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Abstract

In this note we show a simple formula for the joint density of local times, last exit
tree and cycling numbers of continuous-time Markov chains on finite graphs, which
involves the modified Bessel function of the first type.
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1 Introduction

Let G = (V,E,∼) be an unoriented, connected finite graph with no multiple edges,
equipped with positive edge conductances {We, e ∈ E}. For any i ∈ V , let Wi :=∑
j∼iWij .
Consider the associated Markov jump process (Xt)t≥0 on V , that is the continuous-

time discrete-space random walk which jumps from a vertex i ∈ V to a neighbor j at
rate Wij = Wji, i.e. with generator

Lf(i) =
∑

j∈V :j∼i
Wij(f(j)− f(i)), for any i ∈ V.

Let ~E = {ij : {i, j} ∈ E} be the set of directed edges, where each undirected edge in
E is replaced by two directed edges with opposite directions. For any oriented spanning
tree ~T , we call its root the unique site from which no edge goes out. We denote by
δi(j) = 1{i = j} the Kronecker delta.

Let I be the set of currents on the graph, i.e.

I = {a ∈ Z~E : aji = −aij , i, j ∈ V }.

For any a ∈ Z~E and i ∈ V , we let ai =
∑
j∼i aij . If a ∈ I, then ai can be interpreted as

the divergence of a at site i.
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Explicit formula for the density of local times of Markov jump processes

For any k ∈ N~E , let a(k) ∈ I be defined by a(k)ij = kij − kji. For any a ∈ I and any
oriented spanning tree T of G, let ã ∈ ZE be defined by

ãij = aij − 1{ij ∈ ~T}+ 1{ji ∈ ~T}, ij ∈ E.

Set similarly ãi =
∑
j∼i ãij for i ∈ V .

For any σ > 0 and any right-continuous path x = (x(t))t≥0, let us define `(x, σ) ∈ RV+
as the vector of local times at time σ, that is,

`(x, σ)i =

∫ σ

0

1{x(s) = i} ds, i ∈ V.

Let us also define k(x, σ) = (kij(x, σ))(i,j)∈~E the vector of oriented crossings up to time
σ, that is,

kij(x, σ) = |{t ≤ σ : x(t−) = i, x(t) = j}|. (1.1)

Let ~T (x, σ) be the last-exit tree of the path x on the interval [0, σ], that is, the collection
of directed edges taken by path x for the last departures from all vertices visited in that
time interval except the endpoint x(σ). In other words, (i, j) ∈ ~T (x, σ) iff there exists
t ∈ (0, σ] such that (x(t−), x(t)) = (i, j) and x(s) 6= i for every s ≥ t. One can easily check
that ~T (x, σ) is indeed a tree.

For any ν ∈ R, the modified Bessel function of the first kind is defined by

Iν(z) =

∞∑
k=0

1

k!Γ(k + ν + 1)

(z
2

)2k+ν
, z ∈ R. (1.2)

Recall that Iν(z) = I−ν(z). Therefore, for any a ∈ I, any unoriented edge e = {i, j} ∈ E
and z ∈ R, we have that Iãij (z) = Iãji(z), which we denote by Iãe(z).

Define the simplex

Lσ :=
{
` ∈ (0,∞)V :

∑
i∈V

`i = σ
}
, σ > 0 , (1.3)

and the Lebesgue measure mσ on Lσ.
The main result of this note is the following.

Theorem 1.1. Let i0, i1 ∈ V , σ > 0, A ⊆ Lσ Lebesgue-measurable, let ~T be an oriented
spanning tree of the graph with root i1, and let a ∈ I be such that ai = δi0(i)− δi1(i) for
all i ∈ V . Then

Pi0

(
a(k(X,σ)) = a, `(X,σ) ∈ A, ~T (X,σ) = ~T

)
=

∫
A

e−
∑

i∈V Wi`i
( ∏
{i,j}∈E

Iãij

(
2Wij

√
`i`j

))( ∏
ij∈~T

Wij

)(∏
i∈V

`
ãi/2
i

)
mσ(d`) .

Remark 1.2. It is easy to extend Theorem 1.1 to the case where σ is a stopping time

σ = σbh = inf{t ≥ 0 : `(X, t)b > h}, h > 0, b ∈ V,

in which case the density is replaced by

Pi0

(
a(k(X,σ)) = a, `(X,σ)V \{b} ∈ (`, `+ d`), ~T (X,σ) = ~T

)
= 1{`b=h}e

−
∑

i∈V Wi`i
∏

{i,j}∈E

Iãij

(
2Wij

√
`i`j

) ∏
ij∈~T

Wij

∏
i∈V

`
ãi/2
i

∏
i∈V \{b}

d`i , (1.4)
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Explicit formula for the density of local times of Markov jump processes

since we impose `b = h.

In the case where G = T is a finite tree, further simplifications can be made. Indeed,
consider the Markov jump process at time σi0h : if `(X,σi0h )i > 0 for all i ∈ V , then the

only possible last exit tree ~T (X,σi0h ) is the tree T itself, oriented towards i0. Moreover,
a(k(X,σi0h )) = 0. Hence Pi0(`(X,σi0h )V \{i0} ∈ (`, `+ d`)) equals

1{`i0=h}e
−

∑
i∈V Wi`i

( ∏
{i,j}∈E

WijI1

(
2Wij

√
`i`j

))( ∏
ij∈~T

√
`j
`i

) ∏
i∈V \{i0}

d`i . (1.5)

This is the Markov jump process analogue of the second Ray-Knight Theorem [9] that
relates the local times of Brownian motion on R at time σ0

h to zero-dimensional squared
Bessel process. We give a more precise statement (and proof) in Section 3, Corollary 3.1.

Remark 1.3. One could obtain a formula for the density of the local times alone by
summing the formula obtained in Theorem 1.1 over all possible spanning trees and
cycling numbers. Note that for any fixed oriented spanning tree ~T , any arbitrary choice
of cycling numbers on ~E \ ~T can be uniquely extended to cycling numbers on the whole
graph via a linear map.

Explicit formulas for the joint density of local times of continous-time Markov chains
were already proposed, see for instance [1, 2, 4, 7, 6, 10, 11]. In [7], the author obtained
non rigorously asymptotic formulae of some Markov paths. Brydges, van der Hofstad
and König [2] provide an abstract and rather involved formula for the density of the
local times of Markov jump processes. Our result shows that, once we consider the local
times together with the last-exit tree and the cycling numbers, one obtains a simple and
tractable formula that could be used in practice. It would be interesting to understand if
there is a direct link between the two apparently different formulae. Let us also mention
that an extensive literature survey is provided in [2].

Merkl, Rolles and Tarrès proposed in [10] a formula for the joint density of the
oriented edge crossings, local times and last-exit tree for the Vertex-Reinforced Jump
Process on a general graph, whose counterpart in the context of continuous-time Markov
chains is simple and stated in Proposition 2.1 below.

Le Jan independently obtained in Theorem 4.1 [6], in the context of loop soups L1

with intensity 1, an expression for the joint density of the cycling numbers and local time,
which also involves the first modified Bessel function. We can deduce that result from
the construction of those loop soups by Wilson’s algorithm, in the following manner.

Let us first quickly recall that algorithm: we order all the sites of our finite graph
V = {j1, . . . , j|V |}, and we assume that the walk is transient with cemetery ∆. We start a
loop-erased Markov chain {η1} starting from j1 and ending at ∆, where {η1} denotes the
set of vertices visited by this self-avoiding path. Then, from the next vertex in V \ {η1}
we start a loop-erased Markov chain {η2} ending in {η1} ∪ {∆}, and so on. The union of
all ηi is a spanning tree, whose leaves are starting sites of the successive loop-erased
chains.

Given a fixed spanning tree T , we can easily obtain a formula similar to the one in
Theorem 1.1 for the joint density of the succession of Markov chains starting successively
at all leaves of T with respect to the order on sites given above and killed at cemetery
∆. Now the loop soup extracted from that succession of Markov chains by Wilson’s
algorithm has the same local time at all sites (see for instance Chapter 8 [5]), its cycling
numbers are k = ã after extraction of the spanning tree; ã satisfies ãi = 0 for all i ∈ V , so
that the term

∏
i∈V `

ãi/2
i in the density is 1. Summing

∏
{i,j}∈T Wij over all spanning trees

of G yields a determinant by matrix-tree theorem, which enables to deduce Theorem 4.1
[6].
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2 Proof of Theorem 1.1

We first show the following Proposition 2.1. Its proof relies on an argument similar to
the proof of Theorem 1.6 in [10]; the technique for determining the cardinality of the set
of paths with given last exit tree is from Lemma 6 by Keane and Rolles in [3].

Proposition 2.1. Let i0, i1 ∈ V , σ > 0, A ⊆ Lσ measurable, let ~T be an oriented
spanning tree of the graph with root i1, and let k ∈ N~E be such that a(k)i = δi0(i)− δi1(i)

for all i ∈ V . Then

Pi0

(
k(X,σ) = k, `(X,σ) ∈ A, ~T (X,σ) = ~T

)
=

∫
A

e−
∑

i∈V Wi`i
( ∏
ij∈~E

(Wij`i)
kij

kij !

)( ∏
ij∈~T

kij
`i

)
mσ(d`) . (2.1)

Proof. It follows from a simple argument (similar but simpler than Lemma 1 in [3]) that,
for any k ∈ N~E such that a(k) = δi0 − δi1 , there exists a path from i0 to i1 realizing
the edge crossings prescribed by k. Consider first adding to the event on the l.h.s.
of (2.1) the additional requirement that (Xt)0≤t≤σ takes such a given path γ = {γ0 =

i0, γ1, ..., γn−1, γn = i1}. The probability turns out to be independent of such choice and
is equal to ∫

A

∏
i∈V

(
W ki
i e
−Wi`i

∏
j∼i

(Wij

Wi

)kij)
V(k, `, i1)mσ(d`) , (2.2)

where V(k, `, i1) denotes the volume factor associated to the choice of jump times out of
each vertex within its given local time:

V(k, `, i1) :=
( ∏
i 6=i1

`ki−1i

(ki − 1)!

)(`ki1i1
ki1 !

)
. (2.3)

It remains to count the number of all possible paths γ that start at i0 and end at i1, while
respecting the fixed last exit tree ~T and edge crossing numbers k(x, σ). This number
equals the number of relative orders of exiting each vertex and follows a multinomial
distribution: ∏

i∈V

(ki − 1{i 6= i1})!∏
j∼i(kij − 1{ij ∈ ~T})!

. (2.4)

Multiplying (2.4) to (2.2), and simplifying, yields the proposition.

Let us now prove Theorem 1.1. Let a ∈ I be such that ai = δi0(i)− δi1(i) for all i ∈ V .
For each unoriented edge e ∈ E, let us choose a unique orientation ~e = ij with e = {i, j}
such that aij ≥ 0, and let E+ = {~e : e ∈ E}.

In order to compute the probability considered in the statement of the theorem, we
need to sum all the contributions from Proposition 2.1 for all k ∈ N~E such that a(k) = a.
For each ij ∈ E+, we sum over all kji ≥ 0 and kij is determined by kij = kji + aij ≥ kji.
Therefore, using Proposition 2.1, recalling that `i > 0 for every i ∈ V and joining the
contributions from ij and ji for each ij ∈ E+, we have

Pi0

(
a(k(X,σ)) = a, `(X,σ) ∈ A, ~T (X,σ) = ~T

)
=

∫
A

e−
∑

i∈V Wi`i
∑

(kji)∈NE+

( ∏
ij∈E+

(Wij`j)
kji

kji!

(Wij`i)
kij

kij !

∏
ij∈~T

kij
`i

)
mσ(d`)

=

∫
A

e−
∑

i∈V Wi`i
∏

ij∈E+

( ∑
kji≥1{ji∈~T}

W
kij+kji
ij `

kij−1{ij∈~T}
i `

kji−1{ji∈~T}
j

(kij − 1{ij ∈ ~T})!(kji − 1{ji ∈ ~T})!

)
mσ(d`) .

ECP 23 (2018), paper 90.
Page 4/7

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP194
http://www.imstat.org/ecp/


Explicit formula for the density of local times of Markov jump processes

In the second equality we use that, if ji ∈ ~T , then the summand is 0 iff kji = 0.
Let k′ji = kji − 1{ji ∈ ~T}. Then

kij − 1{ij ∈ ~T} = k′ji + ãij

kij + kji = 2k′ji + ãij + 1{{i, j} ∈ T}

where T is the unoriented tree associated to ~T , so that

∑
kji≥1{ji∈~T}

W
kij+kji
ij `

kij−1{ij∈~T}
i `

kji−1{ji∈~T}
j

(kij − 1{ij ∈ ~T})!(kji − 1{ji ∈ ~T})!

=
∑
k′ji≥0

W
2k′ji+ãij+1{{i,j}∈T}
ij `

k′ji+ãij
i `

k′ji
j

(k′ji + ãij)!(k′ji)!

= W
1{{i,j}∈T}
ij `

ãij/2
i `

ãji/2
j

∑
k′ji≥0

(Wij

√
`i`j)

2k′ji+ãij

(k′ji + ãij)!(k′ji)!

= W
1{{i,j}∈T}
ij `

ãij/2
i `

ãji/2
j Iãij (2Wij

√
`i`j) .

We conclude the proof by the observation that∏
ij∈E+

`
ãij/2
i `

ãji/2
j =

∏
i∈V

∏
j:{i,j}∈E

`
ãij/2
i =

∏
i∈V

`
ãi/2
i ,

as can be seen by splitting the product over positively and negatively oriented edges.

3 Link with Ray-Knight theorems

In this section, we derive Ray-Knight identities as a simple corollary of our results.
The statements are similar to those of Theorem 4.1 in [2], which are a generalization of
results from [8].

In [8], the proof of (a part of) these statements uses the Brownian Ray-Knight
Theorems, and in [2] the proof is done by applying an involved formula for the density of
the local times of Markov jump processes, giving rise to a rather long proof. Our proof is
a simple application of Theorem 1.1, which becomes very simple on trees, as highlighted
in Remark 1.2. Recall that we defined

σbh = inf{t ≥ 0 : `(X, t)b > h}.

Corollary 3.1 (Ray-Knight Theorem for continuous-time simple random walk). Let G = Z,
let Wij = 1 for any {i, j} ∈ E, let b ∈ Z+ \ {0} and let h > 0. Let us consider X the simple
random walk on Z, started at 0.

(i) The process (`(X,σbh)b−x)x=0,...,b is a time-homogeneous discrete-time Markov chain
on (0,∞), starting at h and with transition density given by

f(h1, h2) = e−h1−h2I0(2
√
h1h2), h1, h2 > 0.

(ii) The processes (`(X,σbh)b+x)x≥0 and (`(X,σbh)−x)x≥0 are time-homogeneous discrete-
time Markov chains on [0,∞), with transition probability given by

P (h1, dh2) = e−h1δ0(dh2) + e−h1−h2

√
h1
h2
I1(2

√
h1h2)dh2, h1, h2 ≥ 0.
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(iii) The Markov chains above are independent.

Proof. The statement (iii) is a simple consequence of the Markovian structure.
To prove (i), one can proceed by applying the formula of Theorem 1.1 inductively,

for x ∈ {0, . . . , b− 1}, on graphs consisting of a single edge {b− x− 1, b− x}, started at
b− x− 1 until the stopping time σb−xh1

. In that case, ã(b−x−1,b−x) = 0 and the density in
(1.4) becomes

1{`b−x=h1}e
−h1−h2I0

(
2
√
h1h2

)
,

which proves (i).
Let us now prove (ii). We will write the proof for (`(X,σbh)b+x)x≥0, but this trivially

translates to (`(X,σbh)−x)x≥0.
Note that, if `b+x = h1, for some x ≥ 0, and if the walk starts and ends on the left of

b+ x, then the walker could jump or not jump to b+ x+ 1. The walker does not jump to
b+ x+ 1 with probability e−h1 . If the walker jumps to b+ x+ 1, then we can apply the
formula of Theorem 1.1 on the graph consisting of the single edge {b+ x, b+ x+ 1}, with
starting and ending point b+x, until the stopping time σb+xh1

. In this case, ã(b+x,b+x+1) = 1,
ãb+x = −ãb+x+1 = 1 and the density in (1.5) becomes

1{`b+x=h1}e
−h1−h2I1

(
2
√
h1h2

)√h1
h2
,

which proves (ii).
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