
The Annals of Applied Statistics
2018, Vol. 12, No. 2, 877–914
https://doi.org/10.1214/18-AOAS1171
© Institute of Mathematical Statistics, 2018

PROVIDING ACCURATE MODELS ACROSS PRIVATE
PARTITIONED DATA: SECURE MAXIMUM

LIKELIHOOD ESTIMATION

BY JOSHUA SNOKE∗,1, TIMOTHY R. BRICK∗, ALEKSANDRA SLAVKOVIĆ∗,1

AND MICHAEL D. HUNTER†,2

Pennsylvania State University∗ and University of Oklahoma Health
Sciences Center†

This paper focuses on the privacy paradigm of providing access to re-
searchers to remotely carry out analyses on sensitive data stored behind sepa-
rate firewalls. We address the situation where the analysis demands data from
multiple physically separate databases which cannot be combined. Motivat-
ing this work is a real model based on research data on kinship foster place-
ment that came from multiple sources and could only be combined through
a lengthy process with a trusted research network. We develop and demon-
strate a method for accurate calculation of the multivariate normal likelihood,
for a set of parameters given the partitioned data, which can then be maxi-
mized to obtain estimates. These estimates are achieved without sharing any
data or any true intermediate statistics of the data across firewalls. We show
that under a certain set of assumptions our method for estimation across these
partitions achieves identical results as estimation with the full data. Privacy is
maintained by adding noise at each partition. This ensures each party receives
noisy statistics, such that the noise cannot be removed until the last step to ob-
tain a single value, the true total log likelihood. Potential applications include
all methods utilizing parameter estimation through maximizing the multivari-
ate normal likelihood. We give detailed algorithms, along with available soft-
ware, and present simulations and analyze the kinship foster placement data
estimating structural equation models (SEMs) with partitioned data.

1. Introduction. In many real-life settings, researchers wish to utilize data
from separate databases but are unable to physically combine the data due to re-
strictions such as privacy concerns, proprietary issues, sheer size of the data, or
massively distributed data such as proposed by Boker et al. (2015). Consider sit-
uations such as with health data where a researcher wishes to carry out a longitu-
dinal study on PTSD for veterans who utilize different hospitals and primary care
physicians, with education data where students switch between schools, or with

Received November 2017; revised April 2018.
1Supported in part by NSF Grants BCS-0941553 and SES-1534433 to the Department of Statistics,

Pennsylvania State University. Supported also in part by the U.S. Census Bureau.
2Supported in part by Grant HHS-2012-ACF-ACYF-CF-0510 awarded to NorthCare by the Chil-

dren’s Bureau.
Key words and phrases. Partitioned data, privacy, secure multiparty computation, structural equa-

tion models, distributed maximum likelihood estimation.

877

http://www.imstat.org/aoas/
https://doi.org/10.1214/18-AOAS1171
http://www.imstat.org

878 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

behavioral psychology in a twin study where the twins do not wish to share their
data with each other. In all of these cases, standard practice is to go through user
agreements or to develop trusted data centers which are allowed to pool data. Both
of these options take lengthy periods of time, and sometimes it is not even possible
to establish such a trusted party. Alternatively, estimates may be obtained through
algorithms that pool information across the databases to produce aggregrate statis-
tics or estimate models without sharing the data. When privacy is a concern, we
want to do this pooling of information in a “secure” manner. This implies two el-
ements: first that the private inputs, the data, from each database are not shared
or revealed, and second that the estimates produced are accurate to what would
be produced if all the data were combined. While guaranteeing the data are not
shared, different algorithms can provide different levels of security based on the
potential for data leakage through the sharing of intermediate values.

Motivating this work is a real model based on research data that came from
multiple sources and could only be combined through a lengthy process with a
trusted research network. Specifically, we utilize data collected between 2012 and
2015 on kinship foster placements from a collaboration between the University of
Oklahoma Health Sciences Center (OUHSC), the Oklahoma Department of Hu-
man Services (OKDHS), and the North Oklahoma County Mental Health Center
(NorthCare). Because of the partnership between OUHSC, OKDHS, and North-
Care all data could be gathered and merged into a single data table for analyses,
but establishing trust and data sharing agreements between these kinds of agencies
in many states is often difficult and tenuous at best. Though the government and
university institutions involved in the data collection have been collaborating for
over twenty years, the data sharing agreement still took months to establish.

Similar agreements often never come to fruition because sufficient trust and le-
gal protection cannot be forged to release potentially sensitive and identifying in-
formation to outside institutions. Moreover, laws (e.g., the Health Insurance Porta-
bility and Accountability Act and the Family Educational Rights and Privacy Act)
sometimes preclude data transfers without special permissions from the individu-
als themselves. Even when data sharing is mandated by funding agencies or jour-
nals, the compliance rate is typically near zero percent, for example, as Savage
and Vickers (2009) showed using the PLoS journals. However, without gathering
all the data into a single location, only aggregated summaries would typically be
possible and no relationships across variables stored in separate places could be
investigated. In particular, no statistical model could be built from data stored at
separate locations without at some point bringing all the data to the same location.
Our work shows that for a wide class of models results can be reproduced accu-
rately without needing to physically combine the data, providing a mechanism to
allow statistical model building across multiple separate data sources, obviating
the need for many data sharing agreements, and dramatically reducing the amount
of trust required for institutions to collaborate.

SECURE MAXIMUM LIKELIHOOD ESTIMATION 879

A key feature of this paper is that we present our algorithm with real applicabil-
ity in mind. We imagine this method working inside a framework that includes a
research network of data holders who have agreed to be part of a research network
in which they allow their data to be queried using the secure algorithm, but they do
not share their data. In addition to the parties holding data, our algorithm includes a
“central” party who is responsible for facilitating researchers’ model requests and
initiating the algorithm. Past work has focused on hypothetical situations where
two or more groups who all hold data have an interest in jointly computing some
statistic. While our framework allows for the possibility that a data holder also has
research questions, we believe it is at least as useful if not more so to assume that
the researcher is an outside entity who wishes to query a model across various data
sets which they are unable to physically access. In that case, the data nodes play
no role in choosing the model but have agreed, as part of being in the research
network, to go along with the algorithm.

Our method relies on the framework known as secure multiparty computation
(SMPC), which was introduced and originally termed such by Yao (1982) [see also
Goldwasser (1997), Lindell and Pinkas (2009)]. Various algorithms using SMPC
have been proposed in the statistical disclosure control (SDC) literature for the pur-
pose of statistical inference. While much of the SDC work has focused on releasing
noisy microdata sets through perturbation, suppression, or generation of synthetic
data [see Fienberg and Slavković (2011), Hundepool et al. (2012), Raghunathan,
Reiter and Rubin (2003), Willenborg and de Waal (2001) for more on these meth-
ods], the work based on SMPC has focused on providing accurate model estimates
without sharing the data and minimizing sharing of intermediate statistics. This is
essentially a secure query on multiple physically separate data sets.

Partitioned data can be classified as vertically, horizontally, or complexly par-
titioned; see Figure 1. Vertical partitions imply each database holds the same set

FIG. 1. Data partition types, with rows for individual entries and columns for attributes.

880 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

of individuals but different variables. The converse, horizontal partitions, implies
common variables across databases but different sets of individuals. Finally, com-
plex partitions imply some combination of vertical and horizontal. Another case,
which we do not address in this paper, is the case of overlapping partitions. Reiter
et al. (2004) considered this problem, but it fundamentally changes the security
question. In this paper, we will assume the data sets are not overlapping, but
that they can be correctly linked using a unique identifier that is shared across
all databases. This unique ID is necessary in the vertical partitions case because
each database will contain different variables measured on the same individuals,
and we need to correctly match these individuals across databases.

SMPC techniques have been used for parameter estimation in various papers
previously in the SDC literature. For example, Karr et al. (2007) and Lin and Karr
(2010) proposed distributed likelihood estimation (DLE) for horizontally and ver-
tically partitioned data using secure sums and oblivious transfer. Karr et al. (2009)
proposed a secure matrix multiplication algorithm to estimate the sample data co-
variance matrix without combining data, and Ghosh, Reiter and Karr (2007) pro-
posed adaptive regression splines for horizontal data. Sanil et al. (2004), Karr et al.
(2005), Fienberg et al. (2006), Fienberg, Nardi and Slavković (2009), and Nardi,
Fienberg and Hall (2012) proposed various methods for secure logistic regression
and log-linear models for categorical data. There is also a large body of litera-
ture on achieving data mining or machine learning results through SMPC [e.g.,
see Vaidya and Clifton (2004) or Vaidya et al. (2008)], but this literature is typi-
cally concerned only with prediction and not parameter estimation and interpreta-
tion.

When dealing with horizontally partitioned data, a secure routine can often be
devised easily, but it is more tricky with vertically or complexly partitioned data.
Previous work related to ours focused on two strategies for vertical partitions, ei-
ther devising secure methods to compute the sample covariance matrix [e.g., Karr
et al. (2009)] or finding maximum likelihood estimates for specific models such
as logistic regression [e.g., Nardi, Fienberg and Hall (2012)], including perform-
ing Lasso [e.g., Samizo (2016)]. In this paper, we will not compute the sample
covariance in closed form but achieve it by maximum likelihood. By doing this
for the multivariate normal parameters, rather than specific parameters for models
such as logistic regression, we allow the flexibility to fit a wider class of mod-
els.

We rely on a couple of common assumptions used in SMPC algorithms, which
are also included in all of the previous related work. We assume semi-honesty,
which means that all parties will follow the algorithm as stated, and we assume
that they will not collude to try to uncover a third party’s information. These two
assumptions have been termed “honest but curious,” coined by Kissner and Song
(2005), and it allows that the parties may use available information to try to un-
cover other parties’ information. Another assumption is that the final output is
itself not risky, such as an estimated covariance matrix in the case of vertically

SECURE MAXIMUM LIKELIHOOD ESTIMATION 881

partitioned regression; see Karr et al. (2009). We also make that assumption here,
while noting that this may very well not always be the case. Further work should
consider methods to combine our algorithm with efforts to minimize any risk of
releasing model estimates, but here we focus on getting accurate estimates without
sharing data or intermediate statistics, minimizing data leakage.

Ultimately, this paper presents a secure algorithm to calculate the correct multi-
variate normal log likelihood for a set of parameters (mean and covariance matrix)
given the partitioned data, which can be used with standard optimization tech-
niques to produce maximum likelihood estimates (MLEs) of the parameters. This
extends our previous algorithm given in Snoke, Brick and Slavković (2016), where
we showed it was possible to accurately compute multivariate normal maximum
likelihood estimates without passing any data or statistics that allow for immedi-
ate reconstruction of the data. In this paper, we go a step further and show that
by using secure multiparty computation techniques we can get accurate estimates
without sharing any true information between partitions, minimizing any possible
data leakage. From a privacy standpoint, this greatly reduces disclosure risk due
to the algorithm, leaving only the risk from disclosure due to releasing final model
estimates.

For inference, the MLEs of the multivariate normal parameters are commonly
used to estimate a variety of models, such as linear models, factor analysis, prin-
cipal components analysis (PCA), or structural equation models (SEMs). This ap-
proach provides a more general modeling framework from previous work, which
focused on specific model classes. Under our algorithm, any analysis relying on
the multivariate normal MLE can be performed across partitioned data sources.
Additionally, our algorithm naturally extends to complex partitions (see Figure 1),
which we demonstrate, while previous methods have focused solely on horizon-
tal or vertical partitions (offering only hints of solutions for complex partitions).
Finally, our method reduces the remaining privacy risks in the vertical partition
setting over previous methods of computing the sample covariance matrix directly
through methods such as secure matrix multiplication, and the risk under our al-
gorithm does not increase with the number of partitions, as is the case for some
previous methods which we will discuss further in Section 2.

The rest of this paper is organized as follows. Section 2 reviews related prior
methods and discusses potential security or computational improvements. Sec-
tion 3 covers the mechanics of distributed likelihood estimation. Section 4 presents
a detailed walk-through of our secure algorithm. Section 5 presents simulations to
test the computational complexity and accuracy of the algorithm. Section 6 ad-
dresses the motivating real data problem, discussing various models, and showing
accurate results without combining the data. Section 7 gives final remarks and dis-
cussion.

2. Previous secure methods. Here, we detail some of the relevant prior meth-
ods used for secure MLE and covariance modeling, and we cover some of the ways

882 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

in which we improve on these methods. We focus on previous algorithms that allow
for general covariance modeling to show how we improve on them with respect to
data leakage. We do not cover specific secure methods such as linear or logistic
regression, since our method generalizes to a larger class of models. We also focus
on the vertical partition case, since secure MLE in the purely horizontal case has
been shown to be easily generalizable [see, e.g., Karr et al. (2007)].

2.1. Sample covariance estimation by secure matrix multiplication. One of
the straight-forward applications of secure protocols with statistical quantities is
an algorithm for calculating the sample covariance by secure matrix multiplica-
tion. The computation of the sample covariance in this way allows for various
model estimation, most notably linear and logistic regression as shown in Karr
et al. (2009), Fienberg, Nardi and Slavković (2009), and Slavkovic, Nardi and
Tibbits (2007). This is a general estimation algorithm, similar to our method; see
Algorithm 10 in Appendix D for details.

The strength of this algorithm is that it is fairly simple and easy to implement.
It can also be implemented when only two parties exist, which we will see in
Section 2.2 is not always possible. The downside to this algorithm is that there
exists some data leakage, so it is possible the parties involved can learn about
the other parties’ data. Karr et al. (2009) gives a preliminary explanation of the
data leakage, and Samizo (2016) provides an in-depth analysis. Simply put, each
party will learn a certain number of linearly independent constraints on the other
party’s data matrix (contingent on the choice of a in step 1 of Algorithm 10). Ad-
ditionally, if there are more than two parties, the off-diagonal elements will need
to be computed for each pair of databases, increasing both the computational bur-
den [O(n2)] and more importantly the data leakage. This is because the routine
will need to be run for every pairwise combination of parties and every party will
learn a certain number of linearly independent constraints on every other parties’
data, implying an increase in data leakage for an increase in the number of data
parties.

2.2. Maximum likelihood estimation by secure summation and oblivious trans-
fer. In the case of horizontally partitioned data, Karr et al. (2007) and Lin and
Karr (2010) describe a method to get MLE estimates for general exponential fam-
ily models using secure summation. This is a fairly straightforward method, since
each partition relies on the same parameters and can compute the likelihoods indi-
vidually.

Suppose each party computes the log likelihood for a set of parameters given
only their data. In the case of K parties, we can refer to these values as
LL1,LL2, . . . ,LLK , respectively. We can get the total log likelihood sum in a se-
cure manner by adding random noise at the beginning and removing this noise only
when all intermediate summations have been completed. This routine is known as
secure summation, and this guarantees that as long as the noise is adequately large

SECURE MAXIMUM LIKELIHOOD ESTIMATION 883

Algorithm 1 Secure Summation (three or more parties)
Input: LL1,LL2, . . . ,LLK held by parties 1, 2, . . . , K, respectively
Output: LL1+2+···+K

1: Party 1 computes L̃L1 = LL1 + R where R is a large random value
2: Party 2 receives L̃L1 and computes L̃L1+2 = L̃L1 + LL2
3: for i in 3, . . . ,K do
4: Party i receives L̃L1+2+···+i−1 and computes L̃L1+2+···+i =

L̃L1+2+···+i−1 + LLi

5: end for
6: Party 1 receives L̃L1+2+···+K and computes LL1+2+···+K = L̃L1+2+···+K −R

7: Party 1 shares LL1+2+···+K with all other parties

and random, only the final sum will be learnable to all parties. The secure summa-
tion steps are shown in Algorithm 1.

This routine also allows for a clear understanding of collusion. If party 1 were
to collude with party 3, they could send L̃L1, their noisy log likelihood, to party 3.
This would allow party 3 to learn LL2, disclosing party’s 2 information at no cost
to parties 1 or 3. Thus in this horizontal setting with secure summation, we must
assume no collusion to ensure security. We must also assume at least three parties,
since the other party’s value could be learned from the total sum in the case of only
two parties.

For vertically partitioned data, Lin and Karr (2010) offer a method to get MLE
estimates for the general exponential family; see Algorithm 11 in Appendix D for
details. This method is nice because it generalizes to the exponential family, but it
is not as strong from a security standpoint. In the oblivious transfer protocol, the
computational burden increases significantly with the ability to obscure the data,
so in some cases satisfactory privacy is (computationally) difficult to achieve. Also
each party learns certain sufficient statistics, which in the case of the multivariate
normal log likelihood function is the sum of the other party’s data. This could be
highly disclosive in certain situations. A final drawback, as with the secure matrix
multiplication, is that this routine will need to be run for each pairwise combination
of parties if there are more than two total parties, again increasing the risk as the
number of parties grows.

Disclosure from sharing of aggregated statistics has long been researched at
places such at the Census Bureau, where the concern primarily stemmed from out-
liers; see Sullivan (1992). More recently, many works stemming from the computer
science literature have shown there are significant risks, particularly in the case of
high dimensional data and in the presence of other external sources, e.g., see Dinur
and Nissim (2003), Homer et al. (2008), and Calandrino, Kilzer, Narayanan, Felten
and Shmatikov (2011). Such cases, in part, have motivated the rise of Differential
Privacy (DP), a formal framework for defining the worst-case risk. For further re-

884 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

view of this theory, see Dwork (2008). DP is beyond the scope of this paper, but in
Section 7 we address a potential interplay of DP with our proposed method.

3. Distributed likelihood estimation. Distributed likelihood estimation
(DLE) refers generally to the concept of calculating a likelihood for estimation
purposes, that is, using maximum likelihood, in separate pieces and combining the
resulting likelihoods to get the total. We discuss it here specifically in the context
of partitioned data, where likelihoods must be calculated at separate databases and
combined to get estimates because the data cannot be physically combined. Fur-
thermore, with partitioned data, maximum likelihood must be achieved through an
optimization routine, such as gradient descent, because the closed-form function
requires a nonpartitioned data matrix.

To facilitate this optimization, we assume a central party exists who controls no
data but chooses the initial parameters (based upon a requested or agreed model),
the intermediate parameters, and ultimately the convergence criterion. The central
node does not control any data, but it is possible they are the most interested in
the estimates. This can be imagined as a research node where users can request
models and receive estimates. Note that this does not mean the central party is a
trusted party, as has been implemented by de Montjoye et al. (2014) or Gaye et al.
(2014). The central node, along with the data nodes, does not receive any data or
intermediate statistics from the other nodes which is a typical case with a trusted
third party.

A strength of our setup is that having a central party allows us to utilize se-
cure summation techniques with only two data-holding parties, since there are
still three total parties. As discussed in the Introduction, the central party also
enables the practicality of our algorithm. Previous methods have either utilized a
trusted central party to facilitate an implementation of their algorithm, or they have
only addressed a practical implementation in general terms. For example, the se-
cure matrix multiplication or secure summation methods given in Section 2 do not
specifically address the question of the origin of the research question(s) or model
choice(s).

3.1. Modeling by multivariate normal MLE. We focus on the multivariate nor-
mal MLE, a well-known and flexible modeling framework which allows for the
estimation of a variety of models such as linear models, factor models, PCA, and
SEMs. Assuming a multivariate normal distribution, the goal of MLE is to maxi-
mize the likelihood equation:

L(μ,�|Z) =
n∏

i=1

Li(μi,�i |zi)

=
n∏

i=1

(2π)−
1
2 pi |�i |− 1

2 e(zi−μi)�
−1
i (zi−μi)

T

(1)

SECURE MAXIMUM LIKELIHOOD ESTIMATION 885

for mean and covariance parameters μi ∈ R
pi and �i ∈ R

pi×pi given a data matrix
Z ∈ R

n×p . We will work with the log likelihood:

�(μ,�|Z)

=
n∑

i=1

�i(μi,�i |zi)

=
n∑

i=1

−1

2

[
pi ∗ log(2 ∗ π) + log

(|�i |) + (zi − μi)�
−1
i (zi − μi)

T]
(2)

rather than the likelihood, since it is easier to work with sums than products across
each data row. We use the formulation that allows the parameters to vary for each
data row, that is, the full-information likelihood [e.g., see Arbuckle, Marcoulides
and Schumacker (1996)]. This is often used to deal with missing data in order
to compute a likelihood for rows with missing elements rather than performing
listwise deletion. We use it because the log likelihood will be calculated in separate
partitions, and in the vertical case the parameters are partitioned to only pertain to
certain variables in the data matrix (see Section 3.3 for more details). Maximizing
over equation (2) gives the MLE estimates μ̂ and �̂. With the full data matrix,
the maximum can be found in closed form, but in our case because the data are
partitioned we can find the maximum by using any standard optimization routine.

3.2. Horizontally distributed likelihood. Horizontally partitioned data are sep-
arated by observations, such that each database has different sets of individuals all
measured on the same variables. The parameters are the same for each partition,
so DLE in this case requires only a secure summation of total log likelihoods from
each partition as described in Section 2.2. If we consider the log likelihood given
in equation (3), we can separate this into different elements based on the rows in
each database. All variables are the same across databases, so the parameters relat-
ing to the data are the same in each. This is shown in equation (4) for a theoretical
combined database Z with partitions

(
X1 X2 X3

)T , where Xk denotes the data
matrix of the kth partition. Note that these partitions do not need to be of equal
size:

�(μ,�|Z) =
n∑

i=1

�i(μi,�i |zi),(3)

�(μ,�|Z) =
nX1∑
i=1

�i(μ,�|x1i) +
nX2∑
i=1

�i(μ,�|x2i) +
nX3∑
i=1

�i(μ,�|x3i).(4)

In this case, each node receives the full set of model-defined parameters from the
central optimizer and calculates their portion of the total log likelihood. The results
are added using a secure summation and new parameter estimates are chosen for

886 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

FIG. 2. Example of a three node system using secure summation for horizontally partitioned data.
Red solid lines denote path of noisy log likelihood, green dashed lines denote path of model-implied
parameters.

the next step of the optimization; see Figure 2 for a visual depiction. In the hori-
zontal case, as noted by Karr et al. (2007), the form of the likelihood function does
not matter, so applications are not constrained to the multivariate normal case.

3.3. Vertically distributed likelihood. Vertically partitioned data are separated
by variables, with each database containing different measurements on the same
set of individuals. This implies that the set of parameters used in calculating the
log likelihood differs at each partition. As shown in Snoke, Brick and Slavković
(2016), DLE must combine log likelihoods calculated using marginal and condi-
tional parameters to get the correct total log likelihood. Note that complex parti-
tions can be formulated as a combination of horizontal and vertical DLE, which
we discuss further in Section 4.3.

Equation (5) shows the decomposition of the log likelihood function in the ver-
tical case, where Z = (

X1 X2 X3
)

and Xk is the data matrix of the kth par-
tition. Note that these partitions do not need to be of equal size. This adds com-
plexity because some intermediate parameters and statistics must be calculated
and shared in order to accurately calculate the total log likelihood. These must be
shared securely, and a simple secure summation of the log likelihoods is not pos-
sible because each partition needs different parameters. We address this further in

SECURE MAXIMUM LIKELIHOOD ESTIMATION 887

Section 4.3:

�(μ,�|Z) =
n∑

i=1

�i(μX1,�X1 |x1i) +
n∑

i=1

�i(μ̂X2|X1,�X2|X1 |x2i)

+
n∑

i=1

�i(μ̂X3|X2,X1,�X3|X2,X1 |x3i).

(5)

3.3.1. Marginal and conditional parameters for vertical partitions. To calcu-
late the partitioned log likelihoods, we need to calculate marginal and conditional
parameters from μ and �. Subsetting the parameters as shown in equations (6) and
(7) for the combined data set, we can write the conditional parameters as shown in
equations (8), (9), (10), and (11). These relationships come from the well-known
properties of the multivariate normal distribution and are also known as the Schur
complement in matrix theory [e.g., see Schur (1905) and Haynsworth (1968)]:

� =
⎛
⎝�X1X1 �X2X1 �X3X1

�X1X2 �X2X2 �X3X2

�X1X3 �X2X3 �X3X3

⎞
⎠ ,(6)

μ = (
μX1 μX2 μX3

)
.(7)

�XkXk
and �XkXl

are the model-implied marginal covariance elements for the
variables in Xk and the model-implied covariance elements between the variables
in Xk and Xl , respectively. μXk

are the mean parameters for the variables in Xk .
It is important to note here that these mean and covariance parameters are not the

observed sample estimates from the data, since it would be impossible to calculate
�XkXl

across partitioned data without sharing data. They are parameters defined by
our model with values chosen at each step according to the optimization routine.
The exception, though, are the conditional mean parameters that are estimated
using real data [see equations (9) and (11)], and thus are denoted with the hat
notation. Based on these equations, we can estimate a distributed log likelihood
for vertical partitions that is equivalent to the joint log likelihood.

Before proceeding, a note on notation: let X+ denote all variables following X

in the node sequence, that is, X+
1 = (X2,X3) (the variables in node 2 and 3 for a

3-node system) and X+
2 = (X3). In the same way, let X− denote all prior variables.

Condition X+
1 on X1:

(8) �X+
1 |X1

= �X+
1 X+

1
− �X1X

+
1
�−1

X1X1
�X+

1 X1
=

(
�X2X2|x �X+

2 X2|X1

�X2X
+
2 |X1

�X+
2 X+

2 |X1

)

and

μ̂X+
1 |X1

= μX+
1

+ �X1X
+
1
�−1

X1X1
(X1 − μX1) =

(
μ̂X2|X1 μ̂X+

2 |X1

)
.(9)

888 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

Condition X+
2 on X1, X2:

�X+
2 |X−

3
= �X+

2 X+
2 |X1

− �X2X
+
2 |X1

�−1
X2X2|X1

�X+
2 X2|X1

=
(

�X3X3|X−
3

�X+
3 X3|X−

3
�X3X

+
3 |X−

3
�X+

3 X+
3 |X−

3

)(10)

and

μ̂X+
2 |X−

3
= μ̂X+

2 |X1
+ �X2X

+
2 |X1

�−1
X2X2|X1

(X2 − μ̂X2|X1)

=
(
μ̂X3|X−

3
μ̂X+

3 |X−
3

)
.

(11)

This conditioning process can be repeated for as many partitions as necessary.
Next, we combine these with techniques from SMPC to produce a secure algo-
rithm.

4. Secure algorithm for vertically partitioned data. Here, we describe in
more detail our proposed algorithm for secure multiparty log likelihood estimation
for vertically partitioned data with K partitions (or nodes). This also extends to
complex partitions as discussed in Section 4.3.

4.1. Notation. The following terms are used in the algorithm and their corre-
sponding equations. For nodes k ∈ 1, . . . ,K with data

(
X1 X2 . . . XK

)
with

dimensions (n × p1), (n × p2), . . . , (n × pK):

• Pk , Rk , Qk , Mk random noise matrices with dimensions (n × pk), (n ×
pk), (pk × n), (n × pk), respectively.

• A1
k = �−1

XkXk |X−
k

(Xk − μ̃Xk |X−
k

+ Rk).

• A2
k = �−1

XkXk |X−
k

(Xk − μ̃Xk |X−
k

− Rk) + Qk .

• Bk = μ̃X+
k |X−

k
+ �XkX

+
k |X−

k
A1

k .

• Ck = �XkX
+
k |X−

k
(�XkXk |X−

k
)−1.

• μ̃X+
k |X−

k+1
=

(
μ̃Xk+1|X−

k+1
μ̃Xk+2|X−

k+1
. . . μ̃XK |X−

k+1

)
= Bk − Mk −

Ck(Rk − Pk).

As noted before, the + and − notation denote all variables in partitions fol-
lowing or preceding a node, for example, μX+

1 |X−
2

denotes the conditional mean
parameters for all variables in node 2 and following, conditional on all variables
in node 1. The ∼ and ∗ notation denote noisy versions of the true statistics. There
are two noise notation, since the same statistics will have multiple stages of noise
addition or removal.

SECURE MAXIMUM LIKELIHOOD ESTIMATION 889

4.2. Adaptation from the nonsecure algorithm. From Snoke, Brick and
Slavković (2016), Algorithm 12, shown in Appendix D, gives a method for es-
timating the joint log likelihood without sharing any data, but it does not provide
that nothing can be learned from the statistics which are passed. There are four
elements computed and shared in this original algorithm in order to obtain correct
parameter estimates that we consider to be risky. Two are statistics of the data
and two converge to statistics (recall that we use optimization to find maximum
likelihood estimates of � and μ). For each node k they are:

1. �XkXk |X−
k

.

2. μ̂Xk |X−
k

.
3. �XkX

+
k |X−

k
.

4. LLk .

We handle these elements as follows. First, rather than the central node sending
� and μ to the first data node and each node calculating the following conditional
covariance parameters, the central node will calculate �XkXk |X−

k
for each node k.

These will be distributed only to each node with the corresponding variables, so
nodes will not learn the covariance parameters for other nodes’ variables.

Second, the central node no longer sends μ to the first node for each node to do
the conditioning. The true conditional means are risky even for data nodes contain-
ing the corresponding variables to see because they are statistics that depend on all
the previous nodes’ data. To protect this information, we add noise to μ. We also
must calculate them in parts and combine the pieces in such a way that true values
are not recoverable, since the conditional means are calculated using unshareable
information both from the data nodes and the central node.

Next, we protect the off-diagonal covariance elements by not passing them un-
less combined with other terms which cannot be differenced out. Though the off-
diagonal elements are not statistics, it is possible through the iteration of the op-
timization routine that a partition could learn how another partition’s data covary
with their own data. Since they know their own data, they may disclose information
about the other partition’s data.

Lastly, we share noisy log likelihood totals instead of the true values, since these
are statistics of data. There are two noise components to the log likelihood. First, by
adding noise to the mean parameters this introduces noise into the log likelihoods.
Second, we use an altered log likelihood form which allows us to record the noise
introduced and remove it at the final step after safely passing it through all the
nodes.

We can think of the secure algorithm as having two primary functions: one being
a secure summation of log likelihoods across partitions and the second being a
multiparty computation of the conditional mean parameters for each node. Vitally,
the solution to these goals work together both in obscuring the true values and in
removing all the noise by the end in order to obtain the correct joint log likelihood

890 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

FIG. 3. Example three node secure algorithm visual following Algorithm 2. Red solid lines denote
path of noisy log likelihood, green dashed lines denote path of conditional parameters.

value. In Figure 3, we give a visual representation of the algorithm for a three node
system, and we highlight these two complimentary functions. The solid red lines
denote the flow of the noisy log likelihood, and the dashed green lines denote the
steps in computing the conditional mean parameters.

4.3. Algorithm walk-through. Algorithm 2 gives the complete K data parti-
tion secure process for calculating the total log likelihood across vertical parti-
tions. There are a number of internal algorithms referenced, which are given in
Appendix C and named as shown. We will refer to them by number in the fol-
lowing description of the algorithm. To help with understanding the details, Ap-
pendix B gives a small numerical example showing each step of the algorithm
explicitly.

This algorithm represents one step in an optimization routine, returning the total
log likelihood value for a given set of parameters which will then be used to choose
new values until convergence. The inputs are parameters, μ and �, according to
an assumed multivariate normal distribution. The output is a single number, the
sum of log likelihoods across the entire set of partitioned databases.

In the initial step of Algorithm 2, shown in Algorithm 3, the central node, which
runs the optimization and has no data, partitions the model-defined parameters cor-
responding to the variables present at each data node. It then produces the marginal

SECURE MAXIMUM LIKELIHOOD ESTIMATION 891

Algorithm 2 Secure Multiparty Log Likelihood Estimation for Vertical Partitions

Input: μ ∈ R
p,� ∈ R

p×p (central node), Xk ∈ R
n×pk ∀k ∈ K (data nodes)

Output: LL∑K
j=1 j

1: CN compute: CN_Initiate(μ,�)

2: CN → DN1: �X1X1 , μ̃X1 , PK

3: DN1 compute: EN_Compute(μ̃X1,�X1X1,X1,∅)

4: DN1 → CN: A1
1, A2

1
5: DN1 → DN2: L̃L1, R1, Q1
6: for k in 2, . . . ,K do
7: CN compute: CN_Adjust(A1

k−1, μ̃X+
k−1|X−

k−1
,�Xk−1Xk−1|X−

k−1
)

8: CN → DNk : �XkXk |X−
k
,Bk−1,Ck−1,Pk−1

9: DNk compute: EN_Adjust(Bk−1,Ck−1,Rk−1,Pk−1,Qk−1, L̃L
�k−1

j=1j
,Mk−1)

10: DNk compute: EN_Compute(μ̃Xk |X−
k
,�XkXk |X−

k
,Xk, L̃L∗

�k−1
j=1j

)

11: DNk → CN: A1
k , A2

k

12: if k! = K then
13: DNk → CN: μ̃∗

X+
k |X−

k

14: DNk → DNk+1: L̃L�k
j=1j

, Rk , Qk , Mk

15: end if
16: end for
17: DNK → DN1: L̃L�k

j=1j
, Qk

18: DN1 compute: FN_Adjust(L̃L�K
j=1j

,Pk,Qk)

19: DN1 → CN: L̃L∗
�K

j=1j

20: CN compute: CN_Final(L̃L∗
�K

j=1j
,Pk,A

1
k,A

2
k,�XkXk |X−

k
∀k ∈ K)

and conditional covariance matrices for each partition, which it can do without any
information from the data nodes. It also calculates the marginal mean vectors for
each node, adding noise to them,

(12) μ̃ = (
μ̃X1 μ̃X2 . . . μ̃XK

) = (
μX1 + P1 μX2 + P2 . . . μXK

+ PK

)
and saving the noise vectors

(
P1 P2 . . . PK

)
. It passes on to the first data node

the marginal parameters for that node as well as the noise vector which was added
to the part of the mean vector pertaining to the K th node’s variables (PK). This
will be used for de-noising in a later step.

The first data node uses the marginal covariance and noisy mean parameters to
calculate a noisy version of the total of the log likelihood for its data using the

892 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

following formula:

L̃L1 =
n∑

i=1

[
p1 log(2π) + log

(|�X1X1 |
)

+ (X1i − μ̃X1 + R1)�
−1
X1X1

(X1i − μ̃X1 − R1)
T + RT

1 �−1
X1X1

R1
](13)

with the R1 random noise vector generated at the node level; see Algorithms 4 and
5 for more details. This different formula allows the log likelihood to be calculated
with noise that will enable it to be passed securely to other data nodes without
revealing the true value, but it is also noise which can be recorded and removed
partially at each node and partially at the final step. We can rewrite it as

L̃L1 = LL1︸︷︷︸
true value

− A1
1P

T
1 − P1

(
A2

1
)T − P1�

−1
X1X1

P T
1︸ ︷︷ ︸

noise to be removed at the end by central node

+ P1Q1︸ ︷︷ ︸
noise to be removed by next data node

,
(14)

where there are two noise elements that keep the true values from being revealed.
One term will be removed by the following data node, since the Qk vectors cannot
be known by the central node. The other terms are removed only at the final step
by the central node and serve to keep the following data nodes from knowing the
true value. Since the running total is only passed back to the central node at the
final step, when it removes all the noise it only learns a single number, the true
total log likelihood across all the data.

This noisy formulation serves a second purpose of calculating the conditional
mean parameter, namely through A1

k . As mentioned previously, the conditional
mean parameters are statistics, depending on information at both the data node
and central node levels, so they must be calculated securely in multiple stages.
The data nodes can safely pass A1

k and A2
k back to the central node because they

contain noise generated at the node level (Rk and Qk). This facilitates both the
computation of the conditional mean parameter and the eventual de-noising of the
log likelihood.

After performing these computations, the first data node passes the objects dis-
cussed back to the central node, and they also pass along the noisy log likelihood
and noise vectors they generated to the next data node. The noisy log likelihood
needs to be passed along to each data node with each noisy total being added be-
fore returning to the central node for final de-noising, akin to the process of secure
summation. The noise vectors passed to the second data node, R1 and Q1, are
used both for intermediate de-noising of the log likelihood, removing noise which
cannot be computed by the central node, and in finishing the calculation of the
conditional mean parameter; see Algorithm 7 for more details.

Before moving on to the second data node, the central node needs to make the
next step in computing the conditional mean parameter. This combines information

SECURE MAXIMUM LIKELIHOOD ESTIMATION 893

received from the previous data node with information known only the central
node, computing

(15) B1 = μ̃X+
1

+ �X1X
+
1
A1

1;
see Algorithm 6 for more details. This is then passed on to the next data node, along
with the conditional covariance parameters (�X2X2|X1), the noise vector (P1), and
the other element needing for calculating the conditional mean parameter (C1).

The second data node finalizes the computation of the conditional mean param-
eter, producing a parameter which is noisy in the same way the original marginal
mean parameter (μ̃X1) was noisy, with only a noise vector unknown to the data
node:

(16) μ̃X+
1 |X1

= B1 − C1(R1 − P1) = μ̂X+
1 |X1

+ P1+ .

From here, the steps start to repeat and look identical at each node. There is one
additional wrinkle, as can be seen in Algorithm 7. From data node 2 onwards, the
conditional mean parameters corresponding to the nodes in the following partitions
must be passed back to the central node, so that the conditioning stacks. Because
the central node knows the noise added to this parameter (Pk), it would be disclo-
sive to return it as is to the central node. Additional noise Mk is generated by the
data node and added to prevent this. This noise matrix is also passed along to the
next node, so it can be removed in the final step of computing the next conditional
mean parameter:

(17) μ̃X+
2 |X2

= B2 − M2 − C2(R2 − P2) = μ̂X+
2 |X2

+ P2+ .

After all the nodes have completed the process of obtaining parameters and cal-
culating noisy log likelihoods, the total sum is passed back to the first node, not
the central node yet, where it undergoes one final de-noising; see Algorithm 8 for
details. This is the same intermediate de-noising that occurs at each data node. It
must occur at the first node before returning to the final node, since there is no
node following the last node. Finally, the central node receives the noisy value,
and knowing all the noise that has accumulated throughout the process is able to
remove it and obtain the correct total value; see Algorithm 9 for details.

A simple extension exists for complex partitions by subsetting the routines by
horizontally distinct vertical routines and then summing all values at the end. Fig-
ure 4 gives a visual depiction of this process. As mentioned earlier, this requires an
assumption that the central node knows how the partitions are complexly divided
and can appropriately divide the algorithm into subroutines. Each subroutine yields
a total log likelihood value as if it were a pure vertical partition, and each total from
all subroutines are added to get the total across all partitions. In the next section,
we present a simulation study to further evaluate the accuracy and computational
efficiency of the proposed algorithm.

894 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

FIG. 4. Splitting complex partitions into vertical subroutines.

5. Simulations for accuracy and computational complexity. We ran simu-
lations (available along with code for the algorithm at https://github.com/jsnoke/
Firewall) to test the computational complexity of the algorithm as the number of
observations (n), variables (p), and partitions (k) increase. For each value of n, p,
and k, we generated twenty replicates of data from a multivariate normal distribu-
tion with parameters defined by a true latent growth model (LGM) with intercept
and slope latent variables, variance and covariance parameters on the latent vari-
ables, and a fixed variance parameter across the manifest variables. See Section 6
for a more detailed description of this class of models. We then estimated these
true model parameters using our partitioned algorithm and standard SEM software
from the OpenMx R package. Results are plotted in Figure 5 for all replicates.
Experiments were run on an Intel Xeon E5-2680 with 20 processors at 2.80 GHz.

We expected the algorithm to scale normally with respect to variables and ob-
servations, and we see this in the top two left panels of Figure 5. When we vary the
number of observations, each line for a different number of nodes shows the same
slope, but shifted from one another. In the case of varying number of variables,
again each line shows the same curve, but the optimal point is in a different place
due to the relationship between p and k. This implies that our algorithm does not
change the computational complexity with respect to n or p. Increasing the num-
ber of partitions will not alter the fundamental computational complexity as n or
p increase, but it shifts the location of the curve.

We are also interested to see the results as the number of nodes increase. In
one respect, the run time should slow because the number of total computations
is increasing, but as each node holds fewer variables the covariance inversions
will shrink, reducing run time. As we see from the bottom left plot in Figure 5,
this tradeoff does exist. When we look at fixed p and n, we again see an optimal
number of nodes, k = 10, for p = 100 and then an uptick after that. Generally
though, there is not a significant difference in times for the different number of
partitions (apart from 1). It is possible as k gets much larger that this could change,
but in applications we envision 100 data parties each holding separate variables is
already many more than we would expect.

https://github.com/jsnoke/Firewall
https://github.com/jsnoke/Firewall

SECURE MAXIMUM LIKELIHOOD ESTIMATION 895

FIG. 5. Simulations for run time (left column) and parameter accuracy (right column) for varying
numbers of variables (p), observations (n), and nodes (k).

The three right panels show the accuracy of the estimates compared to stan-
dard software for nonpartitioned estimates. Theoretically, the estimates should be
identical, but we were curious to investigate possible numerical differences in the
actual computation. On average, there is less than 0.01 error in value, which is less
than 1% error for the scale of the parameters we used. Recall that theoretically
there is no difference between the maximum likelihood estimates from the parti-
tioned or nonpartitioned algorithms, so these differences occur due to numerical
precision and the software used to find the MLE. For practical purposes, this shows
our secure partitioned algorithm produces equivalent results. Next, we address the
motivating problem, showing how accurate results can be obtained across a real
complex data partition without needing to combine data.

6. Kinship foster placement study. We consider a data set collected over
four years (2012–2015) from multiple sources gathered by a trusted research net-
work between the University of Oklahoma Health Sciences Center (OUHSC), the
Oklahoma Department of Human Services (OKDHS), and the North Oklahoma
County Mental Health Center (NorthCare). Specifically, we examine a study aimed
at improving the stability of foster care placements when the foster caregiver was
a relative or person known to the family of the child. These are so-called kinship
foster placements. In the collaboration, families with kinship foster placements
were randomized to receive either (a) services as usual through OKDHS or (b)

896 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

OKDHS services and additional services termed Family KINnections from a com-
munity resource specialist (CRS) associated with NorthCare. OUHSC conducted
the randomization and OUHSC data collectors gathered baseline data on families
randomized to services as usual. However, to aid in subsequent service adminis-
tration the CRS gathered baseline data for families receiving Family KINnections.
Research is ongoing, but initial work has shown the program reduced the time for
a foster family to become certified and increased the stability of a placement by
roughly a factor of two; see Hecht, Hunter and Beasley (2016).

As initially collected, the baseline data (wave 1) were horizontally partitioned
into two databases. Waves 2 through 7 of data collection were conducted by an
OUHSC data collector for both wave 1 groups, but these later waves were stored
in a separate database from the baseline data, giving us a total of three databases
complexly partitioned (both horizontally and vertically). For the application here,
we model only the Family Needs Scale (FNS) [e.g., see Dunst, Trivette and Deal
(1988)]. The FNS measures a family’s needs for different resources and support
with 41 items such as the extent to which the family has a need for “Having
money to pay the bills” or “Getting clothes.” The items are scored from 1 (“Al-
most Never”) to 5 (“Almost Always”) with higher scores indicating more need.

To investigate whether a family’s needs change over time, we use a Latent
Growth model (LGM) which is a common way to model a longitudinal trajec-
tory within the SEM framework, see Meredith and Tisak (1990). Algebraically,
we write the model as

(18) FNSij = intercepti + λj ∗ slopei + ei,

where i denotes the observation and j denotes the wave. The latent factors are
denoted by intercept and slope, and the λj ’s are fixed at {0,1, . . . , j − 1}. We are
interested in estimating the covariance matrix for the latent factors (3 parameters),
the residual error for the observed variables (1 parameter), and the latent factor
means (2 parameters). We assume here the residual error term is fixed across waves
and the observed data has mean zero.

Table 1 shows the estimates for the six parameters in the model. We fit the
models in three ways to compare estimates and standard errors. The first is with our
secure algorithm across the three partitions. For optimization, we used the optimx
package [Nash and Varadhan (2011)] in R [R Core Team (2017)]. The data was
partitioned as follows: the first partition held roughly two thirds (158 out of 244) of
the observations for the first wave of FNS, the second partition held the other subset
of the first wave, and the third partition held all observations for waves 2–7. This
gave the data a complex partition, similar to that depicted in Figure 4. The second
estimation method was with all data combined also using the optimx package, and
the third method again used a combined data set but used the OpenMx package
[Neale et al. (2016)] which utilizes a different optimizer. Recall that the combined
data was only possible due to a research data sharing agreement between the data

SECURE MAXIMUM LIKELIHOOD ESTIMATION 897

TABLE 1
Simple Latent Growth Curve Model with three estimation methods and three imputation methods.

Standard errors given in parenthesis (NA when model did not return an estimate)

Parameter Partitioned Nonpartitioned OpenMx

Marginal σ̂intercept 0.4468 (0.0236) 0.4470 (0.0236) 0.4470 (0.0256)
Imputation σ̂intr_slp 0.0000 (NA) 0.0000 (NA) 0.0000 (0.0062)

σ̂slope 0.0460 (0.0063) 0.0462 (0.0063) 0.0462 (0.0065)
σ̂e 0.3657 (0.0074) 0.3646 (0.0074) 0.3645 (0.0077)

μ̂intercept 2.0230 (0.0318) 2.0722 (0.0327) 2.0721 (0.0327)
μ̂slope −0.0809 (0.0059) −0.0750 (0.0053) −0.0750 (0.0053)

Joint σ̂intercept 0.5173 (0.0285) 0.5183 (0.0285) 0.5183 (0.0294)
Imputation σ̂intr_slp 0.0000 (NA) 0.0000 (NA) 0.0000 (0.0104)

σ̂slope 0.0701 (0.0064) 0.0704 (0.0064) 0.0704 (0.0082)
σ̂e 0.3608 (0.0079) 0.3594 (0.0078) 0.3594 (0.0079)

μ̂intercept 2.0963 (0.0359) 2.1585 (0.0367) 2.1584 (0.0367)
μ̂slope −0.1050 (0.0069) −0.0978 (0.0063) −0.0978 (0.0063)

Full Information σ̂intercept 0.5941 (0.0421)
Maximum Likelihood σ̂intr_slp 0.0000 (0.0191)

σ̂slope 0.0456 (0.0270)
σ̂e 0.4365 (0.0179)

μ̂intercept 2.1097 (0.0483)
μ̂slope −0.0697 (0.0129)

collection agencies. The purpose of having both these nonpartitioned methods was
to parse out the two potential causes for difference in estimates: the partitioning
and the software.

In addition to the different methods of estimation, we employed three different
approaches to handle missing data. As with most real data problems, missingness
is an issue in this data, and currently our algorithm only works for complete data.
In order to run the secure algorithm without imputing, some parties would need
to know the missing data pattern of other parties, which we believe constitutes too
much of a privacy risk. Future work should consider ways, if any, to get around
this issue, but for this analysis we impute all missing values before estimating
parameters.

To handle the missingness in the real data, we employed imputation as is com-
monly done in behavioral and social science research; see Schafer (1997). The
first method, marginal imputation, reflects the type of imputation that would need
to be done in a real partitioned setting, since joint imputation requires combin-
ing all the data. For comparison purposes, we also employed joint imputation and
full-information maximum likelihood (FIML), a method that subsets the mean and
covariance when calculating the log likelihood in order to calculate the total log
likelihood without imputing or performing listwise deletion. Note that only the
OpenMx software is capable of performing the FIML approach since this keeps

898 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

the missing data. Future work could also consider a type of EM approach that
combines our secure estimation with a joint imputation in order to perform joint
imputation while preserving the data partitions, potentially akin to what was pro-
posed in Reiter et al. (2004). This extension might improve estimates over the
marginal imputation approach.

We see in Table 1 that for a given imputation method, the parameter estimates
and standard errors for the different estimation methods are very similar, generally
identical up to two decimal places, and for inferential purposes they are equiva-
lent. This follows from the theory that the estimates should be the same for the
partitioned and nonpartitioned methods. We do see larger differences across the
different imputation methods, particularly FIML versus the imputation methods,
which is understandable given the real data has a decent amount of missingness
to impute. Sixty-three percent of all data were missing, varying from 28% at the
initial wave to 84% at the final wave.

Substantively, we see that family’s needs decrease over time, as evidenced by
the negative latent slope mean parameter. While this effect is small compared to
the inherent baseline need (intercept mean), it does appear significantly negative.
From the first wave to the seventh wave, we would expect an average decrease of
roughly 0.5 in responses on the FNS.

For further analysis, we considered two hypotheses and tested them using χ2

goodness-of-fit tests. The first question we tested was whether the slope parameter
in the LGM was indeed nonzero. This helps us further investigate whether the
decrease we see in the first model is a real change. To test this, we estimated the
same model but with the slope parameter fixed to zero. We then compared the
reduced model’s log likelihood with the larger model to get a χ2 test statistic. The
full parameter results for the reduced model are given in Table 3 in Appendix A.
Table 2 gives the hypothesis test results for each of the imputation and estimation
approaches. As we can see, there is no substantive difference in the outcomes; all
of them significantly reject the hypothesis that the slope parameter is zero. This
further confirms the evidence that family’s needs decreased over time in this study.

TABLE 2
Results from χ2 goodness-of-fit test. (1) Test of slope parameter versus reduced model with slope
fixed at zero. (2) Test of LGM model with slope versus saturated model. Test statistics shown with

p-values in parenthesis

Null Hypothesis DF Partitioned Nonpartitioned OpenMx

Marg. Imputation μ̂slope = 0 1 727.12 (≤1e−6) 735.49 (≤1e−6) 151.48 (≤1e−6)
Joint Imputation μ̂slope = 0 1 673.36 (≤1e−6) 683.39 (≤1e−6) 169.71 (≤1e−6)
FIML μ̂slope = 0 1 24.54 (≤1e−6)

Marg. Imputation LGM is true 29 799.57 (≤1e−6) 799.57 (≤1e−6) 799.95 (≤1e−6)
Joint Imputation LGM is true 29 876.00 (≤1e−6) 877.53 (≤1e−6) 877.53 (≤1e−6)
FIML LGM is true 29 103.96 (≤1e−6)

SECURE MAXIMUM LIKELIHOOD ESTIMATION 899

Next, we considered the overall fit of the models in order to test whether a
LGM is an appropriate model for this data. While in the partitioned setting, one
must submit a model without seeing the data; we can test our hypothesized model
against a saturated model in order to test the overall fit. This type of goodness-of-fit
test is common in the SEM framework (among others), and it is a strength of our
approach that a researcher can still perform these tests using our secure algorithm.

The saturated model in this case estimates a parameter for every element of
the mean and covariance matrices for the observed variables, which results in
n + n(n+1)

2 = 35 parameters. We are less interested in the actual parameter esti-
mates for the saturated model and more interested in the χ2 test statistic given in
Table 2. We see that the saturated model shows significant improvement over our
proposed LGM model, and that the test results agree regardless of the estimation or
imputation method. While this does not directly contradict the previous evidence
we found for a decreasing family need over time, it does make us consider whether
a more complex model would be better. It is possible that introducing other covari-
ates or higher order latent growth factors (such as quadratic) would improve the
fit. A better fit model would likely give us more accurate parameter estimates and
a better understanding of the change in FNS over time.

In terms of the accuracy of the secure algorithm, we find that the differences
from the imputation method far outweigh any differences from using a parti-
tioned versus non-partitioned estimation procedure. Interestingly, the goodness-
of-fit statistics are quite a bit smaller using the FIML approach for missingness,
suggesting that the test is sensitive to the missing data method. For a given impu-
tation method, our method produces roughly equivalent values using partitioned
estimation versus nonpartitioned estimation. In practice, our inference will be lim-
ited to the estimation based on complete data models, and currently only marginal
imputation is possible in the partitioned setting. If the method for handling missing
data will have a large impact of the analysis, such as the goodness-of-fit test, that
is a potential limitation of the partitioned setup.

7. Discussion. In this paper, we address the growing need of doing estimation
over partitioned databases, which cannot be combined due to privacy constraints.
By focusing on maximum likelihood, we enable a wide range of models that rely
on covariance modeling, allowing researchers to answer questions for numerous
applications. This can greatly aid research fields where the current alternatives
require building research networks or developing data sharing agreements which
can take months if not years. Through the kinship study presented in this paper
and further simulations, we showed our theoretical methods translate into accurate
inference for real data problems.

We extend previous methods for covariance modeling by strengthening the pri-
vacy guarantees, particularly for increasing numbers of partitions, and our method
allows estimation in the case of horizontal, vertical, or complex partitions. The

900 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

algorithm presented here provides a solution for partitioned estimation when re-
searchers are interested in covariance modeling under a multivariate normal as-
sumption, and it guarantees no sharing of data or intermediate statistics for two
or more data parties. Some practical issues still exist, such as the need to impute
missingness marginally and the general complexity of the algorithm, but these are
details which can and should be further tuned as part of future work. The algo-
rithm contains a fair level of complexity, with numerous steps needed to obtain the
correct values without sharing any true information. It may be possible in future
work to simplify the algorithm, potentially making it easier to understand or save
on computation time. By giving detailed algorithms and making the code easily
accessible, we hope to facilitate any future implementations or improvements of
this methodology.

For a practical implementation, decisions need to be made concerning the ran-
dom noise distributions used in the algorithm and the optimization method. For-
tunately, these do not fundamentally affect the guarantees, either of security or
accuracy, that we present in this paper. Assuming the random noise distributions
used by the central and data nodes are nontrivial and not disclosed to other par-
ties, there is reasonable surety that no one would be able to guess the noise added.
Generally, the larger the noise added, the more certain this guarantee, and the only
constraint would be running up against the machines’ numerical precision. The
noise is all removed at the final step, so the distributions used will not affect the
final result’s accuracy. Similarly, our algorithm does not alter the theoretical op-
timality of any optimization routines. If an optimization method if susceptible to
local modes or poor convergence, it will be the case regardless of using the secure
algorithm or a nonsecure one.

We note that a general drawback of secure multiparty methods such as ours is
that models are somewhat blindly chosen. Though our method provides standard
errors and goodness-of-fit statistics in addition to parameter estimates, researchers
are still unable to do the typical exploratory data analysis (EDA) or model diag-
nostics which a thorough statistical analysis demands. For example, in the case of
regression the inability to examine residual plots or visualize the underlying vari-
able relationships is a significant drawback. In some cases, privacy restrictions will
be such that this is the best we can do, but we caution any potential implementers
or users of these methods in this regard.

As a final remark, there has been a move in the privacy literature toward formal
privacy methods, such as differential privacy. While this work guarantees security
under a different definition, we believe future work should look for ways to com-
bine the methods here with formal protections such as offered by perturbations of
the output statistics. In some applications, it may be the case that revealing the
true estimated model (or mean and covariance matrix) constitutes a violation of
privacy. For problems where that is not the case, the algorithm presented here pro-
vides a strong guarantee of security that multiple parties can engage in partitioned
estimation with only the final model values being shared.

SECURE MAXIMUM LIKELIHOOD ESTIMATION 901

APPENDIX A: ADDITIONAL MODEL TABLE

Table giving reduced model with slope parameter fixed at zero.

TABLE 3
Latent Growth Curve Model with slope parameter fixed to zero, with three estimation methods and
three imputation methods. Standard errors given in parenthesis (NA when model did not return an

estimate)

Parameter Partitioned Nonpartitioned OpenMx

Marginal σ̂intercept 2.1336 (0.0982) 2.1670 (0.1000) 0.4567 (0.0266)

Imputation σ̂intr_slp 0.0000 (NA) 0.0000 (NA) 0.0000 (0.0118)

σ̂slope 0.0567 (0.0065) 0.0569 (0.0064) 0.0842 (0.0065)

σ̂e 0.3608 (0.0073) 0.3596 (0.0073) 0.3643 (0.0077)

μ̂intercept −0.0715 (0.0063) −0.0653 (0.0057) 1.9819 (0.0490)

Joint σ̂intercept 2.2548 (0.1035) 2.3021 (0.1062) 0.5662 (0.0234)

Imputation σ̂intr_slp 0.0000 (NA) 0.0000 (NA) 0.0000 (NA)

σ̂slope 0.0908 (0.0064) 0.0909 (0.0063) 0.1208 (NA)

σ̂e 0.3491 (0.0071) 0.3481 (0.0071) 0.3533 (0.0074)

μ̂intercept −0.0946 (0.0078) −0.0871 (0.0072) 2.0898 (NA)

Full Information σ̂intercept 0.6078 (0.0434)

Maximum Likelihood σ̂intr_slp 0.0000 (0.0245)

σ̂slope 0.0851 (0.0195)

σ̂e 0.4292 (0.0181)

μ̂intercept 2.0325 (0.0512)

APPENDIX B: NUMERICAL EXAMPLE

This follows step for step Algorithm 2 given in Section 4.3 and visualized in
Figure 3 with a simple 3 × 3 data set.

Input. Central node chooses, based on research model of interest, � and μ,
model defined parameters, where

� =
⎡
⎣�X1X1 �X2X1 �X3X1

�X1X2 �X2X2 �X3X2

�X1X3 �X2X3 �X3X3

⎤
⎦ =

⎡
⎣ 1 0.1 0.1

0.1 1 0.1
0.1 0.1 1

⎤
⎦ ,(19)

μ = [
μX1 μX2 μX3

] = [
0.1 0.1 0.1

]
.(20)

Data node 1 holds X1, data node 2 holds X2, data node 3 holds X3, where

Data = Z = [
X1 X2 X3

] =
⎡
⎣−0.36 1.31 −0.23
−0.09 0.75 2.82
−0.92 0.43 −0.64

⎤
⎦ .(21)

902 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

B.1. Central node (CN) initiates. The follow objects are generated by CN:

1. �X1X1 = [1], �X2X2|X1 = [0.99], �X3X3|X2,X1 = [0.9818182].
2. C1 = �X1X

+
1
�−1

X1X1
= [0.1

0.1

]
, C2 = �X2X3|X1(�X2X2|X1)

−1 = [0.09090909].
3. Generated from random distribution:

P1 =
⎡
⎣ 65.18644
−20.08849
135.41011

⎤
⎦ , P2 =

⎡
⎣−181.81430

280.12343
−26.61653

⎤
⎦ , P3 =

⎡
⎣−196.07673

89.11074
−44.19684

⎤
⎦ .

4.

μ̃X1 = μX1 + P1 =
⎡
⎣ 65.28644
−19.98849
135.51011

⎤
⎦ , μ̃X2 = μX2 + P2 =

⎡
⎣−181.71430

280.22343
−26.51653

⎤
⎦ ,

μ̃X3 = μX3 + P3 =
⎡
⎣−195.97673

89.21074
−44.09684

⎤
⎦ .

B.2. Central node passes to data node 1.

1. �X1X1 .
2. μ̃X1 .
3. P3.

B.3. Data node 1 computes. The first data node generates the following ma-
trices:

1. Generated from random distribution:

R1 =
⎡
⎣1494.8524

1930.3440
161.8065

⎤
⎦ , Q1 = [

4113.309 557.0139 964.1046
]
.

2. A1
1 = �−1

X1X1
(X1 − μ̃X1 + R1)

T = [
1429.206 1950.242 25.37639

]
.

3. A2
1 = �−1

X1X1
(X1 − μ̃X1 − R1)

T + Q1 = [
2552.81 −1353.432 665.868

]
.

And then the noisy log likelihood based on its data:
4. ˜LL1 = �3

i=1[1 ∗ log(2 ∗ π) + log(|�X1X1 |) + (X1 − μ̃X1 + R1)i�
−1
X1X1

(X1 −
μ̃X1 − R1)

T
i + RT

1 �−1
X1X1

R1] = 23,324.09.

B.4. Data node 1 passes to central node.

1. A1
1.

2. A2
1.

SECURE MAXIMUM LIKELIHOOD ESTIMATION 903

B.5. Data node 1 passes data node 2.

1. R1.
2. Q1.
3. ˜LL1.

B.6. Central node computes. First half of noisy conditional mean parame-
ter:

1. B1 = μ̃X+
1

+ (�X1X
+
1
A1

1)
T =

[−38.79370 −53.05613
475.24768 284.23498
−23.97889 −41.55920

]
.

B.7. Central node passes to data node 2.

1. P1.
2. B1.
3. C1.
4. �X2X2|X1 .

B.8. Data node 2 computes. Second half of noisy conditional mean parame-
ter and partially de-noised log likelihood:

1. μ̃X+
1 |X1

= B1 − C1(R1 − P1) =
[−181.76030 −196.02273

280.20443 89.19174
−26.61853 −44.19884

]
.

2. ˜LL∗
1 = ˜LL1 − Q1P1 = −364,167.8.

B.9. Data node 2 computes. The second data node generates the following
matrices:

1. Generated from random distribution:

R2 =
⎡
⎣ 214.6229

860.1230
1393.1503

⎤
⎦ , Q2 = [

781.3601 530.806 227.6579
]
.

2.

A1
2 = �−1

X2X2|X1
(X2 − μ̃X2|X1 + R2)

T

= [
401.7103 586.5339 1434.544

]
.

3.

A2
2 = �−1

X2X2|X1
(X2 − μ̃X2|X1 − R2)

T + Q2

= [
749.4888 −620.2823 −1152.243

]
.

4. Generated from random distribution: M2 =
[1437.0787

323.9371
301.7027

]
.

904 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

5. μ̃∗
X3|X1

= μ̃X3|X1 + M2 =
[1241.0559

413.1288
257.5039

]
.

And then the noisy log likelihood based on its data:
6. ˜LL2 = ∑3

i=1[1 ∗ log(2 ∗ π) + log(|�X2X2|X1 |) + (X2 − μ̃X2|X1 + R2)i ×
�−1

X2X2|X1
(X2 − μ̃X2|X1 − R2)

T
i + RT

2 �−1
X2X2|X1

R2] = 387,491.9.

B.10. Data node 2 passes to central node.

1. A1
2.

2. A2
2.

3. μ̃∗
X3|X1

.

B.11. Data node 2 passes to data node 3.

1. R2.
2. Q2.
3. ˜LL1+2 = ˜LL∗

1 + ˜LL2 = −250,686.5.
4. M2.

B.12. Central node computes. First half of noisy conditional mean parame-
ter:

1. B2 = μ̃∗
X3|X1

+ (�X2X
+
2 |X1

A1
2)

T =
[1277.2099

465.9168
386.6128

]
.

B.13. Central node passes to data node 3.

1. P2.
2. B2.
3. C2.
4. �X3X3|X1,X2 .

B.14. Data node 3 computes. Second half of noisy conditional mean param-
eter and partially de-noised log likelihood:

1. μ̃X3|X2,X1 = B2 − M2 − C2(R2 − P2) =
[−195.90854

89.25255
−44.15956

]
.

2. ˜LL∗
1+2 = ˜LL1+2 − Q2P2 = −251,255.8.

B.15. Data node 3 computes. The third data node generates the following
matrices:

1. Generated from random distribution:

R3 =
⎡
⎣ 363.1359

310.8918
1739.9768

⎤
⎦ , Q3 = [

1848.916 1849.285 309.7504
]
.

SECURE MAXIMUM LIKELIHOOD ESTIMATION 905

2.

A1
3 = �−1

X3X3|X2,X1
(X3 − μ̃X3|X2,X1 + R3)

T

= [
569.1629 228.6159 1816.524

]
.

3.

A2
3 = �−1

X3X3|X2,X1
(X3 − μ̃X3|X2,X1 − R3)

T + Q3

= [
1678.358 1444.602 −1418.123

]
.

And then the noisy log likelihood based on its data:
4. ˜LL3 = ∑3

i=1[1 ∗ log(2 ∗ π) + log(|�X3X3|X2,X1 |) + (X3 − μ̃X3|X2,X1 + R3)i ×
�−1

X3X3|X2,X1
(X3 − μ̃X3|X2,X1 − R3)

T
i + RT

3 �−1
X3X3|X2,X1

R3] = 48,542.58.

B.16. Data node 3 passes to central node.

1. A1
3.

2. A2
3.

B.17. Data node 3 passes to data node 1.

1. Q3.
2. ˜LL1+2+3 = ˜LL∗

1+2 + ˜LL3 = −202,713.2.

B.18. Data node 1 computes. Partially de-noised log likelihood:

1. ˜LL∗
1+2+3 = ˜LL1+2+3 − Q3P3 = 8715.143.

B.19. Data node 1 passes to central node.

1. ˜LL∗
1+2+3.

B.20. Node final de-noising. Let LLNoisei = ∑n
i=1[PiA

1
i + PiA

2
i + Pi ×

�−1
XiXi

Pi]. The central node computes the following:

1. LL = ˜LL∗
1+2+3 + LLNoise1 + LLNoise2 + LLNoise3 = 8715.143 + 364,174.6 +

−112,904.4 + −259,957.5 = 27.91202.

Compare with:

1. LL = ∑3
i=1[3 ∗ log(2 ∗ π) + log(|�|) + (Z − μ)i�

−1(Z − μ)Ti = 27.91202.

This concludes one complete secure calculation of the true log likelihood of a
set of parameters given the data. Parameter estimates are obtained by maximizing
over this value using an optimizer of choice.

906 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

Algorithm 3 Central Node Initiate (CN_Initiate)
Input: μ, �

Output: �XkXk |X−
k

, Pk , μ̃Xk
, Ck ∀k ∈ K

1: for k in 1, . . . ,K do
2: Compute �XkXk |X−

k

3: Generate random Pk ∈ R
n×pk

4: Compute μ̃Xk
= μXk

+ Pk

5: Compute Ck = �XkX
+
k |X−

k
(�XkXk |X−

k
)−1

6: end for

APPENDIX C: INTERNAL ALGORITHMS

Algorithms 3 - 9 give the internal functions for Algorithm 2. Reference notation:

• Pk , Rk , Qk , Mk random noise matrices with dimensions Rn×pk , Rn×pk , Rpk×n,
R

n×pk , respectively.
• A1

k = �−1
XkXk |X−

k

(Xk − μ̃Xk |X−
k

+ Rk).

• A2
k = �−1

XkXk |X−
k

(Xk − μ̃Xk |X−
k

− Rk) + Qk .

• Bk = μ̃X+
k |X−

k
+ �XkX

+
k |X−

k
A1

k .

• Ck = �XkX
+
k |X−

k
(�XkXk |X−

k
)−1.

• μ̃X+
k |X−

k+1
= Bk − Mk − Ck(Rk − Pk).

Algorithm 4 External Node Computation (EN_Compute)

Input: μ̃Xk |X−
k
,�XkXk |X−

k
,Xk, L̃L∗∑k−1

j=1 j

Output: L̃L�k
j=1j

,A1
k,A

2
k,Rk,Qk

1: Generate random Rk ∈ R
n×pk

2: Generate random Qk ∈ R
pk×n

3: Compute A1
k = �−1

XkXk |X−
k

(Xk − μ̃Xk |X−
k

+ Rk)

4: Compute A2
k = �−1

XkXk |X−
k

(Xk − μ̃Xk |X−
k

− Rk) + Qk

5: Compute L̃Lk = computeNoisyLL(μ̃Xk |X−
k
,�XkXk |X−

k
,Xk,Rk)

6: if L̃L∗∑k−1
j=1 j

! =∅ then

7: L̃L∑k
j=1 j = L̃L∗∑k−1

j=1 j
+ L̃Lk

8: else
9: L̃L∑k

j=1 j = L̃Lk

10: end if

SECURE MAXIMUM LIKELIHOOD ESTIMATION 907

Algorithm 5 Compute Noisy LL (computeNoisyLL)
Input: μ̃Xk |X−

k
,�XkXk |X−

k
,Xk,Rk

Output: L̃Lk

1: Compute L̃Lk = ∑n
i=1[pk log(2π) + log(|�XkXk |X−

k
|) + (Xki − μ̃Xk |X−

k
+

Rk)�
−1
XkXk

(Xki − μ̃Xk |X−
k

− Rk)
T + RT

k �−1
XkXk |X−

k

Rk] = LLk − A1
kP

T
k −

Pk(A
2
k)

T − Pk�
−1
XkXk

P T
k + PkQk

Algorithm 6 Central Node Adjustment (CN_Adjust)

Input: A1
k, μ̃X+

k |X−
k
,�XkXk |X−

k

Output: Bk

1: Compute Bk = μ̃X+
k |X−

k
+ (�XkX

+
k |X−

k
A1

k)
T

Algorithm 7 External Node Adjustment (EN_Adjust)

Input: Bk,Ck,Rk,Pk,Qk, L̃L∑k
j=1 j ,Mk

Output: L̃L∗∑k
j=1 j

, μ̃X+
k |X−

k+1
, μ̃∗

X+
k+1|X−

k+1
,Mk+1

1: Compute L̃L∗∑k
j=1 j

= L̃L∑k
j=1 j − PkQ

T
k

2: if Mk! = ∅ then
3: Compute μ̃X+

k |X−
k+1

= Bk − Mk − Ck(Rk − Pk)

4: else
5: Compute μ̃X+

k |X−
k+1

= Bk − Ck(Rk − Pk)

6: end if
7: Generate Mk+1 ∈ R

n×pk

8: Compute μ̃∗
X+

k+1|X−
k+1

= μ̃X+
k+1|X−

k+1
+ Mk+1

Algorithm 8 First Node Adjustment (FN_Adjust)

Input: L̃L∑K
j=1 j ,PK,QK

Output: L̃L∗∑K
j=1 j

1: Compute L̃L∗∑K
j=1 j

= L̃L∑K
j=1 j − PKQT

K

908 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

Algorithm 9 Central Node Final De-noising (CN_Final)

Input: L̃L∗∑K
j=1 j

,Pk,A
1
k,A

2
k,�XkXk |X−

k
∀k ∈ K

Output: LL∑K
j=1 j

1: for k in 1, . . . ,K do
2: Compute LLNoisek = ∑n

i=1[A1
kP

T
k + Pk(A

2
k)

T + Pk�
−1
XkXk |X−

k

P T
k]

3: end for
4: Compute LL∑K

j=1 j = L̃L∗∑K
j=1 j

+ ∑K
j=1 LLNoisej

APPENDIX D: ALGORITHMS FROM PREVIOUS WORK

Algorithms 10 - 12 detail previous methods. For Algorithm 10, suppose we have
two parties, with data X1 ∈R

n×p1 and X2 ∈ R
n×p2 , who wish to securely compute

the off-diagonal elements of the covariance matrix XT
1 X2.

Algorithm 10 Secure Matrix Multiplication [Karr et al. (2009)]

Input: X1 ∈ R
n×p1 and X2 ∈ R

n×p2 held by party 1 and 2 respectively
Output: XT

1 X2

1: Party 1 generates an orthonormal matrix Z ∈ R
n×a , such that ZT

i X1j = 0 ∀i, j

(columns)
2: Party 1 sends Z to party 2
3: Party 2 computes W = (I − ZZT)X2 where I ∈ R

n×n is the identity matrix
4: Party 2 sends W to party 1
5: Party 1 computes XT

1 W = XT
1 (I − ZZT)X2 = XT

1 X2

6: (Optional) Party 1 sends XT
1 X2 to party 2

Algorithm 11 Exponential family likelihood by oblivious transfer [Lin and Karr
(2010)]
Input: Data matrices X1, X2 held by parties 1 and 2 respectively
Output: θ̂ = arg maxθ a(θ)T

∑n
i=1 t (Xi) − nc(θ).

1: Party 1 generates a vector W of length s, one component of which is X1i , and
the other s − 1 of which are random, and sends it to party 2

2: Party 2 computes t (W1,X2i) . . . t (Ws,X2i), generates a random value εi , and
calculates t (W1,X2i) − εi . . . t (Ws,X2i) − εi

3: Party 1 obtains t (X1i ,X2i) − εi from these using 1 out of s oblivious transfer
[Di Crescenzo, Malkin and Ostrovsky (2000)]

4: Party 1 holds �i[t (X1i ,X2i) − εi] and party 2 holds �iεi , which add to∑n
i=1 t (X1i ,X2i)

SECURE MAXIMUM LIKELIHOOD ESTIMATION 909

Algorithm 12 Nonsecure Passing Algorithm [Snoke, Brick and Slavković (2016)]

Input: μ, � (central node), Xk ∈ R
n×pk ∀k ∈ K (data nodes)

Output: LL∑K
j=1 j

1: CN → DN1: �, μ

2: DN1 compute: �X1X1 , μX1 , �X+
1 X+

1 |X1
, μ̂X+

1 |X1

3: DN1 compute: LL1
4: DN1 → DN2: LL1, �X+

1 X+
1 |X1

, μ̂X+
1 |X1

5: for k in 2, . . . , (K − 1) do
6: DNk compute: �XkXk |X−

k
, μ̂Xk |X−

k
, �X+

k X+
k |X−

k+1
, μ̂X+

k |X−
k+1

7: DNk compute: LLk

8: DNk → DNk+1: LL�k
j=1j

, �X+
k X+

k |X−
k+1

, μ̂X+
k |X−

k+1

9: end for
10: DNK compute: �XKXK |X−

K
, μ̂XK |X−

K

11: DNK compute: LLK

12: DNK → CN: LL∑K
j=1 j

APPENDIX E: DATA LEAKAGE EVALUATION

We acknowledge an asymmetry among the objects received by the different
nodes. By showing that none of the nodes receive disclosive statistics, we make
this asymmetry irrelevant.

E.1. Node C.

E.1.1. Starting objects. Node C holds � and μ (model defined parameters not
statistics).

E.1.2. Received objects.

• A1
k for k ∈ 1, . . . ,K .

• A2
k for k ∈ 1, . . . ,K .

• μ̃∗
X+

k |X−
k

for k ∈ 2, . . . ,K − 1.

• L̃L∗∑K
j=1 j

.

E.1.3. Analysis. The central node receives A1
k and A2

k for i ∈ 1, . . . ,K , such
that

A1
k = �−1

XkXk |X−
k

(Xk − μ̃Xk |X−
k

+ Rk)

= �−1
XkXk |X−

k

(Xk − μXk |X−
k

− Pk + Rk),(22)

910 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

A2
k = �−1

XkXk |X−
k

(Xk − μ̃Xk |X−
k

− Rk) + Qk

= �−1
XkXk |X−

k

(Xk − μXk |X−
k

− Pk − Rk) + Qk.

Clearly, it is important that Xk should not be recovered, and for k > 1, μ̃Xk |X−
k

is also risky because it is a statistic. Importantly, the central node knows
�−1

XkXk |X−
k

and Pk , so these can be differenced out. To protect disclosure, Rk

and Qk are random noise added which the central node does not know. Rk pro-
tects the values in A1

k and Qk protects from learning Rk by differencing the
two equations (both A1 and A2 are needed to calculate the correct log likeli-
hood).

Next, the central node receives μ̃∗
X+

k |Xk−1
for k ∈ 2, . . . ,K − 1 such that

μ̃∗
X+

k |X−
k

= μ̃X+
k |X−

k
+ Mk

= μX+
k |X−

k
+ Pk + Mk.

(23)

The central node knows Pk , so Mk is essential here to protect the true value of
the conditional mean statistic. With that, there is no way for the central node to
recover it.

Lastly, the central node receives L̃L∗∑K
j=1 j

. They can remove all the noise (as

we want) to get the true total log likelihood, LL∑K
j=1 j , since this is one value

composed across the entire set of partitioned databases. As assumed, this total is
not risky and is necessary to obtain accurate estimates.

E.2. Node 1.

E.2.1. Starting objects. Node 1 holds X1.

E.2.2. Received objects.

• �X1X1 .
• μ̃X1 .
• PK .
• L̃L∑K

j=1 j .

• QK .

E.2.3. Analysis. The only object received by Node 1 that is conditioned on
other nodes’ data and potentially disclosive is L̃L∑K

j=1 j .

Fortunately, this value is heavily perturbed with a variety of noise that Node 1
cannot access. Another note is that Node 1 could potentially estimate the value
of P1, since μ̃X1 = μX1 + P1 and the sample mean of Node 1’s data should con-
verge to μX1 . Again though, this value is nondisclosive, since there is not anything
Node 1 can learn from having P1.

SECURE MAXIMUM LIKELIHOOD ESTIMATION 911

E.3. Nodes 2 through K.

E.3.1. Starting objects. Node k holds Xk :

• �XkXk |k− .
• Bk−1.
• Ck−1.
• Pk−1.
• L̃L

�k−1
j=1j

.

• Rk−1.
• Qk−1.
• Mk−1 (M1 = 0).

E.3.2. Analysis. There is an asymmetry among nodes, since Nodes 2 and fol-
lowing receive more information than Node 1. That being said, if none of it is
actually disclosive the asymmetry is acceptable.

The first objects received that are potentially disclosive are Bk−1 and Ck−1 such
that

Bk−1 = μ̃X+
k−1|x−

k−1
+ �Xk−1X

+
k−1|x−

k−1
A1

k−1

= μX+
k−1|x−

k−1
+ (

Pk Pk+1 · · · PK

)
(24)

+ �Xk−1X
+
k−1|x−

k−1
(�Xk−1Xk−1|x−

k−1
)−1

× (Xk−1 − μ̃Xk−1|x−
k−1

− Pk−1 + Rk−1),

Ck−1 = �Xk−1X
+
k−1|x−

k−1
(�Xk−1Xk−1|x−

k−1
)−1.(25)

Node k is able to remove some of the noise, since

Bk−1 − Ck−1(Rk−1 − Pk−1)

= μ̃X+
k−1

+ �Xk−1X
+
k−1|x−

k−1
�−1

Xk−1Xk−1|x−
k−1

(Xk−1 − μ̃Xk−1|x−
k−1

).

The key is that the noise (Pk Pk+1 · · · PK) is still present to protect the true
value of the data and parameters. More importantly, since Node k does not know
any of the other individual components (apart from Pk−1 and Rk−1), it cannot
decompose Bk−1 or Ck−1 further.

Ck−1 is unperturbed, but two things convince us it is okay to share these. First,
it is a product of two matrices, neither of which Node k knows. Second, these are
low risk objects. It is possible Node k learns the scale of Node (k − 1)’s data, but
for now we consider that acceptable.

Lastly, Node k receives L̃L∑k−1
j=1 j

, a noisy version of the running total log like-

lihood. Node k can remove some noise based on Pk−1 and Qk−1 (which we want),
but does not know A1

k−1 or A2
k−1, and thus cannot recover the true LL value.

912 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

REFERENCES

ARBUCKLE, J. L., MARCOULIDES, G. A. and SCHUMACKER, R. E. (1996). Full information esti-
mation in the presence of incomplete data. Adv. Struct. Equ. Model. Issues Techn. 243 277.

BOKER, S. M., BRICK, T. R., PRITIKIN, J. N., WANG, Y., OERTZEN, T. V., BROWN, D., LACH, J.,
ESTABROOK, R., HUNTER, M. D., MAES, H. H. and NEALE, M. C. (2015). Maintained Indi-
vidual Data Distributed Likelihood Estimation (MIDDLE). Multivar. Behav. Res. 50 706–720.

CALANDRINO, J. A., KILZER, A., NARAYANAN, A., FELTEN, E. W. and SHMATIKOV, V. (2011).
“You might also like:” privacy risks of collaborative filtering. In Security and Privacy (SP), 2011
IEEE Symposium on 231–246. IEEE.

DE MONTJOYE, Y.-A., SHMUELI, E., WANG, S. S. and PENTLAND, A. S. (2014). Openpds: Pro-
tecting the privacy of metadata through safeanswers. PLoS ONE 9 e98790.

DI CRESCENZO, G., MALKIN, T. and OSTROVSKY, R. (2000). Single database private information
retrieval implies oblivious transfer. In Advances in Cryptology—EUROCRYPT 2000 (Bruges).
Lecture Notes in Computer Science 1807 122–138. Springer, Berlin. MR1772023

DINUR, I. and NISSIM, K. (2003). Revealing information while preserving privacy. In Proceedings
of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems 202–210. ACM.

DUNST, C. J., TRIVETTE, C. M. and DEAL, A. G. (1988). Enabling and Empowering Families:
Principles and Guidelines for Practice. Brookline Books, Cambridge, MA.

DWORK, C. (2008). Differential privacy: A survey of results. In Theory and Applications of Models
of Computation. Lecture Notes in Computer Science 4978 1–19. Springer, Berlin. MR2472670

FIENBERG, S. E., NARDI, Y. and SLAVKOVIĆ, A. B. (2009). Valid statistical analysis for logis-
tic regression with multiple sources. In Protecting Persons While Protecting the People 82–94.
Springer.

FIENBERG, S. E. and SLAVKOVIĆ, A. B. (2011). Data privacy and confidentiality. In International
Encyclopedia of Statistical Science 342–345. Springer.

FIENBERG, S. E., FULP, W. J., SLAVKOVIC, A. B. and WROBEL, T. A. (2006). “Secure” log-linear
and logistic regression analysis of distributed databases. In Privacy in Statistical Databases 277–
290. Springer.

GAYE, A., MARCON, Y., ISAEVA, J., LAFLAMME, P., TURNER, A., JONES, E. M., MIN-
ION, J., BOYD, A. W., NEWBY, C. J., NUOTIO, M.-L., WILSON, R., BUTTERS, O.,
MURTAGH, B., DEMIR, I., DOIRON, D., GIEPMANS, L., WALLACE, S. E., BUDIN-LJØSNE, I.,
SCHMIDT, C. O., BOFFETTA, P., BONIOL, M., BOTA, M., CARTER, K. W., DEKLERK, N.,
DIBBEN, C., FRANCIS, R. W., HIEKKALINNA, T., HVEEM, K., KVALØY, K., MILLAR, S.,
PERRY, I. J., PETERS, A., PHILLIPS, C. M., POPHAM, F., RAAB, G., REISCHL, E., SHEE-
HAN, N., WALDENBERGER, M., PEROLA, M., VAN DEN HEUVEL, E., MACLEOD, J., KNOP-
PERS, B. M., STOLK, R. P., FORTIER, I., HARRIS, J. R., WOFFENBUTTEL, B. H. R.,
MURTAGH, M. J., FERRETTI, V. and BURTON, P. R. (2014). DataSHIELD: Taking the anal-
ysis to the data, not the data to the analysis. Int. J. Epidemiol. 43 1929–1944.

GHOSH, J., REITER, J. P. and KARR, A. F. (2007). Secure computation with horizontally partitioned
data using adaptive regression splines. Comput. Statist. Data Anal. 51 5813–5820. MR2407679

GOLDWASSER, S. (1997). Multi party computations: Past and present. In Proceedings of the Six-
teenth Annual ACM Symposium on Principles of Distributed Computing 1–6. ACM.

HAYNSWORTH, E. V. (1968). On the Schur complement. Technical Report, DTIC Document.
HECHT, D. B., HUNTER, M. D. and BEASLEY, L. O. (2016). Family KINnections: A Kinship Nav-

igation Program. Presented to the University of Oklahoma Health Sciences Center Department of
Pediatrics Section of Developmental and Behavioral Pediatrics at the Section Research Meeting.

HOMER, N., SZELINGER, S., REDMAN, M., DUGGAN, D., TEMBE, W., MUEHLING, J., PEAR-
SON, J. V., STEPHAN, D. A., NELSON, S. F. and CRAIG, D. W. (2008). Resolving individuals

http://www.ams.org/mathscinet-getitem?mr=1772023
http://www.ams.org/mathscinet-getitem?mr=2472670
http://www.ams.org/mathscinet-getitem?mr=2407679

SECURE MAXIMUM LIKELIHOOD ESTIMATION 913

contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyp-
ing microarrays. PLoS Genet. 4 e1000167.

HUNDEPOOL, A., DOMINGO-FERRER, J., FRANCONI, L., GIESSING, S., NORDHOLT, E. S.,
SPICER, K. and DE WOLF, P.-P. (2012). Statistical Disclosure Control. Wiley Series in Survey
Methodology. Wiley, Chichester. MR3026260

KARR, A. F., LIN, X., SANIL, A. P. and REITER, J. P. (2005). Secure regression on distributed
databases. J. Comput. Graph. Statist. 14 263–279. MR2160813

KARR, A. F., FULP, W. J., VERA, F., YOUNG, S. S., LIN, X. and REITER, J. P. (2007). Secure,
privacy-preserving analysis of distributed databases. Technometrics 49 335–345. MR2408637

KARR, A. F., LIN, X., SANIL, A. P. and REITER, J. P. (2009). Privacy-preserving analysis of
vertically partitioned data using secure matrix products. J. Off. Stat. 25 125.

KISSNER, L. and SONG, D. (2005). Privacy-preserving set operations. In Advances in Cryptology—
CRYPTO 2005. Lecture Notes in Computer Science 3621 241–257. Springer, Berlin. MR2237310

LIN, X. and KARR, A. F. (2010). Privacy-preserving maximum likelihood estimation for distributed
data. J. Priv. Confid. 1 6.

LINDELL, Y. and PINKAS, B. (2009). Secure multiparty computation for privacy-preserving data
mining. J. Priv. Confid. 1 5.

MEREDITH, W. and TISAK, J. (1990). Latent curve analysis. Psychometrika 55 107–122.
NARDI, Y., FIENBERG, S. E. and HALL, R. J. (2012). Achieving both valid and secure logistic

regression analysis on aggregated data from different private sources. J. Priv. Confid. 4 9.
NASH, J. C. and VARADHAN, R. (2011). Unifying optimization algorithms to aid software system

users: optimx for R. J. Stat. Softw. 43 1–14.
NEALE, M. C., HUNTER, M. D., PRITIKIN, J. N., ZAHERY, M., BRICK, T. R., KIRK-

PATRICK, R. M., ESTABROOK, R., BATES, T. C., MAES, H. H. and BOKER, S. M. (2016).
OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika 81 535–549.
MR3505378

R CORE TEAM (2017). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria.

RAGHUNATHAN, T. E., REITER, J. P. and RUBIN, D. B. (2003). Multiple imputation for statistical
disclosure limitation. J. Off. Stat. 19 1–17.

REITER, J. P., KOHNEN, C. N., KARR, A. F., LIN, X. and SANIL, A. P. (2004). Partitioned,
Vertically and Data, Partially Overlapping. Technical Report, NISS. Available at https://www.
niss.org/sites/default/files/technicalreports/tr146.pdf.

SAMIZO, Y. (2016). Secure statistical analyses on vertically distributed databases. Master’s thesis,
The Pennsylvania State Univ.

SANIL, A. P., KARR, A. F., LIN, X. and REITER, J. P. (2004). Privacy preserving regression mod-
elling via distributed computation. In Proceedings of the Tenth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining 677–682. ACM.

SAVAGE, C. J. and VICKERS, A. J. (2009). Empirical study of data sharing by authors publishing
in PLoS journals. PLoS ONE 4 e7078. DOI:10.1371/journal.pone.0007078.

SCHAFER, J. L. (1997). Analysis of Incomplete Multivariate Data. Monographs on Statistics and
Applied Probability 72. Chapman & Hall, London. MR1692799

SCHUR, I. (1905). Neue Begründung der Theorie der Gruppencharaktere. Sitzungsberichte
Königl. Preuss. Akad. Wiss. 406–432.

SLAVKOVIC, A. B., NARDI, Y. and TIBBITS, M. M. (2007). “Secure” logistic regression of hori-
zontally and vertically partitioned distributed databases. In Data Mining Workshop, 2007, ICDM
Workshops 2007, Seventh IEEE International Conference on Data Mining 723–728.

SNOKE, J., BRICK, T. and SLAVKOVIĆ, A. (2016). Accurate estimation of structural equation mod-
els with remote partitioned data. In International Conference on Privacy in Statistical Databases
190–209. Springer.

http://www.ams.org/mathscinet-getitem?mr=3026260
http://www.ams.org/mathscinet-getitem?mr=2160813
http://www.ams.org/mathscinet-getitem?mr=2408637
http://www.ams.org/mathscinet-getitem?mr=2237310
http://www.ams.org/mathscinet-getitem?mr=3505378
https://www.niss.org/sites/default/files/technicalreports/tr146.pdf
https://doi.org/10.1371/journal.pone.0007078
http://www.ams.org/mathscinet-getitem?mr=1692799
https://www.niss.org/sites/default/files/technicalreports/tr146.pdf

914 SNOKE, BRICK, SLAVKOVIĆ AND HUNTER

SULLIVAN, C. M. (1992). An Overview of Disclosure Principles. Bureau of the Census.
VAIDYA, J. and CLIFTON, C. (2004). Privacy preserving naïve Bayes classifier for vertically parti-

tioned data. In Proceedings of the Fourth SIAM International Conference on Data Mining 522–
526. SIAM, Philadelphia, PA. MR2388481

VAIDYA, J., CLIFTON, C., KANTARCIOGLU, M. and PATTERSON, A. S. (2008). Privacy-preserving
decision trees over vertically partitioned data. ACM Trans. Knowl. Discov. Data 2 14.

WILLENBORG, L. and DE WAAL, T. (2001). Elements of Statistical Disclosure Control. Lecture
Notes in Statistics 155. Springer, New York. MR1866909

YAO, A. C. (1982). Protocols for secure computations. In 23rd Annual Symposium on Foundations
of Computer Science (Chicago, IL, 1982) 160–164. IEEE, New York. MR0780394

J. SNOKE

A. SLAVKOVIĆ

STATISTICS DEPARTMENT

PENNSYLVANIA STATE UNIVERSITY

UNIVERSITY PARK, PENNSYLVANIA 16802
USA
E-MAIL: snoke@psu.edu

sesa@psu.edu

T. R. BRICK

HUMAN DEVELOPMENT

AND FAMILY STUDIES DEPARTMENT

PENNSYLVANIA STATE UNIVERSITY

UNIVERSITY PARK, PENNSYLVANIA 16802
USA
E-MAIL: tbrick@psu.edu

M. D. HUNTER

DEPARTMENT OF PEDIATRICS

UNIVERSITY OF OKLAHOMA HEALTH SCIENCES CENTER

OKLAHOMA CITY, OKLAHOMA 73104
USA
E-MAIL: mhunter1@ouhsc.edu

http://www.ams.org/mathscinet-getitem?mr=2388481
http://www.ams.org/mathscinet-getitem?mr=1866909
http://www.ams.org/mathscinet-getitem?mr=0780394
mailto:snoke@psu.edu
mailto:sesa@psu.edu
mailto:tbrick@psu.edu
mailto:mhunter1@ouhsc.edu

	Introduction
	Previous secure methods
	Sample covariance estimation by secure matrix multiplication
	Maximum likelihood estimation by secure summation and oblivious transfer

	Distributed likelihood estimation
	Modeling by multivariate normal MLE
	Horizontally distributed likelihood
	Vertically distributed likelihood
	Marginal and conditional parameters for vertical partitions

	Secure algorithm for vertically partitioned data
	Notation
	Adaptation from the nonsecure algorithm
	Algorithm walk-through

	Simulations for accuracy and computational complexity
	Kinship foster placement study
	Discussion
	Appendix A: Additional model table
	Appendix B: Numerical example
	Input
	Central node (CN) initiates
	Central node passes to data node 1
	Data node 1 computes
	Data node 1 passes to central node
	Data node 1 passes data node 2
	Central node computes
	Central node passes to data node 2
	Data node 2 computes
	Data node 2 computes
	Data node 2 passes to central node
	Data node 2 passes to data node 3
	Central node computes
	Central node passes to data node 3
	Data node 3 computes
	Data node 3 computes
	Data node 3 passes to central node
	Data node 3 passes to data node 1
	Data node 1 computes
	Data node 1 passes to central node
	Node ﬁnal de-noising

	Appendix C: Internal algorithms
	Appendix D: Algorithms from previous work
	Appendix E: Data leakage evaluation
	Node C
	Starting objects
	Received objects
	Analysis

	Node 1
	Starting objects
	Received objects
	Analysis

	Nodes 2 through K
	Starting objects
	Analysis

	References
	Author's Addresses

