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Abstract

We derive boundary arm exponents for SLE. These exponents were predicted by the
conformal field theory and KPZ relation. We provide a rigorous derivation. Further-
more, these exponents give the alternating half-plane arm exponents for the planar
critical Ising and FK-Ising models.
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1 Introduction

Schramm-Loewner evolution (SLE) was introduced by Oded Schramm [Sch00] as
the candidates for the scaling limits of interfaces in 2D critical lattice models. It is a
one-parameter family of random fractal curves in simply connected domains from one
boundary point to another boundary point, which is indexed by a positive real . Since
its introduction, it has been proved to be the limits of several lattice models: SLE; is the
limit of Loop Erased Random Walk and SLEg is the limit of the Peano curve of Uniform
Spanning Tree [LSWO04], SLE3 is the limit of the interface in critical Ising model and
SLE16/3 is the limit of the interface in FK-Ising model [CDCH+14], SLE, is the limit of
the level line of discrete Gaussian Free Field [SS09] and SLEg is the limit of the interface
in critical Percolation [SmiO1].

In the study of lattice models, arm exponents play an important role. Take percolation
for instance, Kesten has shown that [Kes87] in order to understand the behavior of
percolation near its critical point, it is sufficient to study what happens at the critical
point, and many results would follow from the existence and values of the arm exponents.
To be more precise, consider critical percolation with fixed mesh equal to 1, and for
n > 2, consider the event E,(z,r, R) that there exist n disjoint crossings of the annulus
A,(r,R) := {w € C : r < |w— z| < R}, not all of the same color. People would like
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to understand the decaying of the probability of F,,(z,r, R) as R — oco. It turns out
that this probability decays like a power in R, and the exponent is called plane arm
exponents. There are other related quantities, called half-plane arm exponents. In
this case, consider critical percolation in the upper-half plane H, and forn > 1,z € R,
define H,, (z,r, R) to be the event that there exist n disjoint crossings of the semi-annulus
Af(r,R) == {w € H:r < |w—z| < R}. After the identification between SLEs and
the limit of critical percolation on triangular lattice [SmiO1], one could derive these
exponents via the corresponding arm exponents for SLEg [SWO01]:

P [E.(z,r, R)] = R~ W) P[H,(z,r,R)] = R0 as R — oo,

where
a, = n*—=1)/12, o :=n(n+1)/6.

In this paper, we derive boundary arm exponents for SLE,.. It is explained in [SWO01]
that combining the following three facts would imply the arm exponents for the discrete
model: (1) Identification between SLE,; and the limit of the interface in critical lattice
model; (2) The arm exponents of SLE,; (3) Crossing probabilities enjoy (approximate)
multiplicativity property. For critical Ising and FK-Ising model on Z? with Dobrushin
boundary conditions, the convergence to SLE3 and SLE,¢/3 respectively is derived in
[CS12, CDCH+14], and the multiplicativity is derived in [CDCH16]. Therefore, we could
derive the arm exponents for these two models. See more details in [Wul6b, Wul6a].

Moreover, the boundary arm exponents in this paper are consistent with the ones
predicted by KPZ relation [Dup03, Equations (11.42), (11.44)]. One of the major goals of
the conformal field theory and quantum gravity literature is to understand the scaling
exponents associated to random fractal curves. The picture of the arm events of SLE
around a boundary point can be viewed as a welding of several quantum wedges with
certain weight. Then, the Euclidean scaling exponent x; and the quantum scaling
exponent A are expected to be related through the so-called KPZ formula [DS11]:

T ZNL +(1- Z)AL.

The quantum scaling exponent Ay, is believed to be 2L /k. Thus, the KPZ formula gives
x;, = L(2L + 4 — x)/(2k). Our formula of o, in (1.1) is consistent with this prediction
xy, with I = 2n and hence supports the KPZ relation in quantum gravity.

Now, we will give the definition of the crossing events and state our main results. Fix
k > 4 and let  be an SLE, in H from 0 to oo. Suppose that y < 0 < ¢ < z and let T be
the first time that n swallows the point = which is almost surely finite when x > 4. We
first define the crossing event Hs,,_1 (resp. ﬁgn) that n crosses between the ball B(z,€)
and the half-infinite line (—oo, y) at least 2n — 1 times (resp. at least 2n times) for n > 1.
To be precise with the definition, we need to introduce a sequence of stopping times.
Set 79 = 09 = 0. Let 71 be the first time that 7 hits the ball B(z,¢) and let oy be the first
time after 7 that n hits (—o0,y). For n > 1, let 7, be the first time after o,,_; that 5
hits the connected component of dB(z, ¢) \ [0, 0,,_1] containing = + € and let o,, be the
first time after 7, that n hits (—oo, y). Define Hs,,_1(€, z,y) to be the event that {7, < T}.
Define f[gn(e, x,y) to be the event that {o,, < T'}. In the definition of Hs,_1(¢, z,y) and
ﬁgn(e, x,y), we are particular interested in the case when z is large. Roughly speaking,
the event Ha,_1(€, z,y) means that » makes at least (2n — 1) crossings between B(z, €)
and (—oo,y). Imagine that 7 is the interface in the discrete model, then Ha, 1 (€, z,y)
interprets the event that there are 2n — 1 arms going from B(z, €) to far away place. The
event Hy, (e, z,y) means that 7 makes at least 2n crossings between B(z, ¢) and (—oo, y).
Imagine that 7 is the interface in the discrete model, then ﬁgn(e,x,y) interprets the
event that there are 2n arms going from B(x, €) to far away place. See Figure 1(a).
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(a) This figure indicates H,. The stopping times (b) This figure indicates H4. The stopping times
T < 01 < T2 < 02 < T, are indicated in the 01 < 71 < 02 < 7@ < T, are indicated in the
figure. figure.

Figure 1: The explanation of the definition of the crossing events. The gray part is the
ball B(z,e).

Next, we define the crossing event Hs, (resp. ﬁgnH) that 7 crosses between the
half-infinite line (—oo, y) and the ball B(x, ¢) at least 2n times (resp. at least 2n + 1 times)
for n > 0. Set 79 = 09 = 0. Let o3 be the first time that n hits (—o0,y) and 7, be the
first time after o; that » hits the connected component of dB(x,€) \ 7[0, 01] containing
x + €. For n > 1, let 0, be the first time after 7,,_; that » hits (—oo, y) and 7,, be the first
time after o, that » hits the connected component of dB(z, €) \ 1[0, 0,,] containing z + e.
Define Hy, (e, z,y) to be the event that {r, < T'}. Define Ha, (e, z,y) to be the event
that {0,+1 < T'}. In the definition of Ha, (e, z,y) and fIQnH(e,x,y). We are interested
in the case when x is of the same size as ¢ and y is large. Roughly speaking, the
event Ha, (€, z,y) means that n makes at least 2n crossings between (—oo, y) and B(x;,€).
Imagine that 7 is the interface in the discrete model, then Ha, (€, z, y) interprets the event
that there are 2n arms going from B(x,¢) to far away place. The event ﬁ2n+1(e,x,y)
means that n makes at least 2n + 1 crossings between (—oo, y) and B(z, €). Imagine that
7 is the interface in the discrete model, then ﬁznﬂ (e, x,y) interprets the event that there
are 2n + 1 arms going from B(z, ¢) to far away place. See Figure 1(b).

Note that in the definition of Hs,,_; and Hgn, we start from 7; and

Hoypa(e,m,y) ={n <o1 <71 <. <7 <T},
F]2n(€7337y) = {7'1 <o <Te< <7 <0p <T}.

In the definition of Hs,, and E[Qn+1, we start from o; and

HQn(E,l‘,y) = {01 <7 <02 << Ty <T}7

ﬁ2n+1(6,x,y) = {0'1 <M <0< < Tp <0Opy1 < T}

The two sequences of stopping times are defined in different ways. Readers may wonder
why we do not define the events using the same sequence of stopping times. We
realize that the definition using the same sequence of stopping times causes ambiguity.
Therefore, we decide to define these events in the above way. The advantages of the
current definition will become clear in the proofs.

We define the arm exponents as follows. Set af = 0. Forn > 1 and » € (0, 8), define

ag, =nlAn+4—k)/k, af, =n(4n+8 —k)/k. (1.1)
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Forn > 1 and « > 8, define
af, 1 =n—1){An+rK-8)/k, af, =n(dn+r—8)/k. (1.2)

Theorem 1.1. Fix x > 4. The crossing events Hs,_1(¢, x,y) and Ha, (¢, z,y) are defined
as above. Then, foranyy <0< e <z andn > 1, we have

a;"_2 0/;»”71
P[Hyu—1(e,,y)] = (xfy) (). (1.3)
a;r +
xT " €e\ Yen—1
P[Ha, (e, 2, y)] = (x_y) (5) : (1.4)

where the constants in < depend only on k and n. In particular, fix some § > 0, we have
P[Hop—1(€,2,9)] < ¢®n-1, provided § < x < 1/6,-1/6 <y <0,

P[Hsp (e, 2,y)] < ¢®n, providede <z < €/0,—1/6 <y < =4,
where the constants in < depend only on k,n and 4.

By a similar proof, we could obtain a similar result as Theorem 1.1 for SLE,(p) curve
in the case that x coincides with the force point. The exponents and a complete proof can
be found in [Wul6b, Section 3], where the conditions are loosened so that the force point
may different from x. One may also study the arm exponents for « € (0,4]. Whereas,
when x < 4, the SLE curve does not touch the boundary, thus the above definition of
the crossing events is not proper for x < 4. In Section 4, we have Theorem 4.4 for the
crossing events between a small circle and a half-infinite strip, where the arm exponents
are defined in the same way as in (1.1). The proof of Theorem 4.4 also works for SLE,;(p)
when z coincides with the force point.

Theorem 1.2. Fix k € (4,8). Set 4 = 0. The crossing events Hy, (e, z,y) and Ho, 11 (e, z,
y) are defined as above. Forn > 1, define
a4, 1 =nlAn+r—8)/k, ag, =n(dn+r—4)/k. (1.5)

n —

Then, fory <0< e <x andn > 1, we have

< . )éy;_l (E)d;“z, (1.6)
T—y T

A

QXop—1 (Sﬁn
< = > (£)™ (1.7)
T—y T

where the constants in < depend only on k and n. In particular, fix some § > 0, we have

)

P [f[gn,l(e, x, y)]

X

P |:ﬁ2n(6,.’£,y):|

P [ﬁgn,l(e,x,y)} = ed;"fl, provided e < x < ¢/§,—1/6 <y < =4,

P [ﬁzn(e,%y)} = 6&;”7 provided 6 <z <1/6,-1/6 <y <0,

where the constants in < depend only on k,n and 4.

It is worthwhile to spend some more words on the relation between «; and &;. In
fact, we can also define the crossing events H,, (e, z,y) for x € [0,4] and x > 8. When
k < 4, the SLE curve does not touch the boundary, thus the exponent &, coincides with
;' _,. When x > 8, the SLE curve is space-filling, thus the exponent &, coincides with
ot +1- Whereas, when « € (4,8), the exponent &, is distinct from o} in general. In terms
of discrete model, both o, and &, interpret the boundary n-arm exponents, but their
boundary conditions are different.
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Relation to previous results. The formula of «; and «, for x = 6 was obtained
in [LSWO01, SWO01]. The exponent ] is related to the Hausdorff dimension of the
intersection of SLE, with the real line which is 1 — o when x > 4. This dimension
was obtained in [AS08]. The most important ingredients in proving Theorem 1.1 is the
Laplace transform of the derivatives of the conformal map in SLE evolution, which was
obtained in [Law15].

Taking « = 3 in (1.1), one obtains the boundary arm exponents for the planar critical
Ising model. The detail can be found in [Wul6a] where the author derives the boundary
arm exponents in a more general setting as well as the interior arm exponents for the
Ising model. Taking x = 16/3 in (1.1) and (1.5), one obtains the boundary arm exponents
for the planar critical FK-Ising model, see [Wul6b] where the author also derives the
interior arm exponents for the FK-Ising model.

Outline. In Section 2, we give preliminaries on Loewner chain and SLE processes. In
particular, we give technical estimates on the conformal map in Lemmas 2.1 and 2.2, and
we give technical estimates on SLE processes in Lemmas 2.4 and 2.5. These estimates
will be useful in later sections. In Section 3, we prove Theorems 1.1 and 1.2. In Section 4,
we prove a similar version of Theorem 1.1 for k < 4. The ideas in the proof is similar
to those in Section 3, since the SLE process does not hit the boundary for x < 4, the
statements and the technicalities in Section 4 are more complicated.

2 Preliminaries

Notations. We denote by f < g if f/g is bounded from above by universal finite
constants, by f 2 ¢ if f/g is bounded from below by universal positive constants, and by
f=giff<gand f2g.

Forze C,ycR,r>0,set B(z,r)={weC:|lw—2z|<r}, U=DB(0,1).

For two subsets A, B C C, set dist(A4, B) = inf{|x —y| : 2 € A,y € B}.

Let Q be an open set and let V;, V5 be two sets such that Vi N Q # () and Vo N Q # (. We
denote the extremal distance between V; and V% in Q by d(V1, V2), see [Ahl10, Section 4]
for the definition.

2.1 H-hull and Loewner chain

We call a compact subset K of H an H-hull if H\ K is simply connected. Riemann’s
Mapping Theorem asserts that there exists a unique conformal map gx from H \ K onto
H such that

lim |gk(z) — 2| = 0.
|z] =00
We call such gx the conformal map from H \ K onto H normalized at co. The limit
heap(K) := lim|, |, 2(9x (2) — 2) exists and is called the half-plane capacity of K.
Lemma 2.1. Fixxz > 0 and ¢ > 0. Let K be an H-hull and let g be the conformal map
from H \ K onto H normalized at co. Assume that x > max(K N R). Denote by v the
connected component of HH N (0B(z,€) \ K) whose closure contains = + €. Then gk () is
contained in the ball with center gi (x + ¢) and radius 3(gx (x + 3¢) — g (x + €)). Hence
gxk (7) is also contained in the ball with center g (x + 3¢) and radius 8eg (z + 3e).

Proof. [Wul6a, Lemma 2.1]. O

The following lemma is a direct consequence of Koebe 1/4 theorem.

Lemma 2.2. Fix z € H and ¢ > 0. Let K be an H-hull and let g be the conformal map
from H \ K onto H normalized at oo. Assume that

dist(K, z) > 16e.

EJP 22 (2017), paper 89. http://www.imstat.org/ejp/
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Then gk (B(z,€)) is contained in the ball with center gk (z) and radius 4€|g} (2)|.

A Loewner chain is a collection of H-hulls (K;,t > 0) associated with the family of
conformal maps (g:,t > 0) obtained by solving the Loewner equation: for each z € H,

2

Orgi(2) = 75 =,

go(z) = z, (2.1)

where (W;,t > 0) is a one-dimensional continuous function which we call the driving
function. Let T be the swallowing time of = defined as sup{t > 0 : min,¢jo ¢ |gs(2) = Ws| >
0}. Let Ky ;= {z € H: T, <t}. Then g is the unique conformal map from H; := H\ K,
onto H normalized at oco.

Here we spend some words about the evolution of a point y € R under g;. We assume
y < 0, the case of y > 0 can be analyzed similarly. There are two possibilities: if y is not
swallowed by K;, then we define Y; = ¢:(y); if y is swallowed by K}, then we define Y; to
the be image of the leftmost of point of K; N R under g;. The process Y; is decreasing
in ¢, and it is uniquely characterized by the following equation:

b 92ds

Y, = s
t y+ ()}/;_Ws,

In this paper, we may write g;(y) for the process Y;. Consider two points > 0 > y in R.
By the above fact, we have

b 2ds /t 2ds
) =x+ e e——— =y+ ’ S W, S €).
gt( ) A s (.I) - Ws o (y) Y 0 Ys (y) - Ws g (y) ! gt( )

Therefore, the quantity g:(z) — g:(y) is increasing in ¢. We will use this fact in the paper
without reference.

2.2 SLE processes

An SLE, is the random Loewner chain (K;,¢ > 0) driven by W; = /kB; where
(B, t > 0) is a standard one-dimensional Brownian motion. In [RS05], the authors prove
that (K¢,t > 0) is almost surely generated by a continuous transient curve, i.e. there
almost surely exists a continuous curve 7 such that for each ¢ > 0, H; is the unbounded
connected component of H\7|[0, t] and that lim;, [7(t)] = oco.

We can define an SLE, (p”; p?*) process with two force points (z; ) where z < 0 <
x*. It is the Loewner chain driven by W, which is the solution to the following systems
of SDEs:

L R
prdt p'tdt
AW, = \/rdB . Wy =0;
t = Vhi t+Wt*VtL+Wt*VtR 0
2dt 2dt
L _ L _ L. R _ R_ R
W =yr gy, VWo=on V=R o=

The solution exists up to the first time that W hits V* or V%. When p” > —2 and
pf > —2, the solution exists for all times ¢ > 0, and the corresponding Loewner chain is
almost surely generated by a continuous curve which is almost surely transient ([MS16,
Section 21). There are two special values of p: /2 — 2 and k/2 — 4. When p® > x/2 — 2,
then the curve never hits [, 00). When p® < k/2 — 4, then the curve will almost surely
accumulates at x’® at finite time. See [Dub09, Lemma 15]. From Girsanov Theorem, it
follows that the law of an SLE, (p”; p®*) process can be constructed by reweighting the
law of an ordinary SLE,.
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Lemma 2.3. Suppose = < 0 < 2, define
L L L R R R
M, :gé(xL)p (p +4fﬁ)/(4n)(Wt _ gt(xL))p /5 gé(xR)p (P +4—k)/(4K) (gt(mR) — WP /K
X (gi(a™) = go(wh))e /@),

Then M is a local martingale for SLE,, and the law of SLE, weighted by M (up to the
first time that W hits one of the force points) is equal to the law of SLE, (p*; pf*) with
force points (z%; z1).

Proof. [SWO05, Theorem 6]. O

Lemma 2.4. Fixx > 0 and v < /2 — 4. Suppose y < 0 < z. Letn be an SLE,(v) in H
from 0 to oo with force point z. Since v < k/2 — 4, the curve ) accumulates at the point
x at almost surely finite time which is denoted by T. Then we have, for \ < 0,

E [(97(2) = 9r()] = (= 9)*,
where the constants in < depend only k,v and .

Proof. Since the quantity ¢:(z) — ¢:(y) is increasing in ¢, we have gr(z) — gr(y) >
(x — y). This implies the upper bound. We only need to show the lower bound. To
this end, we will compare 7 with SLE, (v) with force point  — y and show that the law
of (g7(z) — gr(y))/(x — y) is stochastically dominated by a random variable whose law
depends only «, v. By the scaling invariance of SLE,(v), we may assume z —y = 1.

Let 77 be an SLE, (v) with force point 1, and define W, g,, T accordingly. Define V, to
be the image of the leftmost point of 7[0,¢] N R under g;. Set

- W -V,
t = Niﬁv.
gt(l) -V
Define the stopping time 7 = inf{¢ : Jy = —y}. Note that Jo = 0,J J is

’ﬂza.

=1la

continuous, we have that 0 < 7 < T. Given [0, 7], the process (7j(t + 7),0 <t < T — 1),
under the map 5

gr(z) = Wr

f(z) = ===

g'r(l) - VT

has the same law as (1(¢),0 < ¢t < T) after a linear time-change. Therefore, given [0, 7],

we have

)

9+(1) = Vi a
gr(l) - VT
Since §,(1) — V, > 1, we may conclude that the quantity (gr(z) — g7 (y)) is stochastically

dominated from above by (g(1) — V). To complete the proof, it is sufficient to show

gr(x) — gr(y).

. DY

i KQT(I) - 7;) } >, (2.2)
where P denotes the law of SLE, () with force point 1. Define the event

F={g7(1) = Vz <4},
It is clear that P[F] is strictly positive and depends only on x and v, thus

B {(%(1) - VT)A} > PP[F].

This implies (2.2) and completes the proof. O

EJP 22 (2017), paper 89. http://www.imstat.org/ejp/
Page 7/26


http://dx.doi.org/10.1214/17-EJP110
http://www.imstat.org/ejp/

Boundary arm exponents for SLE

Lemma 2.5. Fix k > 4 and v > k/2 — 2. Suppose y < 0 < z, let n be an SLE,(v) with
force point x. For ¢ > (0 small, define

o =inf{t:n(t) € (—oo,y]}, F = {dist(n[0,0],z) > cz}.

Then there exists a constant ¢ € (0, 1) depending only on x and v such that, for A <0,

E | (95 (@) = 9o () 1| = (2 = )",
where the constants in < depend only on k,v and ).

Proof. Since the quantity g;(z) — ¢:(v) is increasing in ¢, we have g,(x) — g, (y) > (x — y).
This implies the upper bound. We only need to show the lower bound. We may assume
that x — y = 1. We first argue that

E [(g5(2) = 90 ()] = (& = ). (2.3)

The proof of (2.3)~is similar to the proof of Lemma 2.4. Let 7 be an SLE, () with forc~e

point 0F. Define W, g accordingly and let & be the first time that 7 hits (—oco, —1). Let V;

be the evolution of the force point. Define

. Vi - W,

J=—t—t
Vi — (1)

Given 7[0, 7], the process (7(t +7),0 < ¢ < & — 7) under the map

, Ti=inf{t:J; =z}

.g‘r(z) - W‘r
VT - gr(_l)

has the same law as (7(t),0 < t < o) after a linear time change. In particular,

f(z) =

Vs —gs(-1) a
= = 9o(¥) = 9o (y)-
VT - 97'(_1)
Since V, — gr(=1) > 1, we know that (g,(z) — g-(y)) is stochastically dominated from
above by (Vs — gs(—1)), thus

B [(an(@) ~ a0 0)*] > B (7 - dn(-1) | = 1.

This implies (2.3). Next, we prove the conclusion. By the scaling invariance of SLE,(v)
process we know that the probability P[dist(n, z) < cz] only depends on c¢. We denote
this probability by p(c). Since v > k/2 — 2, we know that p(¢) — 0 as ¢ — 0. Therefore,
by (2.3), we have

L= E [(95(2) — 9 (1) <E (9 (@) = 90 ) 1] + p(c).

This implies the conclusion. O

3 Boundary arm exponents for « > 4

We prove Theorems 1.1 and 1.2 in this section by induction on the number of arms.
Suppose 7 is an SLE,, in H from 0 to oo and let 7. be the first time that » hits the small ball
B(x, €). Roughly speaking, when we go from j arms to j+ 1 arms, we have 7. < oo at first,
and at the time 7, the ball B(z, ¢) become a ball with radius approximatelyg, (z)ec after
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the conformal map g._, and thus we expect the relation: E[(g,. (:c)e)a;r Lir coo}] = €1,
However it is not easy to make the iteration precise. The difficulty is that the image of
the ball B(z,e€) under the conformal map g, can have large radius with small chance.
To treat this difficulty, we need estimates on the Laplace transform of the derivative in
a more general setting. This is derived in Section 3.1. Then we prove the conclusion
by induction on the number of arms: in Section 3.2, we go from 2n — 1 to 2n, and in
Section 3.3, we go from 2n to 2n + 1. Finally, we complete the proof in Section 3.4.

3.1 Estimate on the derivative

In this section, we give estimates on the Laplace transform on the derivatives of the
conformal map associated to SLE process, e.g. g;(1). Similar estimates appeared before:
[Law15] or [ABV16, Proposition 3.1]. Our result—Proposition 3.1—is a generalization of
those estimates. The generalization is essential in the iteration when one derives the
boundary arm exponents, since the iteration procedure requires not only the estimates
on the expectation of g;(1)* but also the estimates on the expectation of the product of
the form

(g:(1) = W) Pg(1)",
where )\, b are some constants.

Proposition 3.1. Fix x > 0 and let ) be an SLE,; in H from 0 to cc. Let O, be the image
of the rightmost point of K; N R under g;. Set T: = (g:(1) — O;)/gi(1). Fore € (0,1),
define

7e =inf{t: Ty =€}, Tp=inf{t:n(t) €[1,00)}.

For \ > 0, define

1 1
u(\) = 2(4 —K/2)+ E\/4/1)\ + (4 - kr/2)2
For b € R, assume that
KA — kup(A) + 8 — 25 < kb < kA + Kuy(A). (3.1)

Then we have
E [(g7 (1) = W)} PgL (1)1, <y ] = €1 TAT0 (3.2)

where the constants in < depend only on k and A, b.

Attention that, in Proposition 3.1, we use the stopping time 7. instead of 7. which
is defined to be the first time that n hits B(1,¢). Due to Koebe 1/4 thoerem, these two
times are very close:

Tae < 726 < Te/4-

Due to technical reason, we only prove the conclusion in Proposition 3.1 for the time 7,
but this is sufficient for our purpose later in this section.
Lemma 3.2. Fixx > 0 and v < k/2 — 4. Let n) be an SLE,(v) in H from 0 to oo with force
point 1. Denote by W the driving function, V the evolution of the force point. Let O;
be the image of the rightmost point of K; N R under g;. Set T, = (g:(1) — O;)/g;(1) and
o(s) =inf{t: T, = e 25}. Set J, = (V, — O;)/(Vi, — W,). Let Ty = inf{t : n(t) € [1,00)}. We
have, for 5 > 0,

E [J,

o

f)l{a(s><n} =1, whenS8+2v+ kf < 2k, (3.3)

where the constants in < depend only on k, v, (.

Proof. [Wul6a, Lemma 3.5]. O
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Proof of Proposition 3.1. Let O; be the image of the rightmost point of %[0, t{| N R under

g¢. Define

gt(l) -0
T, ="t J="—
! ") - W,

Set
M, = gi(1)P@ A==/ @R) (g, (1) — W,)/*,  where v = —kui(\).

Then M is a local martingale for 7, and from Lemma 2.3, the law of n weighted by M is
the law of SLE, (v) with force point 1. Set 5 = u;(\) + A — b. Then we have

My = (g¢(1) — W) gr(1)br, 7 g7

At time t = 7. < 0o, we have Y; = ¢, thus

-8
B [(95, (1) = W), (011 cmy] = B | () Lz = €

where P* is the law of SLE, () with force point x and n*, J*, 7,1 are defined accord-

y e

ingly, and the last relation is due to (3.3). O

Remark 3.3. Fix ¥ > 0 and let  be an SLE,.. For z > € > 0, let u;()\) and b be as in
Proposition 3.1. By the scaling invariance of SLE, we have

E (g7, (x) = Wi ) 7005 (2) Ls cmyy] = am Wt A0, (3.4)
where the constants in < depend only on x, and A, b. Taking A = b = 0, we have
€\
Plr. < oc] = P < o0] = (5) , where af = u1(0) =0V (8/k — 1).
This implies that (1.3) holds for n = 1.

3.2 From 2n — 1 to 2n
Lemma 3.4. Fix x > 4 and let ) be an SLE,,. Fory < 0 < z, define

o=inf{t:n(t) € (—o0,y]}, T =inf{t:nt) € [z,0)}, F = {dist(n[0,0],z)> cx},

where c is the constant decided in Lemma 2.5. For A > 0, define

1 1
up(\) = ~(5/2 - 2) + ;\/‘W + (k)2 - 2)2.
Then we have, for A > 0 and b < uy(A),

[L‘uz(k) (.’L' - y)b—uQ()\) 5 1D} [g;(x))‘(ga(x) _ Wﬁ)bl{o<T}mF]
<E [g;(x))\(ga(x) — Wg)bl{o-<T}} 5 x“2()\)(x _ y)bfuz()\),

where the constants in 2 and < depend only on k and A, b.
Proof. Define
M, = gl(x)?WH4=0/E8) (g () — W,)Y/*,  where v = kuy()\).

Then M is a local martingale for n and the law of n weighted by M is the law of SLE, (v)
with force point z. By the definition of u,, we can also write

M, = g; ()N gi(a) = W)=,
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Thus
E [} (@) (g0 (2) = Wo) Lory] = MoE" |(g3- (@) = g3 ()"~ *™ 1o cy ]

where P* denotes the law of SLE, (v) with force point = and 7*, ¢g*, c* and T* are defined
accordingly. Since v > k/2 — 2, the curve will never swallows z, thus 7* = co. Note that
My = 2%2(V)_ Therefore, proving the conclusion boils down to showing

B (g5 () = 63+ ()" "V 1] 2 (2= )", where F* = {dist(y°[0, 07 2) > ea:
(3.5)

B (g5 (2) = g2 ()" V] S (@ = y)P 72, (3.6)

Equation (3.5) is true by Lemma 2.5. Since the quantity (g; (z) — ¢;(y)) is increasing in ¢,
we have

(95 () = 9o (y)) = — .
Combining with the fact that b — us(A) < 0, we obtain (3.6). O

Remark 3.5. Taking A = b = 0 in Lemma 3.4, we have
Plo < T] < 2%, where 6] = uy(0) = 1 — 4/.

This implies that (1.6) holds for n = 1.

Lemma 3.6. Assume the same notations as in Theorem 1.1. Suppose that (1.3) holds
for 2n — 1, then (1.4) holds for 2n.

Proof of Lemma 3.6, Upper Bound. Let n be an SLE,; and define
o=inf{t:n(t) € (—oo,y|}, T =inf{t:n(t) € [z,00)}.

We stop the curve at time o. Let 7] be the image of n[o, c0) under the centered conformal
map f := g, — W,. Then 7} is an SLE,.. Define H,,_; for .

Given n[0, o] with o < T, consider the event Ha, (¢, z,y). Denote by ~ the connected
component of B(z,¢) \ 1[0, 0] whose boundary contains x + e. We wish to control the
image of (—o0, y] and the image of v under f. We have the following observations.

* At time o, we have W, = g,(y), thus f(y) = 0.
* By Lemma 2.1, we know that f(v) is contained in the ball with center f(z + 3¢) and
radius 8ef’(z + 3¢).

Combining these two facts, we know that, given [0, o] with o < T, the event Ha, (¢, x,y)
implies the event Ha,_1(8cf’(x + 3¢), f(z + 3¢),0). If f(x + 3¢) > 8ef’'(z + 3¢), by the
assumption hypothesis, we have

.
€9y ( + 3¢) >a2"‘1

]PHn b ) ) T<
(Hanles) [0l < 715 220230

If f(z + 3¢) < 8ef’(x + 3¢), the above upper bound is trivially true. Therefore, the above
upper bound always holds. Then

P[Ha (e, ,y)] S €01 E [gé(w +3€) %1 (go (@ + 3€) — W)~ 1{U<T}} :

To apply Lemma 3.4, we only need to note that 7' is the first time that n swallows x which
happens before the first time that n swallows x + 3e. Note further that

/U‘Q(Oé;rnfl) = a;n - agrnfl' (3.7)
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Thus, by Lemma 3.4, we have

z Qg € a+
P[Hon (e, 2, y)] < €®3n-12%3 0301 (3 — y) =03 = (,) ot
b ) ~Y x _ y m

This completes the proof of the upper bound. O

Proof of Lemma 3.6, Lower Bound. Let n be an SLE, and assume the same notations
as in the proof of the upper bound. Define F, = {dist(n[0,0],x) > ce}, where c is the
constant decided in Lemma 2.5. Note that the event F. defined here is different from the
event F' = {dist(n[0, o], z) > cx} defined in Lemma 2.5, and we find F' C F. when ¢ < z.
We stop the curve at time o. Let 7 be the image of 5[0, co) under the centered comformal
map f := g, — W,. Then 5 is an SLE,. Define Hy,,_, for 7.

Given 5[0, o] with {c < T'} N F,, consider the event Hy, (¢, z,y). We wish to control the
image of (—oo, y] and the image of 0B(x, ¢) under f. We have the following observations.

+ At time o, we have W, = g,(y), thus f(y) = 0.

* On the event F,, by Koebe 1/4 Theorem, we know that f(B(z,¢)) contains the ball
with center f(x) and radius cf’(z)e/4.

Combining these two facts, we know that, given 1[0, 0] with {o < T} N F,, the event
Hs, (e, x,y) contains the event Ha, 1 (f'(x)ce/4, f(x),0). By the assumption hypothesis,
we have

P[Hop (e, x,y) [n[0,0],{c <T}NF] 2 <m> et

Therefore,
P[Han(e,2,)] 2 1B [ g (@)1 (g () = Wo) ™1 Lperyor, |
To apply Lemma 3.4, we only need to note that x > ¢ and F' C F,. By (3.7) and Lemma

3.4, we have

aF

" +
P[Hon (e, z,y)] 2 ea;"’_lxa;nia;"_l(x - y)ia;n = - 2 (£>a2n_1 '
) ) ~ T — y T

This completes the proof of the lower bound. O

3.3 From 2n to 2n +1

Lemma 3.7. Assume the same notations as in Theorem 1.1. Suppose that (1.4) holds
for 2n withn > 1, then (1.3) holds for 2n + 1.

Proof of Lemma 3.7, Upper Bound. If ¢ < x < 64¢, by the assumption hypothesis we
have

T QXan
]P[H2n+1(€axay)] < ]P[H2n(eazvy)] S/ <l‘—y> )
which gives the upper bound in (1.3) for 2n + 1.
In the following, we assume that x > 64e. Let n be an SLE,.. Define T to be the first
time that 1 swallows z. For € > 0, let 7. be the first time that  hits B(x, ¢). Define O, to
be the image of the rightmost point of n[0,¢{] N R under g;. Define

. . gt(x) — Oy
Te = inf{t : ——F———
=

=€}
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We stop the curve at time 7g4.. Let 7} be the image of 5[7s4c, 00) under the centered
conformal map f := gs,,. — W,,.. Then 7 is an SLE,,. Define the event Hy,, for 7.

Given 1[0, 764¢], consider the event Ha,11(€, z,y). We wish to control the image of the
ball B(zx,¢) and the image of the half-infinite line (—co, y) under f. We have the following

observations.

* By Koebe 1/4 theorem, we know that 7g4. < 716.. Combining with Lemma 2.2, we
know that f(B(x,€)) is contained in the ball B(f(x),4f'(x)e).

* At time 744, there are two possibilities for the image of y under f: if y is not
swallowed by 1[0, 7e4¢], then f(y) = g#,. (y) — Wa,,. is the image of y under f; if y is
swallowed by 7|0, 74|, then the image of y under f is the image of leftmost point of
1[0, 7eac) "R under f, in this case, we still write f(y) = gz, (y) — Wa,,. as explained
in Section 2.

64e

~ Combining these two facts, we know that, given N[0, T64¢], Hon+1(€,x,y) implies
Hyn (41 (x)e, f(x), f(y)). By the assumption hypothesis, we have

N ~ 97 (:17) - W’f64 fan g; ({L‘)E o
IP [H2n 1(6» xZ, y) ‘ 77[07 7—645]7 T64e < T] S, < ol - B2e .
* G%64c (33) — Gfeae (Z/) G764c ('T) - W‘?Gzle

For fixed 2 and y, the quantity ¢:(z) — ¢¢(y) is increasing in ¢, thus g;(x) — ¢:(y) > = — y.
Plugging in the above inequality, we have

—at af af —at af
P [Han1(62,y)] S (2=) "5 i B [ (gae,, (1) = Wegy, )5 ~hnsgl (@)% i1 (5, oy
By Proposition 3.1 and (3.4), we have

P [H2n+1(67 T, y)} 5 (.’L' — y)_a;n ea;z—lx_ul (u;n)eul(O‘;n)"’_o‘;n_a;n—l .

Note that
aérnﬂ =wu(ag,) +ag,. (3.8)
Therefore o N
P [Hapta(€2,y)] S (x i y) (i)%n+1
which completes the proof. O

Proof of Lemma 3.7, Lower Bound. Let n be an SLE,. Define T to be the first time that
7 swallows x. For € > 0, let 7. be the first time that n hits B(z, €). We stop the curve at
time 7.. Let 7} be the image of 7|7, o) under the centered conformal map f := g,, — W,,.
Then 7j is an SLE,. Define the event f{Qn for 7.

Given n[0, 7], consider the event Hy,, 11 (€, x,y). We wish to control the image of the
ball B(z,€) and the image of the half-infinite line (—oo, y) under f. We have the following
observations.

» Applying Koebe 1/4 Theorem to f, we know that f(B(z,€)) contains the ball
B(f(z), f'(x)e/4).

* Attime 7., we have f(y) = g-.(y) — W-.. Recall that if y is swallowed by [0, 7], then
f(y) should be understood as the image of the leftmost point of [0, 7.] N R under f.

Combining these two facts, we know that, given 1[0, 7], the event Hs,,11(€, z,y) contains
Hy, (f'(x)e/4, f(x), f(y)). By the assumption hypothesis, we have

iy +
gr. (:L') - W, >a2" ( g;_ (.%‘)6 >O‘2n1
]PHn » 03635<Tz e e _ ITe ) ' (39)
[Hant1(e, x,y) | n]0, 7], ] (gﬁ(x) — gr. (v) gfe(x) —W.,
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For ¢t > 0, let O, the image of the rightmost point of 1[0, ¢] N R under g;. Set

T, = gi(z) — O J, = gi(z) — O
t — 9 t — .
9:(z) gi(z) — W,
Define
My = gj(a)" =) (g (2) = Wi)Y/%, where v = k(a3, — af, ) < £/2— 4.

Then M is a local martinagle and the law of 7 weighted by M becomes the law of SLE, (v)
with force point x. By (3.8), we have

v(v+4—k)/(4k) = o, ;.
The local martingale M can be written as
My = gy(@)*2n+1 (gi () — W) *on~nns
R e L A D e

At time t = 7. < T, by Koebe 1/4 Theorem, we have T; < ¢. Since J; < 1, we have

M, €211 < J. ()31 (gy. (z) — Wy, )*2n =201

Combining with (3.9) and M, = xo‘;"_a;xﬂ, we have
ot af —af N N . ot
IP[HQn-‘rl(e) Zz, y)] Z € 2ntipTen g |:(g7'e* (l') - g'r: (y)) 2 1{7: <T*}|»

where IP* denotes the law of SLE,; () with force point x and ¢*, 7, T* are defined for n*

y e

whose law is P* accordingly. Since v < k/2 — 4, the curve accumulates at the point z at
almost surely finite time 7%, thus {7 < T*} always holds. To complete the proof, it is
sufficient to show

N
* * * — Qg —af
B (050 -0 0) | 2 - n (3.10)
Since the quantity g; (z) — g; (v) is increasing ¢, we know that

-y < gr.(x) — g7 () < gp-(2) — 97+ ().

Combining with Lemma 2.4, we obtain (3.10) and complete the proof. O

3.4 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Combining Remark 3.3 and Lemmas 3.7 and 3.6 implies the
conclusion. O

Proof of Theorem 1.2. We have the following observations.

* By Remark 3.5, we know that (1.6) holds for n = 1.
* By the same arguments in Section 3.3, we could prove that, assume (1.6) holds for
2n — 1 with n > 1, then (1.7) holds for 2n where (3.8) should be replaced by
d2+n = ul(d;rnfl) + &;rnfl'
* By the same arguments in Section 3.2, we could prove that, assume (1.7) holds for
2n with n > 1, then (1.6) holds for 2n + 1 where (3.7) should be replaced by

At (At At
Aopt1 = u2(a2n) + Qo

Combining these three facts, we obtain the conclusion. O

EJP 22 (2017), paper 89. http://www.imstat.org/ejp/
Page 14/26


http://dx.doi.org/10.1214/17-EJP110
http://www.imstat.org/ejp/

Boundary arm exponents for SLE

4 Boundary arm exponents for x <4

4.1 Definitions and statements

In this section, we assume « € (0,4], let n be a chordal SLE, curve, and let g; be
the corresponding Loewner maps. Since n does not hit the boundary other than its end
points, H,, and H, defined in Section 1 are empty sets. So we need to modify their
definitions.

For y € R and r > 0, we define half strips:

Ly, ={zeH:S2<r Rz <y}, L;r:{zeﬂsgzgr;%zzy};
and write L = L .

A crosscut in a domain D is an open simple curve in D, whose end points approach
boundary points of D. Suppose S is a relatively closed subset of H such that 9S N H is a
crosscut of H. Then we use 81{;5 (resp. 0y S) to denote the curve 95 N H oriented so that
S lies to the left (resp. right) of the curve. For example, 0y Lyjr is from y to oo; and for
z € R, 0 B(z,r) is from z —r to x + 7.

Let & : [0,7;] - C, j = —1,1, and 5 : [0,7) — C be three continuous curves. For
j = —1,1, define increasing functions R;(t) = max({0} U{s € [0,Tj] : &;(s) € n([0,t])}) for
t € [0,7). Let 19 = 0. After 7, is defined for some n > 0, we define 7,11 = inf{t > 7, :
n(t) € {1yt ((R—1yn+1(n), T(—1yn+1))}, where we set inf ) = oo by convention, and if
any 7,, = 0o, then 7, = oo for all n > ny.

Definition 4.1. If 1,,, < oo for some ny € IN, then we say that n makes (at least) ng
well-oriented (£_1, &1 )-crossings.

Remark 4.2. The above name comes from the fact that the orientation-preserving
reparametrizations of ¢;,£_1,7n do not affect the event.

Definition 4.3. etz > y, x > 0, and ¢ > 0. Let n be an SLE, in H from 0 to
oo. Define H}, (¢, z,y) to be the event that n makes at least (2n — 1) well-oriented
(0; B(z,€), O L, )-crossings. Define H3, (¢, z,y) to be the event that 1) makes at least 2n
well-oriented (O L, , 8; B(x, €))-crossings. Note that in either event, the last visit that
counts is at the half circle 9; B(z, €).

The theorem below is our main theorem for « < 4. The function ¢ will be defined
later in (4.7), and ¢® is the k times iteration of ¢. The following estimate is useful to
have a sense of ¢p(*):

o™ (z) > g if 2 > 6k + 3. 4.1)

Theorem 4.4. Let o, and of, | be defined by (1.1). We have the following facts.
(i) If (e, z,y) satisfy 2°"~*e < ¢(2"=2)(x — y), then

+ + +
r¥2n—2"%n-1¢%n-1

[T 020 (o — y)™ 5

(4.2)

P I:Hgn—l(€7 Zz, y)] fs

If (¢, z,y) satisfy 2°"~'e < (2"~ (z —y), and € < x, then

+ ot +
x%n " %n_1¢%n—1

P[HE (e, 2,y)] < . 4.3
[ 271(6 z y)] ~ H;L21 ¢(2n—2]‘) (x — y)a;—iia;—ij ( )

Here the implicit constants depend only on k,n.
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(ii) For any R > 0 and n € N, there is a constant C,, r depending only on k,n, R such
that

P [HE, (e, y)] > an,LRx“;nff"‘;nfleo“:‘r"fl7 provided e < z,and e < z —y < R,
4.4)

P[HS, (e, z,y)] > CQmea;n—a;,lea;,l’ providede < x <z —y < R. (4.5)

Remark 4.5. Using (4.1), we see that, if z — y > 12n and 2°"¢ < z — 3, then

T %22 €\ 301
Pl o] £ (-5) ()

T—y T

and

PH,(e,2.y)] < ( . ) (E)”‘J"*.

x—y T

So we get the same upper bound as in the case x > 4.

4.2 Comparison principle for well-oriented crossings

Let D be a simply connected domain. We say that n : [0,7) — D is a non-self-crossing
curve in D if n(0) € 9D, and for any ¢, > 0, there is a unique connected component D, of
D\ n|[0,to] such that n(to + ) is the image of a continuous curve in U under a continuous
map from U onto Dy,, which is an extension of a conformal map from U onto D,,. For
example, an SLE curve is almost surely a non-self-crossing curve.

I
A A A
< j ¥ (%)
n(r2) ¥ (A)’ ' ‘\>
\Ta
n(fs) &, _—
«r} 7/‘//’;‘
| e
71( 2) | K ~ n(m)
& & €4 =

Figure 2: The figure illustrates the definition of well-oriented crossings as well as the
conditions of Lemma 4.6. The curve 7 totally makes 2 well-oriented (£{_1,&;)-crossings
and 5 well-oriented (f,l,fl)-crossings. The times 73, 1 < j <2, and 7;, 1 < j <5, are
indicated in the figure.

Lemma 4.6 (Comparison Principle). Let D be a simply connected domain, and n be a
non-self-crossing curve in D. Let &;,&; : (0,1) — D, j = —1,1, be crosscuts of D. Let (7,,)
and R;(t), j = —1,1 be as in the definition of oriented crossings forn and ({_1,&1). Let
(7,) and Rj (t), 3 = —1,1, be the corresponding quantities for n and (5_1, él) Assume the
following. See Figure 2.

(i) Forj = —1,1, éj disconnects &; from both {_; and f_j in D; the distance between
&_1 and & is positive; and £_; disconnects {_; from n(0) in D. Here we allow the
possibility that §; touches ;, orn(0) € {_;.

EJP 22 (2017), paper 89. http://www.imstat.org/ejp/
Page 16/26


http://dx.doi.org/10.1214/17-EJP110
http://www.imstat.org/ejp/

Boundary arm exponents for SLE

(i) If ny, = E(,l)nu(R(,l)nH(Tn)) or é(,l)n+l(1) for some ty > 1,, then for any ¢ > 0,
there is t1 € [to,to + €) such that n(t) € é(,l)n“((R(,l)nﬂ(m), 1)).

(iii) There is a closed boundary (prime end) arc I of D with end points £ (1) and £_1(1)
such thaté;(1) € I, j = —1,1, and n N 1T = 0.

If n makes ny well-oriented ({_1,&)-crossings, then it also makes ny well-oriented
(£_1,&)-crossings.

Remark 4.7. The assumption that 7 is non-self-crossing forces 7(7, + -) to stay in the
closure of the remaining domain D,, . We need assumption (iii) to prevent 7(7, + -) to
sneak into the region bounded by the crosscut f(_l)nﬂ ((R(_l)n+1 (Tn), 1)) of D, through
one of its endpoints without hitting the crosscut. This assumption is certainly satisfied if
1 is an SLE curve.

Proof. Suppose 1 makes ny well-oriented (£_1,&;)-crossings. Then 7,, < co. We will
show that 7, < 7, for 0 < n < ny. Especially, the inequality 7,,, < oo is what we need.
First, we have 7 = 7o = R_1(0) = 0. From assumptions (i) and (ii), we have

# =inf{t > 0:n(t) € £.1((0,1))} <inf{t > 0:7(t) € £_1((0,1))} = 7.

Suppose we have proved that 7, < 7, forsome n € {1,...,n9—1}. Then n(7,) € 1),
and for every ¢ > 0, there is ¢ € [7,,41, 711 +€) such that n(t) € §_qynt1 (R_1ynt1(T0),1)).
Let D, be the connected component of D \ 7([0,7,]) such that n[r,,c0) C D,, . Then
§—yn+1 ((R—1yn+1(7n), 1)) is a crosscut of D, since it belongs to D \ 7([0,7,]) and is

visited by 7 after 7,,. From assumption (iii) we know that é(,l)nﬂ((]%(,l)nﬂ(fn), 1))
is also a crosscut of D, . Since D, is simply connected, this crosscut disconnects
E—nynt1 (RZ1yn+1(m0), 1)) from 7, in D; . From assumption (ii), we have

inf{t > 7, : (t) € §1yner (R(_1yns1(70), 1))}
< inf{t > Ty n(t) S f(_l)n+1((R(_l)nJrl(Tn), 1))} = Tp+1-

Since 7,, < 7, and R(_l)n+1 (t) is increasing, we get R(_l)n+1 (Tn) < R(_l)n+1 (1), and so

(—1yn+1(Tn), 1))}

’7A'n+1 = inf{t > Ty - U(t) S é(,l)wrl ((R 1 T
<inf{t > 7, 1 9(t) € Eaynrt (R_1yn1(7n), 1))} < Trgr-
By induction, we conclude that 7,, < 7, for all 0 < n < ng, as desired. O

Remark 4.8. The lemma also holds if we do not assume that £_; and é_l are crosscuts
of D, but assume that they are the same curve in D.

4.3 Estimates on half strips

Given a nonempty H-hull K, Let ax = min(K N R) and bx = max(K NR). Let
K% = K Ulak,bx] U{Z : 2 € K}. By Schwarz reflection principle, gx extends to a
conformal map from C \ K onto C\ [cx,dx] for some cx < dr € R, and satisfies

9k (Z) = gk (z). From [Zha08, (5.1)] we know that there is a positive measure ug
supported by [cx, dk] with total mass || = heap(K) such that,

-1
fK(z)—z:/Zixd,uK(x), z € C\ [ck,dk]. (4.6)

For zo € Randr >0, let B (xo,7) denote the special H-hull B(zg, ) "H. If an H-hull
K is contained in B (2o, ), then heap(K) < heap(B " (z0,7)) = r2 by the monotonicity
of half-plane capacity, and [cx,dk]| C | | = [zo — 27, 20 + 2r] by [Zha08,

C§+ (xo,r)? d§+ (zo,r)
Lemma 5.3].
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Lemma 4.9. Let 29,y € R and R,» > 0. Suppose K is an H-hull and K C E::O,R.
Then the unbounded connected component of gi (L, \ K) contains L ., fory" =

min{zo — 2R —

y'sr!

y—s5tandr =r/2.

r

Proof. Let z € L;/;w- Since Rz < zg — 2R — @ and [ck,dk] C [zo — 2R, zo + 2R], we
have |z — x| > 232 for any z € [cK,dK] From (4.6) and |ux| = hcap(K) < R?, we get
|fr(z) —2| < § ."Since R= <y <y-—1,wegetRfx(z) <y. Since 0 < Fz < ¢ =1/2,
we get 0 < %fK( ) <r (fxk maps H 1nto H). Thus, we conclude that fx (L) C Ly.,.
Since fx(L,,,.) is an unbounded domain contained in H\ K, and gx = fr', we get the
conclusion. O

Now L., is not an H-hull since it is not bounded. But we will still find a conformal
map from H onto H \ L,.,.. By scaling and translation, it suffices to consider L, = L.

We will use the map f(o(2) = V2% — 1 for the half open line segment (0, 7], and the map
_ i

I+ 0.1 for the unit semi-disc. Recall that =1 50, 1)( z) = g§+(0’1)(z) =z+ .

Lemma 4.10. Let fLO_ (2) = f0,q(2) +log(f5+ (0 1)(22)), where the branch of log is chosen

so that it maps H onto {0 < Sz < w}. Then fr- maps H conformally onto H \ Ly, and

satisfies ng(Z) = z+1og(2z) + O(1/z) as z — oo, and ng(l) =0, ng(—l) = .

Proof. We observe that z — log( f§+(071)(2z)) is a conformal map from H onto L, which
takes 1 and —1 to 0 and 7i respectively; and f(; is a conformal map from H onto
H \ (0,i], which takes both 1 and —1 to 0. So the fLO_ defined by the lemma satisfies
fr- (1) = O,fL;(fl) = mi. As z — 00, f(0,q)(2) = 2+0O(1/z) and f§+(0,1)(22) =22+0(1/z).
So log(f§+(0’1)(2z)) = log(2z) + O(1/2?) as z — oco. Thus, fLJ (2) = z+1og(22) + O(1/z2)
as z — 00.

It remains to show that ng maps H conformally onto H\ L;. It is easy to see
that f, - maps (1,00) into (0,00). By Schwarz-Christoffel transformation, it suffices
to show that f]’;o_(z) = /% Let g(z) = g§+(01 (2 )/2 =%+ 4+ and f = g7'. Then

—g;and ¢'(2) = 5 — 5

log(f§+(071)(2,z)) = log(f(z)). We find that /g 5 5,7
So \/g(2)2 -1 = 2¢4'(2) = ff,((g((zz)))), which implies that £

—+. From this we

f
get = log(fB+(O 1)(22)) = ’;((ZZ)) = \/% Since f(,;(z) = ==, we have f’ (2) =
2+l as desired. O

\/22—1 \/z2—1 = z—1’
Define f;-(z) = frs (2 —y) +y, which maps H conformally onto I \ L, and let

9o, = fL_;l We will use hm(z, D; V) to denote the harmonic measure of V in a domain D
seen from z, i.e., the probability that a planar Brownian motion started from z € D hits
V before 0D\ V.

Lemma 4.11. For anyy,m € R, and any boundary arc I C (H\ L, ), we have limj,_, h-
hm(m +ih, H\ L ;1) = |gL; (I) - | is the Lebesgue measure on R.

Proof. From conformal invariance of the harmonic measure, we have
hm(m +ih, H\ L, ;1) = hm(gL; (m +1ih), H; 9r; (I).

Since |fL;(z) —z|/|z| — 0 as |z| = oo, we get \gL;(z) —z|/]z| — 0 as |z| — co. From this
we get
hle hm(g, -~ (m +ih),H; g, - (I))/ hm(m + ih,H; g, - (1)) = 1.

Since limy, o0 b - hm(m + ¢h, H; 9r- () = |qu7 (I)|/m, the proof is now finished. O
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We will use hm(oo, H \ L ; I) to denote limy, o 7 - b - hm(m +ih,H \ L,;I), which
equals \gL; (1)| by the above lemma. For example, we have hm(oo, H\ L, ; [y, y +i7]) = 2,
and

hm(oo,IH\L;; lv,y']) = ) (v — 9Ly (y) = ng(?/ -y -1 ¥ >y

Note that x fLE (gLJ (z) — 2) is a homeomorphism from [ng (3),0) onto [0, 00). Now
we define
é(z) = { fLJ(gLa(x)_z)a 1f$ZfLa(3)§ @.7)

0, if 2 < f,(3).

Lemma 4.12. Let 2o,y € R. Let K be an H-hull such that 2y > bx = max(K NR). Let
7 denote the unbounded component of 0L, \ (RU K). If zg — yo > ng (3), then there is

y1 € R such that gk (v) C Ly, and gk (vo) —y1 > ¢(xo — yo)-

Proof. Let L be the unbounded component of L, \ K. Let y1 = supR(gx(7)). From
(4.6) we see that gx = ff(l decreases the imaginary part of points in H. So we have
grx(7) C Ly,.

Let x1 = gk (z0). First, we prove that 1 > y;. Choose z; € gk () such that y; = Rz.
Suppose 1 < y;. Then z; ¢ R for otherwise z; is the image of ¥ N 0K under gx, which
must lie to the left of the image of zo. Let v, denote the vertical open line segment
(y1,71). It disconnects z; from oo in H \ gx (L). Thus, fx(v,) is a crosscut in H\ (K U L),
which connects fx(z1) € v with fx(y1) > zo, and separates zg = fx(x1) from oo in
H\ (K UL). Then for big h > 0,

hm(Zhv H \ (K U L)7 fK(’yv)) = hm(Zhv H \ L; fK('YU)) > hm(lhv H \ L;O; fK(’Yv))
> hm(zh, H \ L;O, [yo, IoD (48)

Here the equality holds because fx(7,) disconnects K from oo in H \ L (here we use the
fact that L is the unbounded component of L, \ K); the first inequality holds because
H\ L, C H\ L; and the second inequality holds because fx(7,) disconnects [yo, 7o] from
coin H\ Ly, .

From conformal invariance of harmonic measure, H\ gx(L) D H\ L
[y1, 1 + iw], we have

oo and v, C

hm(ih, H\ (K U L); fr (7)) = hm(gx (ih), H\ gr (L); 70)
< hm(gx (ih), H\ Ly ; [y1, y1 + 7).

Thus,
hm(ih, H\ L, ; [yo, zo]) < hm(gx (ih), H\ L, ; [y1,y1 + in]).

Combining the above inequalities with (4.8) and letting h — oo, we get
hm(oo, H\ Ly ; [yo, zo]) < hm(oo, H\ L, ; [y1, y1 + i7]).

Then we get 9r; (xo — yo) — 1 < 2, which contradicts that zg — yo > fLJ (3). Thus,

gk (z0) = 1 > Y.
Finally, since fx([y1,#1] U [y1,1]) disconnects K from oo in H\ L, and disconnects
[Y0, To] from oo in H \ L, , we get

hm(oo, H \ Ly_07 [y()vl'o]) < hm(oo,H \ Ly_la [3/1»2!1 + ’L7T} U [ylaxl})v

which implies that 9r- (xo—yo) —1< 2+ 9r; (x1 —y1) — 1. So the proof is finished. O
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Let Ky, 0 <t < tg, be chordal Loewner hulls driven by W;, 0 < t < 3. Recall that
every Ky is an H-hull with hcap(K;) = 2¢t. From (2.1) it is easy to see that

sup{Rz: 2z € Ky} <max{W;:0<t<tg}, sup{Sz:2z€ K;} < Vdtg. (4.9)

From [LSWO1, Theorem 2.6] and [Zha08, Lemma 5.3], we know that
W, € [exyy dre,, ] 0 <t < to. (4.10)

Lemma 4.13. Let R = L, N L} for some r <y € R. Then cp > x — 2.

Proof. Let m = (z +y)/2. Then R is symmetric w.r.t. {Rz = m}. So gr(m + im) = m. By
conformal invariance and comparison principle of harmonic measures, for any h > 7, we
get

h-hm(gr(m +ih), H; [gr(z + i7),m]) = h - hm(m + th, H\ R; [z + im, m + i7))
< h-hm(m +ih, {Sz > 7}; [z + im,m + i7])
= h-hm(m + i(h — ), H; [z, m]).
Letting h — oo, we get m — gr(x + im) < m — z, and so gr(x + i7) > z. Similarly,

h-hm(gr(m +ih), H; [gr(z), gr(z + i7)]) = h- hm(m + ih, H\ R; [z, z + i7])
< h-hm(m +ih, H\ L} ; [z, 2 + in]).
Letting h — oo, and using Lemma 4.11 (applied to right half strips) and (gr(m

_|_
ih) — (m 4+ ih))/h — 1 as h — oo, we get gr(z + in) — gr(z) < 2. Thus, cg = gr(z) >
gr(x +im) —2> 2 — 2. O

Lemma 4.14. Let iy = 7 /4. We have K;, N L, # 0 ify > min{W; : 0 <t < o} + 2.

Proof. Letl = min{W; : 0 <t <y} and r = max{W; : 0 < t < ¢p}. From (4.9), we know
that K;, C L,”. Suppose Ky, N L, = {) for some y > 1+ 2. Then K;, C R:= L} NL,.
From [Zha08, Lemma 5.3], we get [ck, ,dK,, ] C [cr,dr]. From the above lemma, we get
CKy, > cr > y — 2 > [, which contradicts (4.10). So the proof is finished. O

The above lemma means that, if min{W, : 0 <t < 72/4} < y—2, and if (W;) generates
a chordal Loewner curve 7, then 7 visits L, before %2.

4.4 Estimate on the derivative

Proposition 4.15. Assume the same setup as that in Proposition 3.1 except that (3.1) is
replaced by
4b > (A =b)(kA —kb+4 — k). (4.11)

Let 7. be the first time that |n(t) — 1| < e. Then we have
E [(gr. (1) = W) "gl, (1)" 1 (r, <myy] = €1 VFATY, (4.12)
where the constants in < depend only on k, A, b.

Proof. Let Xy = (g¢(1) — Wy)*bg;(1)"1 <1y and B = uy(X) + A — b. First, (4.11) implies
(3.1) and 8 > 0. By Proposition 3.1, we have

E (X0 lzo<my] < €.

From (4.11), we straightforwardly check that X, is a super martingale using It6’s formula.
In fact, if the equality in (4.11) holds, then X; agrees with the local martingale in Lemma
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2.3 with pl' = 0, zf* = 1, and p® = k() — b). Also note that g;(1) is decreasing. Thus, from

Te < 7., we get
E [Xr(0l{r9<n}] < B [Xeolizoeny] < €

To prove the reverse inequality, we follow the proof of Proposition 3.1 to get

E [ X, lr)<my] < B [0 > €,

Te —

using Y., <¢, 0< J; <landfg > 0. O

4.5 Proof of Theorem 4.4
Proof of Theorem 4.4. From Remark 3.3, we have (4.2) and (4.4) forn = 1.
From 2n — 1 to 2n: Suppose (4.2) and (4.4) hold. Let ¢ be the hitting time at Ly_.
upper bound. If y > 0, then we use the estimate
P[H3, (€, 2,y)] < P[H3, (€, z,y)]
a+ 7Oé+ a+
x€X 2n—2 2"_16 2n—1

<
I $en-2 (o — )

+ ot +
x%2n " %2n-1¢%n—1

S En T )
[, 62 (o - )55 2

where the last inequality follows from ¢(>*=29=1(z —y) > ¢~ 2)(z —y), z >z —y =
#(z — ), and ajj > a;jfz. So we get (4.3).

If y <0, then n(0) € dy L, , and the righthand side of 5[0, o] disconnects the union
of [®n(o),0] and the righthand side of the line segment [Rn(c),n(o)] in H\ [Rn(o),n(o)].

From the comparison principal and conformal invariance of harmonic measure, we get

hm (oo, H '\ n[0, o]; RHS of 1[0, ¢]) > hm(co, H\ (1[0, 0] U [Rn(c), n(o)]); RHS of n[0, o])
> hm(oco, H\ [Rn(0), n(o)]; [Rn(o), 0]
U RHS of [Rn(a), n(0)]).

Since Rn(o) <y, we get
9o(r) = W5 >z —y. (4.13)

The following local martingale is similar to the one used in the proof of Lemma 3.4 (recall
(3.7)):
Ot+ —Ot+ / OL+
Mt — |gt(m+3€> _th 2n 2n—1gt(1‘+36) 2n—1

The law of n weighted by M;/M, is SLE(k;v) with force point at x + 3¢, where v =
k(ag, —af. ;). Let E* denote the expectation w.r.t. this SLE(x;v) process. Let ¢; =
4(go(z + 3€) — go( + €)), 1 = go(z + 3¢), and y1 = sup{Rg,(2) : z € 9L, }, where we
use 8]?{Ly* to denote the remaining part of 9y L, at time o in the positive direction, i.e.,
the unbounded component of 0 L, \ 1[0, 0]. Then g,(0%L, ) C L. From Lemma 2.1,
the g,-image of the remaining part of aﬁ B(x,¢) at time o in the positive direction (which
touches z + ¢), denoted by 0% B(z, €) is enclosed by 8$B(x1, ¢1). From (4.13), we get

€1 <8 <2 le < ¢(2”71)(x —y)<z—-—y<z —W,.

This means that 9;; B(z1, ¢;) disconnects W, from g, (9% B(x,¢)). From Lemma 4.12, we
have 21 — 41 > ¢(x — y) > 2% > ¢;. So we may apply Lemma 4.6 and use DMP of SLE to
get

P[Hgn(67 Z, y)‘n[oﬂ UH < Hgn,1(617 1 — W, Y1 — WO’)'
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We assumed that (e, z,y) satisfy 2°"~'e < ¢~V (z — ). Since ¢/, < 1 on R\ K,, we have
€1 < 8e. So we get

2on=de; <2977 e < D (g — ) < D (2 —yy).

This means that (e1,z1 — Wy, y1 — W,,) satisfy the conditions for (4.2). From the induction
hypothesis, we get

PIHY i (e1, 21 — Wy, y1 — W,)]
N
< folar — y1) (@1 — W,)22n 2" 200
< fal@r = 1) (9o (@ + 36) = W,)*an-21 (gl (2 + Be)e) "o,

where f,(z1 — y1) is the factor coming from the denominator of (4.2), and the last
inequality follows from 0 < g, (z + 3€) — g, (x + €) < go(x + 3¢) — V, < 3¢g.(z + 3¢)e and
ag. ,,af | >0.Sowe get

PHZ, (e, x,y)] = E[P[H3, (€, z,y)[n[0, o]]]
[H2n 1(61’1‘1 WUayl - W )]

IN

E

Fo(@1 — 11)en 1 E[(go (x + 3€) — W,y)®2n-2"%n-1 . g! ( + 3€)%n-1]
fn 0 &z — y)e®>n—1 MoBE* (g (z + 3€) — W, )¥3n—2"%n]
fno

IN A

IN

Bz — y)(T — y) 22" (3 + 3€)¥2n " n-1%n-1,

where in the second last inequality we used z; — y; > ¢(x — y), and in the last inequality
we used o, 5, < a3, ; and (4.13). Since € < z, we get (4.3).
Lower bound. We use the local martingale (similar to the one above):
My = gi(@)3n=2|go(w) — Wi ~ns.

The law of n weighted by M, /M, is SLE(k; ) with force point at x, where v = k(aj, —
ag,,_1). Let E* and P* denote the expectation and probability w.r.t. this SLE(k; v/) process.

Fix R > 1 > § > 0 and suppose x — y < R. In the proof below, we use C to denote
a positive constant, which depends only on &, n, R, §, and may change values between
lines. Let F'(§) denote the event that n[0,¢] C B(0, ), n does not swallows z at o, and
dist(n[0, o], z) > dx. Suppose F(§) occurs. From Lemma 4.9, the image of the unbounded

s 2

connected component of L, \7[0, o] under g, contains szl;g fory, := min{y—3,—5— %}

Assume that € < %. From Koebe’s distortion theorem, the g,-image of 3]‘§ B(z, €) encloses
%'B(xl,el), where 21 = ¢g,(z) and ¢ = gg;(az)e. Let 2o = 2(x1 — Wy,), y2 = 2(y1 — W),

and e; = 2¢;. From DMP and scaling property of SLE and Lemma 4.6, we get
]P[Hgn(ev Zz, y)|n[0a 0]7 F(6)] Z H;n—l(e% T2, y2)7 ife S 5.1?/2
From [Law05, (3.12)], we get |z; — z| < % So we have

3 9w 2 2 5
—ylgmax{x—y+g+§,x+6+ 52} R—f—ﬁ (4.14)
Let R> = 2(R+ 6%) Then z5 — y» < R, and Ry depends only on R and §. From the
induction hypothesis, on the event F(§), we have

+

+ .t +
PHE, 1 (c2,2,y0)] = Cary ™ =707 557 = Ol (@) 31 (g () — Wiy )Monm2 O ns,
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Thus, if € < §z/2, then

P[H3, (€, 2,y)] > E[P[HZ, (e, z,y)[n[0, o], F(5)]]
> E1ps)H3,—1 (€2, 02, y2)]
(X+ ! Ot+ (1+ —Ot+
> Ce b1 B[Lp(a) g (2) 1 (g () — W) hnaohcs]
= Ot MyE* [Lp(s) (g () — Wo ) 3n—2=0%]
> O~ %n—1%n1 P*[F(5)),

where we used g,(z) - W, <z1 —y1 <R+ 5% in the last inequality.

We now find some §,C € (0,1) depending only on x,n, R such that P*[F(d)] > C.
After choosing that d, the constants C' we had earlier also depend only on «,n, R. Let
7 be a chordal SLE(k,v) curve started from 0 with force point z, and let W be the
driving function. Since v > (§ —2) V0 and = > 0, W} is stochastically bounded above
by /kBy, n never swallows z, and dist(n[0,0),z) > 0. Let Ey denote the event that
min{W; : 0 <t < 72/4} < —R—2 and max{W; : 0 < t < 72/4} < R, and let Ep
denote a similar event with \/kB; in place of W;. Then the probability of Ey is bounded
below by the probability of Fp, which is bounded below by some C; > 0 depending
only on k, R. When Ey occurs, from Lemmas 4.9 and 4.14, we get ¢ < 72/4 and
n[0, 0] C [y, R] x [0, 7] C B(0, i) for ; = 7. By the scaling property of SLE(x, v) curve,
we see that dist(n[0, 00), x)/x is a positive random variable, whose distribution depends
only on k,n (but not on x). So there is §; > 0 depending only on «,n, R such that the
probability that dist(n[0, o), z) < dox is at most C;/2. Let 6 = §; Ade and C = C4/2. Then
P*[F(5)] > C. For such , if € < 6z/2, then P[HZ, (¢, z,y)] > Cz*3»~*2n-1¢%n-1. Finally,
if e > 0x/2, then by comparison principle, we have

P[HF, (e, 2,y)] > P[H3, (62/2,x,y)] > Cz%n > Ca®in=3n-16%n-1,

where we used ¢ < z and ogn_l > 0 in the last inequality. So we get (4.5) as long as
e<uwx.
From 2n to 2n + 1. Suppose (4.3) and (4.5) hold. We use the local martingale

M; = gi(2)*3n1 (ga() — Wy)n = %nn
_ 91/5 (:L,)a;kl (gt (x) o Wt)a;rn—a;rn71 T?;—n—liag—n-%—l J;V;n+1*a;n—1’

which is similar to the one used in the proof of Proposition 3.1 (recall (3.8)). The law of n
weighted by M, /M, is SLE(x;v) with force point at z, where v = r(od, — o, ;). Let E*
and P* denote the expectation and probability w.r.t. this SLE(k; v) process. Let 7,. be the
hitting time at 9;f B(x, r) for any > 0. Recall that Y, <.

Upper bound. First, suppose 6¢ > x. Then we use the estimate

P[HgnJrl(ev T, y)] S ]P[Hgn(ev T, y)]

ot +
x%2n " %n_1¢%n—1
<

T II, 0 (- )

Tt +
x%n " %np1Ynt1

<
- H?:l ¢(2n_2j_1) ("I" - y)a;jia;ji2

where we used a3, > af;_,, ¢ (z—y) < ¢ "H "V (z—y), of,, > a3, ;, ande 2 .
So we get (4.2).
Now suppose 6¢ < x. Let o = 7¢.. Then 1, € d;; B(x,6¢). Let €; = g (x)e/(1 —1/6)2,

r1 = go(v), y1 = sup{Rg,(2) : z € OfL, }, where JfL, is the unbounded connected

b
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component of 9 L, \ [0, 0]. Then g,(9f L, ) C L,, because g, decreases the imaginary
part. From Koebe’s distortion theorem, the image of 8]}{"3(3:, ¢) under g, is enclosed by
8%3(1‘1 , €1 ) .

Since the semicircle 95 B(z, 6¢) disconnects the union of [0, z) and the righthand side
of [0, o) from oo in H \ 1[0, o], by the conformal invariance and comparison principle for
harmonic measure, we have

hm (oo, H; [z — 12¢, 2 + 12¢]) = hm(co, H, 05; B(z, 6¢))

(
m(oo, H \ 1[0, ol; (“)ﬁB(sc, 6e))
m(

(

ARV

oo, H\ [0, o]; [0, ] U RHS of 5[0, 0])

h
h
hm(oo, H; [W,, 21)).

Thus, #; — W, < 24e. Since z; — y1 > ¢(xz — y) > ¢ (z —y) > 257 > 24¢, we get
y1 — W, < 0. This means that 0y L,, disconnects W, from g,(0f; L, ). Besides, since
gr(z) € (0,1), we have x1 — y1 > €1. So we may apply Lemma 4.6 and use DMP of SLE to
get

P[H;n+1(€7 xz, y)|n[0a U]] < Hgn(ﬁh Ty — Wo’7 Y1 — WJ)'

We assumed that (e, z,y) satisfy 2°¢ < ¢(®™)(z — y). Since ¢/, <1 on R\ K,, we have
€1 < 4e. Thus,

25n—2€1 < 25116 < ¢(2n)(l, _ y) < ¢(2n—1)($1 _ yl)-

From Koebe’s 1/4 theorem, we get 1 — W, > 6g/ (z)e/4 > ¢/ (z)e/(1 — 1/6)2 = €;. This
means that (e;,z1 — W,,y1 — W) satisfy the conditions for (4.3). From the induction
hypothesis, we get

ot af
]P[Hgn(elvxl —Weo,y1 — Wo)] 5 fn(zl - y1)(331 - Wa)o‘zn 2"*1612 !

= fo(z1 — y1)€2n=1(gy () — W) ¥3n =14/ (z)%n—1,
where f,(z1 — y1) is the factor coming from the denominator of (4.3). Thus,

P[Hgn+l(€7 €, y)] = E[]P[Hgn—o—l(eﬂ X, y)|77[07 U]H
S E[H;n(elvxl - Wavyl - WO’)]
[

w1 =) B (g, () — W) i~ g () on 1]

+ + oot + Tt
fn o ¢($ — y)ea/'?nflm()@n_aznfl Eul(a2n)+a2n_a2n71

= fp0 (b(x — y)xa;n_a;nflea;n#»l

where we used Proposition 4.15, the scaling invariance of SLE, and ((3.8)). Then we get
(4.2) for 2n + 1.

Lower bound. We fix R,J > 0 and suppose z — y < R. In the proof below, we use C
to denote a positive constant, which depends only on x,n, R, §, and may change values
between lines. Let o = 7.. From Koebe’s 1/4 theorem, the g,-image of d;; B(z, ¢) encloses
Of; B(z1,€1), where 21 = g,(x) and €1 = g/,(z)e/4. Let F(5) denote the event that o < oo,
z is not swallowed at o, and 5[0, 0] C B(0, ). Suppose F(§) occurs. From Lemma 4.9,

the image of the unbounded connected component of L, \ n[0, o] under g, contains L.z

for y; :=min{y — %, -2 — 2% }. Let x5 = 2(z1 — W,,), y2 = 2(y1 — W,), and €5 = 2¢;. From

DMP and scaling property of SLE and Lemma 4.6, we get

P[H§n+1(67‘r>y)‘n[ovoLF(a)] > Hgn(62>x2ay2)'
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Using the same argument as around (4.14), we get z2 — y2 < Ry := 2(R + 6%) From the
induction hypothesis, on the event F(J), we have

+ ot + n

PHF, (€2, @2, y2)] > Cxy “#" 1y~ = Cgl, () %31 (go (x) — W, )*3n~%n-1%n-1,
Thus,

IP[HgnJrl (67 x, y)] Z E[]P[Hgn+1(€a x, y)|77[07 0]7 F((S)H (415)
> Ellps)H3, (62, 72, y2)]
a+ ! a+ Oé+ 7CK+
> Ce b B[L oy (2) 1 (g () — W) =]

Q+ 7OC+ Oé+ 7(1+
— CEOCITL*IMOE*[];F((;) Ja' 2n—1 2n+1 T02n+1 211,—1] (416)

> O =311 P*[F(6)], 4.17)
where in the last inequality we used Y, < ¢, J, € (0,1], and o, | — oz;rnJrl <0.

We now find some §,C' > 0 depending only on x,n, R such that P*[F(d)] > C. After
choosing that §, the constants C' we had earlier also depend only on «,n, R. Let  be a
chordal SLE(k, v) curve started from 0 with force point z. Since v < k/2 — 4, the curve 5
goes all the way to z in finite time, and so is bounded. Moreover, n does not swallow z
before it reaches z. By scaling property, diam(n)/z is a bounded random variable, whose
distribution depends only on x,n. Thus, there are constants d;,C' > 0 depending only
on k,n, such that P*[F(é;/x)] > C. Then we let 6 = d;/R. Since z <z —y < R, we have
F(61/x) C F(6). Using such ¢ and applying (4.17), we get (4.4) for 2n + 1. O
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