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ESTIMATION OF LARGE COVARIANCE AND PRECISION
MATRICES FROM TEMPORALLY DEPENDENT OBSERVATIONS

BY HAI SHU1 AND BIN NAN1

University of Michigan and University of California, Irvine

We consider the estimation of large covariance and precision matri-
ces from high-dimensional sub-Gaussian or heavier-tailed observations with
slowly decaying temporal dependence. The temporal dependence is allowed
to be long-range so with longer memory than those considered in the current
literature. We show that several commonly used methods for independent
observations can be applied to the temporally dependent data. In particular,
the rates of convergence are obtained for the generalized thresholding es-
timation of covariance and correlation matrices, and for the constrained �1
minimization and the �1 penalized likelihood estimation of precision matrix.
Properties of sparsistency and sign-consistency are also established. A gap-
block cross-validation method is proposed for the tuning parameter selection,
which performs well in simulations. As a motivating example, we study the
brain functional connectivity using resting-state fMRI time series data with
long-range temporal dependence.

1. Introduction. Let {X1, . . . ,Xn} be a sample of p-dimensional random
vectors, each with the same mean μp , covariance matrix � and precision matrix
� = �−1. It is well known that the sample covariance matrix is not a consis-
tent estimator of � when p grows with n [3, 4]. When the sample observations
X1, . . . ,Xn are independent and identically distributed (i.i.d.), several regulariza-
tion methods have been proposed for the consistent estimation of large �, includ-
ing thresholding [10, 17, 31, 61], block-thresholding [20], banding [11] and ta-
pering [21]. Existing methods also include the Cholesky-based method [46, 62],
penalized pseudo-likelihood method [48] and sparse matrix transform [23]. Con-
sistent correlation matrix estimation can be obtained similarly from i.i.d. observa-
tions [31, 47].

The precision matrix � = (ωij )p×p , when it exists, is closely related to the par-
tial correlations between the pairs of variables in a vector X. Specifically, the par-
tial correlation between Xi and Xj given {Xk, k �= i, j} is equal to −ωij/

√
ωiiωjj

[29]. Zero partial correlation means conditional independence between Gaussian
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or nonparanormal random variables [51]. There is a rich literature on the estima-
tion of large � from i.i.d. observations. Various algorithms for the �1 penalized
maximum likelihood method (�1-MLE) and its variants have been developed [5,
35, 44, 76], and related theoretical properties have been investigated by [48, 59,
60]. Methods of estimating � column-by-column thus implementable with parallel
computing include nodewise Lasso [54, 70], graphical Dantzig selector [75], con-
strained �1-minimization for inverse matrix estimation (CLIME) [18] and adaptive
CLIME [19].

Recently, researchers become increasingly interested in estimating the large co-
variance and precision matrices from temporally dependent observations {Xt : t =
1, . . . , n}; here, t denotes time. Such research is particularly useful in analyzing
the resting-state functional magnetic resonance imaging (rfMRI) data to assess the
brain functional connectivity [56, 64]. In such imaging studies, the number of brain
nodes (voxels or regions of interest) p can be greater than the number of images
n. The temporal dependence of time series Xt is traditionally dealt with by im-
posing the so-called strong mixing conditions [14]. To overcome the difficulties
in computing strong mixing coefficients and verifying strong mixing conditions,
[73] introduced a new type of dependence measure, the functional dependence
measure, and recently applied it to the hard thresholding estimation of large co-
variance matrix and the �1-MLE type methods of large precision matrix [24]. The
functional dependence measure may still be difficult to understand and to interpret
for most data analysts. Practically, it is straightforward to describe the temporal
dependence directly by using cross-correlations [15]. By imposing certain weak
dependence conditions on the cross-correlation matrix of samples {Xt }nt=1, [8, 9]
extended the banding and tapering regularization methods for estimating covari-
ance matrix.

A univariate stationary time series is said to be long-memory if its autocorre-
lation function ρ(t) satisfies

∑∞
t=0 |ρ(t)| = ∞, and short-memory otherwise [55].

The rfMRI data have been reported with long-memory in the scientific literature,
for example, [41, 68]. However, the temporal dependence considered by [24] and
that considered by [8, 9] do not cover any long-memory time series. Later we
will illustrate that the rfMRI data example does not meet their restrictive tempo-
ral dependence conditions. Hence, it is important to show the applicability of the
estimating methods for i.i.d. samples to this kind of data. In this article, we char-
acterize the temporal dependence solely using the Frobenius norm and the spectral
norm of the autocorrelation matrix of each time series in {Xt }nt=1. Simple bounds
of these norms clearly display the effect of temporal dependence on the conver-
gence rates of our considered matrix estimators, allowing each time series to be
long-memory or even to be nonstationary. So the rfMRI data can be well handled
by our relaxed assumption (see Figure 1). To the best of our knowledge, this is
the first work that investigates the estimation of large covariance and precision
matrices from long-memory observations.
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Note that the estimation of large correlation matrix was not considered by
either [24] or [8, 9], which is a more interesting problem in, for example, the
study of brain functional connectivity. It was considered in a recent work by
[77] but under the assumption that all p time series have the same temporal de-
cay rate, which is rather restrictive and often violated (see Figure 1 for an ex-
ample of rfMRI data). Moreover, all four aforementioned articles assumed that
μp = (μpi)1≤i≤p is known, which may not be true in practice. Although the sam-
ple mean X̄i = 1

n

∑n
j=1 Xij entrywise converges to μpi in probability or even al-

most surely under some dependence conditions [15, 45], extra care will still be
needed when true mean is replaced by sample mean in the matrix estimation, es-
pecially for long-memory, heavy-tailed or even nonstationary data. We consider
unknown μp in this article, and show that the mean estimation indeed affects our
derived matrix convergence rates, particularly for data with heavy tail probabili-
ties.

In this article, we study the generalized thresholding estimation [61] for covari-
ance and correlation matrices, and the CLIME approach [18] and a �1-MLE type
method called sparse permutation invariant covariance estimation (SPICE; [60])
for precision matrix. The convergence rates, sparsistency and sign-consistency
are provided for temporally dependent data, potentially with long memory, which
are generated from a linear spatiotemporal model with all basis random variables
coming from sub-Gaussian, or generalized subexponential, or distributions with
polynomial-type tails. We also establish the minimax optimal convergence rates of
estimating covariance and correlation matrices for a certain class of temporally
dependent sub-Gaussian data, including short-memory and some long-memory
cases, and show that they can be achieved by the generalized thresholding method.
Moreover, if the matrix �1 norm of the precision matrix is bounded by a constant
for such data, then the CLIME estimator attains the minimax optimal rates for i.i.d.
observations shown in [19].

The article is organized as follows. In Section 2, we introduce the useful tempo-
ral dependence bounds and the considered temporally dependent data generating
mechanism. We provide the theoretical results for the estimation of covariance and
correlation matrices in Section 3 and for the estimation of precision matrix in Sec-
tion 4 for temporally dependent observations with sub-Gaussian tails. We consider
extensions to data with generalized sub-exponential tails and polynomial-type tails
in Section 5. In Section 6, we introduce a gap-block cross-validation method for the
tuning parameter selection, evaluate the estimating performance via simulations
and analyze a rfMRI data set for brain functional connectivity. The concentration
inequalities that the proofs of the theoretical results are based on are given in the
Appendix. Detailed proofs together with additional numerical considerations are
provided in the Supplementary Material [65] due to the page limitation.

2. Temporal dependence. We start with a brief introduction of useful no-
tation. For a real matrix M = (Mij ), we define: the spectral norm ‖M‖2 =
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[ϕmax(M�M)]1/2, where ϕmax is the largest eigenvalue, also ϕk and ϕmin are the
kth largest and the smallest eigenvalues, respectively, the Frobenius norm ‖M‖F =
(
∑

i

∑
j M2

ij )
1/2, the matrix �1 norm ‖M‖1 = maxj

∑
i |Mij |, the entrywise �1

norm |M|1 = ∑
i,j |Mij | and its off-diagonal version |M|1,off = ∑

i �=j |Mij | and
the entrywise �∞ norm |M|∞ = maxi,j |Mij |.

Denote vec(M) = (M�
1 , . . . ,M�

n )�, where Mj is the j th column of M. Write
M � 0 when M is positive definite. Denote the trace and the determinant of a
square matrix M by tr(M) and det(M), respectively. Denote the Kronecker prod-
uct by ⊗. Write xn 
 yn if xn = O(yn) and yn = O(xn), and denote xn ∼ yn if
xn/yn → 1 as n → ∞. Define 
x� and �x� to be the smallest integer ≥ x and
the largest integer ≤ x, respectively. Let 1(A) be the indicator function of event
A, x+ = x1(x ≥ 0) and sign(x) = 1(x ≥ 0) − 1(x ≤ 0). Let A := B denote that

A is defined to be B . Denote X
d= Y if X and Y have the same distribution. De-

note 1n = (1,1, . . . ,1)� with length n and In×n to be the n×n identity matrix.
If without further notification, a constant is independent of n and p. Throughout
the rest of the article, we assume p → ∞ as n → ∞ and only use n → ∞ in the
asymptotic arguments.

2.1. Useful bounds for temporal dependence. Let Xp×n := (X1, . . . ,Xn),
where each column Xi follows a distribution with the same covariance matrix
� = (σk�)p×p and correlation matrix R = (ρk�)p×p . Let X[1], . . . ,X[p] be the p

row vectors of Xp×n, and R[k] = (ρ
ij
[k])n×n be the correlation matrix of X[k], that

is, the autocorrelation matrix of the kth time series. For all k, we have the following
inequalities:

(1) 1 ≤ 1

n
‖R[k]‖2

F ≤ ‖R[k]‖2 ≤ ‖R[k]‖1 ≤ n,

where the second inequality follows from

1

n
tr

(
R2[k]

) = 1

n

n∑
i=1

ϕ2
i (R[k]) ≤ 1

n
ϕmax(R[k])

n∑
i=1

ϕi(R[k]) = 1

n
‖R[k]‖2 tr(R[k]),

and the third inequality is obtained from Corollary 2.3.2 in [37].
We quantify the temporal dependence of X[k] using the Frobenius norm and the

spectral norm of its autocorrelation matrix R[k], and define gF and g2 such that

(2) max
1≤k≤p

1

n
‖R[k]‖2

F ≤ gF , max
1≤k≤p

‖R[k]‖2 ≤ g2.

From (1), we set 1 ≤ gF ≤ g2 ≤ n. Particularly, we can set g2 = 1 if all the p time
series are white noise processes, and gF = n if every pair of data points in one
of the time series are perfectly correlated or anticorrelated. Later we will show
that the convergence rates of considered estimators are nicely characterized by the
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bounds gF and g2, which is particularly useful in obtaining convergence results
for long-memory data.

Note that we do not consider cross-correlations between the multiple time se-
ries, neither assume any specific temporal decay model or stationarity for autocor-
relations within each individual time series. From the proofs provided in the Sup-
plementary Material [65], we can see that those information does not contribute to
the convergence rate calculations once gF and g2 are provided.

Here are two special examples of practical interests.

CASE 1 (High-dimensional short-memory dependence). Recall that a univari-
ate stationary time series is said to be short-memory if its autocorrelation function
satisfies

∑∞
t=0 |ρ(t)| < ∞. We extend the “short-memory” concept to multivariate

time series that are allowed to be nonstationary by the property

(3) max
1≤k≤p

‖R[k]‖1 < ∞ as n → ∞.

Thus from (1) we can set g2 < ∞ as n → ∞.

CASE 2 (Polynomial-dominated decay (PDD) model). We say Xp×n has PDD
temporal dependence if

(4) max
1≤k≤p

∣∣ρij
[k]

∣∣ ≤ C0|i − j |−α for all i �= j

with some positive constants C0 and α. We can then set the bounds

(5) gF = 2C2
0H

(2α)

n/2� + 1 and g2 = 2C0H

(α)

n/2� + 1 ≥ max

1≤k≤p
‖R[k]‖1

with the generalized harmonic number (see (25), (26) in [26])

(6) H(α)
n =

n∑
k=1

k−α < 1 +
⎧⎪⎨⎪⎩

n1−α − 1

1 − α
, α �= 1;

logn, α = 1.

The model is short-memory in the sense of (3) when α > 1, but allows an indi-
vidual time series to be long-memory when 0 < α ≤ 1. It is worth noting that the
fractional Gaussian noise [52, 69] and the autoregressive fractionally integrated
moving average process [38, 43] are classical examples of stationary univariate
time series with autocorrelation function ρ(t) ∼ Ct−α as t → ∞ with C �= 0 and
α ∈ (0,1) ∪ (1,2).

2.2. Comparisons to existing work. For banding and tapering estimators
of �, [8] considered a weak temporal dependence maxan≤|i−j |≤n |�ij |∞ =
O(n−2an), where �ij = (Λ

ij
k�)p×p with Λ

ij
k� satisfying Cov(Xki,X�j ) = Λ

ij
k�σk�,

an

√
logp/n = o(1), and {an}n≥1 is a nondecreasing sequence of nonnegative inte-

gers. That an

√
logp/n = o(1) implies an = o(

√
n). Thus, |�ij :|i−j |=�√n�|∞ ≤
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maxan≤|i−j |≤n |�ij |∞ = O(n−2an) = o(n−3/2). Then
∑∞|i−j |=0 |ρij

[k]| < ∞ for
any given k, which means that the time series cannot be long-memory, not even
ρ

ij
[k] 
 |i − j |−α with α ∈ (0,3]. Bhattacharjee and Bose [9] extended the band-

ing and tapering techniques to the estimation of Cov(Xj ,Xj+k), k ≥ 0, for the
stationary infinite-order moving average model. It is easy to show that their time
series cannot be long-memory.

Chen et al. [24] considered the hard thresholding estimation of � and an �1-
MLE type estimation of � using the functional dependence measure of [73].
Without loss of generality, assume that the first row of Xp×n, {X1t }, is a station-
ary process with autocovariance function γ1(t). Following their setup by letting
E(X1t ) = 0, we have γ1(t) = E(X11X1,t+1). By the argument in the proof of The-
orem 1 in [74] together with Lyapunov’s inequality [12] and Theorem 1 of [73],
one can see that their model requires

∑∞
t=0 |γ1(t)| < ∞, which indicates that {X1t }

cannot be long-memory.
Zhou [77] considered estimating a separable covariance Cov(Xpn) = A ⊗ B,

where Xpn := vec(Xp×n). Her model implies the same autocorrelation coefficients

{ρij
[k]}1≤i,j≤n for all k, indicating a rather restrictive model with homogeneous de-

cay rate for all p time series.
Now take a look at the rfMRI data example of a single subject which will be fur-

ther analyzed in Section 6.3. The data set consists of 1190 temporal brain images.
We consider 907 functional brain nodes in each image. All node time series have
passed the Priestley–Subba Rao test for stationarity [57], the generalized Jarque–
Bera test for Gaussianity [2] and the Hinich’s bispectral test for linearity [42].
Hence the linear spatiotemporal model that we will define in the next subsection
with sub-Gaussian tails seems adequate for the data. There are 134 time series de-
tected as long-memory by the GPH test [36]. All these tests are conducted with a
significant level of 0.05 for the p-values adjusted by the false discovery rate con-
trolling procedure of [7]. Hence, the weak temporal dependence models of [8, 9,
24] do not apply to these long-memory time series. For node k, its autocorrelation
function ρk(t) := ρ

ij
[k], t = |i − j |, can be approximated by the sample autocorrela-

tion function ρ̂k(t). Figure 1 shows that the rfMRI data approximately satisfy the
PDD model (4) with C0 = 1 and α = 0.30 since max1≤k≤p |ρ̂k(t)| ≤ t−0.30. The
figure also illustrates the estimated autocorrelation functions for two randomly
selected brain nodes, which clearly have different patterns, indicating that the as-
sumption of homogeneous decay rates for all time series in [77] does not hold.

2.3. Data generating mechanism. Throughout the article, we assume that the
vectorized data are obtained from the linear spatiotemporal model

(7) Xpn := vec(Xp×n) = He + μpn,

where H = (hij )pn×m is a real deterministic matrix, μpn = 1n ⊗ μp , and the ran-
dom vector e = (e1, . . . , em)� consists of m independent (not necessarily i.i.d.)
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FIG. 1. Sample autocorrelations of brain nodes.

random variables satisfying E(ei) = 0 and E(e2
i ) = 1 for all i. We allow m = ∞

by requiring that for each i,
∑m

j=1 hij ej converges both almost surely and in mean
square when m → ∞. A sufficient and necessary condition for both modes of con-
vergence is

∑∞
j=1 h2

ij < ∞ for every i (see Theorem 8.3.4 and its proof in [1]).
Under these two modes of convergence, it can be shown that E(He) = HE(e) and
Cov(He) = H Cov(e)H� (see Proposition 2.7.1 in [15]). Hence, for either finite or
infinite m, we have E(Xpn) = μpn and Cov(Xpn) = HH� with all n submatrices
of dimension p × p on the diagonal equal to � and temporal correlations deter-
mined by the off-diagonal submatrices. In filtering theory, matrix H is said to be a
linear spatiotemporal coloring filter [33, 53], which generates the output Xpn by
introducing both spatial and temporal dependence in the input independent vari-
ables e1, . . . , em. We will use Xp×n and Xpn exchangeably.

The following are two examples of (7) which are often seen in the literature.
In particular, two processes used in analyzing fMRI data, that is, the multivariate
fractional Gaussian noise [27] and the vector autoregressive model [39], are special
cases of these two examples, respectively.

EXAMPLE 1 (Gaussian data). Assume that Xpn has a multivariate Gaussian
distribution N (μpn,�). Then � = HH with a symmetric real matrix H. If � �
0, then Xpn = He + μpn with e = H−1(Xpn − μpn) ∼ N (0, Ipn×pn). If � is
singular, then Xpn has a degenerate multivariate Gaussian distribution, and can be
expressed as Xpn

d= He + μpn with any e ∼ N (0, Ipn×pn). In fact, replacing “=”

in (7) by “ d=” does not affect the theoretical results.
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EXAMPLE 2 (Moving average processes). Consider the processes

(8) Xj =
L∑

�=0

B�ej−� with 0 ≤ L ≤ ∞,

where the case with L = ∞ is well-defined in the sense of entrywise almost-sure
convergence and mean-square convergence, {B�} are p × p real deterministic ma-
trices and ej = (e1j , e2j , . . . , epj )

� is a vector with independent zero-mean and
unit-variance entries {eij ,1 ≤ i ≤ p,−∞ ≤ j ≤ n}. Since every Xij is a lin-
ear combination of {est }, we always can find a matrix H such that Xpn = He

with e = (e�
1−L, e�

2−L, . . . , e�
n )�. It is well known that any causal vector autore-

gressive moving average process of the form Xj − A1Xj−1 − · · · − AaXj−a =
ej + M1ej−1 + · · · + Mbej−b with finite nonnegative integers a and b, and real
deterministic matrices {Ai ,Mk}, can be written in the form of (8) with L = ∞ (see
page 418 in [15]). Model (8) with L = ∞ is widely studied in recent literature of
high dimensional time series (see, e.g., [9, 24, 25, 50]).

We will consider the following three types of moment conditions for the basis
random variables e1, . . . , em in (7), corresponding to sub-Gaussian, generalized
subexponential, and polynomial-type tails, respectively. Let Z be a random vari-
able, and K , ϑ and ηk be positive constants.

(C1) Sub-Gaussian tails: For all k ≥ 1, we have (E|Z|k)1/k ≤ Kk1/2.
(C2) Generalized subexponential tails: For some ϑ ∈ (0,2) and all k ≥ ϑ , we

have (E|Z|k)1/k ≤ K(k/ϑ)1/ϑ .
(C3) Polynomial-type tails: For some k ≥ 4, we have (E|Z|k)1/k ≤ ηk .

We do not consider condition (C1) as a special case of condition (C2) by set-
ting ϑ = 2 due to the fact that sharper convergence rates can be obtained under
(C1). We can apply the Hanson–Wright inequality to (C1) [63], but are not able
to extend it to (C2) because the moment generating function of Z2 is no longer
finite in an open interval around zero (see Proposition 7.23 and inequality (7.32)
in [34], and Lemma 5.5 in [71]). Conditions (C1) and (C2) can be equivalently
written as P(|Z| ≥ u) ≤ 2 exp(−uϑ/C) with some constant C > 0 for all u ≥ 0,
where for the former ϑ = 2. Condition (C3) implies P(|Z| ≥ u) ≤ ηk

k/u
k for all

u > 0. Conversely, if P(|Z| ≥ u) = O(u−k′
) with some k′ ∈ (0, k) as u → ∞, then

(E|Z|k)1/k < ∞.

3. Estimation of covariance and correlation matrices for sub-Gaussian
data. Consider the �q -ball sparse covariance matrices [10, 61]

(9) U(q, cp, v0) =
{
� : max

1≤i≤p

p∑
j=1

|σij |q ≤ cp, max
1≤i≤p

σii ≤ v0

}
,
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and the corresponding correlation matrices

(10) R(q, cp) =
{

R : max
1≤i≤p

p∑
j=1

|ρij |q ≤ cp

}
,

where constants v0 > 0 and 0 ≤ q < 1. For any thresholding parameter τ ≥ 0,
define a generalized thresholding function [61] by sτ : R → R satisfying the
following conditions for all z ∈ R: (i) |sτ (z)| ≤ |z|; (ii) sτ (z) = 0 for |z| ≤ τ ;
(iii) |sτ (z) − z| ≤ τ . Such defined generalized thresholding function covers many
widely used thresholding functions, including hard thresholding sH

τ (z) = z1(|z| >
τ), soft thresholding sS

τ (z) = sign(z)(|z| − τ)+, smoothly clipped absolute devia-
tion and adaptive lasso thresholdings. See details about these examples in [61]. We
define the generalized thresholding estimators of � and R, respectively, by

Sτ1(�̂) = (
sτ1(σ̂ij )

)
p×p and Sτ2(R̂) = (

sτ2(ρ̂ij )1(i �= j) + 1(i = j)
)
p×p,

where �̂ := (σ̂ij )p×p is the sample covariance matrix given by

(11) �̂ = 1

n

n∑
i=1

XiX
�
i − X̄X̄

�

with X̄ = 1
n

∑n
i=1 Xi , and R̂ := (ρ̂ij )p×p = (σ̂ij /

√
σ̂ii σ̂jj )p×p is the sample corre-

lation matrix. Define

(12) u1 = max
{
(logp)g2/n,

[
(logp)gF /n

]1/2}
.

Then we have the following results.

THEOREM 1. Suppose that Xp×n is generated from (7) with all ei satisfying
condition (C1) with the same K . Uniformly on � ∈ U(q, cp, v0) and {R[k]}pk=1
subject to (2), for sufficiently large constant M1 > 0 depending only on v0 and K ,
if τ1 = M1u1 and u1 = o(1), then∣∣Sτ1(�̂) − �

∣∣∞ = OP (u1),∥∥Sτ1(�̂) − �
∥∥

2 = OP

(
cpu

1−q
1

)
,(13)

1

p

∥∥Sτ1(�̂) − �
∥∥2
F = OP

(
cpu

2−q
1

)
.(14)

Moreover, if p ≥ nc for some constant c > 0, then with sufficiently large M1 addi-
tionally depending on c and q , we have

E
(∣∣Sτ1(�̂) − �

∣∣2∞) = O
(
u2

1
)
,

E
(∥∥Sτ1(�̂) − �

∥∥2
2

) = O
(
c2
pu

2−2q
1

)
,

1

p
E

(∥∥Sτ1(�̂) − �
∥∥2
F

) = O
(
cpu

2−q
1

)
.
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REMARK 1. When (logp)/n = o(1), if u1 = O(
√

(logp)/n), which is true
when g2 < ∞ that holds for short-memory multivariate time series satisfying (3),
then the in-probability convergence rates given in (13) and (14) are the same rates
as those for i.i.d. observations given in [10] and [61]. The same in-probability con-
vergence rates are also obtained by [6], Proposition 5.1, for certain short-memory
stationary Gaussian data using the hard thresholding method.

REMARK 2. For the PDD temporal dependence given in (4), by (5) and (6),
together with u1 = o(1), we have

u1 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
(logp)/n, α > 1;

max
{[

(logp)(logn)
]
/n,

√
(logp)/n

}
, α = 1;

max
{
(logp)/nα,

√
(logp)/n

}
, α ∈ (1/2,1);

max
{
(logp)/n1/2,

√[
(logp)(logn)

]
/n

}
, α = 1/2;

(logp)/nα, α ∈ (0,1/2).

Here, xn � yn denotes xn = O(yn). Note that the case with α > 1 is short-
memory in the sense of (3). When α = 1 and (logn)

√
(logp)/n = O(1), or when

α ∈ (1/2,1) and (logp)1/2n1/2−α = O(1), which allows some individual time se-
ries to be long-memory, we also have u1 = O(

√
(logp)/n), yielding the same

convergence rates as in the case with i.i.d. data.

THEOREM 2 (Sparsistency and sign-consistency). Under the conditions for
the convergence in probability given in Theorem 1, we have sτ1(σ̂ij ) = 0 for all
(i, j) where σij = 0 with probability tending to 1. If further assume all nonzero
entries of � satisfy |σij | ≥ 2τ1, then we have sign(sτ1(σ̂ij )) = sign(σij ) for all
(i, j) where σij �= 0 with probability tending to 1.

COROLLARY 1. Theorems 1 and 2 hold with �̂,�, σ̂ij , σij , U(q, cp, v0), τ1,
and M1 replaced by R̂,R, ρ̂ij , ρij , R(q, cp), τ2, and M2, respectively, where M2

does not depend on v0.

We now provide the minimax optimal rates for estimating covariance and cor-
relation matrices over certain sets of distributions of Xp×n, including the short-
memory case (3) and some long-memory cases (4) with α ∈ (1/2,1].

THEOREM 3 (Minimax rates). Let KG = supk≥1
√

2/k[
(1+k
2 )/

√
π ]1/k ,

where 
(x) is the gamma function. Let P1(q, cp, v0, gF , g2,K,κ) be the set of
distributions of Xp×n generated from (7) with all ei satisfying (C1) with constant
K ≥ KG, � ∈ U(q, cp, v0), and {R[k]}pk=1 subject to (2), where the constant κ ≥ 1
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is used in setting u1 ≤ κ
√

(logp)/n. Let P2(q, cp, gF , g2,K,κ) be the corre-
sponding set to P1 with � ∈ U(q, cp, v0) replaced by R ∈ R(q, cp). Let D denote
the distribution of Xp×n. If

√
(logp)/n = o(1),

(15) p ≥ nc1 and cp ≤ c2n
(1−q)/2(logp)−(3−q)/2

with some constants c1 > 1 and c2 > 0, then for any estimator �̃ we have

inf
�̃

sup
D∈P1

EXp×n|D
(‖�̃ − �‖2

2
) 
 c2

p

(
logp

n

)1−q

,

inf
�̃

sup
D∈P1

1

p
EXp×n|D

(‖�̃ − �‖2
F

) 
 cp

(
logp

n

)1−q/2
.

Additionally if cp > 1, then for any estimator R̃ we have

inf
R̃

sup
D∈P2

EXp×n|D
(‖R̃ − R‖2

2
) 
 c2

p

(
logp

n

)1−q

,

inf
R̃

sup
D∈P2

1

p
EXp×n|D

(‖R̃ − R‖2
F

) 
 cp

(
logp

n

)1−q/2
.

For sufficiently large positive constants M1 and M2, with τ1 = M1u1 and τ2 =
M2u1, the generalized thresholding estimators Sτ1(�̂) and Sτ2(R̂) attain the above
minimax optimal rates, respectively.

The assumption (15) follows [22] who studied the minimax optimal rates of
the covariance matrix estimation for i.i.d. data. From Remarks 1 and 2, we see
that suitable (gF , g2, κ) in P1 and P2 allow Xp×n to have short memory (3), or to
follow the PDD model (4) with α ∈ (1/2,1] (thus with some time series to be long-
memory) under some additional conditions for n and p discussed in Remark 2.

4. Estimation of precision matrix for sub-Gaussian data. We consider both
the CLIME and the SPICE methods for the estimation of �, which were originally
developed for i.i.d. observations.

4.1. CLIME estimation. Following [18], we consider the following set of pre-
cision matrices:

G1(q, cp,Mp, v0)=
{
� � 0 : max

1≤i≤p

p∑
j=1

|ωij |q ≤ cp,‖�‖1 ≤ Mp, max
1≤i≤p

σii ≤ v0

}
,

where constant 0 ≤ q < 1, and (cp,Mp) are allowed to depend on p. Though
the condition maxi σii ≤ v0 is not explicitly provided by [18] in their original set
definition, it is implied by their moment conditions [see their (C1) and (C2)]. Note
that the above G1 contains �q -ball sparse matrices such as those with exponentially
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decaying entries from the diagonal, for example, AR(1) matrices. For an invertible
band matrix �, its inverse matrix � generally has exponentially decaying entries
from the diagonal [30].

Let �̂ε,λ1 := (θ̂
(ε,λ1)
ij )p×p be a solution of the following optimization:

(16) min |�|1 subject to |�̃ε� − Ip×p|∞ ≤ λ1, � ∈R
p×p,

where �̃ε = �̂ + εIp×p , �̂ is given in (11), ε ≥ 0 is a perturbation parameter
introduced for the same reasons given in [18] and can be set to be n−1/2 in prac-
tice (see Remark 4 below), and λ1 is a tuning parameter. The CLIME estimator
�̂ε,λ1 := (ω̂

(ε,λ1)
ij )p×p is then obtained by symmetrizing �̂ε,λ1 with

ω̂
(ε,λ1)
ij = ω̂

(ε,λ1)
j i = θ̂

(ε,λ1)
ij 1

(∣∣θ̂ (ε,λ1)
ij

∣∣ ≤ ∣∣θ̂ (ε,λ1)
j i

∣∣) + θ̂
(ε,λ1)
j i 1

(∣∣θ̂ (ε,λ1)
ij

∣∣ >
∣∣θ̂ (ε,λ1)

j i

∣∣).
For 1 ≤ i ≤ p, let β̂

(ε,λ1)

i be a solution of the following convex optimization
problem:

(17) min |β i |1 subject to |�̃εβi − ei |∞ ≤ λ1,

where β i is a real vector and ei is the vector with 1 in the ith coordinate and 0
in all other coordinates. Cai et al. [18] showed that solving the optimization prob-
lem (16) is equivalent to solving the p optimization problems given in (17), that is,

�̂ε,λ1 = (β̂
(ε,λ1)

1 , . . . , β̂
(ε,λ1)

p ). This equivalence is useful for both numerical imple-
mentation and theoretical analysis. The following theorem gives the convergence
results of CLIME under temporal dependence.

THEOREM 4. Suppose that Xp×n is generated from (7) with all ei satisfy-
ing condition (C1) with the same K . Uniformly on � ∈ G1(q, cp,Mp, v0) and
{R[k]}pk=1 subject to (2), for sufficiently large constant M > 0 depending only on
v0 and K , if λ1 = MMpu1, 0 ≤ ε ≤ u1 and u1 = o(1) with u1 defined in (12), then

|�̂ε,λ1 − �|∞ = OP

(
M2

pu1
)
,

‖�̂ε,λ1 − �‖2 = OP

(
cp

(
M2

pu1
)1−q)

,

1

p
‖�̂ε,λ1 − �‖2

F = OP

(
cp

(
M2

pu1
)2−q)

.

Moreover, if p ≥ nc and min{p−C,u1} ≤ ε ≤ u1 for some positive constants c and
C, then with sufficiently large M additionally depending on c,C and q , we have

E
(|�̂ε,λ1 − �|2∞

) = O
((

M2
pu1

)2)
,

E
(‖�̂ε,λ1 − �‖2

2
) = O

(
c2
p

(
M2

pu1
)2−2q)

,(18)

1

p
E

(‖�̂ε,λ1 − �‖2
F

) = O
(
cp

(
M2

pu1
)2−q)

.(19)
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REMARK 3. If (logp)/n = o(1) and u1 = O(
√

(logp)/n), then the above
convergence rates are the same as those for i.i.d. data given in [18]. Additionally,
if Mp is a constant, then the mean-square convergence rates of CLIME in (18)
and (19) attain the minimax optimal convergence rates for i.i.d. data shown in [19]
under slightly different assumptions. From Remarks 1 and 2, we see that u1 =
O(

√
(logp)/n) when u1 = o(1) can be achieved for the short-memory case (3)

and also for the long-memory cases satisfying (4) with α ∈ (1/2,1] under some
additional conditions for n and p.

REMARK 4. As discussed in [18], the perturbation parameter ε > 0 is used
for a proper initialization of {βi} in the numerical implementation of (17), and
also ensures the existence of E(‖�̂ε,λ1 − �‖2

2). Since gF ≥ 1, from (12) we have
that u1 ≥ √

(logp)/n ≥ n−1/2. Hence, when p ≥ nc, letting C = 1/(2c), we have
p−C ≤ n−1/2 ≤ u1. Thus, we can simply let ε = n−1/2 in practice, which is also
the default setting of the R package flare [49] that implements the CLIME al-
gorithm. The same choice of ε is given in (10) of [18] for i.i.d. observations.

To better recover the sparsity structure of �, [18] introduced additional thresh-
olding on �̂ε,λ1 . Similarly, we may define a hard-thresholded CLIME estimator

�̃ε,λ1,ξ = (ω̃
(ε,λ1,ξ)
ij )p×p by ω̃

(ε,λ1,ξ)
ij = ω̂

(ε,λ1)
ij 1(|ω̂(ε,λ1)

ij | > ξ) with a tuning pa-
rameter ξ ≥ 4Mpλ1. Although such an estimator enjoys nice theoretical properties
given below, how to practically select ξ remains unknown.

THEOREM 5 (Sparsistency and sign-consistency). Under the conditions for
the convergence in probability given in Theorem 4, we have ω̃

(ε,λ1,ξ)
ij = 0 for all

(i, j) where ωij = 0 with probability tending to 1. If further assume all nonzero
entries of � satisfy |ωij | > ξ + 4Mpλ1, then we have sign(ω̃

(ε,λ1,ξ)
ij ) = sign(ωij )

for all (i, j) where ωij �= 0 with probability tending to 1.

4.2. SPICE estimation. For i.i.d. observations, [60] proposed the SPICE
method for estimating the following precision matrix �:

G2(sp, v0)=
{
� : ∑

1≤i �=j≤p

1(ωij �= 0) ≤ sp,0<v−1
0 ≤ϕmin(�)≤ϕmax(�)≤v0

}
,

where sp determines the sparsity of � and can depend on p, and v0 is a constant.
Two types of SPICE estimators were proposed:

(20) �̃λ2 = arg min
��0,�=��

{
tr(��̂) − log det(�) + λ2|�|1,off

}
,

and

�̂λ2 := (
ω̂

(λ2)
ij

)
p×p = Ŵ−1K̂λ2Ŵ−1

with K̂λ2 = arg min
��0,�=��

{
tr(�R̂) − log det(�) + λ2|�|1,off

}
,

(21)
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where λ2 > 0 is a tuning parameter, and Ŵ = diag{√σ̂11, . . . ,
√

σ̂pp}. We can see
that K̂λ2 is the SPICE estimator of K := R−1. The SPICE estimator (20) is a
slight modification of the graphical Lasso (GLasso) estimator of [35]. GLasso uses
|�|1 rather than |�|1,off in the penalty, but the SPICE estimators (20) and (21) are
more amenable to theoretical analysis [48, 59, 60], and numerically they give sim-
ilar results for i.i.d. data [60]. It is worth noting that for i.i.d. data, (20) requires√

(p + sp)(logp)/n = o(1) but (21) relaxes it to
√

(1 + sp)(logp)/n = o(1). Sim-
ilar requirements also hold for temporally dependent observations. Hence, in this
article, we only consider the SPICE estimator given in (21).

THEOREM 6. Suppose that Xp×n is generated from (7) with all ei satisfying
condition (C1) with the same K . Uniformly on � ∈ G2(sp, v0) and {R[k]}pk=1 sub-
ject to (2), for sufficiently large constant M > 0 depending only on v0 and K , if
λ2 = Mu1 and u1 = o(1/

√
1 + sp) with u1 defined in (12), then we have

‖K̂λ2 − K‖F = OP (u1
√

sp),

‖�̂λ2 − �‖2 = OP (u1

√
1 + sp),

1√
p

‖�̂λ2 − �‖F = OP (u1

√
1 + sp/p).

Again by Remarks 1 and 2, u1 = O(
√

(logp)/n) is achievable for the short-
memory case (3) and also for some long-memory cases, thus for such temporally
dependent data Theorem 6 gives the same convergence rates as those given in [60]
for i.i.d. observations. The condition u1 = o(1/

√
1 + sp) implies sp = o(u−2

1 ) =
o(n/ logp), meaning that � needs to be very sparse. Such a condition easily fails
for many simple band matrices when p ≥ n.

Under the irrepresentability condition, however, the sparsity requirement can
be relaxed [59]. In particular, define � = R ⊗ R. By (i, j)th row of � we refer
to its [i + (j − 1)p]th row, and by (k, �)th column to its [k + (� − 1)p]th col-
umn. For any two subsets T and T ′ of {1, . . . , p}×{1, . . . , p}, denote �T T ′ be
the card(T )× card(T ′) matrix with rows and columns of � indexed by T and T ′,
respectively, where card(T ) denotes the cardinality of set T . Let S be the set of
nonzero entries of � and Sc be the complement of S in {1, . . . , p}×{1, . . . , p}. De-
fine κR = ‖R‖1 and κ� = ‖�−1

SS ‖1. Assume the following irrepresentability condi-
tion of [59]:

(22) max
e∈Sc

∣∣�eS�−1
SS

∣∣
1 ≤ 1 − β

for some β ∈ (0,1]. Define d to be the maximum number of nonzeros per row
in �. Then we have the following result.
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THEOREM 7. Let r = (0.5 + 2.5(1 + 8/β)κ�)Mu1v0, where u1 is defined in
(12). Suppose that Xp×n is generated from (7) with all ei satisfying condition (C1)
with the same K . Uniformly on � ∈ G2(sp, v0) and {R[k]}pk=1 subject to (2), for
sufficiently large constant M > 0 depending on v0 and K , if λ2 = 8Mu1/β ≤
[6(1 + β/8)d max{κRκ�, κ3

Rκ2
�}]−1 and u1 = o(min{1, [(1 + 8/β)κ�]−1}), then

with probability tending to 1 we have

|�̂λ2 − �|∞ ≤ r,

‖�̂λ2 − �‖2 ≤ r min{d,
√

p + sp},
1√
p

‖�̂λ2 − �‖F ≤ r
√

1 + sp/p,

and ω̂
(λ2)
ij = 0 for all (i, j) with ωij = 0. If we further assume all nonzero entries

of � satisfy |ωij | > r , then with probability tending to 1, sign(ω̂
(λ2)
ij ) = sign(ωij )

for all (i, j) where ωij �= 0.

Consider the case when β remains constant and max{κR, κ�} has a constant up-
per bound. Then the conditions in Theorem 7 about λ2 and u1 reduce to λ2 = M ′u1
and u1 = o(1) with a constant M ′ = 8M/β , and meanwhile we have ‖�̂λ2 −�‖2 =
OP (u1d). Then the desired result of ‖�̂λ2 − �‖2 = oP (1) is achieved under a re-
laxed sparsity condition d = o(u−1

1 ). If d2 > 1+ sp , then sp = o(u−2
1 ) and the con-

dition of Theorem 6 satisfies. Hence ‖�̂λ2 − �‖2 = OP (u1

√
min{d2,1 + sp}) =

oP (1), which is the better rate between those from Theorems 6 and 7.

5. Extension to heavy tail data. In this section, we generalize the theoretical
results for sub-Gaussian data to the cases when all the basis random variables {ei}
have the generalized subexponential tails under condition (C2) or the polynomial-
type tails under condition (C3). Define

(23) u2 = max
{
(logp)1+2/ϑg2/n, (logp)1+2/ϑ(gF /n)1/2}

,

and

(24) u3 = max
{
p(2+2C)/kg2/n,p(4+2C)/k(gF /n)1/2}

with an arbitrary constant C > 0. The quantities u2 and u3 will substitute u1 in
characterizing the matrix estimation convergence rates under the tail conditions
(C2) and (C3), respectively. The first term in either u2 or u3 can be dropped if μp

is known thus no need to be estimated.

THEOREM 8 (Generalized subexponential tails). Theorems 1, 2, 4−7 and
Corollary 1 hold with condition (C1), parameter K , and u1 replaced by condi-
tion (C2), parameters {K,ϑ}, and u2, respectively.
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THEOREM 9 (Polynomial-type tails). Theorems 1, 2, 4−7 and Corollary 1,
except those mean-square convergence results therein, hold with condition (C1),
parameter K , and u1 replaced by condition (C3), parameters {k, ηk}, and u3, re-
spectively.

For data with polynomial-type tails, the mean-square convergence results may
require higher order moment conditions, thus are not pursued here.

A referee pointed out potential connections to the recent work of [25] and [72].
Chen et al. [25] considered the estimation of �b with b ∈R

p for high-dimensional
mean-zero stationary processes given in (8) which satisfy PDD given in (4). Under
the assumption that μp is known, our exploration shows that their concentration
inequalities for the true μp centered sample covariance matrix (see page 3 of their
Supplementary Material) can be used to obtain the same convergence rates for our
concerned estimators to their sub-Gaussian time series. Their inequalities also can
be applied to their time series with the generalized subexponential tails, but result
in slower convergence rates. If applied to their time series data with polynomial-
type tails, however, their inequalities seem to yield faster convergence rates than
ours. When μp is unknown, the concentration inequalities in [72] for the sam-
ple mean may be useful in deriving the matrix convergence rates for time series
considered in [25]. We leave the details to interested readers. Note that it is not
clear if the concentration inequalities in [25] and [72] are applicable to the ma-
trix estimation under the more general temporal dependence that we consider here
in this article. Also note that the concentration inequalities in [72] can handle the
sample mean for nonlinear time series. It is of great interest to develop useful con-
centration inequalities for the sample covariance matrix for nonlinear, particularly
long-memory, time series, which is beyond the scope of this article.

6. Numerical results.

6.1. Gap-block cross-validation. For tuning parameter selection, we propose
a gap-block cross-validation method that includes the following steps:

1. Split the data Xp×n into H1 ≥ 4 approximately equal-sized nonoverlapping
blocks X∗

i , i = 1, . . . ,H1, such that Xp×n = (X∗
1,X∗

2, . . . ,X∗
H1

). For each i, set
aside block X∗

i that will be used as the validation data, and use the remaining data
after further dropping the neighboring blocks at both sides of X∗

i as the training
data that are denoted by X∗∗

i .
2. Randomly sample H2 blocks X∗

H1+1, . . . ,X∗
H1+H2

from Xp×n, where X∗
H1+j

consists of 
n/H1� consecutive columns of Xp×n for each j = 1, . . . ,H2. Note
that these sampled blocks can overlap. For each i = H1 +1, . . . ,H1 +H2, set aside
block X∗

i as the validation data, and use the remaining data by further excluding
the 
n/H1� columns at both sides of X∗

i from Xp×n as the training data that are
denoted by X∗∗

i .
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3. Let H = H1 + H2. Select the optimal values of tuning parameters τ1, τ2, λ1
and λ2 among their corresponding prespecified candidate values {τ1j }Jj=1,

{τ2j }Jj=1, {λ1j }Jj=1 and {λ2j }Jj=1, and denote them respectively by

τ̂1 = arg min1≤j≤J

1

H

H∑
i=1

∥∥Sτ1j

(
�̂

∗∗
i

) − �̂
∗
i

∥∥2
F ,

τ̂2 = arg min1≤j≤J

1

H

H∑
i=1

∥∥Sτ2j

(
R̂∗∗

i

) − R̂∗
i

∥∥2
F ,

λ̂1 = arg min1≤j≤J

1

H

H∑
i=1

[
tr

(
�̂

∗∗
ε,λ1j ,i�̂

∗
i

) − log det
(
�̂

∗∗
ε,λ1j ,i

)]
,

λ̂2 = arg min1≤j≤J

1

H

H∑
i=1

[
tr

(
�̂

∗∗
λ2j ,i�̂

∗
i

) − log det
(
�̂

∗∗
λ2j ,i

)]
,

where �̂
∗
i and R̂∗

i are obtained from X∗
i , �̂

∗∗
i and R̂∗∗

i are obtained from X∗∗
i , and

�̂
∗∗
ε,λ1j ,i and �̂

∗∗
λ2j ,i are the CLIME and SPICE estimators, respectively, obtained

from X∗∗
i .

In the above cross-validation (CV), due to lack of independent observations,
we use gap blocks, each of size ≈ 
n/H1�, to separate training and validation
datasets so that they are nearly uncorrelated. The idea of using gap blocks has
been employed by the hv-block CV of [58] for linear models with dependent data.
Similar to the k-fold CV for i.i.d. data, Step 1 guarantees all observations are used
for both training and validation, but is limited due to the constrain of keeping
the temporal ordering of the observations. Step 2 allows more data splits. This is
particularly useful when Step 1 only allows a small number of data splits due to
large-size of the gap block and/or limited sample size n. Step 2 is inspired by the
commonly used repeated random subsampling CV for i.i.d. observations [67]. The
above loss functions for selecting tuning parameters are widely used in the liter-
ature [10, 18, 19, 61]. The theoretical justification for the gap-block CV remains
open. In our numerical examples, we simply set H1 = H2 = 10, mimicking the 10-
fold CV recommended by [32, 40]. Our simulation studies show that the method
performs well for temporally dependent data.

6.2. Simulation studies. We evaluate the numerical performance of the hard
and soft thresholding estimators for large correlation matrix and the CLIME and
SPICE estimators for large precision matrix. We generate Gaussian data with zero
mean and covariance matrix � or precision matrix � from one of the following
four models:

Model 1. σij = 0.6|i−j |;
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Model 2. σii = 1, σi,i+1 = σi+1,i = 0.6, σi,i+2 = σi+2,i = 0.3, and σij = 0 for
|i − j | ≥ 3;

Model 3. ωij = 0.6|i−j |;
Model 4. ωii = 1, ωi,i+1 = ωi+1,i = 0.6, ωi,i+2 = ωi+2,i = 0.3, and ωij = 0

for |i − j | ≥ 3.

Similar models have been considered in [10, 18, 19, 60, 61]. For the temporal
dependence, we set Corr(Xki,X�j ) = Λ

ij
k�ρk� with

(25) Λ
ij
k� = (|i − j | + 1

)−α
, 1 ≤ i, j ≤ n,

so that ρ
ij
[k] ∼ |i − j |−α . It is computationally expensive to simulate data Xpn di-

rectly from a multivariate Gaussian random number generator because of the large
dimension of its covariance matrix Cov(Xpn). Instead, we simulate data using the
method of [13], which approximately satisfy (25) (see details in the Supplementary
Material [65]).

Simulations are conducted with sample size n = 200, variable dimension p

ranging from 100 to 400, and 100 replications under each setting, for which α

varies from 0.1 to 2. The i.i.d. case is also considered, for which an ordinary 10-
fold CV is implemented. For each simulated data set, we choose the optimal tuning
parameter from a set of 50 specified values (see Section S.4.1 in the Supplementary
Material [65]). The CLIME and SPICE are computed by the R packages flare
[49] and QUIC [44], respectively. For CLIME, we use the default perturbation of
flare with ε = n−1/2.

The estimation performance is measured by both the spectral norm and the
Frobenius norm. True-positive rate (TPR) and false-positive rate (FPR) are used
for evaluating sparsity recovering for the correlation matrix:

TPR = #{(i, j) : sτ (ρ̂ij ) �= 0 and ρij �= 0, i �= j}
#{(i, j) : ρij �= 0, i �= j} ,

FPR = #{(i, j) : sτ (ρ̂ij ) �= 0 and ρij = 0, i �= j}
#{(i, j) : ρij = 0, i �= j} .

Similar quantities are also reported for the precision matrix. The TPR and FPR are
not provided for Models 1 and 3.

Simulation results are summarized in Tables 1–3. In all setups, the sample cor-
relation matrix and the inverse of sample covariance matrix (whenever possible)
perform the worst. It is not surprising that the performance of all the regularized es-
timators generally is better for weaker temporal dependence or smaller p. The soft
thresholding method performs slightly better than the hard thresholding method
in terms of matrix losses for small α and slightly worse for large α, and always
has higher TPRs but bigger FPRs. The CLIME estimator performs similarly as the
SPICE estimator in matrix norms, but generally yields lower FPRs.
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TABLE 1
Comparison of average (SD) matrix losses for correlation matrix estimation

R̂ Hard Soft R̂ Hard Soft

p α Spectral norm Frobenius norm

Model 1
100 0.1 13.7 (1.68) 2.8 (0.09) 2.6 (0.07) 22.6 (1.08) 9.9 (0.28) 8.7 (0.24)

0.25 10.5 (1.59) 2.4 (0.15) 2.4 (0.08) 17.4 (0.95) 8.1 (0.42) 7.5 (0.26)

0.5 7.8 (1.14) 2.0 (0.15) 2.2 (0.08) 14.3 (0.69) 6.8 (0.33) 6.6 (0.23)

1 4.2 (0.45) 1.5 (0.10) 1.7 (0.08) 9.9 (0.29) 5.2 (0.23) 5.1 (0.20)

2 2.6 (0.24) 1.1 (0.09) 1.4 (0.08) 7.5 (0.17) 3.9 (0.15) 4.0 (0.19)

i.i.d. 2.4 (0.18) 1.0 (0.08) 1.3 (0.08) 7.0 (0.15) 3.5 (0.13) 3.7 (0.15)

200 0.1 27.2 (2.69) 2.9 (0.05) 2.8 (0.04) 45.6 (1.54) 14.5 (0.25) 13.1 (0.22)

0.25 20.6 (2.54) 2.5 (0.14) 2.5 (0.06) 35.0 (1.39) 12.2 (0.56) 11.4 (0.29)

0.5 15.2 (1.77) 2.2 (0.12) 2.3 (0.06) 28.7 (0.99) 10.2 (0.40) 10.1 (0.25)

1 7.8 (0.64) 1.6 (0.08) 1.9 (0.06) 20.1 (0.35) 7.9 (0.24) 7.9 (0.21)

2 4.3 (0.24) 1.3 (0.08) 1.6 (0.06) 15.1 (0.15) 5.9 (0.19) 6.3 (0.18)

i.i.d. 3.8 (0.22) 1.1 (0.07) 1.5 (0.06) 14.1 (0.15) 5.3 (0.14) 5.8 (0.17)

300 0.1 40.6 (3.39) 3.0 (0.03) 2.8 (0.03) 68.5 (1.88) 18.0 (0.21) 16.5 (0.24)

0.25 30.9 (3.23) 2.6 (0.11) 2.6 (0.04) 52.6 (1.75) 15.4 (0.63) 14.5 (0.30)

0.5 22.5 (2.16) 2.3 (0.12) 2.4 (0.04) 43.2 (1.16) 12.8 (0.47) 12.9 (0.27)

1 11.2 (0.79) 1.7 (0.05) 2.0 (0.05) 30.2 (0.42) 9.9 (0.21) 10.1 (0.25)

2 5.8 (0.27) 1.3 (0.08) 1.7 (0.05) 22.8 (0.16) 7.5 (0.25) 8.2 (0.19)

i.i.d. 5.0 (0.20) 1.2 (0.08) 1.6 (0.05) 21.2 (0.15) 6.7 (0.12) 7.5 (0.17)

400 0.1 54.2 (4.01) 3.0 (0.02) 2.9 (0.02) 91.7 (2.17) 20.9 (0.17) 19.4 (0.22)

0.25 41.0 (3.88) 2.7 (0.09) 2.7 (0.04) 70.1 (2.09) 18.4 (0.61) 17.1 (0.29)

0.5 29.8 (2.62) 2.3 (0.12) 2.5 (0.04) 57.7 (1.38) 15.2 (0.59) 15.3 (0.30)

1 14.6 (0.91) 1.7 (0.05) 2.1 (0.04) 40.3 (0.48) 11.6 (0.22) 12.1 (0.20)

2 7.2 (0.26) 1.4 (0.07) 1.8 (0.04) 30.4 (0.16) 9.0 (0.27) 9.8 (0.23)

i.i.d. 6.0 (0.21) 1.2 (0.08) 1.6 (0.05) 28.2 (0.15) 7.9 (0.14) 8.9 (0.17)

Model 2
100 0.1 13.8 (1.71) 1.8 (0.04) 1.6 (0.04) 22.6 (1.05) 8.7 (0.29) 7.7 (0.22)

0.25 10.5 (1.61) 1.5 (0.18) 1.4 (0.09) 17.5 (0.94) 6.7 (0.48) 6.5 (0.24)

0.5 7.8 (1.10) 1.2 (0.17) 1.3 (0.07) 14.3 (0.66) 5.2 (0.34) 5.6 (0.21)

1 4.2 (0.40) 0.7 (0.09) 1.0 (0.05) 10.0 (0.27) 4.0 (0.17) 4.1 (0.16)

2 2.5 (0.18) 0.6 (0.05) 0.8 (0.04) 7.5 (0.14) 2.6 (0.25) 3.2 (0.13)

i.i.d. 2.3 (0.15) 0.5 (0.07) 0.7 (0.04) 7.0 (0.13) 2.0 (0.23) 2.8 (0.12)

200 0.1 27.2 (2.62) 1.8 (0.02) 1.7 (0.03) 45.6 (1.51) 12.9 (0.28) 11.6 (0.21)

0.25 20.6 (2.29) 1.6 (0.15) 1.5 (0.07) 35.0 (1.29) 10.3 (0.56) 9.9 (0.27)

0.5 15.1 (1.58) 1.3 (0.14) 1.4 (0.05) 28.8 (0.88) 7.9 (0.43) 8.6 (0.21)

1 7.7 (0.57) 0.8 (0.10) 1.1 (0.04) 20.1 (0.34) 5.8 (0.15) 6.5 (0.20)

2 4.2 (0.18) 0.6 (0.05) 0.9 (0.04) 15.2 (0.14) 4.2 (0.30) 5.0 (0.13)

i.i.d. 3.6 (0.16) 0.6 (0.06) 0.8 (0.04) 14.1 (0.14) 3.2 (0.23) 4.4 (0.12)
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TABLE 1
(Continued)

R̂ Hard Soft R̂ Hard Soft

p α Spectral norm Frobenius norm

300 0.1 40.8 (3.54) 1.8 (0.05) 1.7 (0.02) 68.7 (1.84) 16.0 (0.27) 14.6 (0.24)

0.25 30.8 (2.95) 1.7 (0.17) 1.6 (0.13) 52.6 (1.62) 13.2 (0.69) 12.5 (0.28)

0.5 22.4 (2.04) 1.4 (0.12) 1.4 (0.09) 43.3 (1.10) 10.1 (0.57) 10.9 (0.25)

1 11.1 (0.73) 0.9 (0.08) 1.1 (0.03) 30.3 (0.41) 7.3 (0.16) 8.3 (0.20)

2 5.6 (0.22) 0.6 (0.04) 0.9 (0.04) 22.8 (0.14) 5.5 (0.29) 6.5 (0.18)

i.i.d. 4.7 (0.15) 0.6 (0.05) 0.8 (0.03) 21.2 (0.13) 4.1 (0.21) 5.7 (0.12)

400 0.1 54.0 (3.61) 1.8 (0.04) 1.7 (0.02) 91.7 (1.97) 18.6 (0.16) 17.2 (0.15)

0.25 41.1 (3.58) 1.7 (0.09) 1.7 (0.12) 70.2 (1.89) 15.8 (0.63) 14.9 (0.33)

0.5 29.7 (2.53) 1.5 (0.17) 1.5 (0.08) 57.7 (1.29) 12.1 (0.62) 13.0 (0.24)

1 14.5 (0.86) 0.9 (0.08) 1.1 (0.03) 40.4 (0.46) 8.6 (0.16) 10.0 (0.23)

2 7.0 (0.26) 0.7 (0.04) 0.9 (0.03) 30.4 (0.14) 6.6 (0.26) 7.7 (0.15)

i.i.d. 5.7 (0.18) 0.6 (0.05) 0.9 (0.03) 28.3 (0.13) 4.9 (0.21) 6.8 (0.12)

We notice that the SPICE algorithm in the R package QUIC is much faster than
the CLIME algorithm in the R package flare by using a single computer core.
However, the column-by-column estimating nature of CLIME can speed up using
parallel computing on multiple cores.

6.3. rfMRI data analysis. Here, we analyze a rfMRI data set for the es-
timation of brain functional connectivity. The preprocessed rfMRI data of a
healthy young woman are provided by the WU-Minn Human Connectome Project
(www.humanconnectome.org). The original data consist of 1200 temporal brain
images and each image contains 229,404 brain voxels with size 2 × 2 × 2 mm3.
We discard the first 10 images due to concerns of early nonsteady magnetization.
For the ease of implementation, we use a grid-based method [66] to reduce the
image dimension to 907 functional brain nodes that are placed in a regular three-
dimensional grid spaced at 12-mm intervals throughout the brain. Each node con-
sists of a 3-mm voxel-center-to-voxel-center radius pseudosphere, which encom-
passes 19 voxels, and the time series at the node is a spatially averaged time series
of these 19 voxels. The temporal dependence of the 907 time series is approxi-
mated by the PDD model (4) with C0 = 1 and α = 0.30 (see Figure 1).

The functional connectivity between two brain nodes can be evaluated by either
correlation or partial correlation; here, we follow the convention by simply calling
them the marginal connectivity and the direct connectivity, respectively. For the
marginal connectivity, we only apply the hard thresholding method for estimating
the correlation matrix, which usually yields less number of false discoveries than
the soft thresholding. We find that 1.47% of all the pairs of nodes are connected

http://www.humanconnectome.org
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TABLE 2
Comparison of average (SD) matrix losses for precision matrix estimation

̂�−1 CLIME SPICE ̂�−1 CLIME SPICE

p α Spectral norm Frobenius norm

Model 3
100 0.1 381.7 (40.07) 4.9 (0.26) 5.7 (0.53) 850.5 (38.22) 28.8 (1.54) 27.1 (1.46)

0.25 97.6 (9.23) 1.8 (0.09) 2.2 (0.08) 214.6 (9.38) 9.5 (0.34) 9.3 (0.20)

0.5 43.3 (4.60) 2.4 (0.09) 2.7 (0.06) 93.9 (4.36) 7.7 (0.15) 8.6 (0.15)

1 21.8 (2.74) 2.6 (0.06) 2.9 (0.04) 45.4 (2.73) 8.0 (0.19) 9.2 (0.15)

2 14.1 (1.80) 2.7 (0.05) 2.9 (0.04) 28.9 (1.86) 8.0 (0.20) 9.1 (0.14)

i.i.d. 12.6 (1.66) 2.5 (0.06) 2.8 (0.04) 25.5 (1.56) 7.4 (0.20) 8.6 (0.15)

200 0.1 N/A 6.2 (0.38) 5.8 (0.48) N/A 49.6 (2.46) 38.4 (1.48)

0.25 N/A 2.1 (0.12) 2.4 (0.06) N/A 14.8 (0.52) 13.7 (0.18)

0.5 N/A 2.6 (0.07) 2.8 (0.04) N/A 11.9 (0.18) 12.8 (0.12)

1 N/A 2.9 (0.05) 3.1 (0.03) N/A 12.4 (0.23) 13.7 (0.14)

2 N/A 2.9 (0.04) 3.1 (0.02) N/A 12.6 (0.21) 13.8 (0.09)

i.i.d. N/A 2.7 (0.04) 3.0 (0.02) N/A 11.6 (0.24) 13.3 (0.14)

300 0.1 N/A 5.3 (0.36) 5.9 (0.45) N/A 51.2 (2.85) 47.1 (1.48)

0.25 N/A 2.4 (0.11) 2.4 (0.05) N/A 18.0 (0.36) 17.1 (0.18)

0.5 N/A 2.8 (0.07) 2.9 (0.03) N/A 15.7 (0.27) 15.9 (0.13)

1 N/A 3.0 (0.04) 3.1 (0.02) N/A 15.9 (0.28) 17.1 (0.12)

2 N/A 3.0 (0.03) 3.1 (0.01) N/A 16.1 (0.22) 17.3 (0.09)

i.i.d. N/A 2.8 (0.04) 3.1 (0.02) N/A 15.0 (0.26) 16.8 (0.11)

400 0.1 N/A 5.8 (0.44) 6.0 (0.37) N/A 63.9 (4.29) 54.7 (1.60)

0.25 N/A 2.6 (0.08) 2.5 (0.05) N/A 20.8 (0.22) 20.0 (0.19)

0.5 N/A 2.9 (0.06) 2.9 (0.03) N/A 19.0 (0.31) 18.6 (0.12)

1 N/A 3.0 (0.04) 3.1 (0.02) N/A 19.0 (0.32) 19.9 (0.13)

2 N/A 3.1 (0.03) 3.2 (0.01) N/A 19.0 (0.24) 20.2 (0.10)

i.i.d. N/A 2.9 (0.04) 3.1 (0.01) N/A 17.9 (0.31) 19.7 (0.10)

Model 4
100 0.1 355.4 (37.62) 4.9 (0.40) 5.9 (0.72) 829.5 (35.78) 28.0 (2.05) 26.5 (1.68)

0.25 91.1 (8.42) 1.9 (0.31) 1.7 (0.19) 209.0 (8.63) 8.2 (1.03) 7.3 (0.30)

0.5 40.7 (4.29) 1.1 (0.10) 1.4 (0.07) 91.6 (3.96) 4.7 (0.17) 5.8 (0.19)

1 20.5 (2.44) 1.3 (0.07) 1.6 (0.06) 44.4 (2.44) 5.1 (0.26) 6.2 (0.21)

2 13.3 (1.62) 1.4 (0.07) 1.6 (0.05) 28.3 (1.70) 5.3 (0.25) 6.3 (0.17)

i.i.d. 11.8 (1.44) 1.2 (0.06) 1.4 (0.05) 25.0 (1.37) 4.6 (0.24) 5.7 (0.18)

200 0.1 N/A 5.4 (0.50) 5.6 (0.61) N/A 41.4 (2.89) 33.9 (1.61)

0.25 N/A 1.8 (0.19) 1.6 (0.14) N/A 11.5 (0.59) 10.5 (0.18)

0.5 N/A 1.4 (0.11) 1.7 (0.04) N/A 8.5 (0.32) 9.6 (0.17)

1 N/A 1.6 (0.06) 1.8 (0.03) N/A 9.1 (0.38) 10.5 (0.21)

2 N/A 1.6 (0.05) 1.8 (0.03) N/A 9.2 (0.32) 10.8 (0.17)

i.i.d. N/A 1.4 (0.06) 1.7 (0.03) N/A 7.8 (0.34) 9.9 (0.17)
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TABLE 2
(Continued)

̂�−1 CLIME SPICE ̂�−1 CLIME SPICE

p α Spectral norm Frobenius norm

300 0.1 N/A 6.0 (0.54) 5.6 (0.67) N/A 54.7 (4.26) 39.8 (1.58)

0.25 N/A 1.6 (0.12) 1.6 (0.14) N/A 14.0 (0.30) 13.2 (0.13)

0.5 N/A 1.8 (0.07) 1.8 (0.04) N/A 13.1 (0.51) 12.5 (0.20)

1 N/A 1.9 (0.06) 1.9 (0.03) N/A 13.1 (0.53) 13.8 (0.20)

2 N/A 1.8 (0.05) 2.0 (0.03) N/A 12.6 (0.39) 14.2 (0.20)

i.i.d. N/A 1.5 (0.05) 1.8 (0.02) N/A 10.5 (0.38) 13.2 (0.19)

400 0.1 N/A 5.1 (0.46) 5.4 (0.62) N/A 54.4 (4.12) 44.6 (1.43)

0.25 N/A 1.8 (0.09) 1.7 (0.14) N/A 17.5 (0.28) 15.5 (0.11)

0.5 N/A 2.0 (0.06) 1.9 (0.03) N/A 17.3 (0.55) 14.9 (0.19)

1 N/A 2.0 (0.06) 2.0 (0.02) N/A 16.7 (0.59) 16.5 (0.20)

2 N/A 1.9 (0.05) 2.0 (0.02) N/A 15.9 (0.50) 17.1 (0.20)

i.i.d. N/A 1.7 (0.06) 1.9 (0.02) N/A 13.5 (0.48) 16.0 (0.20)

with a threshold value of 0.12 to the sample correlations. For the direct connectiv-

ity, we calculate the estimated partial correlations {−ω̂ij /
√

ω̂ii ω̂jj , i �= j} from the

precision matrix estimator �̂ := (ω̂ij )p×p . Both CLIME and SPICE yield similar
results, hence we only report the result of CLIME. We find that 2.71% of all the
pairs of nodes are connected conditional on all other nodes. Most of the nonzero
estimated partial correlations have small absolute values, with the medium at 0.01
and the maximum at 0.45. About 0.62% of all the pairs of nodes are connected
both marginally and directly.

Define the degree of a node to be the number of its connected nodes, and a
hub to be a high-degree node. The marginal connectivity node degrees range from
0 to 164 with the medium at 2, and the direct connectivity node degrees range
from 5 to 85 with the medium at 22. The top 10 hubs found by either method
are provided in the Supplementary Material [65] with six overlapping hubs. Seven
of the top 10 hubs of marginal connectivity are spatially close to those in [16]
and [28] obtained from multiple subjects. Note that they arbitrarily used 0.25 as
the threshold value for the sample correlations, whereas our threshold value of
0.12 is selected from cross-validation. Some additional results are provided in the
Supplemental Material [65].

APPENDIX: TECHNICAL LEMMAS

The keys to the proofs of Theorems 1–9 are the proper concentration inequal-
ities for |�̂ − �|∞ and |R̂ − R|∞ under temporal dependence. Once these in-
equalities are established, the rest of the proofs are straightforward extensions of
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TABLE 3
Comparison of average (SD) TPR(%)/FPR(%) for Models 2 and 4

p α Model 2, Hard Model 2, Soft

100 0.1 10.86 (4.35)/0.02 (0.03) 54.19 (4.41)/4.98 (1.26)
0.25 35.16 (5.43)/0.07 (0.06) 70.72 (3.96)/6.10 (1.16)
0.5 48.43 (3.76)/0.06 (0.06) 80.43 (3.19)/6.75 (1.19)
1 60.92 (4.25)/0.02 (0.03) 94.34 (2.12)/7.23 (1.39)
2 83.93 (4.08)/0.04 (0.05) 99.33 (0.73)/7.47 (1.57)
i.i.d. 93.42 (2.63)/0.13 (0.09) 99.91 (0.21)/11.42 (1.82)

200 0.1 5.57 (2.93)/0.00 (0.00) 45.91 (3.86)/2.40 (0.55)
0.25 28.31 (4.75)/0.02 (0.02) 64.71 (3.23)/3.20 (0.69)
0.5 44.48 (3.02)/0.02 (0.02) 74.38 (2.42)/3.40 (0.59)
1 57.45 (2.14)/0.01 (0.01) 91.40 (2.11)/3.84 (0.81)
2 79.04 (3.66)/0.02 (0.01) 98.71 (0.67)/3.73 (0.58)
i.i.d. 90.74 (2.68)/0.07 (0.05) 99.68 (0.31)/6.64 (0.65)

300 0.1 4.15 (2.50)/0.00 (0.00) 40.61 (3.94)/1.50 (0.43)
0.25 24.28 (4.85)/0.01 (0.01) 61.27 (2.70)/2.13 (0.42)
0.5 41.75 (3.51)/0.01 (0.01) 71.65 (2.51)/2.43 (0.47)
1 55.42 (2.10)/0.00 (0.00) 89.41 (1.80)/2.61 (0.44)
2 74.39 (3.23)/0.01 (0.01) 98.11 (0.69)/2.49 (0.57)
i.i.d. 88.97 (2.29)/0.04 (0.02) 99.57 (0.34)/4.77 (0.84)

400 0.1 2.65 (1.29)/0.00 (0.00) 36.80 (2.27)/1.02 (0.23)
0.25 20.81 (3.74)/0.01 (0.00) 58.30 (2.86)/1.54 (0.35)
0.5 40.14 (3.58)/0.01 (0.01) 68.74 (2.06)/1.68 (0.35)
1 53.82 (1.65)/0.00 (0.00) 87.51 (1.87)/1.80 (0.40)
2 72.19 (2.58)/0.00 (0.00) 97.79 (0.66)/1.97 (0.22)
i.i.d. 87.51 (1.65)/0.03 (0.01) 99.38 (0.30)/3.93 (0.40)

those in [10, 18, 59–61]. We provide these inequalities in the following lemmas,
where Part (i) in Lemma A1 is an extension of the Hoeffding-type inequality [34],
Theorem 7.27, and the Hanson–Wright inequality [63], Theorem 1.1, from finite-
dimensional to infinite-dimensional sub-Gaussian random vectors. These lemmas
can also be applied to the estimation of large band matrix [11] and other high-
dimensional time series problems such as linear regression [72] and linear func-
tionals [25].

LEMMA A1. Let e = (e1, e2, . . .)
� be an infinite-dimensional random vector

with each entry ei satisfying E(ei) = 0 and E(e2
i ) = 1. Let X = Ae and Y = Be

be two well-defined random vectors with length n in the sense of entrywise almost-
sure convergence and mean-square convergence, where A and B are two deter-
ministic matrices. For any n-dimensional deterministic vector b and all u > 0:
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TABLE 3
(Continued)

p α Model 4, CLIME Model 4, SPICE

100 0.1 91.28 (2.76)/25.49 (2.37) 82.99 (2.76)/28.97 (1.04)
0.25 92.65 (2.35)/17.82 (1.84) 90.93 (2.19)/29.68 (1.31)
0.5 95.30 (1.73)/17.80 (1.47) 96.00 (1.54)/31.58 (1.49)
1 98.47 (0.90)/14.37 (1.21) 99.24 (0.66)/30.65 (1.49)
2 99.71 (0.36)/11.99 (1.27) 99.94 (0.17)/27.77 (1.34)
i.i.d. 99.91 (0.20)/16.21 (1.63) 99.99 (0.07)/31.40 (1.28)

200 0.1 82.24 (2.70)/12.72 (0.64) 76.07 (1.95)/17.78 (0.56)
0.25 84.83 (2.28)/15.70 (2.62) 84.75 (1.90)/18.87 (0.59)
0.5 89.55 (2.39)/13.21 (3.00) 91.65 (1.45)/20.07 (0.64)
1 93.81 (1.52)/7.27 (0.58) 97.12 (0.97)/19.07 (0.85)
2 97.77 (0.97)/4.86 (0.55) 99.31 (0.42)/16.25 (0.81)
i.i.d. 99.56 (0.36)/7.24 (0.79) 99.88 (0.18)/19.42 (0.81)

300 0.1 82.60 (3.59)/12.71 (2.55) 71.66 (1.71)/13.05 (0.34)
0.25 77.62 (2.62)/14.39 (2.62) 81.09 (1.71)/14.06 (0.39)
0.5 82.23 (2.48)/14.33 (3.57) 88.71 (1.44)/14.98 (0.42)
1 86.84 (2.58)/4.71 (0.67) 94.87 (1.02)/14.20 (0.54)
2 94.88 (1.38)/2.84 (0.41) 98.27 (0.68)/11.59 (0.65)
i.i.d. 98.83 (0.49)/4.89 (0.58) 99.56 (0.29)/14.32 (0.70)

400 0.1 83.04 (2.84)/14.91 (2.84) 68.51 (1.49)/10.36 (0.24)
0.25 76.76 (3.46)/15.11 (3.40) 78.50 (1.41)/11.41 (0.32)
0.5 78.58 (2.35)/15.67 (3.64) 86.19 (1.44)/12.20 (0.35)
1 79.44 (3.05)/4.40 (0.77) 92.85 (1.09)/11.55 (0.41)
2 90.47 (2.32)/1.92 (0.35) 96.68 (0.85)/8.97 (0.55)
i.i.d. 97.63 (0.82)/3.50 (0.52) 99.09 (0.39)/11.34 (0.60)

(i) if all ei satisfy condition (C1) with the same K , then

(A.1) P
[∣∣b�X

∣∣ ≥ u
] ≤ 2 exp

{
− Cu2

K2‖b‖2
F ‖AA�‖2

}
and

P
[∣∣X�Y − E

(
X�Y

)∣∣ ≥ u
] ≤ 2 exp

{
−C min

(
u2

K4‖AA�‖F ‖BB�‖F

,

u

K2
√

‖AA�‖2‖BB�‖2

)}(A.2)

with an absolute constant C > 0;
(ii) if all ei satisfy condition (C2) with the same K ≥ 1 and ϑ , then

(A.3) P
[∣∣b�X

∣∣ ≥ u
] ≤ 2 exp

{
−(u‖b‖−1

F ‖AA�‖−1/2
2 )

1
1/2+1/ϑ

CK(2/ϑ)1/ϑ

}
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and

P
[∣∣X�Y − E

(
X�Y

)∣∣ ≥ u
] ≤ 2 exp

{
−(u‖AA�‖−1/2

F ‖BB�‖−1/2
F )

1
1/2+2/ϑ

CK2(4/ϑ)4/ϑ

}

+ 2 exp
{
−(u‖AA�‖−1/2

F ‖BB�‖−1/2
F )

1
1+2/ϑ

CK2(2/ϑ)2/ϑ

}(A.4)

with an absolute constant C > 0;
(iii) if all ei satisfy condition (C3) with the same k and ηk , then

(A.5) P
[∣∣b�X

∣∣ ≥ u
] ≤ (

Cηkk
1/2/u

)k∥∥AA�∥∥k/2
2 ‖b‖k

F

and

P
[∣∣X�Y − E

(
X�Y

)∣∣ ≥ u
] ≤ (

Cη2
kk

1/2/u
)k/2∥∥AA�∥∥k/4

F

∥∥BB�∥∥k/4
F ,

+ (
Cη2

kk/u
)k∥∥AA�∥∥k/2

F

∥∥BB�∥∥k/2
F

(A.6)

with an absolute constant C > 0.

LEMMA A2. Let v0 > 0 be an absolute constant. Suppose that Xp×n is gener-
ated from (7). Uniformly on � satisfying |�|∞ ≤ v0 and {R[k]}pk=1 subject to (2),
for any absolute constant C > 0, if any of the following three conditions holds:

(i) all ei satisfy condition (C1) with the same K , u∗ = C1u1 with C1 > 0 being
a sufficiently large constant depending only on (v0,K,C), and u1 is given in (12);

(ii) all ei satisfy condition (C2) with the same K and ϑ , u∗ = C2u2 with C2 >

0 being a sufficiently large constant depending only on (v0,K,ϑ,C), and u2 is
given in (23);

(iii) all ei satisfy condition (C3) with the same k and ηk , u∗ = C3u3 with C3 > 0
being a sufficiently large constant depending only on (v0, k, ηk), and u3 is given in
(24) with the same constant C given above;

then we have

P
[|�̂ − �|∞ ≥ u∗] = O

(
p−C)

.

LEMMA A3. Suppose that Xp×n is generated from (7). Uniformly on
{R[k]}pk=1 subject to (2), for any absolute constant C > 0, if any of the three con-
ditions given in Lemma A2 holds and the corresponding uj = o(1), j ∈ {1,2,3},
then we have

P
[|R̂ − R|∞ ≥ u∗] = O

(
p−C)

.
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