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Abstract

We study the asymptotics, for small and large values, of the supremum of a product
of symmetric stable processes. We show in particular that the lower tail exponent
remains the same as for only one process, possibly up to some logarithmic terms. The
proof relies on a path construction of stable bridges using last sign changes.
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1 Introduction

For n ∈ N, let (Z(i), 1 ≤ i ≤ n) be independent symmetric α-stable Lévy processes
with α ∈ (0, 2]. In this short note, we are interested in the study of the random variable

Sn = sup
0≤u≤1

n∏
i=1

Z(i)
u .

Except when n = 1, in which case the double Laplace transform of S1 is classically given
by fluctuation theory (see for instance Bertoin [4, p.174]), it does not seem evident to
compute explicitly the law of Sn, and we shall rather study its asymptotics P (Sn ≥ x) as
x→ +∞ and P (Sn ≤ ε) as ε→ 0.

Most of the paper is devoted to the computation of the limit as ε→ 0, which is known
as a lower tail problem, see for instance [9]. By scaling, this problem is equivalent to
a persistence problem (see the surveys [1, 6]) and amounts to the study of the first
entrance time of the n-dimensional stable process (Z(i), 1 ≤ i ≤ n) into the "hyperbolic"
domain Hn = {(z1, . . . , zn) ∈ Rn,

∏n
i=1 zi ≥ 1} :

P (Sn ≤ ε) = P

(
Rn >

1

ε
α
n

)
where Rn = inf

{
u ≥ 0,

n∏
i=1

Z(i)
u ≥ 1

}
.

There are several papers in the literature dealing with entrance and exit times of
symmetric stable processes, mainly for three families of domains : cones and wedges
(Bañuelos and Bogdan [2], Méndez-Hernández [11]), parabolic domains (Bañuelos and
Bogdan [3]) and unbounded convex domains (Méndez-Hernández [10]). Here, since the
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On the supremum of products of symmetric stable processes

domain Hn is non-connected, not much is known regarding Rn and we shall tackle the
problem directly by working with Sn.

In the following, for any real functions f and g we will use the standard notation
f(x) � g(x) as x→ +∞ to express the fact that there exist two positive finite constants
κ1 and κ2 such that κ1f(x) ≤ g(x) ≤ κ2f(x) as x→ +∞.

We start with the Brownian case, i.e. α = 2.

Theorem 1.1. Let (Z(i), 1 ≤ i ≤ n) be independent Brownian motions.

1. Large deviations : there is the asymptotics

P

(
sup

0≤u≤1

n∏
i=1

Z(i)
u ≥ x

)
� x−

1
n exp

(
−n

2
x

2
n

)
(x→ +∞)

2. Lower tail probability : there exist two constants 0 < κ1 ≤ κ2 < +∞ such that

κ1 ε ≤ P

(
sup

0≤u≤1

n∏
i=1

Z(i)
u ≤ ε

)
≤ κ2 ε |ln(ε)|n (ε→ 0)

In the non-Gaussian stable case, the situation is different.

Theorem 1.2. Let (Z(i), 1 ≤ i ≤ n) be independent symmetric α-stable Lévy processes
with α ∈ (0, 2).

1. Large deviations : there is the asymptotics

P

(
sup

0≤u≤1

n∏
i=1

Z(i)
u ≥ x

)
� (ln(x))n−1

xα
(x→ +∞)

2. Lower tail probability : there exist two constants 0 < κ1 ≤ κ2 < +∞ such that

κ1 ε
α/2 ≤ P

(
sup

0≤u≤1

n∏
i=1

Z(i)
u ≤ ε

)
≤ κ2 ε

α/2 |ln(ε)| (ε→ 0)

The main part of the proof deals with the computation of an upper bound for the
lower tail probabilities. As can be seen, the exponent is the same as for only one process,
possibly up to logarithmic terms. Therefore, a simple approach would be to try to bound
the quantity Sn by

∏n
i=1 Z

(i)
θ1

where θ1 is the value at which one of the Lévy processes,

say Z(n), reach its maximum on [0, 1]. This yields of course two main difficulties.

1. First, the product of the other processes
∏n−1
i=1 Z

(i)
θ1

might not be positive. This can
be however easily circumvented thanks to Slepian’s inequality, since the processes
are symmetric.

2. The second difficulty is less obvious and is due to the arcsine law for stable
processes. There is a high probability that θ1 will be close to 0, hence, although
Z

(n)
θ1

will be large, the remaining product
∏n−1
i=1 Z

(i)
θ1

will also be close to zero, thus
not providing us with a good upper bound.

The general idea of the proof will be to decompose the path of the processes (Z(i)) at
some last passage times and then use a time reversal argument, so as to find a value not
to close to the origin at which Z(n) is large enough.
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On the supremum of products of symmetric stable processes

The presence of logarithmic terms in the upper bound of the lower tail probability in
the Brownian case is due to some additive phenomenons. Indeed, as suggested above,

our upper bound will involve expressions of the form sup
0≤u≤1

Z
(n)
u

n−1∏
i=1

|Z(i)
1 |. Then, recalling

the estimates (see Bertoin [4, p.219]):

P(|Z1| ≤ ε) ∼
ε→0

k ε and P

(
sup

0≤u≤1
Zu ≤ ε

)
∼
ε→0

c ε
α
2 (1.1)

for some positive constants k and c, we see that when α < 2, the second asymptotics
will be the leading one, while for α = 2, they will be of the same order, and some
compensations will appear, see Lemma 2.1 below.

The outline of the paper is as follows : the large deviation results are proved in
Section 2, the lower tail probabilities in Section 3, and finally Section 4 provides the
proof of an intermediary lemma.

2 Large deviations

The proof of the large deviations result relies on the symmetry of the processes (Z(i)),
and on the fact that the asymptotics of both random variables |Z1| and sup

0≤u≤1
Zu are

similar. Indeed, on the one hand, the lower bound is easily given by the use of symmetry:

P(Sn ≥ x) ≥ P

(
n∏
i=1

Z
(i)
1 ≥ x

)
=

1

2
P

(
n∏
i=1

|Z(i)
1 | ≥ x

)
.

On the other hand, still by symmetry,

P(Sn ≥ x) ≤ P

(
sup

0≤u≤1
Z(n)
u sup

0≤s≤1

n−1∏
i=1

Z(i)
s ≥ x

)
+ P

(
inf

0≤u≤1
Z(n)
u inf

0≤s≤1

n−1∏
i=1

Z(i)
s ≥ x

)

= 2P

(
sup

0≤u≤1
Z(n)
u sup

0≤s≤1

n−1∏
i=1

Z(i)
s ≥ x

)

≤ 2nP

(
n∏
i=1

sup
0≤u≤1

Z(i)
u ≥ x

)
(by iteration).

It remains thus to compute the involved quantities in both cases.

• In the Brownian case, since sup
0≤u≤1

Zu
(law)
= |Z1|, we deduce that the asymptotics of

Sn is given by that of
∏n
i=1 |Z

(i)
1 |. Its Mellin transform reads, for ν > −1 :

E

[
n∏
i=1

|Z(i)
1 |ν

]
=

(
2ν

π

)n
2
(

Γ

(
1 + ν

2

))n
. (2.1)

The converse mapping theorem, see Janson [8, Theorem 6.1], yields :

P

(
n∏
i=1

|Z(i)
1 | ∈ dx

)
/dx ∼

x→+∞
κx

1
n−1 e−

n
2 x

2
n

for some positive constant κ. The result then follows by integration, using the asymptotics
of the incomplete Gamma function.
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• Next, when α ∈ (0, 2), it is known from Bertoin [4, p.221] that there exists k > 0

such that

P(|Z1| ≥ x) ∼
x→+∞

2k

xα
and P

(
sup

0≤u≤1
Zu ≥ x

)
∼

x→+∞

k

xα
. (2.2)

Point 1. of Theorem 1.2 is then consequence of the following lemma (see for instance
Lemma 2.2 in Profeta-Simon [12]):

Lemma 2.1. Let X and Y be two independent positive random variables satisfying the
asymptotics :

P(X ≥ z) �
z→+∞

(ln(z))n

zν
and P(Y ≥ z) �

z→+∞

(ln(z))p

zµ

where n, p ∈ N and ν, µ are positive constants such that 0 < ν ≤ µ. Then it holds :

P(XY ≥ z) �
z→+∞

{
z−ν(ln(z))n if ν < µ

z−ν(ln(z))n+p+1 if ν = µ.

3 Lower tail probabilities

We now turn our attention to the lower tail estimates and start with some notations.
Let X be a symmetric stable process. We denote by Px the probability measure of X
when started from x ∈ R, with the usual convention that P = P0. Let T0 be the first time
that X takes a negative value :

T0 = inf{t ≥ 0, Xt ≤ 0}.

We recall from Bertoin [4, p.219] that since X is symmetric, there exists c > 0 such that

P1 (T0 ≥ t) ∼
t→+∞

c√
t
. (3.1)

Finally, let us introduce the last change of sign of X before time t > 0 :

gt = sup {0 ≤ u ≤ t, XuXu− ≤ 0} .

This random time will be the key to the computation of the lower tail probabilities.

Remark 3.1. In the following, when applying the Markov property, X̂ will always denote
an independent copy of X. Besides, we shall use the notations c and κ to denote positive
constants that may change from line to line.

We first show that the asymptotics of the distribution of g1 is similar to that of the
arcsine law.

Lemma 3.2. There exists a positive constant c such that

P(g1 ∈ dr)/dr ∼
r→0

c√
r
.

Proof. We first have, using the symmetry of X and applying the Markov property with
r ∈ (0, 1) :

P(g1 ≤ r) = E
[
P̂|Xr|

(
T̂0 ≥ 1− r

)]
.

By scaling, this is further equal to

P(g1 ≤ r) = E

[
P̂1

(
T̂0 ≥

1− r
r|X1|α

)]
.
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Recall now from Doney-Savov [7] that under P1, the random variable T0 admits a
continuous density h satisfying h(z) ∼

z→+∞
κ z−3/2 for some constant κ > 0. Therefore,

differentiating, we deduce that

P(g1 ∈ dr)/dr =
1

r2
E

[
1

|X1|α
h

(
1− r
r|X1|α

)]
∼
r→0

κ√
r
E
[
|X1|

α
2

]
which is the announced result.

3.1 Lower bound for the lower tail probabilities

Observe first that by scaling

P(Sn ≤ ε) = P

(
sup

u∈[0,ε−α/n]

n∏
i=1

Z(i)
u ≤ 1

)

≥ P

(
sup

u∈[0,ε−α/n]

n∏
i=1

Z(i)
u ≤ 1,

n∏
i=1

Z
(i)
1 ≤ 0, sup

1≤i≤n
g

(i)

ε−
α
n
≤ 1

)

= P

(
sup
u∈[0,1]

n∏
i=1

Z(i)
u ≤ 1,

n∏
i=1

Z
(i)
1 ≤ 0, sup

1≤i≤n
g

(i)

ε−
α
n
≤ 1

)

where the last equality follows from the fact that, by definition of the (g(i)), the product∏n
i=1 Z

(i) remains negative after time 1. Applying the Markov property at time 1 and
then the scaling property, we obtain :

P(Sn ≤ ε) ≥ E

[
n∏
i=1

P̂|Z(i)
1 |

(
T̂

(i)
0 ≥ 1

ε
α
n
− 1

)
1A

]
≥ E

[
n∏
i=1

P̂1

(
T̂

(i)
0 ≥ 1

ε
α
n |Z(i)

1 |α

)
1A

]
(3.2)

where A =

{
sup
u∈[0,1]

n∏
i=1

Z(i)
u ≤ 1,

n∏
i=1

Z
(i)
1 ≤ 0

}
. From (3.1), there exists κ > 0 such that

for δ > 0 small enough

P̂1

(
T̂

(i)
0 ≥ 1

ε
α
n |Z(i)

1 |α

)
1{ε

α
n |Z(i)

1 |α≤δ}
≥ κ ε α

2n |Z(i)
1 |

α
2 1{ε

α
n |Z(i)

1 |α≤δ}
.

Plugging this inequality in (3.2), we deduce that

P(Sn ≤ ε) ≥ κnε
α
2 E

[
n∏
i=1

|Z(i)
1 |

α
2 1{ε

α
n |Z(i)

1 |α≤δ}
1A

]
∼
ε→0

κnε
α
2 E

[
n∏
i=1

|Z(i)
1 |

α
2 1A

]
which gives the lower bound.

3.2 Upper bound for the lower tail probabilities

We assume in this section that n ≥ 2, since the bounds are known to hold for n = 1.
Using the fact that the processes (Z(i)) all have the same law, we first write :

P (Sn ≤ ε) = nP

(
sup

0≤u≤1

n∏
i=1

Z(i)
u ≤ ε, g

(n)
1 ≥ sup

1≤i≤n−1
g

(i)
1

)
.

where we have used that g(i)
1 6= g

(j)
1 a.s. for i 6= j since the (g(i)) are independent random

variables having a density. To simplify the notation, we shall remove the superscript (n)

and denote
X = Z(n), g1 = g

(n)
1 and ξt = sup

1≤i≤n−1
g

(i)
t .
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This yields

P (Sn ≤ ε) = nP

(
sup

0≤u≤1
Xu

n−1∏
i=1

Z(i)
u ≤ ε, g1 ≥ ξ1

)

≤ nP

(
sup

0≤u<g1

Xu

n−1∏
i=1

Z(i)
u ≤ ε, g1 ≥ ξ1

)

= 2nP

(
sup

0≤u<1
Xug1

n−1∏
i=1

Z(i)
ug1
≤ ε,

n−1∏
i=1

Z(i)
g1
≥ 0, g1 ≥ ξ1

)
where the last equality follows by symmetry since the time of the last change of sign of
X and of −X is the same. By scaling, we further obtain

P (Sn ≤ ε) ≤ 2n

∫ 1

0

P

(
sup

0≤u<1

Xur

r1/α
r
n
α

n−1∏
i=1

Z(i)
u ≤ ε,

n−1∏
i=1

Z
(i)
1 ≥ 0, 1 ≥ ξ 1

r

∣∣∣∣ g1 = r

)
P(g1 ∈ dr).

(3.3)
We set X(x,t,y) for the α-stable bridge of length t starting from x and ending at y. Notice
that when X is a Brownian motion, then g1 coincides with the last zero of X before

time 1, so that Xg1
= 0 a.s. and it is well-known that the process

(
Xug1√
g1
, 0 ≤ u ≤ 1

)
is a

standard Brownian bridge, independent of g1, see Bertoin-Pitman [5]. We shall extend
this result to the stable case in the following lemma, whose proof is postponed to the
end of the paper.

Lemma 3.3. We set by convention X0− = X0. Conditionally on the event

{
Xg1−

g
1/α
1

= a

}
,

the process (
Xug1−

g
1/α
1

, 0 ≤ u ≤ 1

)
is independent of g1 and has the same law as the stable bridge

(
X

(0,1,a)
u− , 0 ≤ u ≤ 1

)
.

Remark 3.4. When dealing with stable Lévy processes Z, there exist several similar
results in the literature, for instance replacing g1 by the last zero of Z before time 1
(assuming α > 1, see Bertoin [4, p.230, Theorem 12]), or replacing g1 by the last time
that Z equals its minimum before time 1 (see Bertoin [4, p.230, Proposition 16]).

Let us denote by ρ(da, dr) the law of the pair
(
g
−1/α
1 Xg1−, g1

)
. Since the (Z(i)) are

quasi-left continuous and independent of X, we deduce from Lemma 3.3 that

P (Sn ≤ ε) ≤ 2n

∫ +∞

0

∫ 1

0

P

(
sup

0≤u≤1
X

(0,1,a)
u− r

n
α

n−1∏
i=1

Z(i)
u ≤ ε,

n−1∏
i=1

Z
(i)
1 ≥ 0, 1 ≥ ξ 1

r

)
ρ(da, dr)

= 2n

∫ +∞

0

∫ 1

0

P

(
sup

0≤u≤1
X(a,1,0)
u r

n
α

n−1∏
i=1

Z
(i)
1−u ≤ ε,

n−1∏
i=1

Z
(i)
1 ≥ 0, 1 ≥ ξ 1

r

)
ρ(da, dr)

(3.4)

where the equality follows from the time-reversal property of stable bridges. We shall
now decompose the right-hand side of this inequality according as {a ≤ 1} or {a > 1}.

3.2.1 The case {a ≤ 1}

We start with the term giving the main contribution :

In(ε) :=

∫ 1

0

∫ 1

0

P

(
sup

0≤u≤1
X(a,1,0)
u r

n
α

n−1∏
i=1

Z
(i)
1−u ≤ ε,

n−1∏
i=1

Z
(i)
1 ≥ 0, 1 ≥ ξ 1

r

)
ρ(da, dr).
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Let us denote by pt the density of the random variable Xt, and recall that it is even, and
decreasing on (0,+∞). Taking the supremum only on [0, 1

2 ], and using the change of
measure formula for the stable bridge (see [4, p.229]), we get

In(ε) ≤
∫ 1

0

∫ 1

0

P

(
sup

0≤u≤1/2

X(a,1,0)
u r

n
α

n−1∏
i=1

Z
(i)
1−u ≤ ε,

n−1∏
i=1

Z
(i)
1 ≥ 0, 1 ≥ ξ 1

r

)
ρ(da, dr)

=

∫ 1

0

∫ 1

0

E

p 1
2
(a+X 1

2
)

p1(a)
1{

sup
0≤u≤1/2

(a+Xu)r
n
α
n−1∏
i=1

Z
(i)
1−u≤ε,

n−1∏
i=1

Z
(i)
1 ≥0, 1≥ξ 1

r

}
 ρ(da, dr)

≤
p 1

2
(0)

p1(1)

∫ 1

0

∫ 1

0

P

(
sup

0≤u≤1/2

(a+Xu)r
n
α

n−1∏
i=1

Z
(i)
1−u ≤ ε,

n−1∏
i=1

Z
(i)
1 ≥ 0, 1 ≥ ξ 1

r

)
ρ(da, dr).

(3.5)

We now study the integrand in (3.5). Recall that X admits the representation (Bτu , u ≥ 0)

where B is a standard Brownian motion and τ a stable subordinator with index α
2

independent of B. Let us consider the conditional expectation :

P

(
sup

0≤u≤1/2

(a+Bηu)r
n
α

n−1∏
i=1

ω
(i)
1−u ≤ ε

∣∣∣∣ Z(i) = ω(i), τ = η

1 ≤ i ≤ n− 1

)

where η and (ω(i), 1 ≤ i ≤ n− 1) are some fixed càdlàg paths. We apply Slepian’s lemma
with the Gaussian processes

Uu = a

n−1∏
i=1

ω
(i)
1−u +Bηu

n−1∏
i=1

ω
(i)
1−u and Vu = a

n−1∏
i=1

ω
(i)
1−u +Bηu

n−1∏
i=1

|ω(i)
1−u|

which satisfy for every 0 ≤ u ≤ s ≤ 1
2 ,

E[Uu] = E[Vu], E
[
U2
u

]
= E

[
V 2
u

]
and E[UuUs] ≤ E[VuVs].

This yields, using the tower property of conditional expectations :

P

(
sup

0≤u≤1/2

(a+Xu)r
n
α

n−1∏
i=1

Z
(i)
1−u ≤ ε,

n−1∏
i=1

Z
(i)
1 ≥ 0, 1 ≥ ξ 1

r

)

≤ P

(
sup

0≤u≤1/2

(
a

n−1∏
i=1

Z
(i)
1−u +Xu

n−1∏
i=1

|Z(i)
1−u|

)
r
n
α ≤ ε,

n−1∏
i=1

Z
(i)
1 ≥ 0, 1 ≥ ξ 1

r

)

= P

(
sup

0≤u≤1/2

(
a

n−1∏
i=1

Z
(i)
1−u +Xu

n−1∏
i=1

|Z(i)
1−u|

)
r
n
α ≤ ε, ε ≥ ar nα

n−1∏
i=1

Z
(i)
1 ≥ 0, 1 ≥ ξ 1

r

)

where the equality follows from the fact that the additional condition ar
n
α

∏n−1
i=1 Z

(i)
1 ≤ ε

already appears (implicitly) in the first condition by taking u = 0. Then, denoting
θ 1

2
= Argmax

0≤u≤1/2

Xu, we may replace the supremum by its value at θ 1
2

to get the bound

P

((
a

n−1∏
i=1

Z
(i)
1−θ 1

2

+Xθ 1
2

n−1∏
i=1

|Z(i)
1−θ 1

2

|
)
r
n
α ≤ ε, ε ≥ a r nα

n−1∏
i=1

Z
(i)
1 ≥ 0, 1 ≥ ξ 1

r

)
. (3.6)

We further decompose this expression according to the sign of
∏n−1
i=1 Z

(i)
1−θ 1

2

.
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1. When
∏n−1
i=1 Z

(i)
1−θ 1

2

≥ 0, the expression (3.6) is smaller than

P

(
Xθ 1

2

r
n
α

n−1∏
i=1

|Z(i)
1−θ 1

2

| ≤ ε, 1 ≥ ξ 1
r

)
=: Ψn(r, ε). (3.7)

2. When
∏n−1
i=1 Z

(i)
1−θ 1

2

≤ 0, the situation is slightly more complex. Plugging the second

condition in the first one, we have

P

(
(Xθ 1

2

− a)r
n
α

n−1∏
i=1

|Z(i)
1−θ 1

2

| ≤ ε, ε ≥ a r nα
n−1∏
i=1

Z
(i)
1 ≥ 0, 1 ≥ ξ 1

r

)

≤ P

Xθ 1
2

r
n
α

n−1∏
i=1

|Z(i)
1−θ 1

2

| ≤ ε

1 +

∏n−1
i=1 |Z

(i)
1−θ 1

2

|∏n−1
i=1 Z

(i)
1

 , ε ≥ ar nα
n−1∏
i=1

Z
(i)
1 ≥ 0, 1 ≥ ξ 1

r


≤ Ψn(r, 2ε) + P

(
Xθ 1

2

r
n
α

n−1∏
i=1

|Z(i)
1 | ≤ 2ε, 1 ≥ ξ 1

r

)
=: Ψn(r, 2ε) + Φn(r, 2ε)

where we have used in the last line the inequality : 1{x≤ε(a+b)} ≤ 1{x≤2aε} + 1{x≤2bε} for
a, b ≥ 0. Going back to (3.5), we have thus proven that

In(ε) ≤
p 1

2
(0)

p1(1)

∫ 1

0

(2Ψn(r, 2ε) + Φn(r, 2ε))P(g1 ∈ dr)

and it remains to study the asymptotics of the right-hand side.
We start with Ψn(r, 2ε) which will give the main contribution. From Lemma 3.2, we

may choose δ ∈ (0, 1) small enough such that

∀r ≤ δ, P(g1 ∈ dr)/dr ≤
c√
r

(3.8)

for some constant c > 0. On the one hand, when r ≥ δ, we obtain by scaling and using
that θ 1

2
≤ 1

2 :

∫ 1

δ

Ψn(r, 2ε)P(g1 ∈ dr) ≤ P

(
Xθ 1

2

δn/α
(

1− θ 1
2

)n−1
α

n−1∏
i=1

|Z(i)
1 | ≤ 2ε

)

≤ P

(
Xθ 1

2

δn/α
(

1

2

)n−1
α

n−1∏
i=1

|Z(i)
1 | ≤ 2ε

)
�
ε→0

{
κ ε

α
2 if α ∈ (0, 2),

κ ε |ln(ε)|n−1 if α = 2

where the asymptotics follow from (1.1) and Lemma 2.1. On the other hand, when r ≤ δ,
we deduce from the Markov property at time 1 and the scaling property that :

Ψn(r, 2ε) = E

[
n−1∏
i=1

P̂
(i)

|Z(i)
1 |

(
T̂

(i)
0 ≥ 1

r
− 1

)
1A

]
≤ E

[
n−1∏
i=1

P̂
(i)
1

(
|Z(i)

1 |αT̂
(i)
0 ≥ 1− δ

r

)
1A

]

where A =

{
Xθ 1

2

r
n
α

∏n−1
i=1 |Z

(i)
1−θ 1

2

| ≤ 2ε

}
. Recall next that by the independent increments

property of Z(i), for any fixed u ≥ 0, the process Y (i) = (Z
(i)
t+u − Z

(i)
u , t ≥ 0) is an α-stable

Lévy process independent from Zu. This yields the identity Z(i)
1 = Z

(i)
u + Y

(i)
1−u where

on the right-hand side, Zu and Y1−u are independent. Replacing u by the independent
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On the supremum of products of symmetric stable processes

random time 1 − θ 1
2

and using the classic inequality |x + y|α ≤ 2(|x|α + |y|α) (since
α ∈ (0, 2]) we deduce that

Ψn(r, 2ε) ≤ E

[
n−1∏
i=1

P̂
(i)
1

((
|Z(i)

1−θ 1
2

|α + |Y (i)
θ 1

2

|α
)
T̂

(i)
0 ≥ 1− δ

2r

)
1A

]
.

The scaling property of the processes (Z(i)) and (Y (i)) as well as the fact that θ 1
2
∈ [0, 1

2 ]

then yield

Ψn(r, 2ε) ≤ E

[
n−1∏
i=1

P̂
(i)
1

((
|Z(i)

1 |α + |Y (i)
1 |α

)
T̂

(i)
0 ≥ 1− δ

2r

)
1Bn−1

]
(3.9)

where, for 1 ≤ k ≤ n− 1 :

Bk =

{
Xθ 1

2

r
n
α

(
1

2

)n−1
α

k∏
i=1

|Z(i)
1 | ≤ 2ε

}
.

Next, using the inequalities

P̂
(i)
1

(
|Z(i)

1 |α ≥
1− δ

2r

)
≤ P̂(i)

1

((
|Z(i)

1 |α + |Y (i)
1 |α

)
≥ 1− δ

2r

)
≤ 2 P̂

(i)
1

(
|Z(i)

1 |α ≥
1− δ

4r

)
since Y (i)

1
(law)
= Z

(i)
1 , we deduce from (2.2) that when α ∈ (0, 2),

P̂
(i)
1

((
|Z(i)

1 |α + |Y (i)
1 |α

)
≥ 1− δ

2r

)
�
r→0

r.

Therefore, from Lemma 2.1 and the asymptotics (3.1), we may choose δ small enough
such that

∀r ≤ δ, E

[
P̂

(i)
1

((
|Z(i)

1 |α ∨ 1 + |Y (i)
1 |α

)
T̂

(i)
0 ≥ 1− δ

2r

)]
≤ κ
√
r (3.10)

for some positive constant κ (independent of i), and where a ∨ b = max(a, b). Note that
(3.10) is also valid for α = 2 since Brownian motion admits moments of all order. We
shall now proceed by iteration starting from (3.9).

1. If |Z(n−1)
1 | ≥ 1, then, we may remove |Z(n−1)

1 | from the product in Bn−1, and deduce
from (3.10) that Ψn(r, 2ε) is smaller than

κ
√
rE

[
n−2∏
i=1

P̂
(i)
1

((
|Z(i)

1 |α + |Y (i)
1 |α

)
T̂

(i)
0 ≥ 1− δ

2r

)
1Bn−2

]
.

2. If |Z(n−1)
1 | ≤ 1, then, we may replace |Z(n−1)

1 | by 1 in the first product in (3.9), and
deduce, still from (3.10), that Ψn(r, 2ε) is smaller than

κ
√
rE

[
n−2∏
i=1

P̂
(i)
1

((
|Z(i)

1 |α + |Y (i)
1 |α

)
T̂

(i)
0 ≥ 1− δ

2r

)
1Bn−1

]
.

Iterating the procedure, we obtain that Ψn(r, 2ε) may be bounded by a sum of 2n−1

terms:

Ψn(r, 2ε) ≤ κ r
n−1

2

∑
∆⊂{1,...,n−1}

P

(
Xθ 1

2

r
n
α

(
1

2

)n−1
α ∏

i∈∆

|Z(i)
1 | ≤ 2ε

)
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where the sum is taken over all the subsets of {1, 2, . . . , n− 1} (including the empty set).
The change of variable εx = r

n
α and the estimate (3.8) yield then the upper bound∫ δ

0

Ψn(r, 2ε)P(g1 ∈ dr) ≤ κε
α
2

∑
∆⊂{1,...,n−1}

∫ δn/α

ε

0

P

(
Xθ 1

2

(
1

2

)n−1
α ∏

i∈∆

|Z(i)
1 |x ≤ 2

)
x
α
2−1dx

(3.11)
and it remains to study the asymptotics of the integrands. From Lemma 2.1 and (1.1),
we deduce that

1. when α ∈ (0, 2) all the terms have the same contribution :

P

(
Xθ 1

2

(
1

2

)n−1
α ∏

i∈∆

|Z(i)
1 |x ≤ 2

)
�

x→+∞
c

(
1

x

)α/2
2. while, for α = 2, they depend on the cardinality of ∆ :

P

(
Xθ 1

2

(
1

2

)n−1
α ∏

i∈∆

|Z(i)
1 |x ≤ 2

)
�

x→+∞
c

(ln(x))|∆|

x
.

Plugging these expressions in (3.11) finally gives the announced upper bound.
The study of the asymptotics of Φn(r, 2ε) follows the same pattern of proof, except

that we do not need to introduce the random variables (Y
(i)
1 ). Indeed, when r ≥ δ, we get

the same asymptotics bound while for r ≤ δ we obtain, applying the Markov property:

Φn(r, 2ε) ≤ E

[
n−1∏
i=1

P̂
(i)
1

(
|Z(i)

1 |αT̂
(i)
0 ≥ 1− δ

r

)
1Cn−1

]
where, for 1 ≤ k ≤ n− 1,

Ck =

{
Xθ 1

2

r
n
α

k∏
i=1

|Z(i)
1 | ≤ 2ε

}
.

We now follow the same steps as for Ψn(r, 2ε) :

1. If |Z(n−1)
1 | ≥ 1, then, we may remove |Z(n−1)

1 | from the product in Cn−1, and deduce
from (3.10) that Φn(r, 2ε) is smaller than

κ
√
rE

[
n−2∏
i=1

P̂
(i)
1

(
|Z(i)

1 |αT̂
(i)
0 ≥ 1− δ

2r

)
1Cn−2

]
.

2. If |Z(n−1)
1 | ≤ 1, then, we may apply directly (3.1) to deduce that Φn(r, 2ε) is smaller

than

κ
√
rE

[
|Z(n−1)

1 |α2
n−2∏
i=1

P̂
(i)
1

(
|Z(i)

1 |αT̂
(i)
0 ≥ 1− δ

2r

)
1Cn−1

]
.

Iterating the procedure, we obtain as before that Φn(r, 2ε) may be bounded by a sum of
2n−1 terms:

∫ δ

0

Φn(r, 2ε)P(g1 ∈ dr) ≤ κε
α
2

∑
∆⊂{1,...,n−1}

∫ δn/α

ε

0

E

∏
i∈∆

|Z(i)
1 |

α
2 1{

Xθ 1
2

∏
i∈∆

|Z(i)
1 |x≤2

}
xα2−1dx

(3.12)
and, as ε→ 0, all the terms on the right-hand side have the same asymptotics : ε

α
2 |ln(ε)|.
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3.2.2 The case {a > 1}

Starting back from (3.4), we first bound the supremum by its value at u = 0 :

∫ +∞

1

∫ 1

0

P

(
sup

0≤u≤1
X(a,1,0)
u r

n
α

n−1∏
i=1

Z
(i)
1−u ≤ ε,

n−1∏
i=1

Z
(i)
1 ≥ 0, 1 ≥ ξ 1

r

)
ρ(da, dr)

≤
∫ +∞

1

∫ 1

0

P

(
ar

n
α

n−1∏
i=1

Z
(i)
1 ≤ ε,

n−1∏
i=1

Z
(i)
1 ≥ 0, 1 ≥ ξ 1

r

)
ρ(da, dr)

≤
∫ 1

0

P

(
r
n
α

n−1∏
i=1

|Z(i)
1 | ≤ ε, 1 ≥ ξ 1

r

)
P (g1 ∈ dr) .

The study of this last expression will be similar to that of Φn(r, 2ε), replacing Xθ 1
2

by 1.

Indeed, on the one hand, we first deduce from Lemma 2.1, taking δ small enough as
before, that :∫ 1

δ

P

(
r
n
α

n−1∏
i=1

|Z(i)
1 | ≤ ε, 1 ≥ ξ 1

r

)
P (g1 ∈ dr) ≤ P

(
δ
n
α

n−1∏
i=1

|Z(i)
1 | ≤ ε

)
�
ε→0

κ ε |ln(ε)|n−2
.

On the other hand, for r ≤ δ, we deduce, as for (3.12), that

∫ δ

0

P

(
r
n
α

n−1∏
i=1

|Z(i)
1 | ≤ ε, 1 ≥ ξ 1

r

)
P (g1 ∈ dr)

≤ κ εα2
∑

∆⊂{1,...,n−1}

∫ δn/α

ε

0

E

∏
i∈∆

|Z(i)
1 |

α
2 1{ ∏

i∈∆

|Z(i)
1 |x≤1

}
xα2−1dx.

When ε → 0, all the integrals on the right-hand side are finite, hence we obtain the
asymptotics ε

α
2 which is negligible.

4 Proof of Lemma 3.3

Proof. This lemma being classical for Brownian motion (see Bertoin-Pitman [5]), we
assume that α ∈ (0, 2). Let 0 < s ≤ t ≤ 1 and take F a positive functional. Let us denote
by f(y; z, r) the probability density function of (XT0

, T0) when X0 = y. By symmetry and
time reversal, we first have

E

[
F

(
Xu−

g
1/α
1

, s ≤ u ≤ g1

)
1{g1≥t}

]

= 2

∫ +∞

0

E(y,1,0)

[
F

(
Xu

(1− T0)1/α
, T0 ≤ u ≤ 1− s

)
1{T0≤1−t}

]
p1(y)dy.

The change of measure formula for the stable bridge as well as the Markov property
then yield

2

∫ +∞

0

Ey

[
ps(X1−s)F

(
Xu

(1− T0)1/α
, T0 ≤ u ≤ 1− s

)
1{T0≤1−t}

]
dy

= 2

∫ +∞

0

∫ 0

−∞

∫ 1−t

0

Ez

[
ps(X1−s−r)F

(
Xu

(1− r)1/α
, 0 ≤ u ≤ 1− s− r

)]
f(y; z, r) dydzdr
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Next, by scaling and using that t1/αpt(z) = p1

(
z

t1/α

)
,

2

∫ +∞

0

∫ 0

−∞

∫ 1−t

0

E z

(1−r)1/α

[
ps

(
(1− r)1/αX1− s

1−r

)
F
(
X u

1−r
, 0 ≤ u ≤ 1− s− r

)]
× f(y; z, r) dydzdr

= 2

∫ +∞

0

∫ 0

−∞

∫ 1−t

0

Ea

[
p s

1−r

(
X1− s

1−r

)
F

(
Xu, 0 ≤ u ≤ 1− s

1− r

)]
× f(y; a(1− r)1/α, r) dydadr

= 2

∫ +∞

0

∫ 0

−∞

∫ 1−t

0

E(a,1,0)

[
F

(
Xu, 0 ≤ u ≤ 1− s

1− r

)]
p1(a)f(y; a(1− r)1/α, r) dydadr

= 2

∫ 0

−∞
daE(0,1,a)

[
F

(
Xu− ,

s

1− r
≤ u ≤ 1

)]
p1(a)

∫ +∞

0

∫ 1−t

0

f(y; a(1− r)1/α, r) dydr

where in the second line we have used the change of variable z = a(1 − r)1/α, in the
third line the change of measure formula for the stable bridge and in the last line the
time reversal property of the stable bridge. Letting s→ 0, we finally deduce that

E

[
F

(
Xu−

g
1/α
1

, 0 ≤ u ≤ g1

)
1{g1≥t}

]

= 2

∫ 0

−∞
daE(0,1,a) [F (Xu−, 0 ≤ u ≤ 1)] p1(a)

∫ +∞

0

∫ 1−t

0

f(y; a(1− r)1/α, r) dydr

which proves Lemma 3.3.
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