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Abstract

In this paper, we will give some remarks on links between the spectral gap of the
Ornstein-Uhlenbeck operator on the Riemannian path space with lower and upper
bounds of the Ricci curvature on the base manifold; this work was motivated by a
recent work of A. Naber on the characterization of the bound of the Ricci curvature
by analysis of path spaces.
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1 Introduction

Let M be a complete smooth Riemannian manifold of dimension d, and Z a C L_vector
field on M. We will be concerned with the diffusion operator

1
L = i(AA{ - Z)7

where A, is the Beltrami-Laplace operator on M. Let V be the Levi-Civita connection
and Ric the Ricci curvature tensor on M. We will denote

Ricy = Ric+ VZ.

It is well-known that the lower bound K of the symmetrized Ric?, that is,
1
Ric% (z) = §(R1C2({L') + Ric*Z(x)) > K, 1d, (1.1)

where Ric’;, denotes the transposed matrix of Ricy, gives the lower bound of constants in
the logarithmic Sobolev inequality with respect to the heat measure p;(z, dy), associated
to L; more precisely,
u? 1 — e Kot
/ u?(y) log<ﬂ) pe(x,dy) <2 ———— [ |[Vu(y)? pe(z,dy), t>0,  (1.2)
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Spectral gap on path spaces

where [[ul|2 = [}, u*(y) pi(z, dy).
Given now a finite number of times 0 < ¢; < ... < ty, consider the probability
measure v, . ;. on MV defined by

/ fdyt1,-~»,tN = f(yla"'7yN)ph(xvdyl)ptz—tl(yhdyQ)"'ptN—tN—l(yN—ladyN)
JMN JMN

(1.3)
where f is a bounded measurable function on M. Then with respect to the correlated
metric | - |¢c on TM N (see definition (1.10) below), the logarithmic Sobolev inequality
still holds for v, .. +,, that is, there is a constant Cy > 0 such that

yeeey

2
f2 1Og(2f7) dyt1:~~7tN < CN / |Vf|%; dl/t17~~;tN’ f € Cl(MN)' (1.4)
. -
It was proved in [20, 6] that under the hypothesis
sup [[|Ricz(z)[|| < +oo, (1.5)
reM
where ||| - ||| denotes the norm of matrices, the constant Cy in (1.4) can be bounded, that
is
sup Cy < +o0. (1.6)
N>1

A natural question is whether (1.6) still holds only under Condition (1.1)? In a recent
work [21], A. Naber proved that if the uniform bound (1.6) holds, then the Ricci curvature
of the base manifold has an upper bound. It is well-known that Inequality (1.2) implies
the lower bound (1.1), therefore Condition (1.6) implies (1.5). The main purpose in [21]
is to get informations on Ricy from the analysis of the Riemannian path space. Let’s
explain briefly the context.

Let O(M) be the bundle of orthonormal frames and 7 : O(M) — M the canonical
projection. Let Hy, ..., H; be the canonical horizontal vector fields on O(M), consider
the Stratanovich stochastic differential equation (SDE) on O(M):

d
|
dug(w) = Z H;(us(w)) o dwy — in(ut(w))dt, up(w) = ug € 71 (x), (1.7)
i=1
where Hy denotes the horizontal lift of Z to O(M), that is, 7' (u) - Hz(u) = Z(w(u)). Itis
well-known that under Condition (1.1), the life-time 7, of the SDE (1.7) is infinite. Let

Ye(w) = m(up(w)). (1.8)

Then {y:(w);t > 0} is a diffusion process on M, having L as generator. The probability
measure vy, ;. considered in (1.3) is the law of w — (74, (w), ..., ¥ty (w)) on MY . Now
consider the following path space

Wl (M) = {7 : [0,7] = M continuous, v(0) = :17}

The law p, 7 on WX (M) of w — ~.(w) is called the Wiener measure on W1 (M).
The integration by parts formula for i, 7 was first estalished in the seminal book [5],
then developed in [16, 10]; the Cameron-Martin type quasi-invariance of i, 7 was first
proved by B. Driver [9], completed and simplified in [18, 19, 13]. We consider the
Cameron-Martin space

T
H= {h : [0, 7] — R? absolutely continuous; h(0) = 0, |h|4 = /o |h(s)|3a ds < +oo}
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Spectral gap on path spaces

where the dot denotes the derivative with respect to the time ¢. Let F': W1 (M) — R be
a cylindrical function in the form: F(v) = f(y(¢1), -+ ,7v(tn)) for some N > 1,0 < #; <
ty < - <ty <1, and f € C}(M"). The usual gradient of F in Malliavin calculus is
defined by

N
D F(y(w)) = Zutj (W) 71 3) (s (W), -+ (W) Lrry,s (1.9)

where 0; is the gradient with respect to the j-th component. The correlated norm of V f
is
N
VIE =D, (w) 705, ue, (w) "M Ok 1 At (1.10)

j,k=1

where ¢; At denotes the minimum between ¢; and ¢;. Notice that the norm |V f|¢ is
random. The generator L7 associated to the Dirichlet form

0

E(F,F) = /WW) (/ 1D, PRO) ) die ()

is called the Ornstein-Uhlenbeck operator. The powerful tool of I's of Bakry and Emery
[3] is not applicable to £%, the reason for this is the geometry of W (M) inherted from
H is quite complicated, the associated “Ricci tensor” being a divergent object (see
[7, 8, 12]). When the base manifold M is compact, the existence of the spectral gap for
L% has been proved in [14]. The logarithmic Sobolev inequality for D, F' defined in (1.9)
has been established in [2], as well as in [20] or [6] where the constant was estimated
using the bound of Ricci curvature tensor of the base manifold M. The method used
in [14] is the martingale representation, which takes advantage the Ito filtration; this
method has been developed in [12] to deal with the problem of vanishing of harmonic
forms on W' (M). The purpose in [21] is to proceed in the opposite direction, to get the
bound for Ricci curvature tensor of the base manifold M from the analysis of the path
space WI(M).

The organization of the paper is as follows. In section 2, we will recall briefly
basic objets in Analysis of W (M). On the path space W' (M), there exist two type of
gradients: the usual one is more related to the geometry of the base manifold, while the
damped one is easy to be handled. In section 3, we will make estimation of the spectral
gap of L7 as explicitly as possible in function of lower bound K> and upper bound K;
of Ric. In section 4, we will study the behaviour of the spectral gap SG(£%.) as T — 0.
Roughly speaking, we will get the following result:

KT

1
2

KT
+o(T) < SG(LE) <1+ ; +o(T), asT =0
under the following condition (4.1).

2 Framework of the Riemannian path space

We shall keep the notations of Section 1, and throughout this section, u;(w) denotes
always the solution of (1.7) and ~:(w) the path defined in (1.8). For any h € H, we
introduce first the usual gradient on the path space W (M), which gives Formula (1.9)
when the functional F' is a cylindrical function. To this end, let

t
1
q(t,h) = /0 Qo (w) (h(s)pdw(s) - §us(w)_1Z,YS(w)ds) (2.1)
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where (Q, is the equivariant representation of the curvature tensor on M. Let ricz be
the equivariant representation of Ricy, that is,

ricz(u) = u~' o Ricz(m(u)) ou, ue€ O(M).

Consider h(w) € H defined by
. 1
he(w) = h(t) + §ricz(ut(w)) h(t). (2.2)

Let F : WX (M) — R be a functional, we denote F(w) = F(v.(w)). Then according to
[16], we define

d -~ ’ -
N N eq(s,h)
(D F) (. (w)) { dsF(/o =100 quy(s) + e h) }6:0. (2.3)
By [5, 16], if F' is a cylindrical function on W' (M), then
T .
(DuF)xw) = [ (D P (w)) i) dr
where D, F was given in (1.9). Consider the following resolvent equation

dQy.s 1
3;7 = 7§riCZ(Ut(w)) Qt,87 t 2 S, QS,S = Id (24)

For a cylindrical function F on W (M) given by F(v) = f(y(t1),--- ,v(tn)) with f €
C}H(MN), following [16], we define the damped gradient D, F of F by

N
Do F(y.(w) = 3@, (e, ()10, ) Lrcay, (2.5)
j=1

where () . is the transpose matrix of @ s. The damped gradient D, F on the path space
WZI(M) plays a basic role in analysis of W (M). Let (v;);>0 be a R¢valued process,
adapted to the Ito filtration F; generated by {w(s); s < ¢} such that ]E(fOT vy |2 dt) < +oc.
Consider two maps v — v and v — © defined respectively by

1 t
Uy = v — gricut(w) / Qt,svs dS, (2.6)
0
and
1 t
O = v + STIC,, (u) / vg ds. (2.7)
2 0

Then © = © = v. The two gradients D, F and D, F are linked by the following formula

T T
/ <DtF, ’Ut> dt = / <DtF, i}t> dt. (28)
0 0

The good feature of the damped gradient is that it admits a nice martingale representa-
tion
T ~
F = E(F) +/ (E7t(DyF), dwy)
0

where E7* denotes the conditional expectation with respect to F;. The following loga-
rithmic Sobolev inequality holds ([11, 17]):

2 T
E leog% <2E / |D.F|dt ). (2.9)
1£1%2 0
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3 Precise lower bound on the spectral gap

The inconvenient of Inequality (2.9) is that the geometric information of the base
manifold M is completely hidden. Now we use the usual gradient D, F' to make involving
the geometry of M. By (2.9), the matter is now to estimate fOT |D,F|?dt by |D,F|. We
assume that

K,1d <ric}, |||ricz||| < K, (3.1)

for two constants K7, Ky with K7 > 0 and K; + K5 > 0.
Theorem 3.1. Let0 <t <T. Set

K —t K t
AT) =1+ ?;(1 e R >) T ?;(1 —e—KTQ)

. (K1>2 (1 e*%> n 1 (ef Kp(T+t) o Kz(g—w) (3.2)
Ko 2 '
Then we have the relation:
T T
/ |DF*dt < / A(t,T)|D:F|*dt. (3.3)
0 0
Proof. From (2.5) and (2.8), we have
. 1 T
D.F = D;F — 5/ Q5 ¢ ric, DsFds. (3.4)
t

Thus,

T T 2
- 1
|D,F|* = |D,F|* - <DtF,/ Qzﬁtm’cststs> + 4‘ / Q5 ric,, DsFds
t t
:= I + I + I3 respectively.

In the following we will estimate the term of /5 and /3. Under the lower bound in (3.1),

Ko (s—t)

NQlll <e” 72, s>t
Let
T Ka(s—t) 2
nin = [ (5
t
Then
T k-0
Bl < 10| [ o5 k|0, Flas
t
T Ko(s—t) 2 T Ko(s—t)
< |D,F| Kl/ (e_24> ds Kl/ e~z |D,F|2ds
t t
T Ko(s—t)
= |DiF|\/ K1 A (8, T) Kl/ e~ 2 |DsF|%ds
t
1 T st
§2{|DtF|2K1A1(t,T)+K1/ e~ )|DSF|2ds}.
t
and
1 T s—t 2
13|§4’/ e~ K\ |D, F|ds
t
1 T s—t
SZK%Al(t,T)/ e~ 25| D, F|2ds.
t
ECP 22 (2017), paper 19. http://www.imstat.org/ecp/
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Combining all the above inequalities,

. K
DFP? < (14 SEM(T)) D +

we get

K,
2

_ Kao(s—t)
2

(1+ —Al(t n)5 D F|*ds

[

K e
- (1 n %Al(t,T)) (|DtF|2 + 71/ o 25 |DsF|2ds>.
t

Therefore, we obtain

T
/ |DtF|2dt§/ (1+ SoA (t,T))| JF|2dt
0
T
Kl Kl _ Ko(s—t) 2
1+ —A T))— D.F
+/0(+21(t,))2t | D, F2dsdt
T
K
:/ <1+—1A1(s T))|D F[2ds
0
T SKl _ Ka(s=t)
+ |DSF|2ds/ > (1+—A1(t T)) =it
0 0

0

_/SK1e_
0 2

where
Ko(s—t)
2

Jl(s)

Next, then we compute the term Jj (s

K T
(1+ G D) ID.FPds + [ (1) + Tals)IDLF s,
0

dt, Ja(s) 12/0 (

Igl) Ai(t,T)e™

) and Ja(s). By direct computation, we have

kt)

dt.

Kl @
Ji(s) = K2(1—e 3 )
and
Ki\2 [* 2 —t st
Jz(S)Z(*l) / —(1—e_K2(Z )>e_K2(2 )dt
2 0 2
= (ﬁ)Zi ° - Kb t)dt_e—iKz(;urs) /SeK2tdt
2 K2 LJO 0
_ Kl 22 [ 2 _ Kos 1 _ Ko(T+s) Kas
= (%) E_E(l‘e F)ome e —”]
- (B2 '1(1 e ) g e L
“\2 ) K| K, Ko K ‘
Adding J;(s) to J1(s) implying that
J1(s) + Ja(s)
K Kos Ki\2 Kos 1 Ko(T+s) Ko(T—s)
(1) () (1) e e e
Thus,
T T
/ \DtF\thg/ A(t, T)|D,F|?dt,
0 0
with
K
AT) =1+ %Al(t,T) + Ay(t,T)
_ K1 _ Ko (T=t) K1 Kot
SR () R )
+ (ﬁ)Q (1 767%) n l(e,f«z(gw 7671{2(5_”)
Ko 2 '
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The proof is completed. O

Notice that as K3 — 0, by expression (3.2),

K\T o (Tt 12
A(T) = 14+ = +K1<Z—§>.

Now we study the variation of the function ¢t — A(t,7). It is quite interesting to
remark that its monotonicity is dependent of the sign of K.

Proposition 3.2. (i) If K, < 0, thent — A(¢,T) is strictly increasing over [0, T). (ii) If
K> > 0, then the maximum is attained at a point ty in (0, 7).

Proof. Taking the derivative of ¢t — A(t,T) gives

A/(t,T) = —7 767
Kl Kot Kl Ko (T+t) K1 _ Ko(T—t)
+ — - L Pl - = )
2K2 4K2 4K2

In addition, we have

and

AT, T)=1+ %(1 - e’K§T> + (%)2 {(1 —e*K§T> + %(e*Kﬂ - 1)}
2

2
SR ) ()

K K,
11 K rn]? 11
L P N A ) = — 1+ ZA%(0,7).
2+2{+K2< ¢’ } p Hah 0 T)

From the second equality in the above, we observe that A(T,T) > A(0,T). Moreover,

K KoT K, K2 K12 KoT K12 KoT
2

ANOT) = -——~e 2 ket e i i S
0,7) 2 ¢ Ty Tak, T ar,© 4K, ©
K K2 :
=5 (e ) g () @9
K 1 KoT
1 e =2
= (K + K 0;
5 (K + K>) i, ;
and
K1 Kl _ KT K2 KT K _ K2
NTT)=—-——+— —L — Ll KT _ L
(T.T) 5 T3¢ ° Taig, 1K, 1K,
K, K, _ ot K12 ( _KoT —KoT
_ M1 B > ) 3.6
5 + 5 e 15, e 2 +e (3.6)
K1 _ KT K12 _ KT 2
- - -e)
2 ( ¢ ) Ta, V%
We see that
AN (T, T)>0 if Ky <0, 3.7)
AN(T,T) <0 if Ko > 0. '
ECP 22 (2017), paper 19. http://www.imstat.org/ecp/
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Now we look for ¢ € [0, 7] such that A’(¢,7) = 0. We have

AN(t,T)=0

- (_%e_ﬁ_ﬁf;e et (G 2%_5712 OEL

o e w(ﬂf}g) K2t+§1(2+%_%e =y (3.8)
& e” K2T(2+§;> th:(2+%_% 7K§T)'

Therefore there exists at most one ¢ such that A’(¢,7) = 0. For the case where K3 < 0,
if there exists tg € (0,T) such that A(ty,7) < 0. Then by (3.5) and (3.7), the equation
A'(t,T) = 0 has at least two solutions, it is impossible. Therefore for Ky < 0, A’'(t,T) > 0.
For K, > 0, we suppose tg such that A'(ty,T) = 0. Let § = % then by (3.8)

ot (4 1o )

ortg € (0,7) is such that

eKétu\/lJrﬁ(le_K%T)eKiT. (3.9)

The proof is completed. O

K
Proposition 3.3. Let 8 = Fl then (i) if K5 > 0,
2

sup A(t,T) = (1+ B)% - \/ L 1fe—K§T) et
t€[0,T] ,6
\/1+2+5(1—e 3 )
(ii) if K9 < 0,
1 1 K, _ KT\ 2
sup A(t,T)==-+=(1+—|1—-e" 2 . (3.11)
s AGT) =5 +5(1+ | /)

Proof. For K, > 0, we have

Alto.T) =1+ 5(1—e "8 &"5*) 1 5(1-o"5")

+ 82 {(1 —eT ) 4 l(e*¥ e T ek)]

2

2 2 ] .
:1+25+52—(B+ﬁ) K°—(5+ﬁ2—%e-’?)e—@.
Using (3.9) yields (3.10). For K» < 0, sup,¢o, 71 A(t,T') = A(T,T), which gives (3.11).
O
Combining (2.9) and (3.3), we get
ECP 22 (2017), paper 19. http://www.imstat.org/ecp/
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Theorem 3.4. Let C(T, K1, K2) = sup A(t,T); then it holds
t€[0,T]

2

T
E<F2 log |FF|2> < 2C(T,K1,K2)E</ DtF|2dt> (3.12)
L2 0

for any cylindrical function F on W (M).
It is well-konwn that the above logarithmic Sobolev inequality implies that the spectral
gap of L%, denoted by SG(L%.), has the following lower bound

1

xT > - .
SGLr) = C(T, K1, K»)

Theorem 3.5. Assume (3.1) holds, then (i) if K5 > 0, we have

SG(LE) ! < (1 + %)2 - 2\/(2 + ﬁ) (2 4ol ﬁe*ﬁ) e~ (3.13)

(ii) if K5 < 0, we have

SG(LE)~! < +1<1+&[1—e—K5TD2. (3.14)

1

2 2 Ky

Proof. Using the elementary inequality: A + B > 2v/ AB to the last two terms in (3.10)
yields (3.13). Inequality (3.14) is obvious. O

It is quite interesting to remark that

Proposition 3.6. Let ¥(T, K, K>) be the right hand side of (3.13) when K5 > 0 and the
right hand side of (3.14) for K, < 0, then

KT K?T?
W(T, Ky, Ky) — 1+ ; + 18 as Ko — 0. (3.15)
Proof. It is easy to see that the right hand side of (3.14) tends to 1 + KéT + KfSTz as
K5 — 0. For the right hand side of (3.13), we first remark that
Kl _KoT Kl K1T K1K2T2
kel = _ K>).
(a) 5°¢ 0 TK a4 T xp o oK)
Secondly
K, K, K, _xr
e ) (g - o)
( T U TR, T RS
K K, KT K{K,T?
O e )
(+K2 TR, T2 5 Tolk)
Ki\2 KiT K K,T? K
:(2+71) <1+ - 8K1+0( 2)>.
KQ 2 + Kf2
Therefore
1 K, K| rr
el )
\/( "5ICTR, TR
K 1 KT KIGTE | (Ky) KK, T?
= (2+ ) (1+32 B W) K IGTR | (k3
Ky 2 2+ % 32
Kl KlT 3K1K2T2
= (2 —) - K>).
( %) T 33 Tolka)
ECP 22 (2017), paper 19. http://www.imstat.org/ecp/
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Combining this with (a), we get

Kl—%qu2+ﬁi)@+aki_fﬁe%T)

Ko Ko K, Ko
Ki\K, KT K3T?
= (2 7)7 A ).
( TKI)K T 2 g Toli)
Then (3.15) follows from the right hand side of (3.13). O

Corollary 3.7. Assume (3.1) holds.
(1)IfK; = Ky = K >0, then

KT

O(T, K, K)=4— 3(4—9*T)e_7 51 as K —0.
(2) IfFKy = —K, = —K, then
1
(T, K,—K) = 5(1+eKT).

Remark 3.8. Our results improve estimates obtained in [1].

4 Behaviour of SG(L%) as T — 0

In this section, we consider the case where Z = (0. Then Condition (3.1) can be

readed as
Kyld<ric< K;Id, with Ky + Ky >0 4.1)

and SDE (1.7) is reduced to

d
dup(w) = > Hi(uy(w)) o dwj, uo(w) =ug € 7' (x). (4.2)

i=1

The path v (w) = 7(u(w)) is called Brownian motion path on M. Let p(z,y) be the
Riemannian distance. By [22, p. 199], there is € > 0 such that

P(l‘a%)z )
sup ]E(exp e < 4o00. 4.3)
up B exp (+55)

Assume that the curvature tensor satisfies the following growth condition

d
11921 + Z (L Dull] € C (14 plz, 7(u))?) (4.4

where Ly, denotes the Lie derivative with respect to H;.
Let v € H, consider the functional Fr : W (M) — R defined by

Fr(y(w)) = / (5(2), duy).

Let h € H; then by (2.3), we have (see also [15])

T T .
(DuFr)(w) = [ {o0)at ) + [ (60), hu(w) dr. @5)
0 0
Let a € R? and consider v(t) = ta with |a| = 1 in (4.5), we have
T T
(DpFr)(y(w)) = —/ (q(t, h)a, dwy) +/ (a, he(w)) dt. (4.6)
0 0
ECP 22 (2017), paper 19. http://www.imstat.org/ecp/
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Let {e1, -+ ,eq} be an orthonormal basis of R?; define

t
Ci(w, t, T) = — / Qus(w) (61-, odw(s)) 1(.,.<t).

Then by Fubini theorem, the term ¢(¢, h) has the expression

Z/ R(T)Ci(w, t,T) dr.

According to (4.6), the gradient D, Fr has the following expression:

d T T
(D Fr)(y(w)) = ;(/T (Ci(w,s,T)a,dws>)ei +a+ %/T ricy(ug) ads. (4.7)
We have
Var(Fr) = B(F2) — E(Fr)? = |a|*T = T. (4.8)

Proposition 4.1. Assume (4.4). Let

E(fOT D, F|? dT)

XT =

Var(Fr)

Then T

xr=1+ §<r1'CZ(u0)a, a)+o(T) asT —0 (4.9)
where ug is the initial frame of (4.2).
Proof. We have, using (4.7),

d T 2 T 2
2 2, 1 .
|D.Fr|* = Z(/ <C’i(w,s,7')a,dws>> +la]* + 1 / ric(us)ads
i=1 o

+<a,/ ric(usg ads>—|—22/ (w, s,7)a,dws) a’

+2/ / (w, 5, 7)a, duws) /f(ric(us)a, ei) ds.

Put respectively

E(/ IDTFTIQdT> = I(T) + Io(T) + I3(T) + Iu(T) + I5(T) + I6(T).
0

It is obvious that I5(T") = |a|*T = T and I5(T) = 0. We have

Z// (1Cstaw, s, )af?) ds) dr.

Now by growth condition (4.4) and (4.3), there is a constant § > 0 such that
E(|C;(w, s,7)al*) <0 (s — 7). (4.10)

So that I;(T) < §T3/6. By condition (4.1), it is easy to see that I3(T) < K T
that I4(T) < %T? Now for I4(T), we have

L) 1

li = —(ric .
750 T2 2 (ric(uo)a, a)

Combining these estimates together with (4.8), we get (4.9). O
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Theorem 4.2. Assume (4.1) and (4.4). Let K5(x) be the lower bound of Ric,.. Then as

T—0,

1- K§T+0<T> < SG(LF) < 1+ === +o(T). (4.11)

Proof. For Ko > 0, set § = % As T — 0, we have

\/(2+5)<2+25_5eK5T) = \/(2+6)2(1+H66(1—eK§T))

- (2+5)\/1+255K;T+0(T)

= (2+5)(1+2+[36KZT+0(T)>.

So, for Ko > 0,asT — 0,

KoT

ﬂ\/(2+ﬁ)(2+25—ﬁe—“%T) o=
=p(2+6) <1 PR S i o(T)> (1 - %T+ O(T)>

248 4
T, K
— B2+ ) {1+ Z(2+1ﬁ - Ks) +0(T)]
KT
=pB(2+8) [1 32+ A i 3 + O(T):l .
By (3.13), we get
x\—1 2 K2T o KlT
SG(LF) ™ < (14 8~ B2+ B)|1 - g +oT)| =1+ S35+ o(T),
which implies that
SG(LE) > 1 — K;T +o(T)
For K5 < 0, by (3.14),
py-1 o L KiT 211, K (KT 2
SG(L‘ 5 ( +K1 ) —2+2(1 K2( 9 O(T)))
=1+ 225 4o(T),
which implies again
SG(LT) > (T).

Now in (4.9), taking the vector a such that ric(ug)a = Ko (z)a yields

KQ (I')T

SG(LT) <1+ +o(T).

The proof of (4.11) is completed.
Corollary 4.3. Assume (4.4). In the case where Ric = —K;1d with K; > 0, we have

SG(LE) —1+ K;T =0o(T) asT — 0.
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