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Abstract: This paper studies high-dimensional linear discriminant analy-
sis (LDA). First, we review the �1 penalized least square LDA proposed in
[10], which could circumvent estimation of the annoying high-dimensional
covariance matrix. Then detailed theoretical analyses of this sparse LDA
are established. To be specific, we prove that the penalized estimator is �2
consistent in high-dimensional regime and the misclassification error rate
of the penalized LDA is asymptotically optimal under a set of reasonably
standard regularity conditions. The theoretical results are complementary
to the results to [10], together with which we have more understanding of
the �1 penalized least square LDA (or called Lassoed LDA).
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1. Introduction

Classification problem is important in a lot of fields such as pattern recognition,
bioinformatics etc. There are a few classic classification methods, including LDA
(linear discriminant analysis), logistic regression, naive bayes, SVM (support
vector machine). LDA is very popular due to its simplicity, robustness and great
performances in practice. When the number of features (or predictors) denoted
by p is fixed, under some regularity conditions, LDA is proved to be optimal
(see standard statistical text books such as [1]).

However, recent technology makes it easy to obtain data with very large
number of features, which makes it challenging to apply LDA in practice. One
problem is that when p is bigger than n (the number of observations), the co-
variance matrix of predictors performs very poorly – it is even not invertible. [2]
pointed out that the LDA performs poorly and can even perform just as random
guessing when p is big. A lot of researchers noticed that in high-dimensional clas-
sification problems, it is critical to have a “good” estimation of the covariance
matrix. [2] showed that one could use a diagonal matrix instead, which used the
idea of Naive Bayes and assumed that features are independent. [7] pointed out
that even if a “Naive Bayes” (or independence) rule is used, if there are too many
features in the model, the performance of LDA is still poor. So they proposed us-
ing only a small number of selected features. But the assumption that features
are independent is a little bit annoying. [15] proposed covariance-regularized
method to estimate covariance matrix by shrunken method. [12] studied sparse
LDA by assuming both the covariance matrix and the difference between the
mean vectors of two classes are sparse. Let Σ be the shared covariance matrix
and δ be the difference between the mean vectors. [6] proposed a sparse LDA by
directly assuming that Σ−1δ is sparse and their method circumvents estimation
of the inverse covariance matrix directly.

We’d like to emphasize here that there is a perfect connection between LDA
and the least squares. This connection was first established by [8]. Using this
connection, in fact, one could solve the LDA problem by directly using the vanilla
�1 penalized least squares, i.e. the Lasso ([13]). Using Lasso to solve sparse LDA
has already been proposed in [10]. They call it Lassoed discriminant analysis.
[10] showed that under irrepresentable condition ([14]) and some other regularity
conditions, the Lassoed discriminant analysis could consistently identify the
important features (or predictors) in high-dimensional regime. In this paper,
we mainly study the theoretical properties of the Lasso for solving sparse high-
dimensional LDA problems, which is a complementary to the results to [10].
The primary contributions of this paper are as follows.

1. Under the restricted eigenvalue condition on the covariance matrix and
some other regularity conditions, the Lassoed LDA estimator (defined
later) is proved to be �2 consistent in high-dimensional regime.

2. The misclassification error rate of the Lassoed discriminant analysis tends
to be asymptotically optimal.

We want to emphasize that the analysis for sparse LDA via the Lasso is quite
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different from that for the Lasso in sparse linear regression model. The main
reason is that for the Lasso problem, the response y is a linear combination of
predictors X1, . . . , Xp plus additive noise. But for LDA, although least squares
minβ ‖Y −Xβ‖22 is used, there is not any functional connection between binary
vector Y and the predictor matrix X.

The rest of this paper is organized as follows. In Section 2, we first give a
brief and clear review of the Lassoed discriminant analysis proposed in [10],
and then we establish the �2 consistency of the Lasso estimator to solve sparse
high-dimensional LDA problems. We also prove that the misclassification error
rate of the Lasso tends to be asymptotically optimal. We conclude in Section 3.
All proofs are postponed into appendix (Section 4).

2. Sparse LDA and its asymptotic properties

In this section, we first review the procedure of the sparse LDA via the penal-
ized least squares (Lasso). Then we provide the �2 consistency of the Lasso to
solve high-dimensional LDA problems under the restricted eigenvalue condition
and some other mild regularity conditions. Restricted eigenvalue condition on
the covariance matrix, has proved to be much weaker than the irrepresentable
condition. At last, we establish the asymptotic optimality of the corresponding
misclassification error rate in the sense that the Lasso tends to achieve the Bayes
error.

Throughout this paper, we assume that
{
x
(g)
i , i = 1, · · · , ng

}
are generated

independently from normal distributions N(μ(g),Σ), which share the same co-
variance matrix Σ but different means μ(g), where g = 1, 2. Let μ =

(
μ(1) +

μ(2)
)
/2, δ = μ(1) − μ(2) be the mean of and the difference beween two popu-

lation means, n = n1 + n2 be the total sample size, Δ2
p be the Mahalanobis

squared distance between two populations

Δ2
p :=

(
μ(1) − μ(2)

)T
Σ−1
(
μ(1) − μ(2)

)
,

and μ̂(g), Σ̂(g) be the well-known maximum likelihood estimates. All C’s below
are positive constant but differ from one to another.

2.1. Review of sparse LDA

To make our paper self-contained, we first review LDA and explain the connec-
tion between LDA and least squares in low-dimensional case. Then we breifly
introduce one direct method for solve sparse high-dimensional LDA problem
proposed in [10], which used the perfect connection between LDA and the least
squares.

The classic LDA approaches the classification problem by applying the Bayes
rule and classifies a new data point with equal prior weight for each class to
g = 1, at population level, if and only if

U(x) := (x− μ)
T
β∗ > 0, (2.1)
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where β∗ = Σ−1δ, which is called the fisher classification direction. However the
population parameters in (2.1) are always unknown in practice, their plug-in
estimates

μ̂ =
1

2

(
μ̂(1) + μ̂(2)

)
, Σ̂ =

1

n1 + n2

(
n1Σ̂

(1) + n2Σ̂
(2)
)

are used instead to get the sample LDA function

W(x) := (x− μ̂)
T
β̂lda, (2.2)

where β̂lda = Σ̂−1
(
μ̂(1) − μ̂(2)

)
.

The LDA function (2.2) could be explained from another point of view. First
we give a label to each data point. Let the label be 1 if the data point is
from N

(
μ(1),Σ

)
and −1 if it is from N

(
μ(2),Σ

)
. In fact, any binary code is

OK. Then, for simple notation, we pool all of these data points together. Let

zi = x
(1)
i for i = 1, 2, · · · , n1 and zn1+k = x

(2)
k for k = 1, 2, · · · , n2. Therefore

the class label yi = 1 for i = 1, 2, · · · , n1 and yn1+k = −1 for k = 1, 2, · · · , n2.
We also define the centered version of labels and design matrix as follows. Let
ỹi = yi − 1

n

∑n
i=1 yi and xi = zi − 1

n

∑n
i=1 zi. ỹi’s are the centered class labels

and X = [x1, x2, . . . , xn]
T ∈ R

n×p are called the centered design matrix.
Using notations above, the following lemma gives the connection between

LDA and the least quares, see Chaper 4 of [9], from which we can estimate the
fisher classification direction(β∗) without the estimates of the mean vectors and
the inverse of the covariance matrix separately.

Lemma 2.1. Consider the following least squares problem(
β̂ols, β̂ols

0

)
= argmax

β,β0

n∑
i=1

[
yi −

(
zTi β + β0

)]2
.

We have that, there exists a positive constant C such that β̂ols = Cβ̂lda.

Lemma 2.1 gives a perfect connection between LDA and the least squares,
though it only holds for low-dimensional settings. The good property of this con-
necting is that, we could circumvent estimation of the annoying high-dimensional
covariance matrix when we extend LDA to high-dimensional regime via the least
squares. [10] used this connection and proposed a direct approach to sparse dis-
criminant analysis defined as follows(

β̂(λ), β̂0(λ)
)
= argmax

β,β0

1

2n

n∑
i=1

[
yi −

(
zTi β + β0

)]2
+ λ‖β‖1. (2.3)

[10] mainly showed that the Lasso estimator, defined in (2.3), also called Las-
soed LDA estimator can consistently identify the important features under the
irrepresentable condition and some other regularity conditions. In the next sub-
section, we will derive the �2 consistency of the Lasso estimator to solve sparse
high-dimensional LDA problems under the restricted eigenvalue condtion on the
covariance matrix, together with a set of reasonably standard mild conditions.

To be more specific, the whole procedure using the Lasso to solve sparse LDA
could be described in Algorithm 1.
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Algorithm 1 Sparse LDA procedure
Require: (zi, yi), i = 1, 2, . . . , n

1. Calculate μ̂(1), μ̂(2) � the mean vectors of two classes
2. Solve the Lasso problem defined in (2.3). � discriminant direction
3. Give discriminant function � discriminant function

W(x) =

(
x− μ̂(1) + μ̂(2)

2

)T

β̂(λ).

return β̂(λ) – fisher discriminant direction; and W (x) – the discriminant function for a
new data point with features x.

2.2. �2 consistency

This subsection will focus on the �2 consistency of the Lassoed LDA estimator.
Though β̂(λ) is not close to β∗, it can be proved to be �2 consistent to an
intermediate variable β̃ defined in (2.4), which is a positive constant multiple of
β∗, see Lemma 2.2. From the property of hyperplane, the linear seperator with
β̃ is the same as that with β∗.

β̃ =

[
Σ+

n1n2

n2

(
μ(1) − μ(2)

)(
μ(1) − μ(2)

)T]−1 (
μ(1) − μ(2)

) 2n1n2

n2
. (2.4)

Lemma 2.2. There exists a positive constant C such that β̃ = Cβ∗. Specifically,
C can be displayed as

C =

[
2θn(1− θn)− θn(1− θn)

(
μ(1) − μ(2)

)T
β̃

]
,

where θn = n1/n is the sample size ratio of the first class.

This result could be seen from [1].
In the following, we will derive the conditions under which the �2 consistency

could be hold. Certainly, the Lassoed LDA can not work for an arbitary p. First,
we need to control the sample size (n), the number of predictors (p) and the
number of relevant features of discriminant direction (q := #{j : β∗

j �= 0}) to

satisfy the following condition (C1). When Δ2
p is too small, which is to say that

the two populations N(μ(g),Σ) are too close, we can not expect any classifier to
peforme well since the Bayes rule in this case is just as random guessing, which
could be seen directly from (2.7) in the next subsection. So we need to bound Δ2

p

away from below. We also need to balance the sample sizes of two classes and
control the maximum eigenvalue of the covariance matrix, which are commonly
used in high-dimensional settings. These conditions are listed in (C2). The key
condition for the �2 consistency of the Lasso-type estimator in high-dimensional
linear model is the restricted eigenvalue condtion, which was first proposed in
[3] and whose definition is defined in Definition 2.3.

(C1) q = o(
√

n/ log p) and log p = o(n).
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(C2) θn(1− θn) and Δp are bounded away from zero; λmax(Σ) is bounded from
above.

(C3) X (centered design matrix)satisfies restricted eigenvalue condition RE(γ, 3).

Definition 2.3 (Restricted Eigenvalue Condition RE(γ, α)). The design matrix
X satisfies restricted eigenvalue condition RE(γ, α), if there exists a γ > 0 such
that

uT

(
1

n
XTX

)
u ≥ γ‖u‖22,

for all u satisfying

‖uSc‖1 ≤ α‖uS‖1.

A few class of matrices have been proved to satisfy the restricted eigenvalue
condition with high probability([11, 5]), for example, the matrices of which
all entries are i.i.d. from a broad class of multivariate normal distributions.
Restricted eigenvalue condition has been proved to be nearly necessary to control
the �2 error in minimax setting in high-dimensional regression. Now under the
conditions given above, we give the first result of this paper.

Theorem 2.4. Under conditions (C1), (C2), (C3), and choosing λ =
Cλ

√
log p/n for some positive constant Cλ depending on

{
θn,Δ

2
p, λmax(Σ)

}
,

with probability converging to 1, we have

β̂(λ)− β̃ → 0.

More specifically, with probability greater than 1−O(p−1), we have

∥∥∥β̂(λ)− β̃
∥∥∥
1
≤ Cq

√
log p

n
,

∥∥∥β̂(λ)− β̃
∥∥∥
2
≤ C

√
q log p

n
,

where C is a sufficiently large constant.

From the distance between β̂(λ) and β̃, as long as (p, n, q) increase under

condition (C1), β̂(λ) is �2 consistent to β̃ with high probability, which is the first
contribution of this paper. To prove Theorem 2.4, we first give a deterministic
result in Lemma 2.5. For the sake of briefness, we use Y to shortly denote the
centered class labels (defined below) yi for i = 1, 2 · · · , n.

Note that the Lasso estimate β̂(λ) defined in Equation (2.3) is equivalent to
the following Lasso problem without an intercept.

β̂(λ) = argmax
β

1

2n

n∑
i=1

[
ỹi − xT

i β
]2

+ λ‖β‖1, (2.5)

where ỹi = yi − 1
n

∑n
i=1 yi and xi = zi − 1

n

∑n
i=1 zi are the centered class labels

and the centered observations respectively.
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Lemma 2.5. Suppose that X satisfies restricted eigenvalue condition RE(γ, 3).
For any β ∈ R

p with βSc = 0 and λ satisfying the following relationship

∥∥∥∥ 1nXT(Y −Xβ)

∥∥∥∥
∞

≤ 1

2
λ, (2.6)

for any Lasso estimator β̂(λ), we have

1. ‖β̂(λ)− β‖2 ≤ 3λ
√
q

γ ,

2. ‖β̂(λ)− β‖1 ≤ 12λq
γ ,

3. 1
n‖X(β̂(λ)− β)‖22 ≤ 9λ2q

γ .

This result is a deterministic result – no matter what relationship between
Y and Xβ is, as long as inequality (2.6) and restricted eigenvalue condition
holds. We could use this lemma to bound the distance between the Lasso es-
timator β̂(λ) and β̃. For simple linear regression, since Y − Xβ̃ (here β̃ is the
true parameter) is the noise vector and usually one assume it is (sub)Gaussian
distributed, it is very straightforward from Lemma 2.5 that one could choose
a suitable λ, such that inequality (2.6) holds and so do results (1), (2) and (3)
with high probability. But for classification problems, Y is binary coded and
clearly Y − Xβ̃ is not a i.i.d noise vector. We do not have a straightforward
choice of λ satisfing inequality (2.6) with high probability. Fortunately, with

upper bounds of
(
μ(1) − μ(2)

)T
β̃ and β̃TΣβ̃ given in Appendix, we could find a

suitable λ such that inequality (2.6) holds with high probability.

Theorem 2.6. Under conditions (C1) and (C2), with probability greater than
1−O(p−1), we have

∥∥∥∥ 1nXT(y −Xβ̃)

∥∥∥∥
∞

≤ C

√
log p

n
,

where C is a positive constant depending on
{
θn,Δ

2
p, λmax(Σ)

}
.

The right hand given in Theorem 2.6 is on the same order of λ used in linear
regression. And the proof of Theorem 2.6 is the most difficult part in the paper.
Once we have Theorem 2.6, together with Lemma 2.5, we immediately have the
consistent results in Theorem 2.4. We postpone all the proofs of Theorem 2.4,
Lemma 2.5 and Theorem 2.6 in appendix.

Theorem 2.4 gives �1 and �2 consistency of the Lassoed estimator using the
penalized least square LDA, which together with the variable selection property
established in [10], ensure that β̂(λ) is a good estimator of the fisher classification
direction β∗. The next subsection shows that the misclassification error rate of
this sparse LDA method tends to be aymptotically optimal, which once more
confirms us to use the Lassoed LDA in practice.
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2.3. Asymptotic optimal

Being linear with respect to x, U(x) and W(x) are both normal distributed no

matther which class x belongs to. Recall that W(x) =
(
x− μ̂(1)+μ̂(2)

2

)T
β̂(λ)

is the estimated discriminant function and U(x) = (x− μ)
T
β∗ is the optimal

(true but unknown) discriminant function. Through simple calculations, we have
the misclassification error R of U(x) and the misclassification probability Rn of
W(x) conditional on the training samples,

R := P (1|2) = P (2|1) = 1− Φ

(
1

2
Δp

)
, (2.7)

Rn :=
1

2

(
P̂ (2|1)+P̂ (1|2)

)
=1− 1

2
Φ

⎛
⎝(μ(1) − μ̂

)T
β̂√

β̂TΣβ̂

⎞
⎠− 1

2
Φ

⎛
⎝−
(
μ(2) − μ̂

)T
β̂√

β̂TΣβ̂

⎞
⎠,

where β̂ could be either β̂lda(β̂ols) or β̂(λ). It is well known that in the classic
settings when p is fixed, the fisher LDA asymptotically attains the optimal
misclassification rate defined in (2.7). Now for the high-dimensional extension,
one natural question is do we still have the optimality result? We answer this
question in this subsection under conditions (C1), (C2) and (C3) together with
a new condition (C4).

(C4) λmin(Σ) is bounded away from zero.

The results of asymptotic optimal misclassification rate is very similar to
the results in [6], where the author proposed a method like Danzig selector for
sparse LDA problem. Due to the similarity between Lasso and Danzig selector
estimator, our results and proof techniques are very similar – both try to bound
functions of a few normal statistics with high probabilities. We borrowed a few
techniques from [6].

Theorem 2.7. Under the same conditions in Theorem 2.4, together with con-
dition (C4) and

Δ3
p‖β∗‖1/20 = o

(√
n

log p

)
, (2.8)

we have
Rn(β̂(λ))

R
− 1 = O

(
Δ3

p

√
q log p

n

)
,

with probability greater than 1−O(p−1).

[6] provided a similar result for their Danzig selector type sparse LDA, which
could be displayed as

Rn

R
− 1 = O

(
Δ2

pq

√
log p

n

)
,
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by using notations defined in the present paper. These two rates are sligtly
different, which could be expected because of the similarity of Danzig selector
and the Lasso(see [3]). Note that Δ2

p = δTΣ−1δ and β∗ = Σ−1δ, as long as
conditions (C2) and (C4) hold, we have Δp = O(‖β∗‖2). When β∗

S is bounded
below and above, ‖β∗‖2 = O(

√
q), leading to the fact that Δp = O(

√
q). In

this case, the asymptotic rates of Danzig selector type sparse LDA and the
Lassoed LDA are exactly the same. The result given in Theorem 2.7 is called
asymptotically optimal, whose definition could be found in [12]. If we relax the
condition (2.8), we will prove that this sparse LDA method is asymptotically
sub-optimal, see [12] too.

Theorem 2.8. Under the same conditions in Theorem 2.7, except replacing
(2.8) with

Δp‖β∗‖1/20 = o

(√
n

log p

)
, (2.9)

we have

Rn(β̂(λ))−R → 0,

with probability greater than 1−O(p−1).

The proof of Theorem 2.7 and 2.8, which are both adapted from [6], are
postponed in appendix. Same as the analysis after Theorem 2.7, if Δp = O(

√
q),

the condition (2.9) can be rewritten as

q = o

(√
n

log p

)
,

which is contained in condition (C1). So in this case, we can derive the asymp-
totically sub-optimal property of the penalized least square LDA without any
further condition.

3. Conclusions

Efficient high-dimensional discriminant analysis is very demanding in today’s
real applications. Fisher’s LDA is a fundamental method. The extension of
LDA to high-dimension is crucial. We studied the asymptotic properties of the
Lassoed LDA estimator. The large sample results convince people to use this
simple method to solve LDA problem. [10] gives a variable selection consis-
tent result under irrepresentable condition and we now provide an �2 consistent
result under restricted eigenvalue condition. These results look similar to the
linear regression results. But the proofs here are much more complicated be-
cause the response (class label) and the separator (hyperplane) do not have a
straightforward stochastic relationship as the linear regression model.
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4. Appendix

This appendix contains technical proofs for our results. We first give a proof of
Theorem 2.4 by using the result in Lemma 2.5 and results in Theorem 2.6. Then
we prove Lemma 2.5 and Theorem 2.6. Finally, we prove Theorem 2.7 and 2.8.

4.1. Proof of Theorem 2.4

Proof. When λ is chosen to be cλ
√
log p/n for the same positive constant cλ as

in Theorem 2.6, from Theorem 2.6 we immediately have∥∥∥∥ 1nXT(y −Xβ̃)

∥∥∥∥
∞

≤ 1

2
λ,

with probability greater than 1 − O(p−1). Then by Lemma 2.5, we derive the

upper bounds for the �1 and �2 norm of the distance between β̂(λ) and β̃

∥∥∥β̂(λ)− β̃
∥∥∥
2
≤ 3λ

√
q

γ
=

3cλ
γ

√
q log p

n
, (4.1)

∥∥∥β̂(λ)− β̃
∥∥∥
1
≤ 12λq

γ
=

12cλq

γ

√
log p

n
. (4.2)

From inequalities (4.1), (4.2) together with condition (C1), we immediately have

the consistency of β̂(λ)

P
(
‖β̂(λ)− β̃‖2 → 0

)
→ 1,

P
(
‖β̂(λ)− β̃‖1 → 0

)
→ 1.

4.2. Proof of Lemma 2.5

Proof. Without any confusion, we use β̂ to shortly denote the Lassoed estimator
β̂(λ). Note that β̂ minimizes 1

2n‖Y −Xβ‖2+λ‖β‖1, for any β ∈ R
p with βSc = 0

we have
1

2n
‖Y −Xβ̂‖2 + λ‖β̂‖1 ≤ 1

2n
‖Y −Xβ‖2 + λ‖β‖1.

By arranging the terms and replacing β̂ with β + ν, we have

0 ≥
[
1

2n
‖Y −Xβ −Xν‖2 − 1

2n
‖Y −Xβ‖2

]
+ [λ‖β + ν‖1 − λ‖β‖1]

=
1

2n
‖Xν‖22 − 〈ν,XT(Y −Xβ)/n〉+ λ(‖βS + νS‖1 + ‖νSc‖1 − ‖βS‖1)

≥ 1

2n
‖Xν‖22 − (‖νS‖1 + ‖νSc‖1)‖XT(Y −Xβ)/n‖∞
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+λ(‖βS + νS‖1 + ‖νSc‖1 − ‖βS‖1)

≥ 1

2n
‖Xν‖22 − (‖νS‖1 + ‖νSc‖1)

λ

2
+ λ(‖νSc‖1 − ‖νS‖1)

=
1

2n
‖Xν‖22 +

λ

2
(‖νSc‖1 − 3‖νS‖1),

where 〈·, ·〉 denotes the inner product of two vectors. From the above inequality
we have

1

2n
‖Xν‖22 ≤ λ

2
(3‖νS‖1 − ‖νSc‖1) and ‖νSc‖1 − 3‖νS‖1 ≤ 0.

Together with RE(γ, 3), we immediately have that

γ‖ν‖22 ≤ 1

n
‖Xν‖22 ≤ λ(3‖νS‖1−‖νSc‖1) ≤ 3λ‖νS‖1 ≤ 3

√
qλ‖νS‖2 ≤ 3λ

√
q‖ν‖2.

Consequently,

‖ν‖2 ≤ 3λ
√
q

γ
and

1

n
‖Xν‖22 ≤ 9λ2q

γ
,

from which, we finally get

‖ν‖1 = ‖νS‖1 + ‖νSc‖1 ≤ 4‖νS‖1 ≤ 4
√
q‖νS‖2 ≤ 4

√
q‖ν‖2 =

12λq

γ
.

4.3. Proof of Theorem 2.6

4.3.1. Three useful lemmas

Before giving the proof of Theorem 2.6, we first introduce three technical lemmas
which are the main tools we used in this subsection. First the definition of sub-
exponential random variable and its corresponding concentration inequality are
given.

Definition 4.1 (Sub-exponential). A random variable X is sub-exponential
with parameters (σ, b), if for all |λ| < 1

b ,

E [exp[λ(X − E(X))]] ≤ exp

(
1

2
σ2λ2

)
.

Lemma 4.2. Suppose that (X1, X2) follows joint normal distribution with mean
(0, 0), variances σ2

1 , σ
2
2 and correlation ρ. Let σ2 be any positive real number such

that σ2 ≥ σ1σ2. Then
X1X2

σ2 − E
[
X1X2

σ2

]
is a mean 0 sub-exponential random

variable with parameter (
√
8, 4).

Proof. By definition, we need to prove for all |λ| < 1
4 ,

E

[
exp

[
λ

(
X1X2

σ1σ2
− E

[
X1X2

σ1σ2

])]]
≤ exp

(
4λ2
)
. (4.3)
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Since (X1, X2) follows a joint normal distribution, X2 can be written as

X2 = ρ
σ2

σ1
X1 + ε,

where ε has a normal distribution with mean 0 and variance (1 − ρ2)σ2
2 and is

independent of X1. So

E

[
exp

[
λ

(
X1X2

σ1σ2
− E

[
X1X2

σ1σ2

])]]

=E

[
exp

[
λ

(
X1(ρ

σ2

σ1
X1 + ε)

σ1σ2

)]]
e−λρ

=E

[
exp

(
λρ

X2
1

σ2
1

)
E

[
exp

[(
λX1ε

σ1σ2

)]
| X1

]]
e−λρ

=E

[
exp

(
λρ

X2
1

σ2
1

)
exp

(
λ2(1− ρ2)X2

1

2σ2
1

)]
e−λρ

=E

[
exp

([
λρ+

1

2
λ2(1− ρ2)

]
X2

1

σ2
1

)]
e−λρ

=
1√

1− 2λρ− λ2(1− ρ2)
e−λρ. (4.4)

Note that when |λ| ≤ 1
4 ,

λρ+
1

2
λ2(1− ρ2) ≤ 1

2
[2λρ+ λ(1− ρ2)] =

1

2
λ[2− (ρ− 1)2] ≤ λ ≤ 1

4
<

1

2
.

So (4.4) holds from the moment generating function of Chi-square distribution,
and from (4.4), to prove inequality (4.3), it is sufficient for us to verify

−λρ− 1

2
log(1− 2λρ− λ2(1− ρ2)) ≤ 4λ2.

Note that

log(1 + x) ≥ x− x2

2
, for all x ≥ 0,

log(1 + x) ≥ x− x2, for all − 1

2
< x < 0.

When −2λρ− λ2(1− ρ2) ≥ 0, we have

− λρ− 1

2
log(1− 2λρ− λ2(1− ρ2)) ≤ −λρ− 1

2

[
−2λρ− λ2(1− ρ2)

−(−2λρ− λ2(1− ρ2))2/2
]
=

1

2
λ2

[
(1− ρ2) +

(2ρ+ λ(1− ρ2))2

2

]

≤ 1

2
λ2

[
1 +

(2 + 1/4)2

2

]
≤ 2λ2.



Sparse LDA 2511

When −1
2 < −2λρ− λ2(1− ρ2) ≤ 0, we have

− λρ− 1

2
log(1− 2λρ− λ2(1− ρ2)) ≤ −λρ− 1

2

[
−2λρ− λ2(1− ρ2)

−(−2λρ− λ2(1− ρ2))2
] 1
2
λ2
[
(1− ρ2) + (2ρ+ λ(1− ρ2))2

]
≤ 1

2
λ2[1 + (2 + 1/4)2] ≤ 4λ2.

Lemma 4.3 (Gaussian Concentration Inequality). Let X be a vector of n in-
dependent standard normal random variable. Let f : Rn → R be an L-Lipschitz
function. Then, for all t > 0,

P (f(X)− Ef(X) ≥ t) ≤ e−t2/(2L2).

Lemma 4.4 (Concentration Inequality for Sub-exponential). For sub-exponen-
tial random variable X with parameter (σ, b),

P (X − EX ≥ t) ≤
{
exp(− t2

2σ2 ) if 0 ≤ t ≤ σ2

b

exp(− t
2b ) if t > σ2

b

The proof of Lemma 4.3 and Lemma 4.4 can be found in [4]. Here we omit
them for briefness. Now we begin to prove the main result of this section.

4.3.2. Proof of Theorem 2.6

Proof. Recall the definition of β̃,

β̃ = Σ−1
(
μ(1) − μ(2)

)[
2θn(1− θn)− θn(1− θn)

(
μ(1) − μ(2)

)T
β̃

]
.

Multiplying on the left by
(
μ(1) − μ(2)

)T
and β̃TΣ on both sides, and rearranging

the terms, we have

(
μ(1) − μ(2)

)T
β̃ =

2ωn

1 + ωn
and β̃TΣβ̃ =

(
2ωn

1 + ωn

)2
1

Δ2
p

,

where ωn = θn(1−θn)Δ
2
p, which is bounded below from condition (C2). As a con-

sequence,
(
μ(1) − μ(2)

)T
β̃ falls in (c,2) for some c > 0 and β̃TΣβ̃ = O

(
1/Δ2

p

)
.

Then pluging β̃ into 1
nX

T(Y −Xβ̃), we have

1

n
XT(Y −Xβ̃) = 2θn(1− θn)ξ1 − θn(1− θn)ξ2 − ξ3,

where

ξ1 =
(
μ̂(1) − μ̂(2)

)
−
(
μ(1) − μ(2)

)
,
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ξ2 =

[(
μ̂(1) − μ̂(2)

)(
μ̂(1) − μ̂(2)

)T
−
(
μ(1) − μ(2)

)(
μ(1) − μ(2)

)T]
β̃,

ξ3 =
(
Σ̂− Σ

)
β̃.

We will prove the theorem in three steps according to the decomposition, and
draw the conclusion in step four.
Step one : From the normal distribution of μ̂(1) and μ̂(2), and by the indepen-
dence of two sample pairs, we have

ξ1 =
(
μ̂(1) − μ̂(2)

)
−
(
μ(1) − μ(2)

)
∼ N

(
0,

n

n1n2
Σ

)
.

Then applying Gaussian concentration inequality(Lemma 4.3), we have

P

(
‖ξ1‖∞ ≥ c1

√
log p

n

)
≤ 1

p
, (4.5)

where c1 =
√

4λmax(Σ)
θn(1−θn)

.

Step two: Decompose ξ2 first,

ξ2 =

[(
μ̂(1) − μ̂(2)

)(
μ̂(1) − μ̂(2)

)T
−
(
μ(1) − μ(2)

)(
μ(1) − μ(2)

)T]
β̃

=
[(

μ̂(1) − μ̂(2)
)
−
(
μ(1) − μ(2)

)] [(
μ̂(1) − μ̂(2)

)
−
(
μ(1) − μ(2)

)]T
β̃

+
[(

μ̂(1) − μ̂(2)
)
−
(
μ(1) − μ(2)

)](
μ(1) − μ(2)

)T
β̃

+
(
μ(1) − μ(2)

) [(
μ̂(1) − μ̂(2)

)
− (μ(1) − μ(2))

]T
β̃

= ξ1ξ
T
1 β̃ +

(
μ(1) − μ(2)

)
ξT1 β̃ + ξ1

(
μ(1) − μ(2)

)T
β̃.

We will prove ‖ξ2‖∞ tends to zero with high probability by analysing the infinity
norm of all the three parts tend to zero separately.

Part 1 : Note ‖ξ1ξT1 β̃‖∞ = ‖ξ1‖∞|ξT1 β̃| and ξT1 β̃ is a Gaussian random variable
with mean zero and variance n

n1n2
β̃TΣβ̃, which is bounded above by 4

θn(1−θn)Δ2
pn

.

Then (4.5) and Gaussian concentration inequality(Lemma 4.3) yields the follow-
ing inequality

P

(
‖ξ1ξT1 β̃‖∞ > c1c2

√
log p

n

)
≤ 2

p
, (4.6)

where c2 =
√

8
θn(1−θn)Δ2

p
.

Part 2 : For each j ∈ {1, 2, · · · , p}, the jth element of
(
μ(1) − μ(2)

)
ξT1 β̃ is a

Gaussian random variable with mean zero and variance n
n1n2

(
μ
(1)
j −μ

(2)
j

)2
β̃TΣβ̃,
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which is bounded above by

4‖μ(1) − μ(2)‖22
θn(1− θn)nΔ2

p

≤ 4λmax(Σ)

θn(1− θn)n
.

So applying Gaussian concentration inequality, we immediately have

P

(∥∥∥(μ(1) − μ(2)
)
ξT1 β̃
∥∥∥
∞

≥ c3

√
log p

n

)
≤ 1

p
, (4.7)

where c3 =
√

16λmax(Σ)
θn(1−θn)

.

Part 3 : From the analysis before step 1, we have

∥∥∥ξ1(μ(1) − μ(2))Tβ̃
∥∥∥
∞

= ‖ξ1‖∞
∣∣∣∣(μ(1) − μ(2)

)T
β̃

∣∣∣∣ ≤ 2‖ξ1‖∞.

Then from the result given in step one, we immediately have

P

(∥∥∥∥ξ1 (μ(1) − μ(2)
)T

β̃

∥∥∥∥
∞

> 2c1

√
log p

n

)
≤ P

(
‖ξ1‖∞ > c1

√
log p

n

)
≤ 1

p
,

(4.8)
which together with inequalities (4.6) and (4.7), implies that

P

(
‖ξ2‖∞ > (c1c2 + c3 + 2c1)

√
log p

n

)
≤ 4

p
.

Step three : Let x
(1)
i = ui + μ(1), i = 1, 2, · · · , n1 and x

(2)
k = un1+k + μ(2), k =

1, 2, · · · , n2, where {ui} for i = 1, 2, · · · , n are independent and identical Gaus-
sian random variables with mean zero and covariance matrix Σ. And Σ̂ can be
further written as

Σ̂ =
1

n

n∑
i=1

uiu
T
i − n1

n

(
μ̂(1) − μ(1)

)(
μ̂(1) − μ(1)

)T

−n2

n

(
μ̂(2) − μ(2)

)(
μ̂(1) − μ(2)

)T
.

Consequently,

(
Σ̂− Σ

)
β̃ =

1

n

n∑
i=1

(
uiu

T
i β̃ − Euiu

T
i β̃
)
− n1

n

(
μ̂(1) − μ(1)

)(
μ̂(1) − μ(1)

)T
β̃

−n2

n

(
μ̂(2) − μ(2)

)(
μ̂(1) − μ(2)

)T
β̃.

Firstly we analyze the first part in the decomposition above. Since for each
j ∈ {1, 2, · · · , p}, uij and uT

i β̃ are Gaussian distributed with mean zero and vari-

ance Σij , β̃
TΣβ̃ respectively. The product of the two variances can be bounded



2514 Y. Li and J. Jia

by c4 = 4λmax(Σ)
Δ2

p
and hence from Lemma 4.2, we have for each j ∈ {1, 2, · · · , p},

uiju
T
i β̃√
c4

−E
uiju

T
i β̃√
c4

is a sub-exponential random variable with parameter (
√
8, 4).

So ηj = 1
n

∑n
i=1

[
uiju

T
i β̃√
c4

− E
uiju

T
i β̃√
c4

)
]
follows sub-exponential distribution with

parameter (
√

8
n ,

4
n ). By concentration inequality for sub-exponential distribu-

tion given in Lemma 4.4, for all 0 ≤ t ≤ 2, we have

P (|ηj | > t) ≤ 2 exp

(
−nt2

16

)
.

Consequently,

P

(∥∥∥∥∥ 1n
n1∑
i=1

(uiu
T
i β̃ − Euiu

T
i β̃)

∥∥∥∥∥
∞

> c5

√
log p

n

)
≤ 2

p
(4.9)

where c5 =
√
32c4.

Similar to the analysis of part one in step two, we can obtain

P

(∥∥∥∥n1

n

(
μ̂(1) − μ(1)

)(
μ̂(1) − μ(1)

)T
β̃

∥∥∥∥
∞
) > c6

√
log p

n

)
≤ 2

p
,

P

(∥∥∥∥n1

n

(
μ̂(2) − μ(2)

)(
μ̂(2) − μ(2)

)T
β̃

∥∥∥∥
∞
) > c6

√
log p

n

)
≤ 2

p
,

where c6 =
√

32λmax(Σ)
Δ2

pθ
2
n(1−θn)2

, and from which, together with inequality (4.9), we

immediately have

P

(
‖ξ3‖∞ > (c5 + 2c6)

√
log p

n

)
≤ 6

p

Step four : Combining all results we have got in step 1-3, there exists a positive
constant c depending on

{
θn,Δ

2
p, λmax(Σ)

}
such that

P

(∥∥∥∥ 1nXT(Y −Xβ̃)

∥∥∥∥
∞

> c

√
log p

n

)
≤ O(p−1).

4.4. Proof of Theorem 2.7

Proof. Firstly we derive consistency of the numerator in Rn. The difference of
the numerator can be decomposed into three parts as in Equation (4.10),

(
μ(1) − μ̂

)T
β̂ −
(
μ(1) − μ

)T
β̃

= (μ− μ̂)
T
(
β̂ − β̃

)
+ (μ− μ̂)

T
β̃ +

1

2

(
μ(1) − μ(2)

)T (
β̂ − β̃

)
. (4.10)
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Using the same technics as the proof of step one in Theorem 2.6, and together
with Theorem 2.4, with probability greater than 1−O(p−1), we have

∣∣∣(μ− μ̂)
T
(
β̂ − β̃

)∣∣∣ ≤ O

(
q log p

n

)
→ 0.

Note that (μ̂ − μ)Tβ̃ is a Gaussian random variable with mean zero and vari-
ance n

4n1n2
β̃TΣβ̃, which is bounded above, so from the Gaussian concentration

inequality, we immediately have

∣∣∣(μ̂− μ)
T
β̃
∣∣∣ ≤ O

(√
log p

n

)
→ 0, (4.11)

with probability greater than 1−O(p−1). Conditions (C1) and (C4) yields Δ2
p =

O
(∥∥μ(1) − μ(2)

∥∥2
2

)
, which together with Theorem 2.4 leads to with probability

greater than 1−O(p−1),

1

2

∣∣∣(μ(1) − μ(2))T(β̂ − β̃)
∣∣∣ ≤ O

(
Δp

√
q log p

n

)
→ 0.

By all inequalities obtained above, we immediately have

∣∣∣∣(μ(1) − μ̂
)T

β̂ −
(
μ(1) − μ

)T
β̃

∣∣∣∣ ≤ O

(
Δp

√
q log p

n

)
→ 0, (4.12)

with probability greater than 1−O(p−1).
Now we begin to prove consistency of the denominator of Rn. Since

∣∣∣β̂TΣβ̂ − β̃TΣβ̃
∣∣∣ ≤

∣∣∣∣(β̂ − β̃
)T

Σ
(
β̂ − β̃

)
+ 2
(
β̂ − β̃

)T
Σβ̃

∣∣∣∣
≤ λmax(Σ)

∥∥∥β̂ − β̃
∥∥∥2
2
+ 2
∥∥∥Σ 1

2 (β̂ − β̃)
∥∥∥
2

∥∥∥Σ 1
2 β̃
∥∥∥
2

≤ λmax(Σ)
∥∥∥β̂ − β̃

∥∥∥2
2
+ 2
√
λmax(Σ)

∥∥∥β̂ − β̃
∥∥∥
2

∥∥∥Σ 1
2 β̃
∥∥∥
2

≤ λmax(Σ)
∥∥∥β̂ − β̃

∥∥∥2
2
+

4

Δp

√
λmax(Σ)

∥∥∥β̂ − β̃
∥∥∥
2

= O

(√
q log p

Δ2
pn

)
→ 0, (4.13)

with probability greater than 1 − O(p−1), together with the bounds of β̃TΣβ̃,
we have ∣∣∣∣∣ β̂

TΣβ̂

β̃TΣβ̃
− 1

∣∣∣∣∣ ≤ O

(
Δp

√
q log p

n

)
→ 0,
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with probability greater than 1−O(p−1). Let γ = Δp

√
q log p

n . Then

∣∣∣∣∣∣
(μ(1) − μ̂)Tβ̂√

β̂TΣβ̂

− (μ(1) − μ)Tβ̃√
β̃TΣβ̃

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
(μ(1) − μ̂)Tβ̂ − (μ(1) − μ)Tβ̃√

β̂TΣβ̂

∣∣∣∣∣∣+
∣∣∣∣∣∣
(μ(1) − μ)Tβ̃√

β̂TΣβ̂

− (μ(1) − μ)Tβ̃√
β̃TΣβ̃

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
(μ(1) − μ̂)Tβ̂ − (μ(1) − μ)Tβ̃√

β̃TΣβ̃

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣∣∣
β̃TΣβ̃ − β̂TΣβ̂√

β̃TΣβ̃

√
β̂TΣβ̂

(√
β̃TΣβ̃ +

√
β̂TΣβ̂

)
∣∣∣∣∣∣∣∣

≤ O(Δpγ)

≤ O

(
Δ2

p

√
q log p

n

)
=: γn.

By replacing β̃ with

β̃ = Σ−1(μ(1) − μ(2))
[
2θn(1− θn)− θn(1− θn)(μ

(1) − μ(2))Tβ̃
]
,

the second term in last inequality is 1
2

√
(μ(1) − μ(2))TΣ−1(μ(1) − μ(2)) = 1

2Δp.
From the property of Φ given in [6] that for any x < 0 and |δ| ≤ 1, Φ satisfies∣∣∣∣Φ(x+ δ)

Φ(x)
− 1

∣∣∣∣ ≤ c1|δ|(|x|+ 1)ec2|xδ|

for some positive constants c1, c2 which do not depend on x and δ, we have

Rn = R× (1 +O(1)γnΔp exp(O(1)Δpγn)) .

So
Rn

R
− 1 = O

(
Δ3

p

√
q log p

n

)
.

4.5. Proof of Theorem 2.8

Proof. When Δ2
p > M for some M > 0, then under condition (2.9) and from

inequalities (4.12) and (4.13), we have∣∣∣∣∣∣
(μ(1) − μ̂)Tβ̂√

β̂Σβ̂

∣∣∣∣∣∣ ≥ C

∣∣∣∣∣∣
(μ(1) − μ̂)Tβ̃√

β̂Σβ̂

∣∣∣∣∣∣
= C

∣∣∣(μ(1) − μ̂)Tβ̃
∣∣∣ (β̂Σβ̂)− 1

2
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= C
∣∣∣(μ(1) − μ̂)Tβ̃

∣∣∣ (β̃Σβ̃ + o(1)
)− 1

2

= C

⎛
⎜⎝
⎛
⎝ (μ(1) − μ̂)Tβ̃√

β̃Σβ̃

⎞
⎠

−2

+ o(1)

⎞
⎟⎠

− 1
2

= C(4Δ−2
p + o(1))−

1
2

≥ CM
1
2 ,

which yields |Rn −R| ≤ exp(−CM).
When Δ2

p ≤ M , from Theorem 2.7, we have

Rn = R× (1 +O(1)γnΔp exp(O(1)Δpγn)) , (4.14)

which together with γnΔp = o(1) implies Rn = R(1 + 0(1)). We complete the
proof by firstly letting p, n → +∞ and then M → ∞.
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