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TRACY–WIDOM LIMIT FOR KENDALL’S TAU

BY ZHIGANG BAO1

Hong Kong University of Science and Technology

In this paper, we study a high-dimensional random matrix model from
nonparametric statistics called the Kendall rank correlation matrix, which is
a natural multivariate extension of the Kendall rank correlation coefficient.
We establish the Tracy–Widom law for its largest eigenvalue. It is the first
Tracy–Widom law for a nonparametric random matrix model, and also the
first Tracy–Widom law for a high-dimensional U-statistic.

1. Introduction. Let w = (w1, . . . ,wp)′ be a p-dimensional random vector.
We assume that all the components of w are independent continuous random vari-
ables. We do not require the components to be identically distributed, and no mo-
ment assumption on the components of w is needed. Let wj = (w1j , . . . ,wpj )

′,
j ∈ �1, n� be n i.i.d. samples of w. Hereafter, we use the notation �a, b� :=
[a, b] ∩ Z. We also denote by W = (wij )p,n the data matrix. In the paper, we
assume that p and n are comparable. More specifically, we assume

p = p(n), cn := p

n
→ c ∈ (0,∞) if n → ∞,(1.1)

for some positive constant c.
From the data matrix W , we can further construct a matrix model called Kendall

rank correlation matrix, originating from nonparametric statistics. The definition
is detailed as follows.

1.1. Kendall rank correlation matrix. Recall the data matrix W = (wij )p,n.
For any given k ∈ �1,p�, we denote

vk,(ij) := sign(wki − wkj ) ∀i �= j(1.2)

and let

θ (ij) := 1√
M

(v1,(ij), . . . , vp,(ij))
′,(1.3)

where for brevity we set

M ≡ M(n) := n(n − 1)

2
.
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The Kendall rank correlation matrix is defined as the following sum of M rank-one
matrices:

K ≡ Kn := ∑
i<j

θ (ij)θ
′
(ij) = ��′.(1.4)

Here we denote by

� := (θ (12), . . . , θ (1n), θ (23), . . . , θ (2n), . . . , θ (n−1,n)).(1.5)

Observe that the rank-one matrices θ (ij)θ
′
(ij)’s are not independent. For instance,

θ (ij)θ
′
(ij) and θ (ik)θ

′
(ik) are correlated even if j �= k. Moreover, K is a p×p matrix,

and its (a, b)-entry is

Kab = 1

M

∑
i<j

va,(ij)vb,(ij) = 1

M

∑
i<j

sign(wai − waj ) sign(wbi − wbj ),

which is exactly the Kendall rank correlation coefficient between the samples of
wa and those of wb. Hence, the matrix K is a natural multivariate extension of the
Kendall rank correlation coefficient.

1.2. Motivation. Since the seminal work of Marchenko and Pastur [28], the
spectral properties of large dimensional sample covariance matrix and its vari-
ants have attracted enormous attention. In [28], the famous Marchenko–Pastur law
(MP-law) for the global spectral distribution of the sample covariance matrices
has been raised. On the local scale, Johnstone [21] proved the Tracy–Widom law
(TW law) for the largest eigenvalue of the real Gaussian sample covariance ma-
trix (Wishart matrix) in the null case, that is, the population covariance matrix
is Ip . Since the largest eigenvalue plays a fundamental role in principal compo-
nent analysis (PCA), the TW law can be applied to many PCA-related problems
in high-dimensional scenarios. The TW law was then shown to be universal for
sample covariance matrices in the null case, even under more general distribution
assumptions; see [31, 32]. In [5, 30], it was also shown that the TW law holds for
the (Pearson) sample correlation matrix in the null case. We also mention [12, 20,
29] as they give related results for complex sample covariance matrices. Recently,
the universality was further established for more general population; see [6, 16,
23, 25].

Both the sample covariance matrix and (Pearson) sample correlation matrix are
parametric models. Many spectral statistics such as the largest eigenvalue of the
sample covariance matrix or correlation matrix are used for testing the hypothe-
sis of independence among the entries of a random vector. The strategy is certainly
feasible for Gaussian vectors. However, for non-Gaussian vectors, even in the clas-
sical large n and fixed p case, the idea of comparing population covariance matrix
with diagonal matrix cannot be used for an independence test involving uncorre-
lated but dependent variables. On the other hand, although the TW law was shown
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to be universal for sample covariance matrices, assumptions on the distribution of
the matrix entries are still required to a certain extent; see for instance, the minimal
moment condition in [10]. This moment requirement certainly excludes all heavy-
tailed data sets. For the above reasons, a more robust nonparametric approach is
needed.

In classical nonparametric statistics, the most famous statistics concerning the
statistical dependence between two random variables are the Spearman rank cor-
relation coefficient and the Kendall rank correlation coefficient, also known as
Spearman’s ρ and Kendall’s τ . Both of them have natural multivariate extensions,
which are called Spearman rank correlation matrix and Kendall rank correlation
matrix (cf. (1.4)), respectively. Since these models are nonparametric, all the hy-
pothesis tests based on statistics of these models are distribution free. However, in
contrast to the parametric models, the study on the spectral properties of the high-
dimensional nonparametric matrices is much less. Under the null hypothesis, that
is, the components of w are independent, the global spectral distributions for the
Spearman rank correlation matrix and Kendall rank correlation matrix have been
derived in [1] and [3], respectively. A CLT for the linear eigenvalue statistics of
the Spearman rank correlation matrix has been considered in [4]. However, so far,
there is no result on the local eigenvalue statistics such as the largest eigenvalue of
these two nonparametric models. In this work, our aim is to establish the TW law
for the Kendall rank correlation matrix. In a companion paper [8], we show that
the TW law also holds for the Spearman rank correlation matrix.

Moreover, it is also well known that Kendall’s tau is a U-statistic. The spectral
theory on general high-dimensional U-statistics is still unexplored, except for the
global law of Kendall’s tau in [3]. The result in this paper can also be regarded
as the first TW law established for a high-dimensional U-statistic. Furthermore,
we expect that the method developed in this paper will, to a certain extent, have
potential applications to other high-dimensional U-statistics.

1.3. Global behavior of the spectrum. In this subsection, we first review the
result on the global law from [3]. Let λ1(K) ≥ · · · ≥ λp(K) be p ordered eigen-
values of K . Denote the empirical spectral distribution (ESD) of K by

FK
n := 1

p

p∑
i=1

δλi(K).

In [3], it is proved the FK
n is asymptotically given by a scaled and shifted MP law.

To state the result in [3], we first introduce the Marchencko–Pastur law Fc (with
parameter c), whose density function is given by

ρc(x) = 1

2πc

√
(d+,c − x)(x − d−,c)

x
1(d−,c ≤ x ≤ d+,c),

where d±,c = (1 ± √
c)2. In case c > 1, in addition, Fc has a singular part: a point

mass (1 − c−1)δ0.



TW LAW FOR KENDALL TAU 3507

THEOREM 1.1 (Theorem 1 of [3]). Under the assumption (1.1), we have that
FK

n converges weakly (in probability) to FK
c whose density is given by

ρK
c (x) = 3

2
ρc

(
3

2
x − 1

2

)
.

Hence, FK
c (x) = Fc(

3
2x − 1

2).

Further, replacing c by cn, we denote by ρcn , ρK
cn

, Fcn , FK
cn

, d±,cn the analogues
of ρc, ρK

c , Fc, FK
c , d±,c, respectively. Further, we introduce the shorthand notation

λ±,cn := 2

3
d±,cn + 1

3
.(1.6)

1.4. Main results. To state our main results, we denote by Q := 1
n
XX ′ a

Wishart matrix, where X is a p × n data matrix with i.i.d. N(0,1) variables. Let
λi(Q) be the ith largest eigenvalue of Q. Our main results are as follows.

THEOREM 1.2 (Edge universality of Kendall rank correlation matrix). Sup-
pose that the assumption (1.1) holds. There exist positive constants ε and δ such
that for any s ∈ R, the following holds for all sufficiently large n:

P

(
3

2
n

2
3
(
λ1(K) − λ+,cn

) ≤ s − n−ε

)
− n−δ

≤ P
(
n

2
3
(
λ1(Q) − d+,cn

) ≤ s
)

≤ P

(
3

2
n

2
3
(
λ1(K) − λ+,cn

) ≤ s + n−ε

)
+ n−δ.(1.7)

REMARK 1.3. The above theorem can be extended to the joint distribution
for the first k leading eigenvalues. We refer to Remark 1.4 of [31] for a similar
extension for the sample covariance matrix. The extension here can be done in the
same way.

From Theorem 1.2, we can get the following corollary.

COROLLARY 1.4 (Tracy–Widom law for λ1(K)). Under the assumption of
Theorem 1.2, we have

3

2
n

2
3 c

1
6
n d

− 2
3+,cn

(
λ1(K) − λ+,cn

) =⇒ TW1,

where TW1 stands for the Tracy–Widom law of type I.
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1.5. Proof strategy. In the sequel, we summarize our proof strategy with a
highlight on the novelties. Our proof strategy traces back to the seminal works of
Erdős, Yau and Yin [14, 15], where a general framework to prove the universality
of local eigenvalue statistics has been raised. Roughly speaking, the strategy in
[15] for proving the edge universality consists of two major steps. First, one needs
to prove a local law for the spectral distribution, from which one can get a control
on the location of the eigenvalues on an optimal local scale. Second, with the aid
of the local law, one needs to perform a Green function comparison between the
matrix of interest and a certain reference matrix ensemble, whose edge spectral
behavior is already known. In the Green function comparison step, one translates
the comparison between the distributions of the largest eigenvalues of two random
matrices to a comparison of their Green functions. The Green function turns out
to be a more convenient object to look into, due to the simple resolvent expansion
mechanism. An adaptation of this general strategy was used by Pillai and Yin in
[31] to show both the bulk and edge universality of the sample covariance matrices.
Especially, in [31], an extended criterion of the local law for covariance type of
matrices with independent columns (or rows) was given; see Theorem 3.6 of [31].
It allows one to relax the independence assumption on the entries within each
single column (or row) to a certain extent, as long as some large deviation estimates
hold for certain linear and quadratic forms of each column (or row) of the data
matrix; see Lemma 3.4 of [31]. This general criterion was then used in [30] and
[5] to establish the edge universality of the sample correlation matrices.

In order to illustrate the new ingredients in applying the above general strategy
to our model, we first introduce some notation. For any parameter z ∈ C

+, we
denote by G(z) = (Gk	(z)) := (K − z)−1 the Green function of K and by m(z) :=
1
p

TrG(z) the normalized trace of the Green function, which is also the Stieltjes

transform of the ESD FK
n . Let m(z) be the Stieltjes transform of FK

c . For our
matrix K , in the step of local law, one needs to establish the following estimates:∣∣Gk	(z) − δk	m(z)

∣∣ ≺ 
(z),(1.8) ∣∣m(z) − m(z)
∣∣ ≺ 1

n Im z
(1.9)

in the domain D(ε) (cf. (4.3)). We also refer to (4.4) and Definition 1.5 for the
definition of 
(z) and the notation ≺, respectively. It is now well understood that
a large deviation estimate of λi(K) around its classical location can be derived
from the local law. However, the large deviation estimate does not tell the TW
law of λ1(K) directly, although together with (1.8) and (1.9) it will serve as an
important input for the proof of the TW law. As we mentioned above, for TW law,
as the next step, we need to conduct a Green function comparison. In this step, we
will compare the distribution function of λ1(K) with that of λ1(K̃), where K̃ (cf.
(6.1)) is a shifted covariance matrix and the law of λ1(K̃) is known to be TW1.
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The comparison of the distributions can be translated into the comparison of the
Green functions, and it suffices to show∣∣∣∣EF

(
n

∫ E2

E1

Imm(x + λ+,cn + iη)dx

)

−EF

(
n

∫ E2

E1

Im m̃(x + λ+,cn + iη)dx

)∣∣∣∣ ≤ n−δ,(1.10)

where F is a smooth test function and m̃ stands for the Stieltjes transform of the
ESD of K̃ . We refer to Proposition 5.1 for the setting of η, E1 and E2. The proof
of (1.10) will heavily rely on (1.8) and (1.9).

As we mentioned above, the Kendall rank correlation matrix is a multivariate U-
statistic. Its structure is significantly different from the sample covariance matrix
or correlation matrix. Although the rows of � are mutually independent, there is
a strong dependence structure among the entries within each row. Consequently,
both the proofs of the two steps, that is, local law and Green function comparison,
require novel ideas.

The starting point of the whole proof is (a variant of) Hoeffding decomposition
[18], which is already used for the global law in [3]. Specifically, for Kendall rank
correlation, we can decompose vk,(ij) (cf. (1.2)) as

vk,(ij) = uk,(ij) + v̄k,(ij),(1.11)

where

uk,(ij) := E
(
sign(wki − wkj )|wki

) +E
(
sign(wki − wkj )|wkj

)
,(1.12)

and we take the above as the definition of v̄k,(ij). It is easy to check that uk,(ij)

and v̄k,(ij) are uncorrelated. Correspondingly, we set the p × M matrices U =
1√
M

(uk,(ij))k,(ij) and V̄ = 1√
M

(v̄k,(ij))k,(ij). Hence, we have the decomposition

� = U + V̄ . In the sequel, we will call U the linear part of �, and V̄ the nonlinear
part of �. It will be seen that UU ′ is indeed a covariance type of matrix and its
spectral property can be obtained from the results on sample covariance matrices
easily. However, in K = ��′ = (U + V̄ )(U + V̄ )′, we also have the crossing parts
V̄ U ′, UV̄ ′ and the purely nonlinear part V̄ V̄ ′. The nonlinear term V̄ couples the
columns of � together, and makes the structure of K different from the covariance
matrix.

For the step of local law, recall our tasks (1.8) and (1.9). We take the estimate
of the diagonal entries Gkk’s as an example. By Schur complement, one can write
Gkk in terms of a quadratic form vkB

(k)v′
k ; see (S.38) for more details. Here vk

is the kth row of � and it is independent of B(k). Hence, an estimate of Gkk es-
sentially boils down to a large deviation estimate of the quadratic form of vk .
It turns out that although a direct large deviation estimate is enough for (1.8), it
is not sufficient for later use in the Green function comparison. With Hoeffding
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decomposition, we can write vkB
(k)v′

k as a linear combination of the linear part
ukB

(k)u′
k , crossing part ukB

(k)v̄′
k and the nonlinear part v̄kB

(k)v̄′
k , where uk and

v̄k are the kth rows of U and V̄ , respectively. We establish the large deviation es-
timates for three parts separately; see Propositions 3.1 and 3.2. It turns out that the
large deviations of the last two parts are much sharper than the first part, although
the sharpness for the crossing part can been seen only a posteriori. The sharper
large deviation estimates for the crossing part and nonlinear part will be crucial in
Green function comparison. The proof of Proposition 3.2 will be the major task
in this step. The matrices U and V̄ are only uncorrelated rather than independent,
and so are the entries within V̄ . To prove Proposition 3.2, we need to perform a
martingale concentration argument. With these large deviation estimates, we then
prove the local law, by pursuing the strategy in [15] and [31].

For Green function comparison (1.10), we further decompose it into two steps.
We call the first step as decoupling, and the second step as first-order approxi-
mation. In the decoupling step, we compare K = (U + V̄ )(U + V̄ )′ with K̂ =
(U + H)(U + H)′, where H = (hk,(ij)) is a p × M Gaussian matrix with i.i.d.
hk,(ij) ∼ N(0, 1

3M
) and it is independent of U . This step allows us to decouple the

dependent (although uncorrelated) pair (U, V̄ ) by studying the independent pair
(U,H) instead. For the Green function comparison between K and K̂ , we use
a swapping strategy via replacing one row of V̄ by that of H at each time and
compare the Green functions step by step. Such a replacement strategy has been
previously used in [31], and also [5, 6, 30]. However, such a comparison involves
high order moments of the quadratic forms of vk and v̂k , where v̂k represents the
kth row of U + H . Roughly speaking, the comparison requires the first three mo-
ments of vkBv′

k and v̂kBv̂′
k and their variants to match, up to sufficiently small

errors. Here B is certain matrix independent of both vk and v̂k . Although the en-
tries in V̄ and those in H have the same covariance structure, their higher order
moments do not match. In addition, although the entries in U and those in V̄ are
uncorrelated, they are dependent at high orders. One key point in the comparison
of the moments of vkBv′

k and those of v̂kBv̂′
k is to show that the high order corre-

lation between the entries in U and V̄ is negligible. This fact heavily relies on the
sharper large deviations for the crossing part and nonlinear part in Proposition 3.2.
In the first-order approximation step, we further compare K̂ = (U + H)(U + H)′
with the random matrix K̃ . In this step, we approximate all the terms with the ma-
trix H involved by the deterministic 1

3Ip . The Green function comparison between
K̂ and K̃ will be done with a continuous interpolation between two matrices. Sim-
ilar idea of continuous interpolation was previously used for the Green function
comparison in [24, 25].

1.6. Notation and organization. We first need the following definition from
[13].
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DEFINITION 1.5. Let X ≡ X(n) and Y ≡ Y(n) be two sequences of nonnegative
random variables. We say that Y stochastically dominates X if, for all (small) ε > 0
and (large) D > 0,

P
(
X(n) > nεY(n)) ≤ n−D,(1.13)

for sufficiently large n ≥ n0(ε,D), and we write X ≺ Y or X = O≺(Y). When X(n)

and Y(n) depend on a parameter v ∈ V (typically an index label or a spectral param-
eter), then X(v) ≺ Y(v), uniformly in v ∈ V, means that the threshold n0(ε,D) can
be chosen independently of v. We also use the notation X(n) ≺ Y(n) if X(n) ≤ nεY(n)

deterministically for any given (small) ε > 0. Finally, we say that an event E ≡ En

holds with high probability if: for any fixed D > 0, there exists n0(D) > 0, such
that for all n ≥ n0(D) we have

P(E) ≥ 1 − n−D.

In the case that the nonnegative random variable X satisfies the stochastic bound
X ≺ Y and the deterministic bound X ≤ NkY for some nonnegative integer k and
nonnegative Y , we can easily conclude that EXp ≺ EYp for any given p ≥ 0. We
use the symbols O(·) and o(·) for the standard big-O and little-o notation. We use
C to denote strictly positive constant that does not depend on N . Its value may
change from line to line. For any matrix A, we denote by ‖A‖ its operator norm,
while for any vector a, we use ‖a‖ to denote its 	2-norm. Further, we use ‖a‖∞ to
represent the 	∞-norm of a vector. In addition, we use double brackets to denote
index sets, that is, for n1, n2 ∈ R, �n1, n2� := [n1, n2] ∩ Z. The notation 1(·) will
be used to denote the indicator function. We also use 1 to represent the all-one
vector, whose dimension may change from one to another.

The paper is organized as follows: In Section 2, we will present a simulation
study to show that the testing statistic of the largest eigenvalue of the Kendall rank
correlation matrix has good performance in the independence test. In Section 3, we
will state some large deviation estimates which will be used in the later sections. In
Section 4, we will state a local law of K . In Section 5, we will compare the Green
functions of K and K̂ , where the latter has independent linear and “nonlinear”
parts. In Section 6, we further compare the Green functions of K̂ and K̃ , where
the latter is a shift of the linear part only. Section 7 will be devoted to the final proof
of Theorem 1.2 and Corollary 1.4. The proofs of the large deviation bounds, the
local law and some technical lemmas will be stated in the supplementary material
[7]. In addition, we also present more simulation results in [7].

2. Application and simulation study. In this section we apply the TW1 law
for K to test the complete independence of the components of the random vec-
tor w = (w1, . . . ,wp)′. We also compare the performance of our statistic, that is,
λ1(K), with some other statistics in the literature. From the n samples of w, that is,
w1, . . . ,wn, we can define three types of correlation matrices: Pearson correlation
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matrix (R), Spearman rank correlation matrix (S) and Kendall rank correlation
matrix (K). By definition, the matrix entries Rij , Sij and Kij are the Pearson,
Spearman and Kendall correlation coefficient between samples of wi and wj , re-
spectively. Denote by λ1(A) the largest eigenvalue of A, for A = R, S and K .
We will consider 7 statistics constructed from R, S and K . They are defined as
follows:

(i) T1 = TrR2 − aR

bR

(see [17]);

(ii) T2 = TrS2 − aS

bS

(see [4]);

(iii) T3 = n
(

max
1≤i<j≤p

|Rij |
)2 − 4 logn + log logn (see [19]);

(iv) T4 = n

(
max

1≤i<j≤p

∣∣∣∣pnSij

∣∣∣∣)2
− 4 logp + log logp (see [33]);

(v) T5 = n
2
3 c

1
6
n d

− 2
3+,cn

(
λ1(R) − d+,cn

)
(see [5, 30]);

(vi) T6 = n
2
3 c

1
6
n d

− 2
3+,cn

(
λ1(S) − d+,cn

)
(see [8]);

(vii) T7 = 3

2
n

2
3 c

1
6
n d

− 2
3+,cn

(
λ1(K) − λ+,cn

)
(see Corollary 1.4),

where the parameters aR , bR , aS and bS will be explained later. We briefly describe
the limiting distributions of the above statistics under the null hypothesis, that is,
w1, . . . ,wp are independent. The limiting null distributions of T1 and T2 are both
N(0,1). The CLT for T1 is derived in [17] under a four moment assumption, and
that for T2 is established in [4] for arbitrary random vector with continuous dis-
tribution. We mention that both [17] and [4] give CLT of linear eigenvalue statis-
tics for more general test functions. Here we choose the test function f (x) = x2

for simplicity. The explicit forms of the centering constants aR and aS and also
those for the scaling constants bR and bS can be found in Theorem 3.1 of [17]
and Theorem 1.1 of [4]. Under a moment condition E|wi |30−ε < ∞ with some
small constant ε > 0, the limiting null distribution of T3 is derived in [19], and it
admits the following c.d.f.: FT3(x) = exp(−(c2

√
8π)−1e−y/2). Similarly, the lim-

iting null distribution of T4 (cf. [33]) is given by FT4(x) = exp(−(8π)−1/2e−y/2).
Since T4 is nonparametric, the above limiting law does not require moment as-
sumption. The limiting null distributions of T5, T6, T7 are all given by TW1 law. In
[5, 30], the TW1 law is established for R, assuming that wi ’s have sub-exponential
tails. Again, since T6 and T7 are constructed from nonparametric matrices, their
limiting laws do not require any moment assumption on wi ’s.

In the sequel, we denote by Cauchy(0,1) the Cauchy distribution with location
parameter 0 and scale parameter 1. We further denote by t (4) the student’s t-
distribution with degrees of freedom 4. We will consider three null hypotheses
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with the nominal significance level α = 5%, for N(0,1), Cauchy(0,1) and t (4)

variables, respectively:

• H0,1: wi ’s are i.i.d. N(0,1) variables;
• H0,2: wi ’s are i.i.d. Cauchy(0,1) variables;
• H0,3: wi ’s are i.i.d. t (4) variables.

For each null hypothesis H0,i , i = 1,2,3, we consider two types of alternatives:
(i) the alternative of one large disturbance, denoted by Ha,i−1; (ii) the alternative
of many small disturbances, denoted by Ha,i−2. Specifically, for some parameters
δ ∈ (0,1] and τ1, τ2, τ3 > 0, we set:

• Ha,1−1: w ∼ Np(0, Ip +A), where A = (aij )p×p with aij = 0 for all i, j except
for a12 = a21 = δ.

• Ha,1−2: w ∼ Np(0, Ip + B), where B = (bij )p×p with bij = τ1
p

for all i, j .

• Ha,2−1: Let {xi}pi=1 be i.i.d. Cauchy(0,1). We set w1 = x1 + δx2, w2 = δx1 +x2
and wi = xi for all i �= 1,2.

• Ha,2−2: Let {xi}pi=1 be i.i.d. Cauchy(0,1). We set wi = xi + τ2
p

∑
j �=i xj for all i.

• Ha,3−1: Let {xi}pi=1 be i.i.d. t (4). We set w1 = x1 + δx2, w2 = δx1 + x2 and
wi = xi for all i �= 1,2.

• Ha,3−2: Let {xi}pi=1 be i.i.d. t (4). We set wi = xi + τ3
p

∑
j �=i xj for all i.

Here we give more explanation on the above two types of alternatives. Let us
take the Gaussian case as an example. Notice that A = δ(e1e

∗
2 + e2e

∗
1) is rank-two

and B = τ1
p

11′ is rank-one, where 1 represents the all-one vector. It is easy to see
that the two nonzero eigenvalues of A are δ and −δ, while the nonzero eigen-
value of B is τ1. Hence, the population covariance matrix Ip + A (resp. Ip + B)
has a spike with strength 1 + δ (resp., 1 + τ1). Since the seminal work of Baik,
Ben-Arous and Péché [2], it is now well known that there is a phase transition
called BBP-transition for the largest eigenvalue of the sample covariance matrix
when the population covariance matrix has a spike. Very roughly speaking, we can
effectively detect the spike using the largest eigenvalue of the sample covariance

matrix, only when the spike is larger than the threshold 1 +
√

p
n

. Although here we
are considering correlation type of matrices, simulation shows that there is a sim-
ilar effect. Further, although there is no concept of population covariance matrix
for Cauchy(0,1) and t (4) variables, the alternatives Ha,i−1 and Ha,i−2 for i = 2,3
are constructed in a similar vein.

The results of sizes and powers stated in Table 1 are obtained under the choices
p = 200,400,560,800 with the same n = 600. The results are based on 1000
replications. The parameters are chosen to be δ = 1, τ1 = τ3 = 3

2 and τ2 = 1
40 . We

also refer to Tables S.1 and S.2 in the Supplementary Material [7] for the results
under different choices of p and n. In addition, we depict the powers for different
choices of the parameters δ, τ1, τ2, τ3 in Figures S.1–S.6 in [7], under the setting
(p,n) = (400,600).
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TABLE 1
The sizes and powers (percentage) of T1 to T7 under different hypotheses and dimension p. Here we chose sample size n = 600, δ = 1, τ1 = τ3 = 3

2 and

τ2 = 1
40

p T1 T2 T3 T4 T5 T6 T7 T2 T4 T6 T7 T2 T4 T6 T7

H0,1 H0,2 H0,3

200 3.7 5.4 2.6 3.8 0.5 1.5 1.6 4.6 3.9 1.5 1.7 6 3.2 2.3 2.3
400 2.2 4.9 2.9 2.5 1.8 3.1 3.6 5.1 4.3 2.3 2.9 4.9 3.2 1.7 2.5
560 1.6 5.2 2.9 3.5 1.8 2.2 2.8 4.2 5 1.6 2.5 5.5 5.2 1.5 1.8
800 1.3 5.4 4.2 5 1.7 2.1 2.4 5.5 4.2 2.1 2.6 4 3.4 3.1 3.6

Ha,1−1 Ha,2−1 Ha,3−1

200 87.3 90.9 100 100 99.4 99.7 100 92 100 99.9 100 90.6 100 99.6 100
400 31 44 100 100 38.1 40.9 99.8 44.3 100 38.8 99.8 42.2 100 36.2 99.8

Ha,1−2 Ha,2−2 Ha,3−2

200 89.7 99.5 5 5.7 100 100 100 93.3 8.5 95.5 95.7 100 6.1 100 100
400 39.7 69.2 3.5 3.6 99.3 97.1 97.6 97.2 9.9 98.7 98.8 91.9 4.2 100 100
560 18.5 44.2 3.3 4.3 89.7 83.3 84.9 98.5 8.2 99.5 99.5 70 5.3 99.4 99.5
800 8.1 24.7 3 4.9 55.6 47 49.1 99.6 8.4 100 100 47 3.7 88.7 89.7
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Since T1, T3 and T5 are parametric and the limiting theorems of them in [5, 17,
19, 30] do not apply to the Cauchy(0,1) and t (4) variables, we omit the simulation
results from the tables in these cases. Observe that for the first type of alternatives
Ha,i−1 for i = 1,2,3, we only consider the case when p is sufficiently smaller
than n. We take Ha,1−1 to explain such a choice. In Ha,1−1, we consider a Gaus-
sian vector with a population covariance matrix Ip + A. On one hand, δ has to
be no larger than 1 to guarantee the nonnegative definiteness of Ip + A. On the
other hand, as we mentioned previously, heuristically, due to the BBP transition,

one needs δ >
√

p
n

to get effective information about the existence of δ from the
largest eigenvalue of the sample covariance matrix. Hence, in case that p is close
to or larger than n, our spike 1 + δ would not be large enough to be detected. Sim-
ulation shows that a similar effect exists for all three types of correlation matrices
considered here. So we omit the simulation results in those regimes where all the
largest eigenvalue statistics will essentially fail.

Below we summarize our findings from the simulation study.
(1) From Table 1, and also Table S.1 and Table S.2 in the Supplementary Ma-

terial [7], we see that the sizes of T2 are close to the nominal size 5%. The sizes
of all the other statistics tend to be smaller than 5%. However, for the statistics
of the largest eigenvalue T5, T6 and T7, it is possible to modify the centering and
scaling constants for the largest eigenvalues to improve the convergence rate of the
weak convergence to the TW1 law such that better sizes can be achieved. Some
important works have been done along this line, but only for Gaussian ensembles;
see [11, 22, 27]. The extension of the results in [11, 22, 27] to other random matrix
ensembles is still an open question. We do not pursue this direction in the current
paper.

(2) From Table 1, and also Table S.1 and Table S.2 in the Supplementary Ma-
terial [7], we see that the statistics of the largest off-diagonal entry, that is, T3,
T4, outperform the other statistics in the case of one large disturbance (Ha,i−1,
i = 1,2,3). However, T3, T4 perform quite poorly in the case of many small dis-
turbances (Ha,i−2, i = 1,2,3). In general, the other statistics perform well in both
types of alternatives. In addition, T7 outperforms the others in most of the cases.
For all statistics, the performance deteriorates when p

n
increases. That can be again

understood as an effect of the BBP transition. We also refer to Figures S.1–S.6 in
[7] for more information about the powers for different choices of the parameters.

(3) In the Supplementary Material [7], we also consider another type of alter-
native hypothesis, denoted by Ha,4. For this alternative hypothesis, we consider a
random vector w which has uncorrelated but dependent components. We refer to
[7] for the detailed definition. The simulation results are stated in Table S.3. One
can see that T4 and T7 outperform the other statistics in general.

Overall, our statistic T7 has the following advantages. First, it is nonparametric
and thus can be used for the heavy-tailed variables, for which T1, T3 and T5 cannot
be applied. Second, among all nonparametric statistics T2, T4, T6 and T7, only T2
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performs better than T7 for the first type of alternatives, but T2 completely fails
for the second type of alternatives. In a nutshell, T7 is the most robust among all 7
statistics for the cases considered in this simulation study.

3. Hoeffding decomposition and large deviation. In this section we state
some key large deviation estimates; see Propositions 3.1 and 3.2. We start with
(a variant of) Hoeffding decomposition for vk,(ij)’s.

3.1. Hoeffding decomposition. Let

vk,(i·) := E
(
sign(wki − wkj )|wki

)
, vk,(·j) := E

(
sign(wki − wkj )|wkj

)
.(3.1)

Observe that vk,(·i) = −vk,(i·). The following decomposition is (a variant of) Ho-
effding decomposition

vk,(ij) = vk,(i·) − vk,(j ·) + v̄k,(ij),(3.2)

where we take (3.2) as the definition of v̄k,(ij). It is easy to check that the three
parts in the RHS are pairwise uncorrelated. In addition, all of the three parts in the
RHS of (3.2) are with mean 0 and variance 1

3 , that is,

Evk,(i·) = Evk,(j ·) = Ev̄k,(ij) = 0, Ev2
k,(i·) = Ev2

k,(j ·) = Ev̄2
k,(ij) = 1

3
.(3.3)

For brevity, we further introduce the notation

uk,(ij) := vk,(i·) − vk,(j ·).(3.4)

Hence, we can also write vk,(ij) = uk,(ij) + v̄k,(ij).
For a fixed k ∈ �1,p�, let Fk be the common distribution of all wki, i ∈ �1, n�.

We see that

vk,(i·) = E
(
1(wkj ≤ wki)|wki

) −E
(
1(wkj > wki)|wki

) = 2Fk(wki) − 1,(3.5)

which is uniformly distributed on [−1,1]. Hence, all vk,(i·), (k, i) ∈ �1,p� × �1, n�
are i.i.d., uniform random variables on [−1,1], in light of (3.5) and the indepen-
dence of wki’s. We will call vk,(i·) and vk,(j ·) (or together uk,(ij)) the linear parts
of vk,(ij), and call v̄k,(ij) the nonlinear part. Although the linear parts in all vk,(ij)’s
have a simple dependence structure due to the independence between vk,(i·)’s, the
nonlinear parts couple vk,(ij)’s together with certain nontrivial dependence rela-
tion. For instance, vk,(ij) and vk,(i	) are correlated even when j �= 	. More specifi-
cally, it is elementary to check

Evk,(ij)vk,(i	) = E(vk,(i·))2 = 1

3
.(3.6)
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In the sequel, we will often separate the nonlinear part from the linear part.
To this end, we introduce the following notation. We set the M-dimensional row
vector

vk := 1√
M

(vk,(ij))i<j

≡ 1√
M

(vk,(12), . . . , vk,(1n), vk,(23), . . . , vk,(2n), . . . , vk,(n−1,n)).(3.7)

Further, we set

uk := 1√
M

(uk,(ij))i<j , v̄k := 1√
M

(v̄k,(ij))i<j .(3.8)

With the above notation, we can write

vk = uk + v̄k, k ∈ �1,p�.(3.9)

Note that under the null hypothesis, that is, the components of the population vec-
tor w are independent, the random vectors v1, . . . ,vp are also independent. But
the components in vk are dependent, as mentioned above (cf. (3.6)). We also no-
tice that vi is the ith row of � defined in (1.5). For the columns of �, that is, θ (ij)’s
in (1.3), we also introduce the notation

θ (i·) := 1√
M

(v1,(i·), . . . , vp,(i·))′, θ̄ (ij) := 1√
M

(v̄1,(ij), . . . , v̄p,(ij))
′.

Hence, we have the decomposition for columns

θ (ij) = θ (i·) − θ (j ·) + θ̄ (ij).(3.10)

Further note that the nonzero eigenvalues of the matrix K are the same as those of
the following M × M matrix:

K :=
p∑

i=1

v′
kvk = �′�.(3.11)

3.2. Large deviation estimates for vk . Set the M × M symmetric matrix

� = (χ(ij)(st))i<j,s<t ,(3.12)

where (ij) is the row index and (st) is the column index and

χ(ij)(st) := 1

3
(δis + δjt − δit − δjs).

It is elementary to check that

�2 = n

3
�.(3.13)
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Consequently, we have the fact

‖�‖ = O(n).(3.14)

We further set the n × M matrix

T = (t	,(ij))	,i<j , t	,(ij) := δ	i − δ	j , 1 ≤ 	 ≤ n,1 ≤ i < j ≤ n,(3.15)

where 	 is the row index and (ij) is the column index. It is easy to check

� = 1

3
T ′T .(3.16)

The first proposition is on the large deviation estimates for some linear and
quadratic forms of uk .

PROPOSITION 3.1. Let uk be defined as in (3.8). Let a = (a(ij))i<j ∈ C
M be

any deterministic vector, and let B := (b(ij),(st))i<j,s<t ∈ C
M×M be any determin-

istic matrix. We have

EukBu′
k = 1

M
TrB�,(3.17)

∣∣uka
′∣∣ ≺

√
a�a∗
M

≺
√

‖a‖2

n
,(3.18)

∣∣∣∣ukBu′
k − 1

M
TrB�

∣∣∣∣ ≺
√

Tr |B�|2
M2 .(3.19)

The second proposition is about the large deviation estimates for some linear
and quadratic forms of v̄k and the crossing quadratic forms of v̄k and uk .

PROPOSITION 3.2. Let uk and v̄k be as defined in (3.8). Let a = (a(ij))i<j ∈
C

M be any deterministic vector, and let B := (b(ij),(st))i<j,s<t ∈ C
M×M be any

deterministic matrix. We have∣∣v̄ka
′∣∣ ≺

√
‖a‖2

M
,(3.20)

∣∣ukBv̄′
k

∣∣ ≺
√

n

M2 Tr |B|2 +
√√√√√ 1

M2

n∑
	=1

∣∣∣∣∣
n∑

j=	+1

(T B)j,(	j)

∣∣∣∣∣
2

,(3.21)

∣∣∣∣v̄kBv̄′
k − 1

3M
TrB

∣∣∣∣ ≺
√

n

M2 Tr |B|2.(3.22)

We further set

�̃ = � + 1

3
IM.(3.23)

From Propositions 3.1 and 3.2, we can easily get the following corollary.
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COROLLARY 3.3. Let vk be as defined in (3.7). Let a = (a(ij))i<j ∈ C
M be

any deterministic vector, and let B := (b(ij),(st))i<j,s<t ∈C
M×M be any determin-

istic matrix. We have ∣∣vka
′∣∣ ≺

√
a�a′
M

≺
√

‖a‖2

n
,(3.24)

∣∣∣∣vkBv′
k − 1

M
TrB�̃

∣∣∣∣ ≺
√

Tr |B|2
M

.(3.25)

The proofs of Propositions 3.1 and 3.2 and also the proof of Corollary 3.3 are
stated in the Supplementary Material [7].

4. Strong local law for K . In this section we state a strong local law for
the matrix K ; see Proposition 4.1. The proof of Proposition 4.1 is stated in the
Supplementary Material [7] and it heavily relies on the large deviation bounds in
Corollary 3.3. To state the results, we need more notation. Recall the matrices K

and K defined in (1.4) and (3.11). We denote the Green functions of K and K by

G(z) := (K − z)−1, G(z) := (K − z)−1.

Then, we further denote the Stieltjes transform of K by

m(z) := 1

p
TrG(z) = 1

p

p∑
i=1

Gii(z).

For any z = E + iη ∈ C
+, we set the function m(z) : C+ → C

+ as the solution
to the equation

2

3
cn

(
z − 1

3

)(
m(z)

)2 +
(
z − 1 + 2

3
cn

)
m(z) + 1 = 0.(4.1)

It is elementary to check that m is the Stieltjes transform of FK
cn

(cf. Theorem 1.1).
Some properties of the function m are given in Lemma S0.5.

We then introduce the following notation:

�d ≡ �d(z) := max
k

∣∣Gkk(z) − m(z)
∣∣, �o ≡ �o(z) := max

k �=	

∣∣Gk	(z)
∣∣,

� ≡ �(z) := ∣∣m(z) − m(z)
∣∣.(4.2)

In the sequel, we work in the following domain of z:

D(ε) :=
{
z = E + iη : 1

2
λ+,c ≤ E ≤ 2λ+,c, n

−1+ε ≤ η ≤ 1
}
,(4.3)

where λ+,c is defined in (1.6). Let γ1 ≥ γ2 ≥ · · · ≥ γp∧n be the ordered p-quantiles
of FK

cn
, that is, γj is the smallest real number such that∫ γj

−∞
dFK

cn
(x) = p − j + 1

p
, j ∈ �1, n ∧ p�.
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We further define the deterministic control parameter


 ≡ 
(z) :=
√

Imm(z)

nη
+ 1

nη
.(4.4)

With the above notation we can now state the following strong local law.

PROPOSITION 4.1. Under assumption (1.1) the following hold:

(i) (Entrywise local law). The following bounds hold uniformly on D(ε):

�d(z) ≺ 
(z), �o(z) ≺ 
(z).(4.5)

(ii) (Strong local law). The following bound holds uniformly on D(ε):

�(z) ≺ 1

nη
.(4.6)

(iii) (Rigidity on the right edge). For i ∈ [1, δp] with any sufficiently small con-
stant δ ∈ (0,1), we have ∣∣λi(K) − γi

∣∣ ≺ n− 2
3 i−

1
3 .(4.7)

5. Decoupling. In this section we compare the Green functions of the matrix
K with another random matrix K̂ which has independent linear part and “nonlin-
ear” part (cf. (5.2)). Recall (3.1). We set the matrices

U := 1√
M

(
(vk,(i·) − vk,(j,·))

)
k,(ij), V̄ := 1√

M
(v̄k,(ij))k,(ij)(5.1)

and let

H := 1√
M

(hk,(ij))k,(ij), k ∈ �1,p�,1 ≤ i < j ≤ n

be a p × M matrix, where the entries hk,(ij)’s are i.i.d. N(0, 1
3). We also set the

random variables hk,(ij) := −hk,(ji) if i ≥ j , for further use. We assume that H is
independent of U . We define the random matrices

�̂ := (U + H), K̂ := �̂�̂′ = (U + H)(U + H)′.(5.2)

Then we denote the Green function of K̂ and its normalized trace by

Ĝ(z) := (K̂ − z)−1, m̂(z) := 1

p
Tr Ĝ(z).

In this section we will establish the following comparison proposition.
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PROPOSITION 5.1. Let ε > 0 be any sufficiently small constant. Set η =
n− 2

3 −ε . Let E1,E2 ∈ R satisfy E1 < E2 and

|E1|, |E2| ≤ n− 2
3 +ε.(5.3)

Let F :R→R be a smooth function satisfying maxx∈R |F (	)(x)|(|x| + 1)−C ≤ C,
	 = 1,2,3,4, for some positive constant C. Then there exists a constant δ > 0 such
that, for sufficiently large n we have∣∣∣∣EF

(
n

∫ E2

E1

Imm(x + λ+,cn + iη)dx

)

−EF

(
n

∫ E2

E1

Im m̂(x + λ+,cn + iη)dx

)∣∣∣∣ ≤ n−δ.

PROOF. For simplicity, in this proof, we denote by

z ≡ z(x) := x + λ+,cn + iη, x ∈ [E1,E2].(5.4)

Recall the small constant ε in Proposition 5.1. For brevity, we will simply write Cε

with any positive constant (independent of ε) by ε in the sequel. In other words,
we allow ε to vary from line to line, up to C. We then construct the following
sequence of the interpolations: � = �0, . . . ,�γ−1,�γ , . . . ,�p = �̂, where �γ

is the matrix whose first γ rows are the same as those of �̂ and the remaining
p − γ rows are the same as those of �. Correspondingly, we set the notation

Kγ = �γ �′
γ , Gγ (z) := (Kγ − z)−1, mγ := 1

p
TrGγ (z).

We first claim the following lemma, whose proof is stated in the Supplementary
Material [7].

LEMMA 5.2 (Local law for Kγ ). All the estimates in Proposition 4.1 hold for
Kγ for all γ ∈ �0,p�.

With Lemma 5.2, we proceed to the proof of Proposition 5.1. Using the above
notation, we can write

EF

(
n

∫ E2

E1

Imm(z)dx

)
−EF

(
n

∫ E2

E1

Im m̂(z)dx

)

= EF

(
n

∫ E2

E1

Imm0(z)dx

)
−EF

(
n

∫ E2

E1

Immp(z)dx

)

=
p∑

γ=1

(
EF

(
n

∫ E2

E1

Immγ−1(z)dx

)
−EF

(
n

∫ E2

E1

Immγ (z)dx

))
.
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Hence, it suffices to show that for all γ ∈ �1,p�,∣∣∣∣EF

(
n

∫ E2

E1

Immγ−1(z)dx

)
−EF

(
n

∫ E2

E1

Immγ (z)dx

)∣∣∣∣ ≤ n−1−δ(5.5)

for some positive constant δ. For a fixed γ , we further introduce the notation �
(i)
γ to

denote the matrix obtained from �γ with the ith row removed. Then, by definition,

we have �
(γ )
γ−1 = �

(γ )
γ . Correspondingly, we use the notation

K(i)
γ := �(i)

γ

(
�(i)

γ

)′
, G(i)

γ := (
K(i)

γ − z
)−1

, m(i)
γ := 1

p
TrG(i)

γ .

Also note that m
(γ )
γ−1 = m

(γ )
γ . Next we expand both mγ−1 and mγ around m

(γ )
γ .

Observe that

mγ−1 − m(γ )
γ = 1

p

1 + vγ (�
(γ )
γ )′(G(γ )

γ )2�
(γ )
γ v′

γ

vγ v′
γ − z − vγ (�

(γ )
γ )′G(γ )

γ �
(γ )
γ v′

γ

=: 1

p

1 + vγ Aγ v′
γ

1 − z − vγ Bγ v′
γ

,(5.6)

where in the last step we use the trivial fact vγ v′
γ = 1. Similarly,

mγ − m(γ )
γ = 1

p

1 + v̂γ Aγ v̂′
γ

v̂γ v̂′
γ − z − v̂γ Bγ v̂′

γ

,(5.7)

where we use the notation v̂γ := uγ + hγ to denote the γ th row of �̂.
We then further set

Dγ := vγ Bγ v′
γ − 1

M
TrBγ �,

D̂γ := 1 − v̂γ v̂′
γ + v̂γ Bγ v̂′

γ − 1

M
TrBγ �,

(5.8)

and write

Dγ =
(
uγ Bγ u′

γ − 1

M
TrBγ �

)
+ v̄γ Bγ v̄′

γ + 2uγ Bγ v̄′
γ

=: Uγ + Vγ +Pγ ,

D̂γ =
(
uγ Bγ u′

γ − 1

M
TrBγ �

)
+ hγ Bγ h′

γ + 2uγ Bγ h′
γ

+
(

2

3
− uγ u′

γ

)
+

(
1

3
− hγ h′

γ − 2uγ h′
γ

)
=: Uγ + V̂γ + P̂γ + Ŵγ + Ôγ ,

(5.9)
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where we recall that Bγ is (complex) symmetric. Similarly, we write

vγ Aγ v′
γ = uγ Aγ u′

γ + v̄γ Aγ v̄′
γ + 2uγ Aγ v̄′

γ

=: uγ Aγ u′
γ + v̄γ Aγ v̄′

γ +Qγ ,

v̂γ Aγ v̂′
γ = uγ Aγ u′

γ + hγ Aγ h′
γ + 2uγ Aγ h′

γ

=: uγ Aγ u′
γ + hγ Aγ h′

γ + Q̂γ .

(5.10)

We have the following crucial technical lemma.

LEMMA 5.3. Let η = n− 2
3 −ε , and x, x1, x2 ∈ [E1,E2], where E1 and E2 sat-

isfy (5.3). Let z = x +λ+,cn + iη and za = xa +λ+,cn + iη, a = 1,2. With the above
notation, we have∣∣Uγ (z)

∣∣ ≺ n− 1
3 +ε,

∣∣Vγ (z)
∣∣ ≺ n− 5

6 +ε,
∣∣P̂γ (z)

∣∣ ≺ n− 5
6 +ε,∣∣V̂γ (z)

∣∣ ≺ n−1+ε,
∣∣Ŵγ (z)

∣∣ ≺ n− 1
2 +ε,

∣∣Ôγ (z)
∣∣ ≺ n−1+ε,∣∣Q̂γ (z)

∣∣ ≺ n− 1
6 +ε,

∣∣uγ Aγ (z)u′
γ

∣∣ ≺ n
1
3 +ε,∣∣v̄γ Aγ (z)v̄′

γ

∣∣ ≺ n− 1
6 +ε,

∣∣hγ Aγ (z)h′
γ

∣∣ ≺ n− 1
2 +ε,

(5.11)

and ∣∣Pγ (z)
∣∣ ≺ n− 1

2 +ε,
∣∣Qγ (z)

∣∣ ≺ n− 1
6 +ε.(5.12)

In addition, we have∣∣E(
uγ Aγ (z)u′

γ Ŵγ

)∣∣ ≺ n− 2
3 +ε,

∣∣E(
uγ Aγ (z1)u

′
γPγ (z2)

)∣∣ ≺ n− 1
2 +ε.(5.13)

The above estimates still hold if we replace some or all of z, z1, z2 by their complex
conjugates.

The proof of Lemma 5.3 will be stated in the Supplementary Material [7]. Two
key technical inputs for the proof are Propositions 3.1 and 3.2.

We proceed to the proof of Proposition 5.1, with the aid of Lemma 5.3. First,
using (5.11) and (5.12), we can write

n

∫ E2

E1

(
mγ−1(z) − m(γ )

γ (z)
)

dx = n

p

∫ E2

E1

1 + vγ Aγ v′
γ

1 − z − 1
M

TrBγ � − Dγ

dx

= τγ 0 + τγ 1 + τγ 2 + O≺
(
n− 7

6 +ε),(5.14)
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where

τγ 0 := n

p

∫ E2

E1

1 + vγ Aγ v′
γ

(1 − z − 1
M

TrBγ �)
dx = O≺

(
n− 1

3 +ε),
τγ 1 := n

p

∫ E2

E1

1 + uγ Aγ u′
γ

(1 − z − 1
M

TrBγ �)2
(Uγ +Pγ )dx = O≺

(
n− 2

3 +ε),
τγ 2 := n

p

∫ E2

E1

1 + uγ Aγ u′
γ

(1 − z − 1
M

TrBγ �)3
U2

γ dx = O≺
(
n−1+ε).

(5.15)

Here we use the fact 1/(1 − z − 1
M

TrBγ �) ∼ 1 with high probability, which fol-
lows from 1/(1 − z − 1

M
TrBγ �) = m + O≺( 1

nη
) (cf. Lemma 5.2 and an analogue

of (S.75)), and also (S.122). Analogously, we have

n

∫ E2

E1

(
mγ (z) − m(γ )

γ (z)
)

dx = n

p

∫ E2

E1

1 + v̂γ Aγ v̂′
γ

1 − z − 1
M

TrBγ � − D̂γ

dx

= τ̂γ 0 + τ̂γ 1 + τγ 2 + O≺
(
n− 7

6 +ε),(5.16)

where

τ̂γ 0 := n

p

∫ E2

E1

1 + v̂γ Aγ v̂′
γ

(1 − z − 1
M

TrBγ �)
dx = O≺

(
n− 1

3 +ε),
τ̂γ 1 := n

p

∫ E2

E1

1 + uγ Aγ u′
γ

(1 − z − 1
M

TrBγ �)2
(Uγ + Ŵγ )dx = O≺

(
n− 2

3 +ε).
(5.17)

For brevity, we further introduce the notation ζγ := n
∫ E2
E1

Imm
(γ )
γ (z)dx. Then

we can write

F

(
n

∫ E2

E1

Immγ−1(z)dx

)
= F(ζγ ) + F ′(ζγ )(Im τγ 0 + Im τγ 1 + Im τγ 2)

+ F (2)(ζγ )

2

(
(Im τγ 0)

2 + 2 Im τγ 0 Im τγ 1
)

+ F (3)(ζγ )

6
(Im τγ 0)

3 + O≺
(
n− 7

6 +ε).
Analogously, we have

F

(
n

∫ E2

E1

Immγ (z)dx

)
= F(ζγ ) + F ′(ζγ )(Im τ̂γ 0 + Im τ̂γ 1 + Im τγ 2)

+ F (2)(ζγ )

2

(
(Im τ̂γ 0)

2 + 2 Im τ̂γ 0 Im τ̂γ 1
)

+ F (3)(ζγ )

6
(Im τ̂γ 0)

3 + O≺
(
n− 7

6 +ε).
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Therefore, to establish (5.5), it suffices to show the following:

E Im τγ a −E Im τ̂γ a = O≺
(
n−1−δ), a = 0,1,(5.18)

E(Im τγ 0)
2 −E(Im τ̂γ 0)

2 = O≺
(
n−1−δ),(5.19)

E Im τγ 0 Im τγ 1 −E Im τ̂γ 0 Im τ̂γ 1 = O≺
(
n−1−δ),(5.20)

E(Im τγ 0)
3 −E(Im τ̂γ 0)

3 = O≺
(
n−1−δ).(5.21)

We prove the above estimates one by one. First, for (5.18) with a = 0, we simply
have E Im τγ 0 − E Im τ̂γ 0 = 0, since the covariance matrix of vγ and that of v̂γ

are the same. For (5.18) with a = 1, the conclusion follows from the estimates in
(5.13) and the bounds of Pγ and Ŵγ in (5.11).

Next we show (5.19). Observe that for any ω1,ω2 ∈ C, we can write Imω1 Imω2 =
1
4(ω1ω̄2 + ω̄1ω2 −ω1ω2 − ω̄1ω̄2). According to the definitions in (5.15) and (5.17),
and also the fact that the covariance matrix of vγ and that of v̂γ are the same, it
suffices to show

Evγ Aγ (z1)v
′
γ vγ Aγ (z2)v

′
γ −Ev̂γ Aγ (z1)v̂

′
γ v̂γ Aγ (z2)v̂

′
γ = O≺

(
n

1
3 −δ),(5.22)

and, if we replace one or both of z1 and z2 by their complex conjugates, the ana-
logues of (5.22) are also true. Here z1, z2 satisfy the assumptions in Lemma 5.3.
These desired estimates follow from the decompositions in (5.10), and the bounds
in (5.11) for the terms in the decompositions. Similarly, applying the decomposi-
tions in (5.10), and the bounds in (5.11) again, one can show (5.20) and (5.21). We
omit the details. This completes the proof of Proposition 5.1. �

6. First-order approximation. Recall (5.1). We first set

K̃ := 1

3
Ip + UU ′, G̃(z) := (K̃ − z)−1, m̃(z) := 1

p
Tr G̃(z).(6.1)

In this section our aim is to establish the following proposition.

PROPOSITION 6.1. Suppose that the assumptions on η, E1, E2, F in Propo-
sition 5.1 hold. For some constant δ > 0 and sufficiently large n, we have∣∣∣∣EF

(
n

∫ E2

E1

Im m̂(x + λ+,cn + iη)dx

)

−EF

(
n

∫ E2

E1

Im m̃(x + λ+,cn + iη)dx

)∣∣∣∣ ≤ n−δ.

PROOF. We first define the following continuous interpolation between K̂ and
K̃ and its Green function for t ∈ [0,1],

K̂t := (U + tH)(U + tH)′ + 1

3

(
1 − t2)

Ip, Ĝt := (K̂t − z)−1.(6.2)
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and we also denote by m̂t := 1
p

Tr Ĝt . Especially, we have K̂1 = K̂ and K̂0 = K̃ .

Similar to Lemma 5.2, we have the following local law for K̂t , whose proof is
stated in the Supplementary Material [7].

LEMMA 6.2 (Local law for K̂t ). All the estimates in Proposition 4.1 hold for
K̂t for all t ∈ [0,1].

With the aid of Lemma 6.2, we now proceed to the proof of Proposition 6.1.
For brevity, we simply write z ≡ z(x) := x + λ+,cn + iη in the sequel, and further
introduce the notation

�t := n

∫ E2

E1

Im m̂t (z)dx.(6.3)

Then we can write

EF

(
n

∫ E2

E1

Im m̂(z)dx

)
−EF

(
n

∫ E2

E1

Im m̃(z)dx

)

=
∫ 1

0
E

∂

∂t
F (�t)dt =

∫ 1

0
E

(
F ′(�t )

∂�t

∂t

)
dt.

Our aim is to show ∣∣∣∣∂�t

∂t

∣∣∣∣ ≺ n−δ ∀t ∈ [0,1].

This, together with the assumption on F ′, leads to the conclusions in Proposi-
tion 6.1. From the definition in (6.3) we have

∂�t

∂t
= n

∫ E2

E1

∂ Im m̂t (z)

∂t
dx = n

p

∫ E2

E1

∂ Im Tr Ĝt (z)

∂t
dx.

Considering that |E1|, |E2| ≤ N− 2
3 +ε , it suffices to show∣∣∣∣∂ Tr Ĝt (z)

∂t

∣∣∣∣ ≺ n
2
3 −δ(6.4)

for all x ∈ [E1,E2]. From the definitions in (6.2) we have

∂ Tr Ĝt

∂t
= −Tr

(
Ĝt

((
HU ′ + UH ′) + 2t

(
HH ′ − 1

3

))
Ĝt

)
.

Hence for (6.4) it suffices to show the following estimates hold for all x ∈ [E1,E2]:∣∣Tr
(
HU ′Ĝ2

t

)∣∣ ≺ n
2
3 −δ,

∣∣(TrUH ′Ĝ2
t

)∣∣ ≺ n
2
3 −δ,∣∣∣∣Tr

((
HH ′ − 1

3

)
Ĝ2

t

)∣∣∣∣ ≺ n
2
3 −δ.

(6.5)
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We start with the first estimate in (6.5). The other two can be derived similarly.
Let

P := Tr
(
HU ′Ĝ2

t

)
, m(k,	) := PkP	

.(6.6)

Our aim is to establish the following recursive moment estimate: for any fixed
integer k > 0

E
(
m(k,k)) = E

(
c1m

(k−1,k)) +E
(
c2m

(k−2,k)) +E
(
c3m

(k−1,k−1))(6.7)

for some random quantities ci , i = 1,2,3 which satisfy

|c1| ≺ n
2
3 −δ, |c2| ≺ n

4
3 −2δ, |c3| ≺ n

4
3 −2δ,(6.8)

E|c1|2k ≺ n2k( 2
3 −δ), E|c2|k ≺ n2k( 2

3 −δ), E|c3|k ≺ n2k( 2
3 −δ).(6.9)

Assuming (6.7), by Young’s inequality we have, for any given small ε,

E
(
m(k,k)) ≤ 3

1

2k
n2kεn2k( 2

3 −δ) + 3
2k − 1

2k
n− 2kε

2k−1E
(
m(k,k)).

Since k can be any large (but fixed) positive integer, we can conclude the first
estimate in (6.5) by applying Markov’s inequality. The above strategy of recursive
moment estimate is inspired by a similar idea used in [26].

Hence, what remains is to prove (6.7). In the sequel, for brevity, we only keep
tracking the bounds in (6.8). Those in (6.9) will follow easily from (6.8), the de-
terministic bounds of the entries of G and U , together with the Gaussian tail of the
entries in H . To this end, we first use the integration by parts formula for Gaussian
random variable

E
(
m(k,k)) = E

(
TrHU ′Ĝ2

t m
(k−1,k)) = ∑

a,(ij)

E
(
ha,(ij)

(
U ′Ĝ2

t

)
(ij),am

(k−1,k))

= 1

3M

∑
a,(ij)

E

(
∂(U ′Ĝ2

t )(ij),a

∂ha,(ij)

m(k−1,k)

)

+ k − 1

3M

∑
a,(ij)

E

((
U ′Ĝ2

t

)
(ij),a

∂P
∂ha,(ij)

m(k−2,k)

)

+ k

3M

∑
a,(ij)

E

((
U ′Ĝ2

t

)
(ij),a

∂P
∂ha,(ij)

m(k−1,k−1)

)
.(6.10)
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Here we use the notation
∑

a,(ij) to represent the sum over a ∈ �1,p�, 1 ≤ i < j ≤
n. Hence, to establish (6.7), it suffices to show

1

M

∑
a,(ij)

∂(U ′Ĝ2
t )(ij),a

∂ha,(ij)

= O≺
(
n

2
3 −δ),

1

M

∑
a,(ij)

(
U ′Ĝ2

t

)
(ij),a

∂P
∂ha,(ij)

= O≺
(
n

4
3 −2δ),

1

M

∑
a,(ij)

(
U ′Ĝ2

t

)
(ij),a

∂P
∂ha,(ij)

= O≺
(
n

4
3 −2δ).

(6.11)

The proofs of the last two estimates are similar. Hence, we only show the details of
the proofs for the first two estimates above. Set �̂t := U + tH . It is easy to obtain
from (6.2) that

∂Ĝt

∂ha,(ij)

= −tĜt

(
Ea,(ij)�̂

′
t + �̂t (Ea,(ij))

′)Ĝt ,

where we use the notation Ea,(ij) to denote the p × M matrix whose (a, (ij))th
entry is 1 and all the other entries are 0. Then, it is easy to check

∂(U ′Ĝ2
t )(ij),a

∂ha,(ij)

= −t
(
U ′Ĝt

)
(ij),a

(
�̂′

t Ĝ
2
t

)
(ij),a − t

(
U ′Ĝt �̂t

)
(ij)(ij)

(
Ĝ2

t

)
aa

− t
(
U ′Ĝ2

t

)
(ij),a

(
�̂′

t Ĝt

)
(ij),a − t

(
U ′Ĝ2

t �̂t

)
(ij)(ij)(Ĝt )aa

and

∂P
∂ha,(ij)

= (
U ′Ĝ2

t

)
(ij),a − t

(
�̂′

t ĜtHU ′Ĝ2
t

)
(ij),a − t

(
ĜtHU ′Ĝ2

t �̂t

)
a,(ij)

− t
(
�̂′

t Ĝ
2
t HU ′Ĝt

)
(ij),a − t

(
Ĝ2

t HU ′Ĝt �̂t

)
a,(ij).

Consequently, we have

1

M

∑
a,(ij)

∂(U ′Ĝ2
t )(ij),a

∂ha,(ij)

= − t

M
Tr Ĝ2

t �̂tU
′Ĝt − t

M
Tr �̂tU

′Ĝt Tr Ĝ2
t

− t

M
Tr Ĝt �̂tU

′Ĝ2
t − t

M
Tr �̂tU

′Ĝ2
t Tr Ĝt(6.12)

and

1

M

∑
a,(ij)

(
U ′Ĝ2

t

)
(ij),a

∂P
∂ha,(ij)

= 1

M
Tr Ĝ2

t UU ′Ĝ2
t − t

M
Tr Ĝ2

t U�̂′
t ĜtHU ′Ĝ2

t
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− t

M
Tr ĜtHU ′Ĝ2

t �̂tU
′Ĝ2

t

− t

M
Tr Ĝ2

t U�̂′
t Ĝ

2
t HU ′Ĝt − t

M
Tr Ĝ2

t HU ′Ĝt �̂tU
′Ĝ2

t .(6.13)

Now we claim that ∥∥HU ′∥∥ ≺ n− 1
2 ,

∥∥UU ′∥∥ ≺ 1.(6.14)

To see the first estimate, we first notice that∥∥HU ′UH ′∥∥ = ∥∥HT ′V ′· V·T H ′∥∥ ≺ 1

n

∥∥HT ′T H ′∥∥,(6.15)

where we use the notation V· to represent the p×n matrix with vi· as its ith row. In
the last step, we use the fact that V ′· V· is a sample covariance matrix with entries
(in V·) of order 1√

M
∼ 1

n
, which implies that ‖V ′· V·‖ ≺ 1

n
(cf. Proposition S0.6).

Further, observe that T ′T is a rank n matrix with ‖T ′T ‖ = 1
3‖�‖ = O(n). Writing

the spectral decomposition as T ′T := O ′
T �T OT , we have the fact that∥∥HT ′T H ′∥∥ ≺ n

∥∥HO ′
T (In ⊕ 0)OT H ′∥∥ d= n

∥∥HH′∥∥,(6.16)

where H is a p × n matrix with i.i.d. N(0, 1
M

) entries. Then the first estimate
in (6.14) follows simply from the fact that ‖HH′‖ ≺ 1

n
, (6.16) and (6.15). The

second estimate in (6.14) is easy to see from the fact that ‖U ′U‖ = ‖T ′V ′· V·T ‖ ≺
1
n
‖T ′T ‖ ≺ 1. Then, using (6.14) to (6.12), we have∣∣∣∣ 1

M

∑
a,(ij)

∂(U ′Ĝ2
t )(ij),a

∂ha,(ij)

∣∣∣∣ ≺ 1

M
Tr |Ĝt |3 + 1

M
Tr |Ĝt |2 Tr |Ĝt |

≤ 1

Mη2 Im Tr Ĝt + 1

Mη
Im Tr Ĝt Tr |Ĝt | ≺ n

1
3 +ε,

where in the last step we use the local laws Lemma 6.2 and Lemma S0.5.
Similarly, using (6.13) and (6.14), we have∣∣∣∣ 1

M

∑
a,(ij)

(
U ′Ĝ2

t

)
(ij),a

∂P
∂ha,(ij)

∣∣∣∣ ≺ 1

M
Tr |Ĝt |4 + 1

M
√

n
Tr |Ĝt |5

≤ 1

Mη3 Im Tr Ĝt + 1

M
√

nη4 Im Tr Ĝt ≺ n
5
6 +ε,(6.17)

where again in the last step we use the local laws Lemma 6.2 and Lemma S0.5.
Hence, we conclude the proof of the first two estimates in (6.11). The last one
can be proved similarly to the second one, we thus omit the details. Therefore, we
get (6.7). Then, by Young’s inequality, we can get the first estimate in (6.5). The
second estimate in (6.5) can be proved analogously and thus we omit the details.
For the last estimate in (6.5), we can also use the same strategy, and the details of
its proof is stated in the Supplementary Material [7]. Therefore, we completed the
proof of Proposition 6.1. �



3530 Z. BAO

7. Edge universality for K . With Propositions 5.1 and 6.1, we can now prove
Theorem 1.2 and Corollary 1.4.

PROOF OF THEOREM 1.2. Using Propositions 5.1 and 6.1 we obtain∣∣∣∣EF

(
n

∫ E2

E1

Imm(x + λ+,cn + iη)dx

)

−EF

(
n

∫ E2

E1

Im m̃(x + λ+,cn + iη)dx

)∣∣∣∣ ≤ n−δ,(7.1)

where F , E1, E2 and η satisfy the assumptions in Proposition 5.1. Similar to the
proof of Theorem 1.1 in [31], one can show by using (7.1) and the local laws that

P
(
n

2
3
(
λ1(K) − λ+,cn

) ≤ s − n−ε) − n−δ

≤ P
(
n

2
3
(
λ1(K̃) − λ+,cn

) ≤ s
)

≤ P
(
n

2
3
(
λ1(K) − λ+,cn

) ≤ s + n−ε) + n−δ.(7.2)

Further, we observe that UU ′ = V·T T ′V·. In addition, we notice that T T ′ =
nIn − 11′. Denoting by V :=

√
3
2(n − 1)V·, and � = In − 1

n
11′, we can write

K̃ = UU ′ + 1

3
Ip = 2n

3(n − 1)
V�V ′ + 1

3
Ip.(7.3)

It is known from Theorem 2.7 of [9] that the largest eigenvalues of V�V ′ differ
from the corresponding ones of VV ′ only by O≺( 1

n
). This together with Theo-

rem 1.1 in [31] leads to

P

(
3

2
n

2
3
(
λ1(K̃) − λ+,cn

) ≤ s − n−ε

)
− n−δ

≤ P
(
n

2
3
(
λ1(Q) − d+,cn

) ≤ s
)

≤ P

(
3

2
n

2
3
(
λ1(K̃) − λ+,cn

) ≤ s

)
+ n−δ.(7.4)

Combining (7.2) and (7.4), we obtain (1.7). This concludes the proof. �

PROOF OF COROLLARY 1.4. The conclusion follows directly from Theo-
rem 1.2 and the Tracy–Widom limit for λ1(Q) (cf. [21]). �
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SUPPLEMENTARY MATERIAL

Supplement to “Tracy–Widom limit for Kendall’s tau” (DOI: 10.1214/18-
AOS1786SUPP; .pdf). The supplement includes the proofs of some technical lem-
mas and some additional simulation studies.
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