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Abstract. We investigate the equivalence of dynamic and static asset allo-
cations in the case where the price process of a risky asset is driven by a
Poisson process. Under some mild conditions, we obtain a necessary and suf-
ficient condition for the equivalence of dynamic and static asset allocations.
In addition, we provide a simple sufficient condition for the equivalence.

1 Introduction

Consider a frictionless market which consists of a default-free bond and a risky
asset. Assume that the price process B of the bond follows (exp(—r (T — 1)), t >
0), where r is the interest rate and 7" is the maturity date, and the price process S
of the risky asset obeys a semimartingale S defined on a filtered probability space
(Q, F AF}i=0. P).

We invest in the bond and the risky asset by admissible trading strategies
[cf. Hunt and Kennedy (2004), p. 161, Definition 7.25] and optimize our expected
utility of the terminal wealth. Which strategy is optimal? To answer this question,
we solve the optimal problem

sup E[U (¢(T)B(T) + ¢@(T)S(T))],

s.t. 90 (0)B(0) + ¢@(0)S(0) = Wy and ¢ € A. (.1

Here, U is the utility function, Wy is the initial wealth, and A is the collection of
all admissible trading strategies.

Definition 1.1. The optimal problem (1.1) is called a dynamic asset allocation
problem.

Merton (1969) exploited a dynamic asset allocation problem in the case where
the price process of the risky asset follows a geometry Brownian motion by ap-
plying the method of dynamic programming. Under the assumption that the price
process of the risky asset follows an Itd diffusion process, Cox and Huang (1989)
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used the martingale method to solve a dynamic asset allocation problem. Liu and
Pan (2003) discussed a dynamic asset allocation problem in the case where the
price process of the risky asset satisfies a jump diffusion. Pliska (1986) obtained a
necessary and sufficient condition for the terminal wealth to be optimal.

Assume that the market also includes European options written on the risky
asset. Furthermore, we can invest in not only the bond and the risky asset but also
the European options, and we are buy-and-hold investors, that is, we cannot trade
the risky asset, the bond and options after we buy them at the initial time. What
portfolio maximizes our expected utility of the terminal wealth? We answer this
question by solving the optimal problem

supE[U (W)],

(1.2)
s.t. W e Dr (Wp).

Here,
D1 (Wp) := {The maturity payoffs of all European options written on
the risky asset with maturity date 7" and initial price Wy}.

We have the following definition.

Definition 1.2. The optimal problem (1.2) is called a static asset allocation prob-
lem.

By the definitions of dynamic and static asset allocation problems, in a complete
market, the optimum of a static asset allocation problem cannot be better than that
of the corresponding dynamic asset allocation problem. However, as Haugh and
Lo (2001) and Kohn and Papazoglu (2006) pointed out, it may be possible that the
dynamic and static asset allocations are equivalent under the assumption that the
price process of the risky asset is driven by a Brownian motion, that is, the optimal
terminal wealth of a dynamic asset allocation problem can be given by the maturity
payoff of a European option.

The following reasons motivate us to study the equivalence of dynamic and
static asset allocations. First, the continuous asset allocation cannot be realized in
practice. Second, the static asset allocation permits us to invest in European options
written on the risky asset, and only requires trading at the initial time. Third, it was
shown in Nachman (1988) that any European option can be approximated by a
portfolio consisting of European call options, thus static asset allocations can be
realized (nearly) in practice. Last but not least, the similar problem also arises
in the hedging of options. Tompkins (2002) compared dynamic and static hedges
via simulation, while Engelmann et al. (2006) provided an empirical comparison
between them.

Since the terminal payoffs in (1.1) are replicable, we are interested in the equiv-
alence when the market is complete. By the martingale representation theorem,
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the complete Lévy market is the one where the price process of the risky asset is
driven by a Brownian motion or a Poisson process [Schoutens (2003), p. 77 and
Applebaum (2009), p. 333]. Tankov and Voltchkova (2009) showed the same result
by requiring the residual hedging error to be zero. Haugh and Lo (2001) and Kohn
and Papazoglu (2006) have investigated the equivalence for the Brownian case. In
this paper, we study the equivalence for the Poisson case.

The rest of the paper is organized as follows. In Section 2, under the assump-
tion that the price process of the risky asset is driven by a Poisson process, we
characterize the optimal terminal wealth of a dynamic asset allocation problem.
In Section 3, we obtain a necessary and sufficient condition for the equivalence
of dynamic and static asset allocations (Theorem 3.1). Then we provide a simple
sufficient condition for the equivalence (Theorem 3.3). Some conclusions will be
drawn in Section 4.

2 The characteristic of the optimal terminal wealth

This section serves as characterizing the optimal terminal wealth when the price
process of the risky asset is driven by a Poisson process.

Let N be a Poisson process with intensity A defined on a probability space
(R, %,P) and N be its compensated process. Let {thN }t>0 1s the augmentation
of the natural filtration generated by the process N.

Assume that the price process S of the risky asset satisfies the equation

dS(t) = S—)(a(t—, S(t—=))dt + y (1—, S(t—)) dN (1)), (2.1)

where « : [0, +00) Xx R — R and y : [0, 4+00) x R — R are two given functions.
We first look for a numeraire pair [cf. Hunt and Kennedy (2004), p. 156, Defi-
nition 7.18]. To this end, we make the following conditions.

(S1) The functions « and y are bounded.
(S2) The functions x — (¢, x)x and x — y (¢, x)x are Lipschitz continuous uni-
formly with respect to ¢.

(83) S8 > ), y(t,x) > =1 and y (1, x) # 0 for any (1, x) € [0, +00) x R.

Let Y := (Y (¢),0 <t <T) be a Lévy type stochastic integral

dY () =a(t—)dt + c(t—)dN (1), Y(0) =0, (2.2)
where
_ r—a(t, SO\  r—alt, S@)
a(t)'_“og(H @ S0) ) R0
and

r—a(t, S(t)))

c(t) = log(l + @ 50)
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Then from Applebaum (2009), p. 373, Exercise 6.2.5, it follows that (exp(Y (¢)),
0< t < T) is a square-integrable martingale on the filtered probability space
(Q {ﬁ }t>07 P)

Let Q is the probability measure on (2, .%r) with %ly, =exp(Y(#)),0<t <
T, then, after some straightforward calculations, we find that (B, Q) is a numeraire
pair.

Lemma 2.1. Assume that

(U1) The utility function U is continuously differentiable and strictly concave.
(U2) limy, s oo U'(w) = +00 and limy,_, oo U'(w) =
(U3) There are positive numbers B and & such that ¢ < U'(0) < B.

Then (U")~Y(kZ) is the optimal terminal wealth of the dynamic asset allocation
problem (1.1), where k is some positive number, and Z := exp(Y (T)).

Proof. The lemma follows directly from the results in Pliska (1986), Theo-
rem 13. O

3 Conditions for the equivalence

In this section, we first provide a necessary and sufficient condition for the equiv-
alence of dynamic and static asset allocations. Then we show a simple sufficient
condition for the equivalence.

Theorem 3.1. Problems (1.1) and (1.2) are equivalent if and only if there exists a
function g such that Y (t) = g(t, S(t)) for0 <t <T.

Proof. 1. Note that y (¢, x) # 0 for all (t x) € [0, +00) x R. Then from Equa-
tion (2.1), we have .%; N ﬂts , Where {ﬂ }i>0 is the augmentation of the natural
filtration generated by the process S.
2. Since the process (exp(Y (¢)),0 <t < T) is a martingale on the filtered prob-
ability space (2, .#, {Z; N1=0,P), we see that
exp(Y (1)) = E[exp(Y(T))|.Z]N].

Noting that problems (1.1) and (1.2) are equivalent if and only if the optimal ter-
minal wealth of (1.1) is a function of S(T), we have exp(Y(T)) = f(S(T)) for
some function f by Lemma 2.1. Then it follows that

exp(Y () =E[f(S(T)1 7]
[£(ST)IF]
[£(S(T))1S:]
(r,S(r))  for some function A,

E
E
h
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where we have used the Markov property of the process S for the third equality
and Doob-Dynkin lemma for the last equality.

Thus we get Y (¢) =log(h(t, S(1))).

3. Suppose that there exists a function g such that Y (¢) = g(¢, S(¢)) for0 <t <
T. Then by Lemma 2.1, we find that the optimal terminal wealth of the problem
(1.1) is a function of S(7'). Hence, problems (1.1) and (1.2) are equivalent. Il

Example 3.2. Let o :=r — A and y := 1. After some direct calculations, we get
S(r) = S(0)exp[(r — 24 + Alog2)t + (log 2)]\~/(t)]
and
Y (1) = (Mog2 — M) + (log2)N(t).
Therefore, it follows that Y () = (A — r)t 4+ 1og(S(¢)) — log(S(0)), and then prob-
lems (1.1) and (1.2) are equivalent. Also refer to Corollary 3.5.

Theorem 3.3. Problems (1.1) and (1.2) are equivalent if there is a function g(t, p)
with g(0, S(0)) = 0 such that

g g g _a(t,p)—r
E(t,p) +oz(t,p)p5(t, p) —Ary(t, p)pg(u p)= S (3.1
and
r —Ol(t, p) _ _
log(l—l—m)—g(t,p‘i‘y(t,p)p) g(t, p). (3.2)

Proof. 1. Recall the process Y defined by (2.2):
dY () =a(t—)dt +c(t—)dN(@),  Y(0)=0,

where

r—aol(t,S@)) r—oal(t,S(@))
o =niog(1+5 TETE) - s
and
r—al(t, S@))
Ay (1, S(1)) )

2. Suppose that there is a function g satisfying (3.1) and (3.2).
Recall Equation (2.1):

dS(t) = S@t—)(e(t—, St—))dt + y (t—, S(t—)) d1\~/(t)).

Then, by It6’s formula [see Applebaum (2009), pp. 251-252, Theorem 4.4.7], we
have

c(t) = log(l +

dg(r, S(t)) = a(r—)dt + é(r—)dN (1),
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where
al) = 2—§(t, S()) + afr, S(t))S(t)g—i(t, S(1))
+ )»(g(t, S@) +y(t, S@)S®))
—g(t,8()—y(t, S(t))S(t)g—i(t, S(t)))
and

ct)y=g(t, S@)+y(t. S®)S®) —g(t, S@)).
Since g satisfies (3.1) and (3.2), we find
a@®)=a() and c(t)=c(t).

Thus the processes (Y (¢),0 <t < T) and (g(¢, S(¢)),0 <t < T) satisfy the
same SDE. Consequently, by the uniqueness of the solution, we get Y () =
g(t, S(t)) for 0 <t < T. Thus problems (1.1) and (1.2) are equivalent by Theo-
rem 3.1. ]

Corollary 3.4. If « =r, then problems (1.1) and (1.2) are equivalent.
Proof. If « = r, then g = 0 satisfies (3.1) and (3.2), and the conclusion follows. []

Corollary 3.5. Assume that o and y do not depend on the value of the risky asset.
If @ + Ay? =r, then problems (1.1) and (1.2) are equivalent.

Proof. Define the function g by

t
g(t.p)i=— [ as)ds +log(p) — log(S(0)).

After the direct verification, we find that the function g defined as above satisfies
the conditions in Theorem 3.3. Thus problems (1.1) and (1.2) are equivalent. [J

4 Conclusions

In general, the optimum of a static asset allocation problem cannot be better than
that of the corresponding dynamic asset allocation problem. However, it may be
possible that the dynamic and static asset allocations are equivalent when the price
process of the risky asset is driven by a Brownian motion [cf. Haugh and Lo (2001)
and Kohn and Papazoglu (2006)]. In this paper, we consider the equivalence of dy-
namic and static asset allocations for the case that the price process of the risky
asset is driven by a Poisson process. Via restricting utility functions and trading
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strategies, we obtain a necessary and sufficient condition for the equivalence (The-
orem 3.1), and also provide a simple sufficient condition for the equivalence (Theo-
rem 3.3). Since the complete Lévy market consists of the one with a pure diffusion
and the one with a pure Poisson process [cf. Schoutens (2003), p. 77, Applebaum
(2009), p. 333, or Tankov and Voltchkova (2009)], the present paper together with
the paper Kohn and Papazoglu (2006) characterizes the equivalence of dynamic
and static asset allocations for complete Lévy markets. Some similar characteri-
zations of the equivalence are shared by complete Lévy markets; for example, if
the growth rate of the risky asset price equals the risk-free rate, the equivalence
holds. Besides, differences between the two cases should be pointed out. For in-
stance, the differential equation (3.1), an ingredient of equivalence criteria, is of
first order, whereas the corresponding equation is of second order in pure diffusion
cases.
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