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Abstract

In this paper, we study a scalar linearly growing backward stochastic differential

equation (BSDE) with an L exp
(√

2
λ
log (1 + L)

)
-integrable terminal value. We prove

that a BSDE admits a solution if the terminal value satisfies the preceding integrability
condition with the positive parameter λ being less than a critical value λ0, which is
weaker than the usual Lp (p > 1) integrability and stronger than L logL integrability.
We show by a counterexample that the conventionally expected L logL integrability
and even the preceding integrability for λ > λ0 are not sufficient for the existence of
solution to a BSDE with a linearly growing generator.
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1 Introduction

Let {Wt, t ≥ 0} be a standard Brownian motion with values in Rd defined on some
complete probability space (Ω,F ,P), and {Ft, t ≥ 0} its natural filtration augmented
by all the P-null sets of F . Let us fix a nonnegative real number T > 0. The σ-field of
predictable subsets of Ω× [0, T ] is denoted by P.

For any real p ≥ 1, denote by Lp the set of all FT -measurable random variables η
such that E|η|p < ∞, by Sp the set of all real-valued, adapted and càdlàg processes
{Yt, 0 ≤ t ≤ T} such that

||Y ||Sp := E

[
sup

0≤t≤T
|Yt|p

]1/p
< +∞,
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Scalar BSDEs with integrable terminal values

by Lp the set of all real-valued adapted processes {Yt, 0 ≤ t ≤ T} such that

||Y ||Lp := E

[∫ T

0

|Yt|p dt

]1/p
< +∞,

and byMp the set of (equivalent class of) predictable processes {Zt, 0 ≤ t ≤ T} with
values in R1×d such that

||Z||Mp := E

(∫ T

0

|Zt|2 dt

)p/21/p

< +∞.

Consider the following Backward Stochastic Differential Equation (BSDE):

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs, t ∈ [0, T ]. (1.1)

Here, f (hereafter called the generator) is a real valued random function defined on the
set Ω× [0, T ]×R×R1×d, measurable with respect to P⊗B(R)⊗B(R1×d), and continuous
in the last two variables with the following linear growth:

|f(s, y, z)− f(s, 0, 0)| ≤ β|y|+ γ|z|, (s, y, z) ∈ [0, T ]×R×R1×d

with f0 := f(·, 0, 0) ∈ L1, β ≥ 0 and γ > 0. ξ is a real FT -measurable random variable,
and hereafter called the terminal condition or terminal value.

Definition 1.1. By a solution to BSDE (1.1), we mean a pair {(Yt, Zt), 0 ≤ t ≤ T} of
predictable processes with values in R × R1×d such that P-a.s., t 7→ Yt is continuous,
t 7→ Zt belongs to L2(0, T ) and t 7→ f(t, Yt, Zt) is integrable, and P-a.s. (Y, Z) verifies
(1.1).

By BSDE (ξ,f ), we mean the BSDE of generator f and terminal condition ξ.
It is well known that for (ξ, f0) ∈ Lp × Lp (with p > 1), BSDE (1.1) admits an

adapted solution (y, z) in the space Sp ×Mp. See e.g. [6, 4, 1] for more details. For
(ξ, f0) ∈ L1 × L1, one needs to restrict the generator f to grow sub-linearly with respect
to z, i.e., with some q ∈ [0, 1),

|f(t, y, z)− f0(t)| ≤ β|y|+ γ|z|q, (t, y, z) ∈ [0, T ]×R×R1×d

for BSDE (1.1) to have an adapted solution (see [1]).
The objective of the paper is to search for a reasonably weakest possible integrability

condition for the data (ξ, f0) to guarantee the existence of an adapted solution for a
linearly growing BSDE (1.1). It has been expected up till now that the L logL integrability
is a sufficient one to guarantee the existence of an adapted solution to BSDE (1.1). In this
paper, we show by a counterexample that such an expected condition is not sufficient,
and further, we shall provide a novel integrability one.

Our sufficient condition is stated as follows: there exists λ ∈ (0, 1
γ2T ) such that

E

[
|ξ| exp

(√
2

λ
log (1 + |ξ|)

)]
+ E

∫ T

0

|f0(t)| dt exp

√ 2

λ
log (1 +

∫ T

0

|f0(t)| dt)

 < +∞.

(1.2)
Define for λ > 0,

ψ(x) = xe
√

2
λ log(1+x), x ≥ 0.
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Scalar BSDEs with integrable terminal values

We have for x > 0,

ψ′(x) = e
√

2
λ log(x+1)

[
1 +

x

(1 + x)
√

2λ log(1 + x)

]
> 0,

and

ψ′′(x) =

√
2λ(4 + 2x) log(1 + x) + 2x log1/2(1 + x)−

√
2λx

4λ(1 + x)2 log3/2(1 + x)
e
√

2
λ log(1+x) > 0.

Obviously,
lim
x→0+

ψ′(x) = 1, lim
x→0+

ψ′′(x) = +∞,

and ψ is strictly increasing and strictly convex on (0,+∞). Therefore, our sufficient

condition (1.2) in fact requires that both the terminal value ξ and the integral
∫ T
0
|f0| ds

lies in the Orlicz space Lψ of random variables associated to the convex function ψ.

Remark 1.2. Note that the L exp
(√

2
λ log (1 + L)

)
-integrability is stronger than L1,

weaker than Lp for any p > 1, because for any ε > 0, we have,

x ≤ xe
√

2
λ log(1+x) ≤ xeε log(1+x)+ 1

2ελ ≤ e 1
2ελx(1 + x)ε, x ≥ 0.

Moreover, for any p ≥ 1, there exists a constant Cp > 0 such that

xe
√

2
λ log(1+x) ≥ Cp x logp(1 + x).

We will show by giving a simple example in Example 2.3 that even the condition

E

[
|ξ| exp

(√
2

λ
log (1 + |ξ|)

)]
+ E

∫ T

0

|f0(t)| dt exp

√ 2

λ
log (1 +

∫ T

0

|f0(t)| dt)

 < +∞

for some λ > 1
γ2T (which implies that

∫ T
0
|f0(t)| dt logp(1 +

∫ T
0
|f0(t)| dt) ∈ L1 and |ξ| logp(1 +

|ξ|) ∈ L1) is still too weak to ensure the existence of solution.

Our method applies the dual representation of solution to BSDE with convex generator
(see, e.g. [4, 7, 3]) in order to establish some a priori estimate and then the localization
procedure of real-valued BSDE [2].

The rest of the paper is organized as follows. Section 2 provides a necessary and
sufficient condition for the existence of solution to BSDE (1.1) for the typical form of

generator f(t, y, z) = f0(t) + βy + γ|z|, and establishes that the L exp
(√

2
λ log (1 + L)

)
integrability for some λ small enough is a sufficient condition for the existence of solution
to BSDE (1.1) for the typical form of the generator f(t, y, z) = f0(t) + βy+ γ|z|. Section 3

is devoted to the sufficiency of the L exp
(√

2
λ log (1 + L)

)
integrability condition for the

existence of solution to BSDE (1.1) of the general linearly growing generator.

2 Typical case

Let us first consider the following BSDE:

Yt = ξ +

∫ T

t

(f0(s) + βYs + γ|Zs|) ds−
∫ T

t

Zs dWs, (2.1)

where f0 ∈ L1, and β ≥ 0 and γ > 0 are some real constants. We suppose further that
both the terminal condition ξ and f0 are nonnegative. Let us denote ΣT the set of all
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Scalar BSDEs with integrable terminal values

stopping time τ such that τ ≤ T ; we recall that, for a process Y = {Yt}0≤t≤T , Y belongs
to the class D if the family of random variables {Yτ , τ ∈ ΣT } are uniformly integrable.
Note that if Y is a solution belonging to the class D, then as {eβtYt, 0 ≤ t ≤ T} is a
local supermartingale, it is a supermatingale, from which we deduce that Y ≥ 0. In this
section, we restrict ourselves to nonnegative solution.

For ξ +
∫ T
0
|f0| ds ∈ Lp (with p > 1), BSDE (2.1) has a unique solution. It has a dual

representation as follows (see, e.g. [4, 3])

Yt = ess sup
q∈A

Eq

[
eβ(T−t)ξ +

∫ T

t

eβ(s−t)f0(s) ds

∣∣∣∣ Ft
]
, t ∈ [0, T ] (2.2)

where A is the set of progressively measurable processes q such that |q| ≤ γ, and Eq is
the expectation with respect to the equivalent probability Qq which is defined as follows:

dQq := Mq
T dP,

with

Mq
t := exp

(∫ t

0

qs dWs −
1

2

∫ t

0

|qs|2 ds
)
, t ∈ [0, T ].

2.1 An equivalent condition

Theorem 2.1. Assume that ξ ≥ 0 and f0 ≥ 0. Then BSDE (2.1) admits a solution (Y, Z)

such that Y ≥ 0 if and only if the following process Ŷ defined by

Ŷt := ess sup
q∈A

Eq

[
eβ(T−t)ξ +

∫ T

t

eβ(s−t)f0(s) ds

∣∣∣∣ Ft
]
, t ∈ [0, T ]

is locally bounded.

Proof. If BSDE (2.1) admits a solution (Y, Z) such that Y ≥ 0, then we define a sequence
of stopping times

σn = T ∧ inf {t ≥ 0 : |Yt| > n} ,

with the convention that inf ∅ = +∞. Since Y is continuous, it is locally bounded, which
implies that σn → T as n→ +∞.

As W q
s = Ws −

∫ s
0
qrdr is a Brownian motion under Qq, we have

Yt∧σn = Yσn +

∫ σn

t∧σn
(f0(s) + βYs + γ|Zs| − Zsqs)ds−

∫ σn

t∧σn
ZsdW

q
s .

Applying Itô’s formula to eβsYs, we deduce

eβ(t∧σn)Yt∧σn = eβσnYσn +

∫ σn

t∧σn
eβs(f0(s) + γ|Zs| − Zsqs)ds−

∫ σn

t∧σn
eβsZsdW

q
s .

Taking the conditionalQq-expectation with respect to Ft, using the fact that γ|Zs|−Zsqs ≥
0, and the fact that Ft∧σn ⊂ Ft, we obtain

Eq

[
eβ(σn−t∧σn)Yσn +

∫ σn

t∧σn
eβ(s−t∧σn)f0(s)ds

∣∣∣∣ Ft] ≤ Yt∧σn .
As σn → T , Fatou’s lemma yields that

Eq

[
eβ(T−t)ξ +

∫ T

t

eβ(s−t)f0(s) ds

∣∣∣∣ Ft
]
≤ Yt,

which implies that Ŷ is locally bounded.
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Scalar BSDEs with integrable terminal values

On the other hand, if the process Ŷ is locally bounded, then we construct the
solution by use of a localization method (see e.g. [2]). We describe this method here for
completeness. Consider the following BSDE:

Y nt = n ∧ ξ +

∫ T

t

[n ∧ f0(s) + βY ns + γ|Zns |] ds−
∫ T

t

Zns dWs.

Since the terminal value n ∧ ξ and n ∧ f0 are bounded (hence square-integrable) and the
generator is uniformly Lipschitz with respect to (y, z), in view of the well-known existence
and uniqueness theorem of Pardoux and Peng [6], the last BSDE has a unique solution
(Y n, Zn) in S2 ×M2. By comparison theorem, Y n is nonnegative and nondecreasing
with respect to n. Moreover, setting qns = γ sgn(Zns ), we obtain

Y nt = Eqn

[
eβ(T−t)n ∧ ξ +

∫ T

t

eβ(s−t)n ∧ f0(s) ds

∣∣∣∣ Ft
]

≤ Eqn

[
eβ(T−t)ξ +

∫ T

t

eβ(s−t)f0(s) ds

∣∣∣∣ Ft
]

≤ Ŷt.

Set
τk := T ∧ inf

{
t ≥ 0 : Ŷt > k

}
,

and
Y nk (t) := Y nt∧τk , Znk (t) := Znt 1t≤τk .

Then (Y nk , Z
n
k ) satisfies

Y nk (t) = Y nk (T ) +

∫ T

t

1s≤τk [n ∧ f0(s) + βY nk (s) + γ|Znk (s)|] ds−
∫ T

t

Znk (s) dWs. (2.3)

For fixed k, Y nk is nondecreasing with respect to n and remains bounded by k. We can
now apply the stability property of BSDE with bounded terminal data (see e.g. [2, Lemma
3, page 611]). Setting Yk(t) := supn Y

n
k (t) ≥ 0, there exists Zk such that limn Z

n
k = Zk in

M2 and

Yk(t) = sup
n
Y nτk +

∫ τk

t

(f0(s) + βYk(s) + γ|Zk(s)|) ds−
∫ τk

t

Zk(s) dWs. (2.4)

Finally, noting that

Yk+1(t ∧ τk) = Yk(t ∧ τk) ≥ 0, Zk+11t≤τk = Zk1t≤τk ,

we conclude the existence of solution (Y,Z) with Y ≥ 0.

Remark 2.2. Consider the case d = 1 and f0 ≡ 0. If BSDE (2.1) admits a solution (Y, Z)

such that Y ≥ 0, by taking q = γ and q = −γ, we deduce from Theorem 2.1 that both
ξeγWT and ξe−γWT are in L1(Ω), which implies that ξeγ|WT | ∈ L1(Ω), as

ξeγ|WT | ≤ ξeγWT + ξe−γWT .

Example 2.3. Let us set d = 1, T = 1, f0 ≡ 0, β = 0, γ = 1, µ ∈ (0, 1), and

ξ := e
1
2W

2
1−µ|W1|+ 1

2µ
2

− 1.

Write ξµ for ξ to indicate the dependence on the parameter µ whenever it is necessary.
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Scalar BSDEs with integrable terminal values

Since ξe|W1| does not belong to L1(Ω) by the following direct calculus:

E
[
ξµe
|W1|

]
=

1√
2π

∫ +∞

−∞

(
e

1
2 |x|

2−µ|x|+ 1
2µ

2

− 1
)
e|x|e−

1
2 |x|

2

dx = +∞,

we see that BSDE (2.1) with the terminal value ξµ does not admit a solution (Y,Z) such
that Y ≥ 0. We then arrive at the following two assertions.

(i) The L logL integrability of the terminal value is not a sufficient condition for the
existence of solution to BSDE (2.1), for it is straightforward to see that ξµ logp(ξµ + 1) ∈
L1(Ω) for any p ≥ 1.

(ii) Since
ξµ = e

1
2 (|W1|−µ)2 − 1,

we have

|ξµ| exp

(√
2

λ
log (1 + |ξµ|)

)
∈ L1 for λ > 1

µ2

via the following direct calculus:

E

[
|ξµ| exp

(√
2

λ
log (1 + |ξµ|)

)]

=
1√
2π

∫ +∞

−∞

(
e

1
2 |x|

2−µ|x|+ 1
2µ

2

− 1
)
e

1√
λ

∣∣|x|−µ∣∣
e−

1
2 |x|

2

dx < +∞.

Therefore, the L exp
(√

2
λ log(1 + L)

)
-integrability for λ > 1

µ2 of the terminal value is

not a sufficient condition for the existence of solution to BSDE (2.1). The upcoming
Theorem 2.7 will provide a critical value λ0 such that this integrability for λ ∈ (0, λ0) of
the terminal value is sufficient for the existence of solution to BSDE (2.1).

2.2 Sufficient condition

Let us now look for a sufficient condition for the local boundedness of the process Ŷ
defined by

Ŷt := ess sup
q∈A

Eq

[
eβ(T−t)ξ +

∫ T

t

eβ(s−t)f0(s) ds

∣∣∣∣ Ft
]
, t ∈ [0, T ].

We have the following elementary inequality.

Lemma 2.4. For any x ∈ R and y ≥ 0, we have

exy ≤ eλ2 x
2

+ e
2
λ ye[

2
λ log(y+1)]

1/2

. (2.5)

Proof. Set

z =

(
2

λ
log(y + 1)

)1/2

≥ 0.

Then
y = e

λ
2 z

2

− 1.

It is equivalent to prove that for any x ∈ R and z ≥ 0,

e
λ
2 x

2−x +
(
e
λ
2 z

2

− 1
)(

ez+
2
λ−x − 1

)
≥ 0.

It is evident to see that the above inequality holds when z + 2
λ − x ≥ 0.
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Scalar BSDEs with integrable terminal values

Consider the case z + 2
λ − x < 0. Then x− 1

λ > z + 1
λ > 0. Hence

e
λ
2 x

2−x +
(
e
λ
2 z

2

− 1
)(

ez+
2
λ−x − 1

)
= e

λ
2 (x− 1

λ )
2− 1

2λ +
(
e
λ
2 z

2

− 1
)
ez+

2
λ−x − eλ2 z

2

+ 1

≥ e
λ
2 (z+ 1

λ )
2− 1

2λ − eλ2 z
2

+ 1

≥ e
λ
2 z

2+z − eλ2 z
2

≥ e
λ
2 z

2

(ez − 1) ≥ 0.

Remark 2.5. For λ > 0, define the following function:

ϕ(x) := e
λ
2 log2 x, x > 0.

Recalling that

ψ(x) = xe
√

2
λ log(1+x), x ≥ 0,

the inequality (2.5) has the following form

xy ≤ ϕ(x) + e
2
λψ(y), x > 0, y ≥ 0. (2.6)

It has the flavor of a Young inequality. Is it exactly a Young inequality? Recall that a
Young inequality is the following one

xy ≤
∫ x

0

g(s) ds+

∫ y

0

h(s) ds, x ≥ 0, y ≥ 0

for some strictly increasing function g with g(0) = 0 and h being the inverse function of
g. We have for x > 0,

ϕ′(x) =
λ

x
ϕ(x) log x, ϕ′′(x) =

λ

x2
ϕ(x)[λ log2 x− log x+ 1].

Therefore, ϕ is convex only when the parameter λ ≥ 1
4 . Since the derivative ϕ′(x) < 0

for x ∈ (0, 1), the inequality (2.6) is very far from a real Young inequality.

Lemma 2.6. Let 0 < λ < 1
γ2T . For any q ∈ A,

E
[
e
λ
2 |

∫ T
t
qsdWs|2

∣∣∣ Ft] ≤ 1√
1− λγ2(T − t)

.

Proof. Firstly, by use of Girsanov’s lemma, for θ ∈ R,

E
[
eθ

∫ T
t
qsdWs

∣∣∣ Ft]
= E

[
eθ

∫ T
t
qsdWs− θ

2

2

∫ T
t
|qs|2dse

θ2

2

∫ T
t
|qs|2ds

∣∣∣∣ Ft]
≤ e

θ2γ2

2 (T−t).

Then we apply the equality

e
λ
2 x

2

=
1√
2π

∫ +∞

−∞
e
√
λyx− y

2

2 dy,
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Scalar BSDEs with integrable terminal values

together with Fubini’s theorem and a change of variable to deduce that

E
[
e
λ
2 (

∫ T
t
qsdWs)

2
∣∣∣ Ft]

=
1√
2π

∫ +∞

−∞
E

[
e
√
λy

∫ T
t
qsdWs− y

2

2

∣∣∣∣ Ft] dy
≤ 1√

2π

∫ +∞

−∞
e

(
√
λyγ)2

2 (T−t)− y
2

2 dy

=
1√

1− λγ2(T − t)
.

Applying the last two lemmas, we deduce the following sufficient condition.

Theorem 2.7. Assume that there exists λ ∈ (0, 1
γ2T ) such that

E

[
|ξ| exp

(√
2

λ
log (1 + |ξ|)

)]
+ E

∫ T

0

|f0(t)| dt exp

√ 2

λ
log (1 +

∫ T

0

|f0(t)| dt)

 < +∞.

Then

ess sup
q∈A

{
Eq

[
eβ(T−t)ξ +

∫ T

t

eβ(s−t)f0(s)ds

∣∣∣∣ Ft
]}
≤ Ȳt, (2.7)

with the process

Ȳt :=
2√

1− λγ2(T − t)
eβ(T−t) + e

2
λ+β(T−t) E

[
|ξ| exp

(√
2

λ
log (1 + |ξ|)

) ∣∣∣∣ Ft
]

+e
2
λ+β(T−t) E

∫ T

0

|f0(s)| ds exp

√ 2

λ
log (1 +

∫ T

0

|f0(s)| ds)

 ∣∣∣∣ Ft
 , t ∈ [0, T ]

being locally bounded. Furthermore, if ξ ≥ 0 and f0 ≥ 0, BSDE (2.1) admits a solution
(Y,Z) such that

Yt ≤ Ȳt.

Proof. Since the two random variables

|ξ| exp

(√
2

λ
log (1 + |ξ|)

)
and

∫ T

0

|f0(s)| ds exp

√ 2

λ
log (1 +

∫ T

0

|f0(s)| ds)


are integrable and the filtration {Ft, 0 ≤ t ≤ T} is generated by the Brownian motion,
both processes

E

[
|ξ| exp

(√
2

λ
log (1 + |ξ|)

) ∣∣∣∣ Ft
]
, 0 ≤ t ≤ T

and

E

∫ T

0

|f0(s)| ds exp

√ 2

λ
log (1 +

∫ T

0

|f0(s)| ds)

 ∣∣∣∣ Ft
 , 0 ≤ t ≤ T

are continuous. Therefore, the process Ȳ is continuous and then locally bounded.
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Applying the last two lemmas, we deduce

Eq

[
ξ
∣∣∣ Ft] = E

[
Mq
T (Mq

t )−1ξ
∣∣∣ Ft] ≤ E [e∫ Tt qsdWs |ξ|

∣∣∣Ft]
≤ E

[
e
λ
2 |

∫ T
t
qsdWs|2

∣∣∣∣ Ft]+ E

[
e

2
λ |ξ| exp

(√
2

λ
log (1 + |ξ|)

) ∣∣∣∣ Ft
]

≤ 1√
1− λγ2(T − t)

+ e
2
λE

[
|ξ| exp

(√
2

λ
log (1 + |ξ|)

) ∣∣∣∣ Ft
]

and

Eq

[∫ T

t

f0(s) ds
∣∣∣ Ft] = E

[
Mq
T (Mq

t )−1
∫ T

t

f0(s) ds

∣∣∣∣ Ft
]

≤ E

[
e
∫ T
t
qsdWs

∣∣∣∣∫ T

t

f0(s) ds

∣∣∣∣ ∣∣∣∣ Ft
]

≤ E

[
e
λ
2 |

∫ T
t
qsdWs|2

∣∣∣∣ Ft]+ E

e 2
λ

∣∣∣∣∫ T

t

f0(s) ds

∣∣∣∣ exp

√ 2

λ
log (1+

∣∣∣∣∫ T

t

f0(s) ds

∣∣∣∣)
 ∣∣∣∣ Ft


≤ 1√

1− λγ2(T − t)
+ e

2
λE

∫ T

0

|f0(s)| ds exp

√ 2

λ
log (1 +

∫ T

0

|f0(s)| ds)

 ∣∣∣∣ Ft
 .

Then we get (2.7) and the rest follows from Theorem 2.1.

3 An existence result for the general generator

Consider the following BSDE:

Yt = ξ +

∫ T

t

f(s, Ys, Zs) ds−
∫ T

t

ZsdWs, (3.1)

where f satisfies
|f(s, y, z)− f0(s, 0, 0)| ≤ β|y|+ γ|z|, (3.2)

with f0 := f(·, 0, 0) ∈ L1, β ≥ 0 and γ > 0.

Theorem 3.1. Let f be a generator which is continuous with respect to (y, z) and
verifies inequality (3.2), and ξ be a terminal condition. Let us suppose that there exists
λ ∈ (0, 1

γ2T ) such that

E

[
|ξ| exp

(√
2

λ
log (1 + |ξ|)

)]
+ E

∫ T

0

|f0(t)| dt exp

√ 2

λ
log (1 +

∫ T

0

|f0(t)| dt)

 < +∞.

Then BSDE (3.1) admits a solution (Y, Z) such that

|Yt| ≤
2√

1− λγ2(T − t)
eβ(T−t) + e

2
λ+β(T−t) E

[
|ξ| exp

(√
2

λ
log (1 + |ξ|)

) ∣∣∣∣ Ft
]

+e
2
λ+β(T−t) E

∫ T

t

|f0(s)| ds exp

√ 2

λ
log (1 +

∫ T

0

|f0(s)| ds)

 ∣∣∣∣ Ft
 .

Proof. Let us fix n ∈ N∗ and p ∈ N∗. Set

ξn,p := ξ+ ∧ n− ξ− ∧ p, fn,p0 := f+0 ∧ n− f
−
0 ∧ p, fn,p := f − f0 + fn,p0 .
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As the terminal value ξn,p and fn,p(·, 0, 0) are bounded (hence square-integrable) and
fn,p is a continuous generator with a linear growth, in view of the existence result of
Lepeltier and San Martin [5], the BSDE (ξn,p, fn,p) has a minimal solution (Y n,p, Zn,p) in
S2 ×M2. Set

f̄n,p(s, y, z) = |fn,p0 (s)|+ βy + γ|z|, (s, y, z) ∈ [0, T ]×R×R1×d.

Again in view of Pardoux and Peng [6], the BSDE (|ξn,p|, f̄n,p) has a unique solution
(Ȳ n,p, Z̄n,p) in S2 ×M2.

By comparison theorem,
|Y n,pt | ≤ Ȳ n,pt .

Setting qn,ps = γ sgn(Zn,ps ), we obtain,

|Y n,pt | ≤ Ȳ n,pt

= Eqn,p
[
eβ(T−t)|ξn,p|

∣∣∣Ft]+

∫ T

t

eβ(s−t)|fn,p0 (s)| ds.

From inequality (2.7), we have
|Y n,pt | ≤ Ȳt

with

Ȳt =
2√

1− λγ2(T − t)
eβ(T−t) + e

2
λ+β(T−t) E

[
|ξ| exp

(√
2

λ
log (1 + |ξ|)

) ∣∣∣∣ Ft
]

+e
2
λ+β(T−t) E

∫ T

t

|f0(s)| ds exp

√ 2

λ
log (1 +

∫ T

0

|f0(s)| ds)

 ∣∣∣∣ Ft
 .

Moreover, Y n,p is nondecreasing with respect to n, and nonincreasing with respect to
p. Once again, we apply the localization method as follows to conclude the existence of
solution.

Set
τk = T ∧ inf

{
t ≥ 0 : Ȳt > k

}
and

Y n,pk (t) = Y n,pt∧τk , Zn,pk (t) = Zn,pt 1t≤τk .

Then (Y n,pk , Zn,pk ) satisfies

Y n,pk (t) = Y n,pk (T ) +

∫ T

t

1s≤τkf
n,p(s, Y n,pk (s), Zn,pk (s))ds−

∫ T

t

Zn,pk (s)dWs. (3.3)

For fixed k, Y n,pk is nondecreasing with respect to n and nonincreasing with respect
to p, and remains bounded by k. We can now apply the stability property of BSDEs with
bounded terminal data. Setting Yk(t) = infp supn Y

n,p
k , there exists Zk inM2 such that

limp limn Z
n,p
k = Zk inM2 and

Yk(t) = inf
p

sup
n
Y n,pτk

+

∫ τk

t

f(s, Yk(s), Zk(s))ds−
∫ τk

t

Zk(s)dWs. (3.4)

Finally, noting that

Yk+1(t ∧ τk) = Yk(t ∧ τk), Zk+11t≤τk = Zk1t≤τk ,

we conclude the existence of solution (Y,Z).
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