
The Annals of Applied Statistics
2019, Vol. 13, No. 2, 713–745
https://doi.org/10.1214/18-AOAS1217
© Institute of Mathematical Statistics, 2019

MODELLING OCEAN TEMPERATURES FROM BIO-PROBES
UNDER PREFERENTIAL SAMPLING

BY DANIEL DINSDALE AND MATIAS SALIBIAN-BARRERA

University of British Columbia

In the last 25 years there has been an important increase in the amount
of data collected from animal-mounted sensors (bio-probes) which are often
used to study the animals’ behaviour or environment. We focus here on an
example of the latter, where the interest is in sea surface temperature (SST),
and measurements are taken from sensors mounted on elephant seals in the
southern Indian Ocean. We show that standard geostatistical models may not
be reliable for this type of data, due to the possibility that the regions visited
by the animals may depend on the SST. This phenomenon is know in the lit-
erature as preferential sampling, and, if ignored, it may affect the resulting
spatial predictions and parameter estimates. Research on this topic has been
mostly restricted to stationary sampling locations such as monitoring sites.
The main contribution of this manuscript is to extend this methodology to
observations obtained by devices that move through the region of interest,
as is the case with the tagged seals. More specifically, we propose a flexi-
ble framework for inference on preferentially sampled fields where the pro-
cess that generates the sampling locations is stochastic and moving over time
through a two-dimensional space. Our simulation studies confirm that predic-
tions obtained from the preferential sampling model are more reliable when
this phenomenon is present, and they compare very well to the standard ones
when there is no preferential sampling. Finally, we note that the conclusions
of our analysis of the SST data can change considerably when we incorporate
preferential sampling in the model.

1. Introduction. The use of animal mounted sensors (bio-probes) to analyse
population patterns has grown quickly in the last 25 years [Fedak (2004), Ungar
et al. (2005), Evans, Lea and Patterson (2013)], with tags attached to both marine
and land based animals. These tags can be used to provide valuable information
by collecting data on the environment where the animals live, particularly in re-
gions that are difficult to observe otherwise. One example is given by the use of
marine mammal tags to measure oceanographic data such as water temperature,
salinity and others. Fedak (2013) highlight the usefulness of such tags in profiling
oceanographic data in polar regions where data is typically difficult to obtain.

Although the methodology described in this paper is applicable to a range
of different problems, we will focus here on data collected from conductivity-
temperature-depth (CTD) bio-probe tags attached to elephant seals in the southern
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Indian Ocean. These data were collected and made freely available as part of the
Marine Mammals Exploring the Oceans Pole to Pole (MEOP) database [Roquet et
al. (2013)], and we utilise the South Indian Ocean data subset described by Roquet
et al. (2014). This data set was collected to supplement the Advanced Research
and Global Observation Satellite (Argos) float and ship based measures of water
masses in typically under sampled areas of the southern oceans, an area which
is drastically changing and needs to be further understood [Jacobs (2006)]. While
northern oceans have been regularly sampled since the early 2000s using Argo pro-
filers [Gould et al. (2004)], utilising this method in the southern oceans is typically
complicated by the presence of sea ice.

The data consist of location coordinates (longitude and latitude which are only
available when the animal is surfaced) and corresponding sea surface temperature
(SST) measurements. The animal locations in our applied example are determined
using Argos and are typically accurate within ±5 kilometers, while the tempera-
tures are accurate within ±0.03◦C [Roquet et al. (2014)]. We use only the temper-
ature data recorded at a depth of 6 meters to represent the SSTs as closely as pos-
sible and restrict ourselves to the region between −45 and −65 degrees latitude,
between 60 and 120 degrees in longitude over the months of July to September
2012 and use tracks with 50 observations or more. The final data set consists of
nine separate tracks with 1630 observations in total, which can be seen in Figure 1.

Geostatistical models and methods [Diggle and Ribeiro (2007)] provide a nat-
ural framework to analyse these data. While standard spatial statistical methods
consider sampling locations that are chosen independently from the response vari-
able of interest, it is important to note that the movement of the tagged animals

FIG. 1. Plot of all 1630 observations from the subset of southern elephant seal data analysed in
Section 5. The first observation was taken on 1 July 2012, and the final observation on 30 September
2012.
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(and thus the locations at which measurements are taken) may depend on the vari-
able of interest (SST). Elephant seals are likely to adjust their foraging due to the
warming of ocean temperatures [McIntyre et al. (2011)], because their prey tends
to prefer cooler and deeper waters. It also appears that there are less successful
forages when diving in warmer water [Guinet et al. (2014)].

Preferential sampling [Diggle, Menezes and Su (2010)] refers to the situation
where the process that determines the data locations and the spatial field of interest
may depend on each other (as can be the case with data collected from animal-
mounted tags). The effect of preferential sampling on subsequent inference can
be twofold. On the one hand data collected in this way may tend to include a re-
duced range of the response variable. For example, if seals follow prey towards
colder water, their water temperature measurements will tend to not include obser-
vations from warmer regions of their environment. On the other hand the locations
at which data are collected might carry useful information about the variable of in-
terest. In the previous example one may expect that regions that were not sampled
had slightly warmer waters than those visited by the seals. The first issue refers
to the fact that the sample of responses may not be a reliable representation over
the area of interest, while the second one implies that it may be advantageous for
the analysis to take into account the observed locations rather than conditioning on
them, as it is done in standard spatial statistical methods.

The impact of preferential sampling on estimation and prediction has been dis-
cussed in various recent papers. Shaddick and Zidek (2014) highlighted the prefer-
ential nature by which air pollution monitoring sites were added and removed from
a UK monitoring network from the 1960s until 2006. Particularly, in the early years
of the study, there is evidence that removed sites had a lower annual mean pollution
reading than those which were added. Gelfand, Sahu and Holland (2012) showed
the prediction effect of preferentially chosen ozone monitoring sites in California,
while Diggle, Menezes and Su (2010) and Dinsdale and Salibian-Barrera (2019a)
illustrated the effect that preferential sampling of lead concentration in Galicia may
have on the resulting predictions. Pati, Reich and Dunson (2011) studied the effect
of preferential selection of monitoring sites measuring ozone levels in the eastern
U.S.A. More recently, Conn, Thorson and Johnson (2017) showed that preferen-
tial sampling in animal population surveys may cause large biases in the animal
density estimates, giving an example using aerial survey counts of bearded seals
in the eastern Bering Sea.

Research on the issue of preferential sampling has so far mostly been restricted
to stationary sampling locations such as monitoring stations. The main contribu-
tion of this manuscript is to extend this methodology to observations obtained by
devices that move through the region of interest such as those mounted on animals
or people. In this paper, the animal locations are modelled using a correlated ran-
dom walk [Jonsen, Flemming and Myers (2005), Johnson et al. (2008)], where, to
allow for the animal movement to depend on the variable of interest, we allow the
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drift function (which represents the direction preference at each location) to de-
pend on the SST field. If this field can be assumed to be differentiable, we include
a term depending on its gradient to account for the animals’ possible preference
for particular water temperatures. Finally, we use a behavioural state component
as in Auger-Méthé et al. (2017) to allow for a combination of “momentum” and
environmental preferences in the animal’s movement. Although we believe this
movement model to be useful for the analysis of the CTD data, the focus of our
work is on studying how to incorporate the possibility of preferential sampling to
this type of models rather than advocating for the superiority of a specific move-
ment model over others.

It is interesting to note that the effect of preferential sampling in these “dy-
namic” spatial models (where sampling locations move through the domain) can
be different from what happens when sampling locations are stationary. In the
latter case when there is no preferential sampling, observed locations are usually
assumed to have a noninformative point pattern sampling distribution over the spa-
tial domain. Thus, when preferential sampling is present it often results in distinct
and potentially informative patterns in the monitoring locations [Diggle, Menezes
and Su (2010), Dinsdale and Salibian-Barrera (2019a)]. In contrast, even without
preferential sampling, the locations visited by the animals in our study would typ-
ically not be expected to be evenly distributed over the area of interest (due to the
dynamic nature of their movement). As a result the information about SST con-
tained in the locations the animals visited (or in the regions without observations)
may be less apparent for these dynamical models than it is for stationary locations.
Nevertheless, we show below that not taking into account preferential sampling
may still negatively affect the quality and reliability of the estimated parameters
and predictions.

To estimate the parameters of interest in the model, we utilise a likelihood ap-
proach based on a standard discretisation of the movement equations. The depen-
dence between the sampling locations and the field of interest (SST) results in a
likelihood that is computationally challenging to optimise. We follow Dinsdale and
Salibian-Barrera (2019a) in using the flexible Template Model Builder R package
(TMB) [Kristensen et al. (2016)] to deal with the computational complexity of the
preferential sampling analysis.

In many related models discussed in the literature, the underlying field is only
assumed to be continuous (but not differentiable). This choice appears to origi-
nate on mathematical and computational complexity considerations rather than on
the specifics of the phenomenon being studied [Rue, Martino and Chopin (2009),
Lindgren, Rue and Lindström (2011), Simpson, Lindgren and Rue (2012)]. Since
our model involves the gradient of the underlying SST field [see equation (3.7)],
we will consider differentiable Gaussian random fields which are relatively easy
to use in the likelihood function when the latter is approximated using using TMB.
Details can be found in Appendix A.



PREFERENTIAL SAMPLING 717

Our numerical experiments confirm that better predictions and parameter esti-
mates can be obtained when the model appropriately reflects the potential presence
of preferential sampling. Moreover, if the sampled locations are not preferentially
chosen, the resulting predictions and parameter estimates are very close to those
obtained with the standard model that conditions on the locations. Interestingly,
our analysis also shows that the predicted SST in our motivating example obtained
with and without a preferential sampling model are in fact different which suggests
that the former may be more reliable.

The rest of the paper is organised as follows. Section 2 briefly reviews pref-
erential sampling spatial models and the methods used to perform inference and
prediction based on them. Our model for the SST data is discussed in Section 3.
The simulations results reported in Section 4 illustrate the benefits of accounting
for preferential sampling when it may be present. Section 5 contains the analysis
of southern Indian Ocean temperatures from tagged elephant seals, where we com-
pare how accounting for possible preferential sampling might alter the conclusions
reached by researchers. A final discussion can be found in Section 6.

2. The preferential sampling problem.

2.1. Standard model framework. Our elephant seal data consists of a response
variable of interest (SST with possible measurement error, which we will denote by
Y ), a time stamp and the corresponding location in latitude and longitude coordi-
nates (X ∈ R

2), which we assume contains no measurement error; see Section 2.4
for a discussion on this assumption. Since these tags measure water temperature
at regular intervals, we consider the temperature measurement taken immediately
before a location was obtained (which happens when the animal surfaces). We as-
sume that the measurements taken from each trip are independent from each other.

To model these data we follow the geostatistical framework and notation of
Diggle and Ribeiro (2007). More specifically, we assume that the data consist of a
finite set of observations from a spatially continuous phenomenon {S(x) : x ∈ D ⊆
R

2}. In our application S(x) denotes the true SST at location x, and D is the region
of the southern Indian Ocean. Note that S(·) does not vary over time; we discuss
this further in Section 2.4. The model for the measurements Y1, . . . , Yn obtained
in one trip is

(2.1) Yi = μ + S(Xi ) + Zi, Xi ∈ D, i = 1, . . . , n,

where μ ∈ R is a constant mean parameter over D and Xi is the measurement lo-
cation. The Zi is included in the model above to account for measurement errors in
the sea surface temperatures and are assumed to be mutually independent random
variables with mean 0 and so called “nugget variance” τ 2.

We assume that the SST field S is a Gaussian process with mean 0 and Matérn
covariance function given by

(2.2) C(r) = σ 2 21−κ

�(κ)

(
r

φ

)κ

Kκ

(
r

φ

)
, r > 0,
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where r is the distance between two points and Kκ is the modified Bessel function
of the second kind. The scale (range) φ and smoothness κ parameters control the
rate of correlation decay over distance and σ 2 the marginal variance of the process
(partial sill). Furthermore, κ controls the smoothness of the process realizations.
Since our model involves the gradient S (see (3.7)), in what follows we will assume
that the surface of SST is differentiable (in mean-square sense) which corresponds
to κ > 1 [Diggle and Ribeiro (2007)]. More specifically, we take κ = 2 which
results in a spatial process S that is mean-square differentiable [Banerjee, Gelfand
and Sirmans (2003), Banerjee and Gelfand (2003)].

The main goal of our analysis is to obtain predictions for the SST field S over a
grid of unobserved locations. Given estimates for the unknown field parameters in
the model one can use standard spatial prediction techniques (e.g., kriging). How-
ever, as discussed in Diggle, Menezes and Su (2010) and Dinsdale and Salibian-
Barrera (2019a), when the locations X may depend on the field of interest S, one
can obtain better predictions by including the information on S contained in X.
In the rest of this section, we show how to construct an appropriate likelihood
function that incorporates the possibility of preferential sampling and how it can
be maximised to obtain more accurate parameter estimates and predictions for the
field S.

2.2. Maximum likelihood estimation. We use [A; θ ] to denote the density or
probability mass function of the random object A which depends on a vector of
parameters θ . In our case θ is the vector of all parameters in the model, which can
be partitioned as θ = (θ�

F , θ�
L)�, where θF are the parameters of the latent field

process (e.g., θF = (μ, τ, κ,φ,σ 2)� when using the model from (2.1) and (2.2)),
and θL are the parameters of the sampling location distribution. This last vector is
divided into θL1 which are parameters that account for dependence between sam-
pling locations and the latent field, and θL2 which do not relate to this dependence,
θL = (θ�

L1, θ
�
L2)

�.
We then consider the likelihood function L(θ) based on the observed data Y

and X:

(2.3) L(θ) = [X,Y; θ ] =
∫

[X,Y, S; θ]dS.

Typically, one has [X,Y, S; θ] = [Y|S,X; θF ][X|S; θL][S; θF ]. Standard
geostastical models assume that the process that selects the measurement locations
X is independent from the response process S (in symbols [X|S; θL] = [X; θL2]),
and hence [X,Y, S; θ] = [Y|S,X; θF ][X; θL2][S; θF ]. In this case, it follows that
L(θ) = [X; θL2][Y|X; θF ] and inference about θF can be carried out conditionally
on the observed locations X.

Preferential sampling refers to the situation where the observed locations X
may depend on the unobserved process S. When [X|S; θL] �= [X; θL2] care must
be taken when constructing the likelihood function in (2.3). In this case, we cannot
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simply condition on the sampling locations but should rather use the full likelihood
function:

(2.4) L(θ) =
∫

[X,Y, S; θ]dS =
∫

[Y|S,X; θF ][X|S; θL][S; θF ]dS.

2.3. Preferential sampling using template model builder. Evaluation of the in-
tegral (2.4) is computationally challenging and hence optimising the function is a
difficult problem. Diggle, Menezes and Su (2010) proposed a Monte Carlo (MC)
approximation to a discrete version of the integral, namely

(2.5)
∫

[Y|S,X; θF ][X|S; θL][S; θF ]dS,

where S is a set of values of S. The exact locations used in the discretisation
depends on the model used for the sampling locations and is discussed in more
detail in Section 3.2. A direct MC approximation via simulated instances of the
vector S is particularly inefficient, since many of the realisations of S may not be
compatible with the observed measurements Y. Alternative representations of the
likelihood function require sampling from the distribution of the discretised field
S conditional on the observed locations and measurements (i.e., S|Y,X) which is
generally intractable [Dinsdale and Salibian-Barrera (2019a)]. Other alternatives
to inference under preferential sampling have been proposed. For example, Pati,
Reich and Dunson (2011) considered a Bayesian alternative and one could also use
the R-INLA package [Rue, Martino and Chopin (2009)] which utilises integrated
nested Laplace approximation.

A common assumption made in the literature about preferential sampling is that,
conditional on the random field S, the sampling locations are static, often modelled
via an inhomogeneous Poisson or similar process where the intensity function of
[X|S; θL] depends on S. However, in our application the sampling locations are
obtained from a process continuously moving through the two-dimensional do-
main. For this reason we wish to use a flexible modelling framework in which we
can evaluate the likelihood (2.4) efficiently for more complex forms of [X|S; θL].
Although R-INLA provides a highly efficient computational framework, it did
not accommodate our relatively complex models for [X|S; θL] with an underlying
smooth process S (e.g., a mean square differentiable SST surface).

We use the R package TMB [Kristensen et al. (2016)] to maximise (2.4) for
the dynamic movements models discussed in the next section. This package uses
Automatic Differentiation (AD) [Griewank and Walther (2008)] of a Laplace Ap-
proximation to the likelihood to efficiently maximise it with respect to the full
parameter vector θ . We define the joint negative log-likelihood function

(2.6) f (S, θ) = − log
([Y|S,X; θF ][X|S; θL][S; θF ]),

and TMB computes an approximation to
∫

exp[−f (S, θ)]dS, which can be opti-
mised numerically with respect to θ .
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The dimension of the integral in (2.5) grows rapidly with the size of the grid that
is used to discretise the field S. Important efficiencies can be obtained by using the
stochastic partial differential equation (SPDE) approximations for Gaussian fields
[Lindgren, Rue and Lindström (2011)] which are also exploited by R-INLA. More
specifically, these SPDE approximations allow the use of sparse precision matrices
to more efficiently evaluate the high dimensional integral in (2.5). Although the R-
INLA package currently only allows continuous but not differentiable fields S in
(2.4), it is not difficult to extend the same approach for smoother random fields
when using TMB to approximate (2.5). In particular we work with mean-square
differentiable random fields [Banerjee, Gelfand and Sirmans (2003), Banerjee and
Gelfand (2003)]. Details can be found in Appendix A.

An important goal of this type of analyses is the prediction of SST on nearby
locations that were not sampled. To construct predictions that take into account
the preferential nature of the data, it is generally not sufficient to use kriging even
with parameter estimates obtained through a corrected likelihood function as in
(2.4). Such an approach would effectively ignore the dependency between X and
S [Ferreira and Gamerman (2015), Dinsdale and Salibian-Barrera (2019a)]. Al-
though the true predictive distribution of S is intractable in most cases when X and
S are dependent, TMB provides point predictions and prediction variances from the
estimated mode of [S|Y,X; θ ] at θ = θopt, where θopt is the vector of parameters
that maximises (2.5). Specifically, let

(2.7) Ŝ(θ) = argmin
S

f (S, θ),

then Ŝ(θopt) is a predictor for the discretised version S of the process S based on
the preferential sampling model (2.4).

2.4. Assumptions. There are two key assumptions made so far in this section
that should be noted. First is the assumption that the observed sampling locations
X are the true positions of the animals. In reality there will be some degree of mea-
surement error attached to the sampling locations which depends on the tag type.
Argos locations tend to include significant measurement error in comparison to
global positioning system (GPS) locations which is common in land-based track-
ing such as polar bears [Auger-Méthé et al. (2016)] and various birds such as alba-
trosses [Weimerskirch et al. (2002)] and gannets [Votier et al. (2010)]. However,
such systems are less appropriate for marine systems since GPS requires several
seconds of exposure to obtain a location estimate [Dujon, Lindstrom and Hays
(2014)]. Recently, Fastloc-GPS tags (http://www.wildtracker.com/Homex.html)
have become more popular due to their improved accuracy compared to Argos
and that these systems only require a fraction of a second to obtain a location
estimate. When using such data Auger-Méthé et al. (2017) consider the location
measurement error negligible enough to be ignored.

http://www.wildtracker.com/Homex.html
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For the purpose of this paper, which is to emphasise the preferential sampling
problem, we also decided to ignore measurement error in order to provide realis-
tic but not overly complex models. However, this particular compromise between
model complexity and computational efficiency by neglecting measurement error
may have a serious impact on the analysis in certain situations. In particular large
unaccounted sampling location errors may lead to erroneous conclusions on the
animal movement and consequently the preferential sampling effect. A possible
strategy to incorporate measurement errors in the locations into our model is to
include a latent state of true but unobservable locations [see, e.g., Albertsen et al.
(2015), Johnson et al. (2008)] which would add further latent states to the integral
in (2.3). Note that in this case care will be needed when considering the interplay
between S and X, since both objects will be unobservable.

The second assumption is that although the samples are taken at various time
points, that SST depends only on location and not time. Therefore, we can view the
continuous SST field S as constant over time. Further research in this area relaxing
this assumption would be valuable. Enabling S to vary over time, as it would in
real life, would allow for analysis of data over longer periods of time with the
model adapting to SST over various seasons and years. In this case, one would
consider the data to be of the form Yt = S(Xt , t) + Zt so that S(·) is a function of
both location and time. For the real data analysis in Section 5, we consider data
across only three months to reduce the impact of a changing temperature field.

3. A preferential movement model. To account for preferential sampling of
ocean temperatures, we need to define a model for the location of marine mam-
mals that takes into account possible relationships between movement velocity and
ocean temperature. We will use discretised models as functions of the observed lo-
cations X = (X(t1), . . . ,X(tn)), in which movement may also depend on previous
locations. In these cases, we can write the location at time tk+1 as

(3.1) X(tk+1) = gNP
(
X(t1:k), θL

) + ε(t1:k, θL),

where X(t1:k) = (X(t1), . . . ,X(tk)) and θL is now the vector of all movement pa-
rameters. The function gNP(·) is some deterministic movement function where NP
stands for nonpreferential and ε(·) is an error term.

Using the representation in (3.1), under preferential sampling we need to define
a movement model of the form

(3.2) X(tk+1) = gP
(
X(t1:k), S, θL

) + ε(t1:k, θL),

where the function gP is now a function of S therefore enabling the movement
model to depend on the temperature field.
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3.1. A “preferential” CRW model for marine mammal movement. We con-
sider a model similar to the first difference correlated random walk (DCRW) model
[Jonsen, Flemming and Myers (2005)]. We wish to include nonregular time inter-
vals to account for possible irregularity in the surfacing of the marine mammals.
Maintaining a constant time step through interpolation of the data, as discussed
in Hooten et al. (2017b), Jonsen, Flemming and Myers (2005), McClintock et al.
(2012) among others, is not possible in our preferential sampling framework. This
is due to the necessity of maintaining the link between the sampling locations (X)
and the corresponding latent field measurements (Y). If we interpolate the trajec-
tory, it is not clear how we would obtain the corresponding Yi measurements at
these interpolated locations other than using a method such as kriging which may
dilute any preferential effect that was present in the original data. Another option
may be to use thinning [Gurarie et al. (2017)]; however, we wanted to avoid this in
our application in this paper due to the limited temporal resolution of the data to
which we have access.

We term this model the “preferential correlated random walk” (PCRW) model
and assume that the sampling locations X(t1), . . . ,X(tn) follow

(3.3) X(tk+1) = X(tk) + μ
(
X(t1:k), S, θL

)
(tk+1 − tk) + �(θL)Ak

√
tk+1 − tk,

where Ak denotes a standard bivariate normal random vector, � is a 2 × 2 matrix
that corresponds to the variance of the diffusion terms and tk are the observation
times.

To capture various movement patterns such as foraging and directed movement,
rather than using discrete behavioural states [Morales et al. (2004), Breed et al.
(2009), McClintock et al. (2012)] we propose a continuous behavioural state sys-
tem similar to Auger-Méthé et al. (2017), Breed et al. (2012). This method was
chosen to obtain a differentiable likelihood function through the Laplace approx-
imation outlined in Section 2.3 which would be invalidated with the more com-
monly used discrete states [Bolker et al. (2013)]. An alternative approach could
be to estimate the movement parameters in TMB then follow this with behavioural
state estimation using the Viterbi algorithm [Whoriskey et al. (2017)].

The drift function and behavioural states at the measured locations and times
satisfy

μ
(
X(t1:k), S, θL

) = f (βtk )φ
(
X(tk), S, θL

) + (
1 − f (βtk )

)
v
(
X(t1:k)

)
,

where βtk ∈ R for all tk , v : R2 → R
2 represents the “velocity” of the animal

and φ : R2 × R
2 → R

2 can be thought of as the foraging movement function
that depends on the location and the latent temperature field S which models
the possible preference of the animals for different water temperatures. The be-
havioural state function f : R → [0,1] depends on βtk and controls the autocor-
relation of the movement at each time point. This ensures that when f (βtk ) ≈ 1
then φ(X(tk), S, θL) becomes the expected drift direction, while when f (βtk ) ≈ 0
movement tends in the direction of the current velocity v(X(t1:k)).
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It is important to note that the velocity function may depend on more than
just the previous sampling location. Consequently, like the DCRW, our PCRW
model is not Markovian. Although one may consider including a latent velocity
state (v) similar to the continuous time correlated random walk model (CTCRW)
of Johnson et al. (2008), if this velocity was to depend on the locations X and
also S, such a model becomes drastically more complicated. We discuss this in
more detail in Appendix B. However, alternative continuous-time models may
also be adaptable to model preferential movement (e.g., the correlated velocity
model (CVM) [Gurarie and Ovaskainen (2011)] and functional movement models
(FMMs) [Buderman et al. (2016), Hooten and Johnson (2017a)]).

We consider a nonlatent velocity state approximation, taken to be

(3.4) v
(
X(t1:k)

) = X(tk) − X(tk−1)

tk − tk−1

and specify a behavioural function

(3.5) f (βtk ) = exp(βtk )

1 + exp(βtk )
,

so that as βtk increases, so does the influence of φ, whereas when βtk decreases the
current velocity v(X(tk)) becomes more of a factor in the movement. Therefore,
our PCRW model can be written

μ
(
X(tk), S, θL

) = exp(βtk )

1 + exp(βtk )
φ

(
X(tk), S, θL

) + 1

1 + exp(βtk )
v
(
X(t1:k)

)
,

βtk+1 = βtk + σβBk

√
tk+1 − tk,

(3.6)

where Bk are univariate standard normal random variables and σβ > 0 determines
the evolution of the random states βtk . Note that the inclusion of the random β

states means we need to respecify the preferential likelihood for our Laplace ap-
proximation, which we show in Appendix C. Initial values for X(t0) and βt0 used
in our simulation studies are described in Appendix D.1.

Depending on the application of the PCRW model, a variety of forms for the
foraging function φ may be used. In our case to model the possible tendency of an
animal to move towards particular water temperatures when searching for prey we
propose the following:

(3.7) φ(X, S, θL) = −αS(X)∇S(X),

where α ∈ R, S(X) is the value of the random field at location X and ∇S(X) is
the gradient of S at X. Although the parameter α above may appear to be uniden-
tifiable, this is in fact not the case when you consider the full likelihood function
which also includes the density functions [Y|S,X; θF ] and [S; θF ].

The form of φ in (3.7) defines the expected drift as descending (or ascending
if α < 0) along the gradient of the SST field with a velocity that depends both
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on the temperature at the present location and a scalar α. This is somewhat sim-
ilar to the varying motility surface used by Russell et al. (2018) in an stochastic
differential equation (SDE) model to allow the magnitude of the velocity vector to
depend on the location. More specifically, we can view the latent field S as a scaled
potential surface in which the gradient of S directs the expected movement with
a velocity that also depends on the value of S at that location. Potential surfaces
have previously been used to model the movement of animals including monk
seals [Brillinger, Stewart and Littnan (2008)], elk [Brillinger et al. (2002), Preisler,
Ager and Wisdom (2013)] and ants [Russell et al. (2018)] with various estimation
methods for potential surface SDE models compared by Gloaguen, Etienne and Le
Corff (2018).

It should be noted that appropriate forms of φ for particular species may require
specialist input, and we do not claim that the one shown in (3.7) is necessarily
the best model for seals. The preferential sampling effect may vary over species,
locations and possibly even individuals. However, the form in (3.7) may identify
preferential movement, and we use it as an example for integrating a foraging
function into the preferential sampling framework. Furthermore, in application we
may wish to adjust (3.7) to

(3.8) φ(X, S, θL) = −αS∗(X)∇S(X),

where S∗ = S + c for some constant c ∈ R specified by the user. We would do this
to ensure that S∗ is the same sign across the domain, to prevent the switching of
movement patterns when S goes from negative to positive or vice versa.

Finally, using (2.1), (3.3)–(3.7) and a finite-differences approximation to the
gradient of the field S, we construct a likelihood function that can be maximised
numerically, as described in Section 2.3 above. Predicted values for the SST field
can be obtained by using (2.7) at the vector of optimal model parameters.

3.2. Relationship between the movement model and likelihood integral. In this
section we discuss the form of the discrete grid S used to approximate the integral
in (2.5). The locations at which we need to integrate over depends entirely on
the distribution of X|S. Previous literature, in which the sampling locations were
point patterns, suited a finely spaced lattice covering the entire domain [Dinsdale
and Salibian-Barrera (2019a)]. This was because every point in the domain was a
factor in determining the distribution of sampling locations.

In the case of a moving animal measuring a temperature field, this may or may
not be required. Take, for example, a model that assumes the animal might be
knowingly moving towards distant points of attraction that are related to the latent
field, for example, a high prey region with low water temperature. In this case,
locations far away from the animal might impact on the movement, hence requiring
an approach similar to the point pattern integrals in which we require using a finely
spaced lattice covering the entire, or majority, of the domain.
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On the other hand the preferential CRW model we are proposing in this pa-
per assumes movement only depends on the animal’s immediate vicinity. This can
be seen by observing that the only influence of S on the movement is in (3.8) in
which the current temperature and gradient of temperature field impacts move-
ment. Hence, it would be more efficient to use a smaller grid for S which con-
tains only the sampling locations and those areas nearby, which can be used to
calculate the temperature gradient at sampled locations using a finite differences
approach.

4. Simulation experiments. In this section we discuss the results of a simula-
tion study conducted to illustrate the effect of preferential sampling on the analysis
of spatial data where sampling locations are moving through space, such as is the
case in our SST data. The goal is to show to what extent incorporating preferential
sampling in the model may improve the resulting SST predictions and parame-
ter estimates. Furthermore, our results indicate that when preferential sampling is
not present, there is almost no difference between using a model that incorporates
preferential sampling and the usual geostatistical model that conditions on the lo-
cations. The nonpreferential analysis can be found in Appendix D.3.

We generated 100 data sets, each of them consisting of up to 300 observations
on three animal tracks following the Preferential-CRW movement model described
in Section 3.1. Data were first generated on a fine time grid, and a subsample was
selected to form each of the 100 data sets. Details on the data generation process
can be found in Appendix D.1 and the corresponding code found in Dinsdale and
Salibian-Barrera (2019b). With our simulation parameters we expect the tracks
to oversample cooler regions. Figure 2 shows one simulated data set where the
preferential sampling effect is apparent.

4.1. Parameter estimates. Note that because of the way the data was generated
(by subsampling trajectories created on a relatively fine time scale), the estimated
movement parameters may not correspond to their nominal values used to create
the data [Gurarie et al. (2017)]. Hence, we report here results for the estimates of
the parameters of the spatial process.

Figure 3 shows the boxplots of the 100 estimated parameters for the spatial field
process (θF ) using each of the two likelihoods (standard and accounting for prefer-
ential sampling). The grey horizontal lines represent the true values. As expected,
when the model does not account for preferential movement, the prevalence of
lower temperatures in the sample introduces a negative bias to the estimates for
the mean parameter (μ). A similar pattern is observed also for the scale (φ) and
marginal variance (σ 2). The bias in the variance estimates is likely due to the
tracks avoiding higher temperature regions and recording temperatures with a re-
duced range than they would otherwise. This may also explain the negative bias in
the scale estimates. In contrast, using the Preferential-CRW model with TMB re-
sults in better parameter estimates. This is particularly noticeable for the estimates
of μ. Movement parameter estimates are discussed in Appendix D.2.
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FIG. 2. Example of a simulated data set of three tracks generated using the field and movement
parameters defined in Section 4 and resulting in a moderate preferential sampling effect.

4.2. Prediction. We now turn our attention to the predictions for the under-
lying spatial field S. The first set of predictions are computed via kriging with
parameter estimates obtained from the standard model that conditions on the ob-
served locations, while the preferential sampling ones correspond to the estimated
mode of [S|X,Y; θopt], where θopt are the parameter estimates from our preferen-
tial likelihood (see equation (2.7)).

Predictions were computed on a 26 × 26 lattice for each of the M = 100 data
sets, and we used two different measures of their quality. The root mean square
prediction error (RMSPE) over the discrete domain is given by

(4.1) RMSPEi = 1

M

M∑
j=1

√
(Sj,i − Ŝj,i)2,

for each location i = 1, . . . ,N = 262 on the prediction grid. Here Sj,i is the true
value of field for the j th simulated data set Sj at the ith prediction location
(Sj (xi)), and Ŝj,i is the corresponding predicted value.

To compare the resulting predictions while accounting for their variances, we
used ignorance scores (IGN) [Roulston and Smith (2002)], which are given by
IGN(x) = − log(p(x)), where p is the predictive density and x is the target fore-
cast which would be the true SST at that location [Gneiting and Raftery (2007),
Siegert, Ferro and Stephenson (2014)]. For each of the j = 1, . . . ,M = 100 pref-
erential simulations we calculated the mean ignorance score (MIGN) of our latent
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FIG. 3. Field parameter estimates over 100 preferentially sampled simulated data sets with true
parameter values marked as grey lines. The abbreviations NonPref and Pref stand for the stan-
dard MLE (nonpreferential) estimation and the one using the preferential Preferential-CRW model
of Section 3.1.

field predictions as

(4.2) MIGNj = 1

N

N∑
i=1

{
(Sj,i − Ŝj,i)

2

2σ̂ 2
j,i

+ log σ̂j,i

}
, j = 1, . . . ,M,

where σ̂ 2
j,i is the prediction variance of Ŝj,i . This measure gives an indication of

model performance for each simulation averaged over the entire domain. We also
calculated location-specific ignorance scores, averaging the IGN of each location
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over the 100 samples, we call them location ignorance scores (LIGN):

(4.3) LIGNi = 1

M

M∑
j=1

{
(Sj,i − Ŝj,i)

2

2σ̂ 2
j,i

+ log σ̂j,i

}
, i = 1, . . . ,N.

The LIGN gives an assessment of model prediction across each region of the do-
main.

To compare the “standard” predictions with the “preferential sampling” ones,
we computed the corresponding differences of the above three measures:

RMSPEDiff
i = RMSPEP

i −RMSPENP
i ,

MIGNDiff
j = MIGNP

j −MIGNNP
j ,

LIGNDiff
i = LIGNP

i −LIGNNP
i ,

(4.4)

where NP and P indicate the values of the scoring functions for the nonpreferential
(standard) and preferential models respectively.

The first panel in Figure 4 shows the values of RMSPEDiff
i at each location,

colouring the areas in blue for which this measure was negative which correspond
to regions where the RMSPEs for preferential sampling predictions were better.
Nearly all regions were predicted more accurately on average using the preferential
sampling model with only a small number of positive (red) locations.

The boxplot of the M = 100 differences in MIGN is displayed in the second
panel of Figure 4. Negative values of this difference imply that the P model had
a lower average ignorance score (over the region) for that particular simulation
run. Again we see that the preferential sampling model performs better than stan-
dard methods across the majority of simulated data sets. This conclusion is further
supported by the third panel in Figure 4 which shows LIGNDiff

i for each lattice
prediction location. All locations had a smaller location ignorance score on aver-
age when using the preferential sampling model which interestingly includes the
locations where point predictions were slightly inferior. This suggests that, even in
this case, the prediction variances were more reasonable.

5. Real data example. In this section we analyse southern Indian Ocean tem-
peratures at a depth of 6 meters, which we will be calling SSTs and using CTD
sensor data from tags attached to elephant seals. These data were collected and
made freely available as part of the MEOP database [Roquet et al. (2013, 2014)]
and is described in Section 1 and shown in Figure 1.

Since these data are relatively near to the South Pole, there is a large change in
true distance between latitudinal and longitudinal degrees over the domain. For ex-
ample, we can see in Figure 1 that the change in latitude is not constant in distance
between −45◦ and −65◦. This is due to the difficulties of representing locations
from a three-dimensional sphere on a two-dimensional surface which is of partic-
ular importance near the poles. One option is to use the Haversine formula to cal-
culate the great-circle distance between two points in the latitude/longitude space
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FIG. 4. Comparison of root mean square prediction error (RMSPE) difference, mean ignorance
score (MIGN) difference and location ignorance score (LIGN) difference respectively across 100
preferentially sampled simulated data sets.

[Robusto (1957)]. However, as is discussed by Gneiting (2013), Jeong and Jun
(2015) among others, using the Matérn covariance along with great circle distances
requires the use of a non mean-square differentiable processes (0 < κ ≤ 0.5), since
the Matérn class is not isotropic otherwise.

To more accurately represent distance over our domain but remaining in the Eu-
clidean space, we transformed the sampling locations. Our transformation used a
scaled version of the Universal Transverse Mercator (UTM) projection (zone 43),
which can be seen in Figure 5. This transformation provides us with a more accu-
rate representation of distance than using raw latitudes and longitudes, while re-
maining in the two-dimensional Euclidean space and retaining the isotropic prop-
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FIG. 5. The corresponding transformed locations from Figure 1 using a scaled version of the Uni-
versal Transverse Mercator (UTM) projection (zone 43).

erties of our correlation model. The values of our scale have no real-world inter-
pretation, other than to provide more realistic scaled distances between sampled
locations.

We compare both the parameter estimates and corresponding field predictions
using the PCRW model described in Section 3.1, with those obtained from a stan-
dard geostatistical model in which the sampling locations were considered inde-
pendent of the temperature field. In order to control the computational complexity
of the analysis and also to explore the sampling distribution of the field parameter
estimators, we use 50 subsamples from the data. For each of these 50 replications
we randomly sampled 40 observations from each of the nine tracks and estimated
the parameters on the subsampled data. The resulting parameter estimates are dis-
played in Figure 6. We note that the difference between the two sets of estimates
is very small in the scale and variance parameter estimates. However, there was an
increase in the mean parameter estimate using the PCRW model. The consistently
positive α̂ estimates suggest that there was a tendency of the animals to move to-
wards cooler regions according to our model which explains the increased mean
parameter estimates.

For predictive assessment of the ocean temperatures obtained from marine
mammal tags, we compare our model predictions with monthly average tempera-
ture fields obtained via the Simple Ocean Data Assimilation ocean/sea ice reanaly-
sis (SODA) [Carton and Giese (2008)], specifically the SODA version 3 (SODA3)
reanalysis [Carton et al. (2018)] which uses all temperature and salinity profiles
from the World Ocean Database. This data is available for depths between five and
5000 meters below the surface at a spatial resolution of 0.5 degrees latitude and
longitude. Data is available from January 1980 to present.
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FIG. 6. Comparison between preferential and standard MLEs for the preferential and field param-
eters over 50 data sets consisting of a subsample of nine tracks with 40 observations each.

The first panel of Figure 7 shows the SODA3 monthly average ocean temper-
ature field for August for a depth of 5 meters. We compare our predictions with
these monthly averages at N = 461 locations which were chosen as those on the
original 26 × 26 lattice points which were close enough to sampling locations to
obtain kriging predictions that did not simply tend to the mean trend parameter μ̂.
The locations on the lattice which were not used are shown in grey. To compare
point predictions, we consider the quantiles of the difference between the two pre-
diction methods on each of the data sets at each prediction location. In other words
we consider the quantiles of each coordinate of the vector D = (D1, . . . ,DN) such
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FIG. 7. Panel (a): Monthly average field obtained via the Simple Ocean Data Assimilation
ocean/sea ice reanalysis version 3 (SODA3) analysis [Carton et al. (2018)]. Panel (b): Median of
prediction difference between preferential and nonpreferential models. Positive values imply that the
preferential model tends to increases temperature prediction at that location and negative the oppo-
site.

that

(5.1) Di = (
ŜP

1,i − ŜNP
1,i , . . . , Ŝ

P
50,i − ŜNP

50,i

)T
,

for i = 1, . . . ,461, where ŜP
j,i is the prediction at location i in simulation j using

the preferential model and ŜNP
j,i the equivalent using the nonpreferential model.

We plot the 50% quantile of D in the second panel of Figure 7. As we would
expect with the positive α estimates, most areas further from sampling locations
had an increased SST prediction using the PCRW model. Interestingly however,
the PCRW model actually tended to decrease SST prediction in certain areas of
the West and North East predictive region. We discuss the magnitude of these
prediction differences further in Appendix E.

To assess the prediction accuracy compared to the SODA3 data set, we consider
ignorance scores and RMSPEs in the same manner as in Section 4.2. We plot the
difference in RMSPE, MIGN and LIGN defined in (4.4) in Figure 8. The first panel
shows that the PCRW model tended to reduce RMSPE in comparison to nonpref-
erential prediction in the northern regions, while underperforming in areas of the
South. However, the LIGN in the third panel shows improved ignorance scores in
general using the preferential model. An indication of superior prediction perfor-
mance is through the second panel of Figure 8 which shows the majority of MIGNs
across the 50 subsamples were negative and indication of better predictions using
the PCRW model.

To summarise, the PCRW model applied using TMB showed differences in mean
parameter estimation when compared to the naive method and identified possible
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FIG. 8. Comparison of root mean square prediction error (RMSPE) difference, mean ignorance
score (MIGN) difference and location ignorance score (LIGN) difference respectively across 50 sim-
ulated data sets between preferential and nonpreferential temperature predictions.

tendency of sampler movement towards the cooler regions. This translated to many
areas of increased SST prediction when using the preferential model in spatial pre-
diction but not across the entire spatial region. Small changes in SST prediction as
shown by our model may be of increased importance when dealing with complex
systems as ocean temperatures. Although this simulation used a simplistic relation-
ship between the sampler and the process being modelled, our results suggest that
developing more realistic models for this type of data can improve the resulting
statistical inference about our ocean climates.
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6. Discussion. We have shown the damaging effect that preferential sampling
may have on statistical inferences based on spatial models where monitoring loca-
tions are not stationary. The simulation experiments reported in Section 4 illustrate
how predictions may be improved when accounting for the preferential nature of
movement in the sampling model. This is evident in the parameter estimates and
also in the predictive performance. Here the combination of corrected parameters
and a predictive distribution that accounts for the relationship between the sam-
pling locations and the spatial field of interest improves notably upon the simple
extrapolation of kriging. When we compare the results of the standard method
(which conditions on the observed locations) and the Preferential-CRW model in
our motivating example, we observe increased mean parameter estimates for the
SST field while the predicted SST fields show consistent differences.

These analyses highlight the importance of expanding preferential sampling
methods to the case of moving sampling locations which is becoming a more
prevalent situation. We show how implementing a Laplace approximation to the
likelihood function via the R package TMB allows for flexible movement model
specification. This method can expand beyond the typical point process models
to sampling processes derived from movement models which may depend on our
field of interest S. This is just the first step in incorporating preferential sampling
into the statistical analyses of tagged marine mammals. Considering the observed
measurement locations to contain some measurement error by assuming there is an
latent true location state would help to account for the uncertainty in the Argos lo-
cation estimates, while there are many other applications such as land animals and
other moving sampling processes as the next step in expanding our applications
and methodology. Furthermore, a natural extension of this research is to consider
data at any depth. Although SST analysis is a useful first step, an important ap-
plication of these methods would be to aid in mapping the water masses at depths
unobservable by satellites. Theoretically, little would change in comparison to the
SST data we consider here in analyses at specific depths; however, the location
accuracy underwater is reduced. In this case, location estimates could be inferred
based on accelerometer data using methods such as the dead reckoning algorithm
[Wilson and Wilson (1988), Liu et al. (2016)] and ocean temperature at specific
depths analysed to build a water temperature profile.

APPENDIX A: USING SMOOTH RANDOM FIELDS WITH TMB

Many geostatistical models proposed to analyse spatial data assume that the un-
derlying random field is continuous (but not necessarily differentiable). In what
follows we show how TMB can be used to efficiently employ mean-square dif-
ferentiable Gaussian fields (GFs) in our models, using the approach by Lindgren,
Rue and Lindström (2011) who show how Gaussian Markov random field (GMRF)
representations of GFs with Matérn covariance (as defined in (2.2)), can be con-
structed through the solution to a stochastic partial differential equation (SPDE)
when driven by white noise.
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Methods that utilise GMRF representations of GFs require constructing a sparse
precision matrix Q that closely represents the covariance of the GF. We follow
directly after (9) in Lindgren, Rue and Lindström (2011) but note the change in
notation from κ in the original work to φ here and that in our two-dimensional
application α = κ + 1 where κ is the smoothness parameter in (2.2).

Lindgren, Rue and Lindström (2011) write the precision matrix Qα,φ as a com-
bination of m × m matrices C,G and Kφ ,

Ci,j = 〈ψi,ψj 〉,
Gi,j = 〈�ψi,�ψj 〉,

(Kφ)i,j = φ−2Ci,j + Gi,j ,

where m is the number of vertices in the triangulation of the domain.
This combination depends on α but can be calculated recursively as

Q1,φ = Kφ,

Q2,φ = KφC−1Kφ,

Qα,φ = KφC−1Qα−2,φC−1Kφ, for α = 3,4, . . . .

Unfortunately, C−1 is dense, but Lindgren, Rue and Lindström (2011) show that
C can be replaced by the diagonal matrix C̃, where C̃i,i = 〈ψi,1〉. Hence, C̃ is
sparse and the resulting precision matrix Qα,φ also sparse. Further details can be
found in Lindgren and Rue (2015), Lindgren, Rue and Lindström (2011), Simpson,
Lindgren and Rue (2012).

A.1. Implementation of κ = 2 in TMB. R-INLA only implements the
SPDE approximation for α ∈ (0,2]. At the largest smoothness of α = 2 (κ = 1),
the corresponding Matérn field is mean square continuous but not mean square
differentiable. In some applications this might not suit the problem at hand (e.g.,
when derivatives of the spatial field may be part of the model). Below we extend
the current approximations to the case α = 3 (κ = 2) and show how this can be
implemented in TMB via the built-in compatibility with R-INLA.

To begin, note that for α = 2 we can expand the formula for Q2,φ above as
follows:

Q2,φ = KφC−1Kφ

= (
φ−2C + G

)
C−1(

φ−2C + G
)

= φ−4C + 2φ−2G + GC−1G

= φ−4M0 + 2φ−2M1 + M2,
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where M0 = C,M1 = G and M2 = GC−1G. Note that the matrices M1,M2 and
M3 do not depend on φ or κ and can be computed with the R-INLA function
inla.spde2.matern. Now we expand Q3,φ :

Q3,φ = KφC−1Q1,φC−1Kφ

= KφC−1KφC−1Kφ

= (
φ−2C + G

)
C−1(

φ−2C + G
)
C−1(

φ−2C + G
)

= φ−6C + 3φ−4G + 3φ−2GC−1G + GC−1GC−1G

= φ−6M0 + 3φ−4M1 + 3φ−2M2 + M2M−1
0 M1.

Hence, we can use M0,M1 and M2 provided by inla.spde2.matern to con-
struct Q3,φ for a solution to the SPDE approximation for α = 3 (κ = 2). We simply
need to take a new combination of these matrices which in TMB can be done easily
within the function that computes the likelihood.

APPENDIX B: PREFERENTIAL-CRW MODELS WITH A
FIELD-DEPENDENT VELOCITY TERM

If one considers a velocity term v defined in (3.4) that may depend on both the
locations X and the underlying field of interest S, the likelihood quickly becomes
intractable. Considering a latent velocity state in the model, the full likelihood is

[X,Y; θ ] =
∫ ∫

[X,Y,S,v; θ ]dS dv

=
∫ ∫

[Y|X,S,v; θF ][X,S,v; θ ]dS dv

=
∫ ∫

[Y|X,S,v; θF ][X|S,v; θL][S,v; θ ]dS dv

=
∫ ∫

[Y|X,S,v; θF ][X|S,v; θL][v|S; θL][S; θF ]dS dv.

(B.1)

Notice that this factorisation includes the term [v|S; θL]. If the velocity was to
only depend on the latent field S and not on the location X, then we could evaluate
the likelihood. However, this makes little biological sense in practice. Preferential
movement induced by a latent velocity would require this velocity to depend on the
field S at the current location X of the animal. In other words the velocity would
be dependent not just on the latent field but the current location within this field.
However, this means that we would only have a tractable form for [v|S,X; θL] and
would therefore need to evaluate

[v|S; θL] =
∫

[X,v|S; θL]dX

=
∫

[v|S,X; θL][X|S; θL]dX
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which is difficult to compute due to the complexity of [X|S; θL]. The factorisation
of the form in (B.1) appears intractable and therefore the Preferential-CRW model
in which velocities depend on location and the latent field become difficult to im-
plement using likelihood methods when preferential sampling may be present.

APPENDIX C: PREFERENTIAL CRW LIKELIHOOD

In Section 2.3 we outlined how to evaluate the preferential model using a
Laplace approximation to the likelihood function. In previous cases this factori-
sation was of the form [X,Y; θ] = ∫ [X,Y,S; θ ]dS, however in the case of the
Preferential-CRW model we have a second latent vector in the behavioural states
β = (βt1, . . . , βtn). Therefore we need to re-specify the full likelihood for our
Laplace approximation routine:

[X,Y ; θ ] =
∫ ∫

[X,Y,S,β; θ ]dS dβ

=
∫ ∫

[Y|X,S,β; θF ][X,S,β; θ ]dS dβ

=
∫ ∫

[Y|X,S,β; θF ][X|S,β; θL][S,β; θ ]dS dβ

=
∫ ∫

[Y|X,S,β; θF ][X|S,β; θL][β|S; θL][S; θF ]dS dβ.

(C.1)

Notice that in the Preferential-CRW model we have [β|S; θL] = [β; θL2] so there-
fore in the Laplace approximation implemented using TMBwe will need to redefine
the joint negative log-likelihood as

− log
([X,Y,S,β; θ ]) = − log

([Y|X,S,β; θF ][X|S,β; θL][β; θL2][S; θF ]).

APPENDIX D: SIMULATION DETAILS

D.1. Data generation. To generate each track, we initialised a starting loca-
tion chosen uniformly at random over the two-dimensional domain [−150,150]×
[−150,150], then simulated 360 observations with the time between consecutive
observations following an exponential distribution with rate parameter λ = 10. The
first 60 positions of each animal were considered a burn-in period and discarded,
resulting in 300 remaining observations. Finally, the track was thinned by taking
every third observation, to retain a final track of 100 observations.

For each data set we simulated a random field S over the domain and discre-
tised it on a 51 × 51 grid. We used a Matérn covariance function as in (2.2) with
smoothness parameter κ = 2, scale φ = 25, marginal variance σ 2 = 1.5 and a
constant mean μ = 5. Since we know the true field in generating the tracks, the
gradient of the field used to direct movement was approximated using finite dif-
ferences from points not necessarily on the grid. For the movement model we set
σβ = 0.1,� = 3I2, where I2 denotes the 2 × 2 identity matrix, α = 100 and ini-
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tiated the behavioural states at β0 = −1.5. From (3.6) we see that this choice ini-
tialises primarily directed movement (f (β0) = 0.18), but with a slight influence of
the foraging (preferential) function φ(·). We assume that τ 2 is a known parameter
due to the assumption that the measuring device will have a known sampling error
and as it is commonly done in the literature, we also assume that the smoothness
parameter κ is known.

D.2. Movement parameter estimates. For the preferentially generated data,
Figure 9 shows that the movement parameters estimates, with the positive α̂ esti-
mates accounting for the tendency of the sampler to avoid warmer warmers, which
explains the correction to the mean parameter estimates observed in Figure 3. Al-
though these estimates cannot in general be compared with the values used to

FIG. 9. Movement parameter estimates over 100 preferentially sampled simulated data sets.
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generate the fine-time-scale data [Gurarie et al. (2017)], the boxplots in Figure 9
show that the estimators have a reasonable sampling distribution which seem to be
unimodal and symmetric around their means.

D.3. Results for nonpreferential data. We also generated 100 data sets with
nonpreferentially sampled data (i.e., setting α = 0 in (3.7)), and estimated the pa-
rameters of the spatial process using the Preferential-CRW likelihood and the stan-
dard one (that conditions on the observed locations). The results in Figure 10 show

FIG. 10. Field parameter estimates over 100 nonpreferentially sampled simulated data sets with
true parameter values marked as grey lines. The abbreviations NonPref and Pref stand for the
standard MLE (nonpreferential) estimation and the one using the Preferential-CRW model of Sec-
tion 3.1.
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that, as expected, there is no practical difference between the parameter estimates
obtained using either likelihood when no preferential sampling is present.

We also performed the same comparisons as above over the 100 nonpreferen-
tially sampled data sets to verify that in this case, as expected, there was little quali-
tative difference between the predictions obtained using either method. The results
are displayed in Figure 11 and show that, although RMSPE’s are often larger with
the preferential model, the difference between the two models is minor compared
to the preferentially sampled data. This can be observed by comparing the scale of
the differences in the plots, which are considerably smaller in the nonpreferentially
sampled analysis.

FIG. 11. Comparison of root mean square prediction error (RMSPE) difference, mean ignorance
score (MIGN) difference and Location ignorance score (LIGN) difference respectively across 100
non-preferentially sampled simulated data sets.
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FIG. 12. Quartiles of prediction differences over the 50 subsamples for the real data set analysis.

APPENDIX E: MAGNITUDE OF PREDICTION DIFFERENCES

We have tried different ways to assess the significance of the prediction differ-
ences in Figure 7. Panel (b) shows the median difference, while the first (25%)
and 3rd (75%) quartiles of the prediction differences (over the 50 subsamples) are
shown in panels (a) and (b) of Figure 12. Note that in this plot, the white areas are
locations of no-significance (negative-valued regions in the 25% quantile and pos-
itive regions in the 75% quantile). In other words, the coloured regions of the 25%
quantile plot are regions in which prediction difference were consistently positive,
and coloured regions in the 75% quantile plot consistently negative.

As it may be expected, in large parts of the domain the differences in predictions
do not show a clear trend either way (white locations), but some conclusions could
be drawn from these figures. The coloured regions in panel (a) are zones were most
of the predictions for the preferential sampling model were higher than from the
standard one. We see that they are in regions outside the area covered by the data,
which is consistent with the positive estimates for α (see Figure 8 on page 733).
Similarly, the coloured regions in panel (b) are zones where the predictions were
mostly lower. Note that these areas are almost all among the observed locations,
which is also consistent with our conclusions above.

SUPPLEMENTARY MATERIAL

Simulation Code (DOI: 10.1214/18-AOAS1217SUPP; .zip). Code used for the
simulations in this paper, with an example shown in the README.
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