2(Xu;XS | YE(G)).

The Chi-squared mutual information takes the following simple expression:

PROPOSITION 3.2. If (X,Y ) is a binary synchronization instance with underlying graph
G, and u, v ∈ V (G), then the following equality holds:

I2(Xu;Xv | YE(G)) = EY

[
EX[Xu · Xv | Y ]2]

.

The definition of I2, and the proofs of Propositions 3.1 and 3.2, can be found in the Ap-
pendix.

3.2. Bond percolation. In our main result, we bound the Chi-squared mutual information
I2(Xu;Xv | YE(G)) by the connection probability between u and v in a bond percolation on
the underlying graph, G.

DEFINITION 3.3 (Bond percolation on a graph). Let G = (V ,E(G)) be a graph, and
let γ : E(G) → [0,1]. Then, a bond percolation with open probability γ on G is a random
edge-labelling

B : E(G) → {open, closed},
such that each edge label B(e) is assigned independently of the other edge labels, and such
that for all e,

P
[
B(e) = open | e ∈ E(G)

] = γe.

Let B be a bond percolation on G. If a subgraph H ⊆ G is such that B(e) = open for all
e ∈ E(H), then we call H an open subgraph.

DEFINITION 3.4 (Connection probability in percolation). Let S,T ⊆ V (G). Then we
write their connection probability in a percolation on G with open probability γ : E(G) →
[0,1] as

connG,γ (S, T ).

This denotes the probability that there is a pair of vertices u ∈ S, v ∈ T , such that u is con-
nected to v by an open path in a bond percolation on G where each edge e ∈ E(G) is inde-
pendently open with probability γ (e).
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3.3. Symmetric channels. Our information-theoretic bound for spin synchronization ap-
plies to “symmetric” graphical channels defined as follows.

DEFINITION 3.5. A graphical channel PG,Q is symmetric if for each edge e ∈ E(G) the
channel Qe(· | ·) is symmetric. An edge channel Qe(· | ·) is symmetric if there is a measurable
transformation Te : Ye → Ye on the output alphabet of Qe(· | ·) such that Te = T −1

e , and such
that for all measurable A ⊂ Ae we have

Qe(A | +1) = Qe

(
Te(A) | −1

)
,

and hence

Qe

(
Te(A) | +1

) = Qe(A | −1).

In other words, an edge channel Qe(· | ·) is symmetric if “flipping the sign” using Te of an
edge label Ye with distribution Qe|+ gives an edge label Te(Ye) with distribution Qe|−.

Symmetric graphical channels cover a broad collection of models, discussed in Section 4.

3.4. Information-percolation bound.

THEOREM 3.6 (Main percolation bound). Let PG,Q be a symmetric graphical channel.
Let (X,Y ) be a binary synchronization instance drawn from PG,Q.

Then for all u, v ∈ V ,

I2(Xu;Xv | YE(G)) ≤ connG,γ (u, v),

where

γ (i, j) = I2(Xi;Xj | Y(i,j))

for all (i, j) ∈ E(G).

The following corollary follows by a union bound:

COROLLARY 3.7 (Subadditivity of I2). Let PG,Q, (X,Y ) be as in Theorem 3.6.
Then for all u, v ∈ V , I2 is subadditive over paths, that is,

I2(Xu;Xv | YE(G)) ≤ ∑
P∈PG(u,v)

I2(Xu;Xv | YE(P )),

where PG(u, v) is the set of paths (i.e., self-avoiding walks) from u to v in G.

Moreover, the theorem can be extended to bound the mutual information between a vertex
and a set of vertices.

COROLLARY 3.8 (Mutual information between label and set of labels). Let PG,Q,
(X,Y ), and γ be as in Theorem 3.6. Then for all u ∈ V , S ⊆ V ,

I2(Xu;XS | YE(G)) ≤ connG,γ (u,S).

Finally, we note that our upper bounds on I2(Xu;XS | YE(G)) imply upper bounds on
IKL(Xu;XS | YE(G)).

COROLLARY 3.9. Let X,Y,u,S, and γ be as in Corollary 3.8. Then

IKL(Xu;XS | YE(G)) ≤ connG,γ (u,S).

PROOF. This follows from Theorem 3.6 and the upper bound of Lemma A.9 in the Ap-
pendix. �
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3.5. General (asymmetric) channels and comparison to [27]. An information-perco-
lation bound analogous to Theorem 3.6 is obtained by Polyanskiy and Wu in a concurrent
work [27]. In particular, Polyanskiy and Wu are inspired by their prior results for strong
data-processing inequalities for channels and Bayesian networks [28], and their original mo-
tivation was to obtain a simple proof of a result from here.

In the model of [27], there is a bipartite graph G = (V ,W,F ) with parts V,W and edge
set F , and vertex labels {Xv}v∈V and {Yw}w∈W on a discrete alphabet such that the labels
{Yw}w∈W are independent conditioned on XV , and each Yw ∼ PYw|XN(w)

, where N(w) ⊂
V denotes the set of neighbors of w. This gives a generalization of our model since our
model corresponds to the case where (i) the labels {Xv}v∈V are independent and distributed
as Rad(1/2), (ii) each vertex w ∈ W has degree 2, and (iii) each observation Yw with N(w) =
{i, j} is distributed as Y ∼ PYw|Xi ·Xj

.
Under this model, Polyanskiy and Wu prove two theorems that generalize Theorem 3.6.

The first result of [27] states that if the labels {Xv}v∈V are independent, then for any subsets
S1, S2 ⊂ V ,

(10) IKL(XS1;XS2 | YW) ≤ sup
v∈V

H(Xv) · ∑
u∈S1

siteconnG,ηKL(u, S2).

Here siteconnG,ηKL(u, S2) denotes the probability that u is connected to a vertex in S2 in a
site percolation on G, where each vertex w ∈ W is included with independent probability
ηKL(PYw|XN(w)

), the Chi-squared Strong Data Processing Inequality (SDPI) constant of the
channel. Applying (10) to the model of this paper yields Corollary 3.9 when the edge channels
Qe are symmetric—because the SDPI constant is equal to the I2 information in this case. The
bound of [27] also applies to asymmetric channels, but with the SDPI constant instead of the
I2 information for the edge openness probability in the percolation. Specifically, applied to
our model, inequality (10) yields for any S1, S2 ⊂ V :

(11) IKL(XS1;XS2 | YE(G)) ≤ ∑
u∈S1

connG,ηKL(u, S2).

The proofs of the first result of [27] and of this paper’s result are similar in that both
proceed by induction on the number of observations Yw , and both use the linearity of the
connection probability in the percolation model (as a function of the probability of opening an
edge when all other edge probabilities are fixed). Moreover, both proofs bound the increase
in information each time an extra edge observation is added. While this basic structure is
similar, [27] benefits from the chain rule for KL-mutual information. We note that a similar
inductive proof is already used in the prior work of Polyanskiy and Wu [28].

The second result of [27] applies to the case where the labels {Xv}v∈V are not required to
be independent. This result uses the tensorization of the less-noisy relation proved previously
by Polyanskiy and Wu in [28] in order to show that given labels {Yw}w∈W and {Ỹw}w∈W

distributed as Yw ∼ PYw|XN(w)
and Ỹw ∼ Q

Ỹw|XN(w)
where the channels Q

Ỹw|XN(w)
are less-

noisy than the channels PYw|XN(w)
, then for all subsets S1, S2 ⊂ V ,

(12) IKL(XS1;YW |XS2) ≤ IKL(XS1; ỸW |XS2).

Applied to our model, the inequality (12) also yields Corollary 3.8 in the case of symmetric
edge channels. And, similarly to their first result (10), their second result also yields the bound
(11) for general asymmetrical channels.

Nevertheless, we now show that the SDPI approach of [27] can be loose on asymmetric
cases. We first provide a bound that applies to asymmetric channels and that is based on the
Chi-squared mutual information approach derived here. The bound gives up some generality
on the base graph, but it applies to any edge channels:
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THEOREM 3.10. Let PG,Q be a graphical channel where G is a series-parallel graph
with terminals u and v, and the edge channels Q are arbitrary (potentially asymmetric). Let
(X,Y ) be a binary synchronization instance drawn from PG,Q. Then

I2(Xu;Xv | YE(G)) ≤ ∑
P∈PG(u,v)

I2(Xu;Xv | YE(P )).

Here PG(u, v) is the set of paths (self-avoiding walks) from u to v in G.

We next given an example where the bound of [27] is looser than the one above.

Example and comparison to (11). Suppose we construct G by taking a d-ary tree T of height
h with root u, and adding a vertex v adjacent to all of the leaves of T . Then G is a series-
parallel graph with terminals u and v, and we may apply Theorem 3.10 to graphical channels
on G. In particular, suppose all of the edges (i, j) ∈ E(T ) ⊂ E(G) have channels Qij defined
by Qij (·| + 1) ∼ Ber(a/d) and Qij (·| − 1) ∼ Ber(b/d) for some constants a, b ≥ 0, and
suppose the the edge channels Qlv for leaves l ∈ V (T ) are noiseless. Applying Theorem 3.10,
one sees that I2(Xu;Xv | YE(G)) vanishes (with increasing height h) as soon as

(a − b)2

2(a + b)
< 1,

while the bound (11) of [27] requires

(
√

a − √
b)2 < 1.

Since (a−b)2

2(a+b)
< (

√
a − √

b)2 unless a = b, the bound of Theorem 3.10 is tighter than (11) for
this case.

This theorem follows directly from (i) a multiplicative property of the Chi-squared mu-
tual information on paths (see Proposition A.5), and (ii) a subadditivity property of the Chi-
squared mutual information on depth-1 trees (see Lemma A.6). Interestingly, (i) does not
hold for the classical mutual information, IKL, making the Chi-squared mutual information,
I2, a natural choice for this proof.

PROOF OF THEOREM 3.10. In the following, we implicitly use I2(XiXj ;Y) = I2(Xi;
Xj | Y), by Proposition A.4.

The proof is by induction on |E(G)|. The base case, |E(G)| = 1, is trivial. For the induc-
tive step, one of two cases holds:

(Case 1) G is the series composition of H1 which is series-parallel with terminals u,w,
and H2, which is series-parallel with terminals w,v.

I2(XuXv;YE(G))

= I2
(
(XuXw) · (XwXv);YE(H1), YE(H2)

)
= I2(XuXw;YE(H1))I2(XwXv;YE(H2))(Prop. A.5)

≤ ∑
P1∈PH1 (u,w)

P2∈PH2 (w,v)

I2(XuXw;YE(P1))I2(XwXv;YE(P2))

= ∑
P1∈PH1 (u,w)

P2∈PH2 (w,v)

I2(XuXv;YE(P1), YE(P2))(Prop. A.5)

= ∑
P∈PG(u,v)

I2(XuXv;YE(P )).

The inequality is by the inductive hypothesis.
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(Case 2) G is the parallel composition of H1 and H2 both series-parallel, with terminals
u, v. Then,

I2(XuXv;YE(G))

= I2(XuXv;YE(H1), YE(H2))

≤ I2(XuXv;YE(H1)) + I2(XuXv;YE(H2)).(Lemma A.6)

The inductive step follows by the inductive hypothesis, since PG(u, v) = PH1(u, v) �
PH2(u, v). �

The proofs of the auxiliary propositions can be found in the Appendix.

4. Applications. Many common edge channels enjoy the symmetry property of Defini-
tion 3.5. We discuss here some important examples.

Binary symmetric channel. One example is the binary symmetric channel with flip proba-
bility ε (BSCε , for short). This channel has input and output alphabet {−1,+1}, and is given
by

BSCε(y | x) =
{

1 − ε, x = y,

ε, x = y.

This channel is symmetric in the sense of Definition 3.5, because the transformation T (y) =
−y satisfies both T 2 = 1 and BSCε(T (y) | x) = BSCε(y | −x).

Additive white Gaussian noise channel. Another example is the Gaussian noise channel
AWGNλ, whose output distribution AWGNλ(· | x) is the distribution of the random variable

Yx = √
λx + Z,

where Z ∼ N (0,1) is independent Gaussian noise with mean 0 and variance 1. This channel
is also symmetric in the sense of Definition 3.5, because the transformation T (y) = −y sat-
isfies T 2 = 1 and AWGNλ(T (·) | x) = AWGNλ(· | x), since −Yx = −√

λx − Z ∼ √
λ(−x) +

Z = Y−x , because Z ∼ −Z.
Tables 1 and 2 give examples of information-theoretic thresholds that can be obtained as a

direct consequence of Theorem 3.6. In all of these cases, our bounds either match or improve
the previously-known bounds.3 The tables also give a few new results.

4.1. Broadcasting on trees. In the “broadcasting on trees” problem, each vertex v ∈
V (T ) of an infinite tree T has a binary hidden label σv . The hidden labels are assigned

by letting the root ρ have spin σρ ∼ Rad(1/2), and by defining edge labels {ηe} i.i.d.∼ Rad(ε),
and letting

σv = σρ

∏
e

ηe,

where the product is over the edges in the path from ρ to v.
In [17], it is proved that for (1 − 2ε)2 < pc(T ),

IKL
(
σρ; (σv){v:d(ρ,v)=t}

) → 0 as t → ∞,

3Note that [3] does not attempt to obtain the tightest bound, but rather the existence of a positive lower bound
on the threshold.
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TABLE 1
Regimes in which weak recovery/reconstruction is impossible for BSCε edge channels

BSCε

Graph Known bound Our bound

Tree T (1 − 2ε)2 ≤ pc(T ) (1 − 2ε)2 ≤ pc(T )

Broadcasting on Trees [17] Section 4.1
Erdős–Rényi(n, c/n) (1 − 2ε)2 ≤ 1/c (1 − 2ε)2 ≤ 1/c

Censored Block Model [23, 24] Section 4.2
Grid L

2 (1 − 2ε)2 ≤ 1/4 (1 − 2ε)2 ≤ 1/2
Grid Synchronization [3] Section 4.3

Complete Kn (1 − 2ε)2 < 1/n

where d(v,w) denotes for the distance between two vertices v and w in T and pc(T ) de-
notes the critical probability for bond percolation on T .5 In other words, for ε too close
to 1

2 , the information given by the depth-n vertex labels about the root goes to 0, and
hence reconstruction of the root label from the leaf labels becomes impossible (by an ana-
logue of Proposition A.7). In fact, [17] showed this bound on the mutual information is
tight: reconstruction is possible for (1 − 2ε)2 > pc(T ), which was already known from
[22] in some cases. But we will only concern ourselves with the impossibility result of the
paper.

EXAMPLE 4.1. We rederive the impossibility result of [17] by applying Corollary 3.8.

PROOF. The proof follows by constructing a group synchronization problem that is
equivalent to the broadcasting problem.

Let {Xv}v∈V (T )\ρ
i.i.d.∼ Rad(1/2). Let Xρ = σρ . For each e = (i, j) ∈ E(T ) define

Yij = Xi · Xj · ηe.

TABLE 2
Regimes in which weak recovery/reconstruction is impossible for AWGNλ edge channels

AWGNλ

Graph Known bound Our bound4

Tree T f (λ) ≤ pc(T )

Erdős–Rényi(n, c/n) f (λ) ≤ 1/c

Grid L
2 f (λ) ≤ 1/2

Complete Kn λ ≤ c/n for c < 1 λ ≤ c/n for c < 1
Complete Kn Spiked Wigner [13] Section 4.4

4Where f (λ) = I2(X1;X2 | Y (λ)) for Y (λ) = √
λX1X2 + Z, and X1,X2

i.i.d.∼ Rad(1/2), Z ∼ N (0,1). As

calculated in [4], f (λ) = E[tanh(λ + √
λZ)2].

5Formally, 0 ≤ pc(T ) ≤ 1 is the critical value such that if p < pc(T ) then the open connected components of
a bond percolation on T (with edge openness probability p) are finite a.s., but if p > pc(T ), then a.s. there are
open components of infinite size.
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Then (X,Y ) is a binary synchronization instance drawn from PT,Q, where Qe is BSCε for
each edge e ∈ E(T ). Notice that

I2
(
σρ; (σv){v:d(ρ,v)=t}

) ≤ I2
(
Xρ; (Xv){v:d(ρ,v)=t}, Y

)
(13)

≤ P

⎡
⎣There is a length-t path from ρ in

a bond percolation on T with open
probability (1 − 2ε)2

⎤
⎦ ,(14)

where (13) follows by the data-processing inequality, and (14) follows by Theorem 3.8. For
(1 − 2ε)2 ≤ pc(T ), the probability of a length-t path from the root in the (1 − 2ε)2-bond
percolation vanishes as t → ∞, proving the impossibility result by application of Proposi-
tion A.7. �

4.2. Clustering in the censored block model. Another application arises in the domain of
graph clustering and community detection. Our bound applies to the Censored Block Model
(CBM). This model is defined in [2] for general graphs G when the edge channel consists of
BSCs, that is,

Yij = Xi · Xj · Zij ,

for each (i, j) ∈ E(G), where Zij ∼ Rad(ε) is independent noise. In the language of our
paper, (X,Y ) is a binary synchronization instance on G, and all the edge channels are BSCε .

EXAMPLE 4.2. Suppose G is distributed as an Erdös–Rényi random graph G(n, c
n
).

Weak recovery is impossible in a censored block model on G with flip probability ε if

c ≤ 1/(1 − 2ε)2.

PROOF. For all distinct u, v ∈ V (G), by Theorem 3.6,

I2(Xu;Xv | Y) ≤ connG,(1−2ε)2(u, v)

= connKn,(c(1−2ε)2/n)(u, v) → 0

if c ≤ 1/(1 − 2ε)2, since the largest component of G(n, c/n) is of size O(n2/3) = o(n) in
this regime (by [16]).

Suppose by contradiction that we are given an algorithm X̂(Y ) that solves weak recovery
for the CBM with parameters c and ε. In particular, there is a pair of distinct u, v ∈ V (G)

such that

P[Xu · Xv = X̂u · X̂v] = P[Xv · X̂u · X̂v = Xu] >
1

2
+ d

for some d > 0 independent of n. So by Proposition 3.1, the data-processing inequality, and
Proposition A.7

I2(Xu;Xv | Y) = I2(Xu;Xv,Y ) ≥ I2(Xu;Xv, X̂) ≥ I2(Xu;Xv · X̂u · X̂v) > d ′,
for d ′ > 0 independent of n. This contradicts the fact that I2(Xu;Xv | Y) → 0 as n → ∞.

�

This rederives a threshold conjectured in [20] and proved in [23]. The proof is analogous
to the proof of [24] that establishes nonreconstruction for the two-community symmetric
Stochastic Block Model SBM(n, a/n, b/n) when (a − b)2 ≤ 2(a + b). While [23] does not
establish the impossibility of reconstruction at the critical threshold, it is straightforward to
extend the argument at the threshold. Note also that this gives a tight threshold, that is, it is
proved that reconstruction (a.k.a. weak recovery) is possible above this threshold [9, 29].
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4.3. Grid synchronization. The proof of [23] which implies impossibility of reconstruc-
tion in the censored block model on the Erdös–Rényi random graphs G(n, c/n) relies cru-
cially on the fact that for constant c, most small neighborhoods of vertices in G(n, c/n) are
trees.

However, the method of coupling with trees would no longer apply if we were to work
with the Censored Block Model on a grid, because grids have many small cycles. In this
case, our bound still goes through, and is in fact stronger than the previously-known bound
of [3] for binary synchronization. Supposing the edge channels were binary symmetric chan-
nels with flip probability ε, The previous bound required (1 − 2ε)2 ≤ 1

4 for impossibility of
synchronization, while ours only requires (1 − 2ε)2 ≤ 1

2 :

EXAMPLE 4.3. Let L2 be the two-dimensional lattice with vertices V (L2) = Z
2 and

edges given by the Hamming distance. Let v1, . . . , vk, . . . be a sequence of vertices such that
vk is at distance k from 0. Let (X,Y ) be a binary synchronization instance drawn from PL2,Q,

where all the edge channels are BSCε . Then, if (1 − 2ε)2 ≤ 1
2 , we have I2(X0;Xvk

| Y) → 0
as k → ∞. Impossiblity of reconstruction follows by Proposition A.7.

PROOF. By Theorem 3.6

I2(X0;Xvk
| Y) ≤ connL2,(1−2ε)2(0, vk)(15)

→ 0 as k → ∞.(16)

Line (16) follows because (1 − 2ε)2 ≤ 1/2, which is the critical bond percolation constant
of L2. And it is known that the probability that there is an open length-k path containing the
origin in a critical or sub-critical bond percolation on L

2 vanishes as k → ∞. A reference for
this is [18].

Notice that in (15) we have applied Theorem 3.6 in the case of an infinite graph, although
we have technically proved the theorem only for finite graphs. We may do this by the mono-
tone convergence of the information and of the connection probability in the percolation.

�

4.4. Spiked Gaussian Wigner model. In the spiked Wigner model with Rad(1/2) priors,
we are given an n × n matrix

Yλ =
√

λ

n
XXT + W,

where X is uniform in {−1,+1}n, and W is an independent Gaussian Wigner matrix (real,
symmetric, the entries are distributed as unit Gaussians N (0,1) and are all independent ex-
cept for the symmetry constraint).

The spiked Wigner model, and spiked matrix models in general, have been studied in var-
ious contexts: for example, in order to evaluate statistical methods such as PCA that estimate
low-rank information from noisy data, or as variants of the stochastic block model ([5, 21,
26]). For Yλ as above, [13] proved that there is a phase transition in the problem of weak re-
covery at exactly the critical threshold λc = 1. The impossibility part of this phase transition
was later rederived in a more general setting by [26].

The impossibility of recovery for λ < 1 is a direct consequence of Theorem 3.6:

EXAMPLE 4.4. Let Yλ be defined as above. Then, for λ < 1, I2(Xu;Xv | Yλ) → 0 for all
u = v, and hence it is impossible to weakly recover X from Yλ.
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PROOF. (X,Yλ) is distributed as a binary synchronization instance drawn from a graph-
ical channel on Kn, in which each edge channel Q(i,j) is given by

Yλ,ij =
√

λ

n
Xi · Xj + Zij ,

where Z
i.i.d.∼ N (0,1). Notice that the edge channels are symmetric (with the transformation

y �→ −y). Analogously to the case of the censored block model on G(n, c/n), it suffices to
show that

I2(Xi;Xj | Yλ,ij ) = λ

n
+ o(1/n).

This is done by explicit calculation. Writing a = √
λ/n,

I2(Xi;Xj | Yλ,ij ) = E
[
E[Xi · Xj | Yλ,ij ]2]

= 2
∫ +∞
−∞

e−(x−a)2/2

2
√

2π

(
e−(x−a)2/2 − e−(x+a)2/2

e−(x−a)2/2 + e−(x+a)2/2

)2
dx

≤ 2
∫ +∞
−∞

e−(x−a)2/2

2
√

2π
(ax)2 dx(17)

= a2(
a2 + 1

)
= λ

n
+ o(1/n).

Line (17) is a standard Gaussian integral. �

5. Additional results and future directions.

Relationship with correlation decay. As mentioned in the Introduction, fixing the edge ob-
servations and applying the Ising model correlation decay conditions yields an impossibility
result for reconstruction. However, the bounds that we achieve with this method are not as
strong as those we proved in this paper, because the techniques in our paper allow us to deal
with the average-case edge observations, while fixing the edge observations and applying the
Dobrushin conditions requires us to work with the worst-case edge observations. It would
nonetheless be interesting to elaborate on this connection.

Extensions to our results. Various natural extensions can be considered for the information-
percolation bound, Theorem 3.6. For example, one may consider more general edge channels,
such as nonbinary input alphabets and nonsymmetrical channels.

We provide below a more general condition on the edge channel that would suffice for
the current proof technique to work in these more general settings, without giving explicit
examples. In the theorem below, the vertex labels are uniformly random members of some
finite group G (not necessarily {+1,−1}), and the edge labels, Y(i,j), are noisy observations
of the differences of the endpoints, Xi · X−1

j . The proof of Theorem 5.1 is analogous to the
proof of Theorem 3.6.

THEOREM 5.1. Let G = (V ,E) be a finite graph with vertex set V and edge set E. For
every γ ∈ [0,1], let Qγ be a collection of edge channels for G, with input alphabet a finite
group G. For any  ∈ [0,1]E , let Q be the collection of edge channels {Q(e)

e }e∈E , and let
(X,Y) be a group-G synchronization instance drawn from PG,Q .
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1. Suppose that

I2
(
X0

e ;Y 0
e

) = 0

for all e ∈ E.
2. Suppose also that for every e ∈ E, u, v ∈ V ,  ∈ [0,1]E , I (γ ) is continuous for all γ ∈

[0,1] and

∂

∂γ

I (γ ) − I (0)

γ
≥ 0,

for all γ ∈ (0,1), where

I (γ ) ≡ I2
(
X

e,γ
u ;Xe,γ

v | Ye,γ
)
,

and e,γ denotes the function in [0,1]E such that e,γ (e) = γ and e,γ (f ) = (f ) for
all f = e.

Then, for any u, v ∈ V ,

I2
(
X

u ;X
v | Y) ≤ (|G| − 1

) · connG,(u, v).

The concurrent work [27] applies to some of these more general cases, although we dis-
cussed with Theorem 3.10 how the resulting bound can be loose on these. In order to further
investigate the tightness of [27], it would be useful to determine whether the subadditivity
inequality of Theorem 3.10 holds on arbitrary graphs. We conjecture that it does.

A percolation lower bound. When the edge channels of the graphical channel are symmetric,
Theorem 3.6 is tight on trees, so one cannot open the edges with lower probability in general.
Is there a converse to Theorem 3.6: that is, is the mutual information lower-bounded by
the connection probability on some nontrivial percolation? For example, for some bounded-
degree graphs?

6. Proofs of Theorem 3.6 and Corollaries 3.7 and 3.8. We first prove a version of
Theorem 3.6 for the special case in which all of the edge channels are binary symmetric. We
will then extend this specific result to general symmetric channels.

THEOREM 6.1. Let PG,Q be a graphical channel, where each edge channel Qe is a
binary symmetric channel. Let (X,Y ) be a binary synchronization instance drawn from PG,Q.
Then for all u, v ∈ V ,

I2(Xu;Xv | YE(G)) ≤ connG,γ (u, v),

where

γ (i, j) := I2(Xi;Xj | Y(i,j))

for all (i, j) ∈ E(G).

PROOF. Suppose we can prove the theorem for the case in which the graph is determin-
istic. Then, since the graph G is a deterministic function of the edge observations Y ,

I2(Xu;Xv | Y) = EG

[
I2(Xu;Xv | Y)

]
≤ EG

[
connG,γ (u, v)

]
= connG,γ (u, v),

as desired. Therefore, we may assume that G is deterministic.
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Let the flip probability of Qe be ε(e), and define δ(e) = (1 − 2ε(e)). We can assume that
δ(e) ∈ [0,1], because we lose no information by flipping edge labels deterministically. Also,
by direct calculation γ (e) = δ(e)2 = I2(Xi;Xj |Yij ) for each edge e = (i, j).

The proof goes by induction on |Sδ|, where

Sδ := {
e ∈ E(G) : δ(e) /∈ {0,1}}.

In the base case, |Sδ| = 0, so all edge observations are completely noiseless or completely
noisy. Hence, I2(Xu,Xv|Y) = 1 if there is a path P from u to v whose edges are all noiseless.
If there is no such path, then I2(Xu,Xv|Y) = 0. This is exactly the statement I2(Xu,Xv|Y) =
connG,γ (u, v).

For the inductive step, assume the theorem when the BSC channel flip probabilities are
given by δ′ : E(G) → [0,1] with |Sδ′ | < |Sδ|. Pick an arbitrary edge f ∈ Sδ . We will now
interpolate between the case in which δ(f ) = 0, and the case in which δ(f ) = 1, with the
other edge channels held fixed. For any t ∈ [0,1], let δt : E(G) → [0,1] be given by δt (e) =
δ(e) for e = f , and δt (f ) = t . Define corresponding spin synchronization instances (Xt , Yt ),
and also γt = δ2

t . Write

I (t) := I2(Xt,u;Xt,v|Yt ) and C(t) := connG,γt (u, v).

In order to prove that I (t) ≤ C(t) for all t ∈ [0,1], we need the following claim:

CLAIM 6.2. There is nondecreasing h : [0,1] →R such that

I (t) = I (0) + (
I (1) − I (0)

) · t2 · h(t).

Assume the claim is true. Then, h(1) = 1, and since h(t) is nondecreasing, h(t) ≤ 1.
Hence,

I (t) ≤ I (0) + (
I (1) − I (0)

) · t2

= I (0) · (
1 − t2) + I (1) · t2

≤ C(0) · (
1 − t2) + C(1) · t2 = C(t).

The inequality of the last line follows because I (0) ≤ C(0) and I (1) ≤ C(1) by the inductive
hypothesis. The equality of the last line follows by the linearity of the connection probability
in the parameter γt (f ) = t2.

It only remains to prove the claim. Write E′ = E(G) \ f . Also write f = (i, j), At =
Xt,u · Xt,v , and Bt = Xt,i · Xt,j . By Proposition A.3, and because Yt,E′ is a subset of Yt ,

I (t) = E
[
E[At |Yt ]2] = E

[
E

[
E[At |Yt ]2|Yt,E′

]]
.

Since the only edge channel to change with t is Qf , we can couple X0 = Xt , and Y0,E′ =
Yt,E′ . Hence, it suffices to prove that the function

h(t;Y0,E′) := 1

t2

(
E

[
E[At |Yt ]2|Yt,E′

] −E
[
E[At |Y0]2|Y0,E′

])
is nondecreasing in t , since then we can set h(t) = ∑

σ∈{−1,+1}E′ h(t;σ) ·P[Y0,E′ = σ ], which
will also be nondecreasing in t .

Fix σ ∈ {−1,+1}E′
such that P[Yt,E′ = σ ] > 0, and let Pαβ = P[(At ,Bt ) = (α,β) |

Yt,E′ = σ ]. Set a = P1,1, b = P1,−1, c = P−1,1, d = P−1,−1. Since Yt,f ⊥⊥ At,Yt,E′ |Bt , one
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can explicitly calculate

E
[
E[At |Yt ]2|Yt,E′

]
=

(
((a(1 − t) + b(1 + t)) − (c(1 − t) + d(1 + t)))2

2((a(1 − t) + b(1 + t)) + (c(1 − t) + d(1 + t)))

+ ((a(1 + t) + b(1 − t)) − (c(1 + t) + d(1 − t)))2

2((a(1 + t) + b(1 − t)) + (c(1 + t) + d(1 − t)))

)
.

Plugging this in and simplifying, if b = d = 0 or a = c = 0, then h(t;σ) = 0, which is

nondecreasing because it is constant. Otherwise we get h(t;σ) = 16(ad−bc)2

1−t2(a−b+c−d)2 , which is

nondecreasing on [0,1] because (a − b + c − d)2 < (a + b + c + d)2 = 1. This proves the
claim. �

In order to see the relationship between Theorem 6.1 and Theorem 3.6, we define the
“absolute value” of the output of a symmetric edge channel:

DEFINITION 6.3. Given a symmetric edge channel Q with output alphabet Y and sym-
metry transformation T : Y → Y , we define the absolute value | · |T : Y → 2Y by

|y|T = {
y,T (y)

}
.

The definition is motivated by viewing T as a sign-flipping transformation (which it is in
the BSC and AWGN cases). Notice that since T 2 = id, |y|T = |T (y)|T for all y ∈ Y .

We are now ready to prove Theorem 3.6.

PROOF OF THEOREM 3.6. For each edge channel Qe(·|·), let Te be the symmetry trans-
formation such that Qe(Te(·)| − 1) = Qe(·| + 1), and T 2

e = 1. Define Ze = |Ye|T . We claim
that by the symmetry property of the edge channels, X ⊥⊥ Z. Because of this, L(X,Y |Z),
the law of (X,Y ) conditioned on Z, is almost surely the law of a spin synchronization in-
stance (X′, Y ′) on G, where each of the channels Q′

e is binary-valued (either Ye or Te(Ye)).6

Explicitly, for z ∈ Ze,

Q′
e(z| + 1) = dQe(z| + 1)

d(Qe(z| + 1) + Qe(Te(z)| + 1))
,

and by the symmetry property this equals

dQe(Te(z)| − 1)

d(Qe(Te(z)| − 1) + Qe(z| − 1))
= Q′

e

(
Te(z)| − 1

)
.

So Q′
e is a binary symmetric channel. Hence, proving Theorem 3.6 when all the edge channels

are BSC yields the general bound:

I2(Xu;Xv|Y)(Since Z is a function of Y )

= EZ

[
I2(Xu;Xv|Y,Z)

]
(Replacing Q with Q′ for each realization of Z)

= EZ

[
I2

(
X′

u;X′
v|Y ′,Z

)]
6If for some edge e = (i, j), we have the corner case Ye = Te(Ye), then the output channel Q′

e is single-valued.
However, in this case the channel Q′

e gives no information about Xi ·Xj , and therefore we may equivalently view
it as a binary symmetric channel with flip probability 1/2.
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(By the BSC edge channel case, Theorem 6.1)

≤ EZ

[
connG,γZ

(u, v)
]

= connG,γ (u, v).(Since γ = EZ[γZ])
Here, γZ(i, j) = I2(Xi,Xj |Yij ,Zij ). In particular, for the last equality, we can let P be a
bond percolation on G such that each edge e is independently open with probability γZ(e).
Then the probability that u and v are connected by an open path is EZ[connG,γZ

(u, v)]. We
can also calculate this probability in a different way, noticing that each edge (i, j) in P is
in fact independently open with probability EZ[γZ(i, j)] = I2(Xi;Xj | Yij ,Zij ) = γ (i, j),
where the independence occurs because the entries of Z are all independent, since they are
independent of each other given X, and Z is independent of X. Hence, there is an open path in
P connecting u and v with probability connG,γ (u, v). This proves that EZ[connG,γZ

(u, v)] =
connG,γ (u, v).

So, to conclude the argument, it suffices to prove the claim that X is independent of Z. For
this, it is sufficient to prove that for each e = (i, j) ∈ E(G), Xi · Xj is independent of Zij .
This is true, because given z ∈ Zij the relative likelihood that Xi ·Xj = 1 versus Xi ·Xj = −1
is

d(Qe(z| + 1) + Qe(Te(z)| + 1))

d(Qe(z| − 1) + Qe(Te(z)| − 1))
= d(Qe(z| + 1) + Qe(Te(z)| + 1))

d(Qe(Te(z)| + 1) + Qe(z| + 1))
= 1,

by the symmetry property of Te. �

We now prove the corollaries to the theorem. In order to prove subadditivity over paths
(Corollary 3.7), we will need the following.

LEMMA 6.4. Suppose (X,Y ) is a spin synchronization instance on a path P with end-
points u and v. Then

connP,γ (u, v) = I2(Xu;Xv|YE(P )).

PROOF.

connP,γ (u, v) = ∏
(i,j)∈E(P )

I2(Xi;Xj |Yij )

= ∏
(i,j)∈E(P )

I2(Xi · Xj ;Yij )(Prop. A.4)

= I2

( ∏
(i,j)∈E(P )

Xi · Xj ;YE(P )

)
(Prop. A.5)

= I2(Xu · Xv;YE(P ))

= I2(Xu;Xv|YE(P )).(Prop. A.4) �

PROOF OF COROLLARY 3.7. The corollary follows from Theorem 3.6, the union bound
connG,γ (u, v) ≤ ∑

P∈PG(u,v) connP,γ (u, v), and Lemma 6.4. �

We also extend Theorem 3.6 to bound the information that the edge labels Y and a set XS

of vertex label give about another vertex label Xu:

PROOF OF COROLLARY 3.8. Create a “virtual” vertex w and construct the graph G′ with
V (G′) = V (G)∪w and E(G′) = E(G)∪ {(v,w) : v ∈ S}. Let Q′ be edge channels such that
Q′

e = Qe for all e ∈ E(G), and

Q′
(v,w)(y | x) = δ(x = y)
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for all v ∈ S. Draw (X′, Y ′) from PG′,Q′ . Since PG′,Q′ is a symmetric graphical channel, by
Theorem 3.6,

I2
(
X′

u;X′
w | Y ′) ≤ connG′,γ ′(u,w)(Theorem 3.6)

= connG,γ (u,S),(18)

where γ ′ : E(G′) → [0,1] is defined by γ ′(i, j) = I2(X
′
i;X′

j | Y ′
(i,j)) for all (i, j) ∈ E(G′),

and γ : E(G) → [0,1] is analogous. Line (18) follows because γ (e) = γ ′(e) for all e ∈
E(G), and γ ′(e) = 1 for all e ∈ E(G′) \ E(G). Finally, note that since Qe is noiseless for
each e ∈ E(G′) \ E(G), by data-processing

I2
(
X′

u;X′
w | Y ′) = I2

(
X′

u;X′
S | Y ′) = I2(Xu;XS | Y). �

APPENDIX: CHI-SQUARED MUTUAL INFORMATION

In this appendix, we define the Chi-squared mutual information, I2, and prove Proposi-
tions 3.1.

A.1. f -divergences and f -mutual informations.

f -divergences. Given two probability distributions μ and ν over a probability space � such
that μ � ν (i.e., μ is absolutely continuous with respect to ν), and given convex f : (0,∞) →
R such that f (1) = 0 and f is strictly convex at 1, we may define the f -divergence

Df

(
μ ‖ ν

) ≡
∫
�

f

(
dμ

dν

)
dν.

Here dμ
dν

denotes the Radon–Nikodym derivative. (When � is finite, dμ
dν

(x) = μ(x)
ν(x)

for all
x ∈ �.) f -divergences were introduced in [12].

f -mutual informations. Given variables A,B with joint distribution νA,B on A × B, and
marginal distributions νA on A, νB on B, the f -mutual information between them is given
by

If (A;B) ≡ Df

(
νA,B ‖ (νA × νB)

)
.

If is nonnegative, and zero if and only if A and B are independent. Thus, we can take it as
a measure of the degree of independence of the variables A and B: the higher the mutual
information, the more “correlated” the variables are, and the more information they give
about each other.

Moreover, the f -mutual information also has the following well-known “data-processing”
property (see [11], e.g.):

PROPOSITION A.1. for A,B,C such that A is independent of C given B ,

(19) If (A;C) ≤ If (A;B).

In particular, if C is a deterministic function of B , then If (A;C) ≤ If (A;B).

A.2. Definition and basic properties of I2.

DEFINITION A.2. The Chi-squared mutual information, I2, is the f -mutual information,
If , with f (t) = (t − 1)2.
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PROPOSITION A.3. Let A,U be jointly-distributed random variables, with U ∈ {−1,

+1}. Then

I2(A;U) = Var[E[U |A]]
Var[U ] .

In particular, if U ∼ Rad(1/2), then

I2(A;U) = E
[
E[U |A]2]

.

PROOF. Letting νZ denote the distribution of Z, and � denote the sample set of A,

I2(A;U) =
∫
�×{−1,+1}

(
d(νA,U )

d(νA × νU)
− 1

)2
d(νA × νU)

=
∫
�

∑
u∈{−1,+1}

νU(u)

(
1

νU(u)
· d(νA,U (·, u))

dνA(·) − 1
)2

dνA

=
∫
�

∑
u∈{−1,+1}

1

νU(u)

(
d(νA,U (·, u))

dνA(·) − νU(u)

)2
dνA.

So, since

d(νA,U (·,1))

dνA(·) − νU(1) =
(

1 − d(νA,U (·,−1))

dνA(·)
)

− (
1 − νU(−1)

)

= −
(

d(νA,U (·,−1))

dνA(·) − νU(−1)

)

νA-almost everywhere, we have

I2(A;U) =
( ∑

u∈{−1,+1}

1

νU(u)

)
·
∫
�

(
d(νA,U (·,1))

dνA(·) − νU(1)

)2
dνA

= 4

Var[U ] ·
∫
�

(
P[U = 1|A] − P[U = 1])2

dνA

= 4 Var[P[U = 1|A]]
Var[U ] = 4 Var[E[(U/2)|A]]

Var[U ] = Var[E[U |A]]
Var[U ] .

When U ∼ Rad(1/2), we have E[U ] = 0 and Var[U ] = 1, so I2(A;U) = E[E[U |A]2]. �

PROOF OF PROPOSITION 3.1. Let (X,Y ) be a synchronization instance. We wish to
show that I2(Xu;XW,Y ) = I2(Xu;XW |Y).

I2(Xu;XW,Y ) = E
[
E[Xu|XW,Y ]2]

(Prop. A.3)

= E
[
E

[
E[Xu|XW,Y ]2|Y ]]

= I2(Xu;XW |Y)(Prop. A.3)

The last step uses Xu|Y ∼ Rad(1/2), because Xu ⊥⊥ Y . �

PROPOSITION A.4. Let (X,Y ) be a spin synchronization instance. Then I2(XuXv;Y) =
I2(Xu;Xv,Y ).
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PROOF.

I2(Xu;Xv,Y ) = I2(XuXv;Xv,Y )(Data-processing)

= I2(XuXv;Y).(Since XuXv,Y ⊥⊥ Xv) �

PROOF OF PROPOSITION 3.2. By Proposition 3.1 it is equivalent to show that

I2(Xu;Xv,Y ) = EY

[
EX[Xu · Xv | Y ]2]

.

This is true by Propositions A.3 and A.4. �

A.3. Series multiplicativity and parallel subadditivity of I2.

PROPOSITION A.5. Let U,V,W
i.i.d.∼ Rad(1/2). Let A be the output of a channel on

UW , and let B be the output of a channel on WV . Then

I2(UV ;A,B) = I2(UW ;A)I2(WV ;B).

PROOF.

I2(UV ;A,B)

= E
[
E[UV |A,B]2]

(Prop. A.3)

= E
[
E[UWWV |A,B]2]

(Since W 2 = 1)

= E
[
E[UW |A,B]2

E[WV |A,B]2]
(Using UW ⊥⊥ WV |A,B)

= E
[
E[UW |A]2

E[WV |B]2]
(Using UW ⊥⊥ B|A and WV ⊥⊥ A|B)

= E
[
E[UW |A]2]

E
[
E[WV |B]2]

(Using A ⊥⊥ B.)

= I2(UW ;A)I2(WV ;B).(Prop. A.3) �

LEMMA A.6. Let U ∼ Rad(1/2). Let A and B be the outputs of two independent chan-
nels on U . Then I2(U ;A,B) ≤ I2(U ;A) + I2(U ;B).

PROOF. Let νA,B,U denote the joint distribution of A,B,U . For simplicity, we prove the
lemma when A,B are discrete. For any two random variables C,D with joint distribution
νC,D , I2(C;D) = D(1−1/t)(νCνD||νC,D), where D(1/1−t) is the (1 − 1/t)-divergence, so

I2(U ;A,B) − (
I2(U ;A) + I2(U ;B)

)
= E

[(
νA,B,U

νA,BνU

− 1
)

−
(

νA,U

νAνU

− 1
)

−
(

νB,U

νBνU

− 1
)]

= E

[(
νU |A,B

νU |A
− 1

)(
νA,U

νAνU

− 1
)]

(20)

+E

[(
νU |A,B

νU |A
− 1

)
−

(
νB,U

νBνU

− 1
)]

.(21)

We claim Terms (20) and (21) are ≤ 0, which implies the lemma statement.
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We rewrite Term (20), using

νA,U (a,u)

νA(a)νU (u)
− 1 = 2νU |A(u|a) − 1 = E[U |A = a] · u,

(20) = E

[(
νU |A,B

νU |A
− 1

)
·E[U |A] · U

]

= E

[
E[U |A] ·

(
U · νU |A,B

νU |A
− U

)]

= E

[
E[U |A] ·

(
U · νU |A,B

νU |A
−E[U |A]

)]
.

Define

ta := ∑
b

νB,U |A(b,1|a)νB,U |A(b,−1|a)

νB,U |A(b,1|a) + νB,U |A(b,−1|a)
.

Note

(22) 0 ≤ ta ≤ νU |A(1|a)νU |A(−1|a)

by the subadditivity of f (x, y) = xy/(x +y) for x, y ≥ 0. (In particular, for all a, b, c, d ≥ 0,
f (a, b) + f (c, d) ≤ f (a + c, b + d).) So

E

[
U · νU |A,B

νU |A

∣∣∣∣A
]

= ∑
u

u

νU |A
∑
b

νB,U |AνB,U |A
νB|A

= ∑
u

u

νU |A
∑
b

(
(νB|A − (νB|A − νB,U |A))νB,U |A

νB|A

)

= ∑
u

u

νU |A

(
−tA + ∑

b

νB,U |A
)

= ∑
u

u

νU |A
(νU |A − tA)

= −∑
u

u
tA

νU |A

= − tA

νU |A(1|A)
+ tA

νU |A(−1|A)

= tA(νU |A(1|A) − νU |A(−1|A))

νU |A(1|A)νU |A(−1|A)

= tA

νU |A(1|A)νU |A(−1|A)
·E[U |A]

= cAE[U |A],
for some 0 ≤ cA ≤ 1 by (22). Thus, (20) = E[U |A]2(cA − 1) ≤ 0, as desired.

Now we bound Term (21).

(21) = E

[(
νB,U

νB|AνU

− 1
)

−
(

νB,U

νBνU

− 1
)]

(Using B ⊥⊥ A|U )

= E

[(
νAνB

νA,B

− 1
)(

νB,U

νBνU

− 1
)](

Since E

[
νB

νB|A
− 1

]
= 0

)
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= ∑
a,b,u

νA,B,U

(
νB

νB|A
− 1

)(
νB|U
νB

− 1
)
.

For compactness, write αa = νA|U(a|1), βa = νA|U(a| − 1), γb = νB|U(b|1), δb = νB|U(b| −
1):

(21) = ∑
a,b

αaγb

2

(
(γb + δb)/2

(αaγb + βaδb)/(αa + βa)
− 1

)(
γb

(γb + δb)/2
− 1

)

+ βaδb

2

(
(γb + δb)/2

(αaγb + βaδb)/(αa + βa)
− 1

)(
δb

(γb + δb)/2
− 1

)

= ∑
b

(
− (γb − δb)

2

4(γb + δb)

)∑
a

(
(αa − βa)

αaγb − βaδb

αaγb + βaδb

)
.

We conclude by using∑
a

(αa − βa) = ∑
a

νA|U(a|1) − νA|U(a| − 1) = 1 − 1 = 0,

so ∑
a

(αa − βa)

(
αaγb − βaδb

αaγb + βaδb

)
= ∑

a

(αa − βa)

(
αaγb − βaδb

αaγb + βaδb

+ 1
)

= ∑
a

(αa − βa)

(
2αaγb

αaγb + βaδb

)

≥ ∑
a

(αa − βa)

(
2γb

γb + δb

)
(The inequality is term-wise)

= 0.

Since (− (γb−δb)
2

4(γb+δb)
) ≤ 0 for all b, this proves that Term (21) ≤ 0. �

We also note the following fact, used throughout Section 4:

PROPOSITION A.7. Let (An,Un)
∞
n=1 be a sequence of jointly-distributed random vari-

ables, where each Un ∼ Rad(1/2). If I2(An;Un) → 0, then for any estimators Ûn(An) ∈
{+1,−1}, we have P[Un = Ûn] → 1/2.

PROOF. By the data-processing inequality (Proposition A.1) and Proposition A.3,

I2(An;Un) ≥ I2(Ûn;Un)

= E
Ûn

[
EUn[Un | Ûn]2]

= ∑
i∈{−1,+1}

(
(P[Un = Ûn = i] − P[Un = Ûn = i])2

P[Ûn = i]
)

≥ ∑
i∈{−1,+1}

(
P[Un = Ûn = i] − P[Un = Ûn = i])2

.

Since I2(An;Un) → 0, we have P[Un = Ûn = i] − P[Un = Ûn = i] → 0 for i ∈ {+1,−1},
and adding these up P[Un = Ûn] − P[Un = Ûn] → 0, as desired. �
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A.4. I2 versus IKL.

DEFINITION A.8. The KL-mutual information, IKL, is the f -mutual information, If ,
with f (t) = t log2 t .

LEMMA A.9 (I2 vs. IKL). Let A,U be jointly-distributed random variables, where U ∼
Rad(1/2). Then

1

2
I2(A;U) ≤ IKL(A;U) ≤ I2(A;U).

Lemma A.9 is well known (e.g., see [17]), and follows from the inequalities

x2

2
≤ 1 + x

2
lg(1 − x) + 1 − x

2
lg(1 + x) ≤ x2.
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