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ASSESSING ROBUSTNESS OF CLASSIFICATION USING
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University of North Carolina at Chapel Hill

Robustness is a desirable property for many statistical techniques. As
an important measure of robustness, the breakdown point has been widely
used for regression problems and many other settings. Despite the existing
development, we observe that the standard breakdown point criterion is not
directly applicable for many classification problems. In this paper, we pro-
pose a new breakdown point criterion, namely angular breakdown point, to
better quantify the robustness of different classification methods. Using this
new breakdown point criterion, we study the robustness of binary large mar-
gin classification techniques, although the idea is applicable to general clas-
sification methods. Both bounded and unbounded loss functions with linear
and kernel learning are considered. These studies provide useful insights on
the robustness of different classification methods. Numerical results further
confirm our theoretical findings.

1. Introduction. Classification problems are commonly seen in practice.
There are numerous classification methods available in the literature; see Hastie,
Tibshirani and Friedman (2009) for a comprehensive review. Among the existing
methods, large margin classification techniques, such as the Support Vector Ma-
chine (SVM) [Vapnik (1998)], have been extensively studied in recent years. Let
X denote the domain of the p-dimensional vector of input variables X, and Y de-
note the class label set that equals {−1,1} for binary classification. Assume that
the training data {(Xi, Yi),1 ≤ i ≤ n} are i.i.d. copies of (X,Y ) ∈ X × Y with the
unknown distribution P .

Many classification methods can be formulated as solving an optimization prob-
lem. For binary classification, we aim to estimate a function f (x) : Rp → R

and use sign(f (x)) as the classification rule. Typically, large margin techniques
can be fit in the general regularization framework which minimizes the objec-
tive function n−1 ∑n

i=1 �(Yif (Xi)) + λJ (f ), where �(u) is the loss function,
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Yi ∈ {1,−1}, J (f ) is the penalty function on f and λ is the tuning parameter.
Many loss functions have been proposed and studied in the literature. In partic-
ular, the 0–1 loss �(u) = 1(u ≤ 0) is the theoretical loss corresponding to the
misclassification error directly. Due to the difficulty of minimizing the objective
function with the 0–1 loss, one often uses surrogate loss functions in practice.
The hinge loss �(u) = (1 − u)+ for the SVM [Vapnik (1998)], the exponential
loss �(u) = exp(−u) for the AdaBoost [Freund and Schapire (1997)] and the de-
viance loss �(u) = log(1 + exp(−u)) for the penalized logistic regression [Lin
et al. (2000)] are commonly used.

In practice, outliers are often encountered, which can greatly reduce the ef-
fectiveness of various methods. Therefore, robustness is a very important consid-
eration in statistical modeling. For classification problems, it has been observed
numerically that classifiers with the unbounded loss functions can be sensitive to
outliers. For example, Biggio, Nelson and Laskov (2012) showed that a specifi-
cally selected outlier can significantly reduce the classification accuracy of SVM.
To overcome this problem, various techniques have been developed using bounded
loss functions to reach robustness [Liu and Shen (2006), Shen et al. (2003), Wu
and Liu (2007)]. Several other authors also proposed various robust variants of
SVM, such as Krause and Singer (2004), Xu, Crammer and Schuurmans (2006).

Robust classifiers are desirable for classification problems with potential out-
liers. However, a systematic comparison of different classification methods in
terms of robustness is nontrivial. In the literature, there exist several robustness
measures such as qualitative robustness [Hable and Christmann (2011), Hampel
(1971)], influence function [Hampel (1974)] and breakdown point [Hampel
(1971)]. As pointed by Hable and Christmann (2011), qualitative robustness
mainly concerns the equicontinuity of the estimator. Influence function describes
the effects of small deviations (the local stability of a statistical procedure) whereas
the breakdown point takes into account the global reliability and describes the ef-
fects of large deviations [Ronchetti (1997)]. Despite commonly used in various
settings, these robustness measures are not sufficient for classification. For the
qualitative robustness, in recent years, Hable and Christmann (2011) considered
the qualitative robustness of SVM. As to the influence function, Christmann and
Steinwart (2004) considered the influence function in binary classification with
convex losses. They showed that the influence function exists under some condi-
tions, for example, �(u) is twice continuously differentiable and either X or the
kernel function K(x,x) is bounded. For more general classification settings such
as �(u) being not differentiable or nonconvex, not much work has been developed
on the influence function.

For the breakdown point, since the introduction of this concept, it has been ex-
tended for various settings [Donoho and Huber (1983), Genton and Lucas (2003),
Hubert, Rousseeuw and Van Aelst (2008), Sakata and White (1995), Stromberg
and Ruppert (1992)]. Among these works, the finite sample breakdown point
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[Donoho and Huber (1983)] is simple and has been widely used. Besides this pop-
ular criterion, Genton and Lucas (2003) introduced a more general definition of
breakdown point for different settings, such as times series, nonlinear regression,
etc. According to Genton and Lucas (2003), an estimator breaks down if the re-
maining uncontaminated observations have no effect on the estimator any more.
Despite the progress in different areas, the research for finite sample breakdown
point in classification is limited. Kanamori, Fujiwara and Takeda (2014) developed
a robust variant of the ν-SVM method [Scholkopf et al. (2000)] and considered the
finite sample breakdown point of their method. In general, the breakdown point for
classification problems has not yet been studied systematically.

To better understand the robustness of different classification methods, we con-
sider the criterion of breakdown point in this paper. As will be shown in Section 2,
the finite sample breakdown point, which is widely used in regression and other
settings, is not suitable for classification problems in many cases. For classifica-
tion, in contrast to the regression setting, the key effect of outliers is to change
the classification boundary rather than the norm of coefficients in the classification
function. Motivated from this, we propose a new criterion, namely angular break-
down point, to measure robustness of classification methods. The proposed angular
breakdown point, as an extension of the finite-sample breakdown point to classifi-
cation problems, is also a measurement on global reliability. We demonstrate that
the proposed angular breakdown point provides new useful insights on robustness
which cannot be obtained via the existing robustness measures. The angular break-
down point is studied for classification problems with bounded or unbounded loss
functions. Our theoretical and numerical studies illustrate the robustness proper-
ties of different loss functions for both linear and kernel-based binary large margin
classifiers. These results shed some lights on the potential advantages of bounded
loss functions over unbounded ones.

The rest of this paper is organized as follows. In Section 2, we show the moti-
vation and definition of angular breakdown point. In Section 3, we study the effect
of outliers on linear classification, and the theoretical properties of angular break-
down point for binary classification with linear learning, where both bounded and
unbounded loss functions are studied. In Section 4, the angular breakdown point
for binary kernel learning with bounded or unbounded loss functions is considered.
The simulation results and real data analysis are presented in Sections 5 and 6, re-
spectively. In Section 7, we conclude this paper and discuss some potential applica-
tions of our proposed angular breakdown point criterion in data analysis. Selected
proofs are shown in the Appendix. Other proofs are given in the online Supple-
mentary Material [Zhao, Yu and Liu (2018)].

2. Motivation and definition of angular breakdown point. Let Zn = {zi :
zi = (xi, yi), i = 1, . . . , n} denote n i.i.d. samples of Z = (X,Y ). For motivation,
we first consider linear classification with a classification function f (x) = b+βT x
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where β ∈ Rp and b ∈ R. For a large margin classification method with a loss
function �(u), let β̃0 = (b0, β

T
0 )T be the population optimizer, that is,

β̃0 = arg min
b∈R,β∈Rp

EZ

[
�
((

b + βT X
)
Y

)]
.

In practice, we estimate b0 and β0 by

(2.1) (b̂, β̂) = arg min
b,β

1

n

n∑
i=1

�
(
yi

(
b + βT xi

)) + λJ (f ),

where λ is a tuning parameter and J (f ) is a regularization term.

2.1. Motivation for angular breakdown point. One of the most popular mea-
sures for the robustness of an estimator is the replacement finite-sample breakdown
point (FBP) [Donoho and Huber (1983)]. If we use FBP to measure the robustness
of β̂ , the breakdown point is defined as

(2.2) ε∗(β̂,Zn) = min
{
m

n
: sup
Z̃n

∥∥β̂(Z̃n) − β̂(Zn)
∥∥ = ∞

}
,

where Z̃n is the contaminated sample obtained by replacing m of the original n

observations Zn with arbitrary values, β̂(Z̃n) is the estimate of β using the con-
taminated sample Z̃n and ‖ · ‖ is the l2 norm.

Although FBP is very effective for regression problems [Sakata and White
(1995), Stromberg and Ruppert (1992)], the definition of the breakdown point in
(2.2) is not suitable for classification problems. For binary classification, when a
large margin classifier as in (2.1) is used, a new observation x is classified ac-
cording to sign(b̂ + β̂T x). In contrast to regression, the scale of β̂ (i.e., ‖β̂‖) does
not directly reflect the classification performance. Compared with ‖β̂‖, the direc-
tion of β̂ (i.e., β̂/‖β̂‖) plays a key role in classification. Even if ‖β̂(Z̃n)‖ is very
large, the decision boundary acquired by β̂(Z̃n) can be close to the true bound-
ary and, therefore, the classification performance can still be excellent. Another
major drawback of FBP for classification is that ‖β̂(Z̃n) − β̂(Zn)‖ = ∞ is often
unattainable for classification (see Section 3.1). In fact, for a large margin classi-
fier, the main effect of outliers is to change the direction or angle of the estimate
rather than the norm. As a result, an alternative criterion to quantify the breakdown
point for classification problems is needed. We illustrate this by the following toy
example.

Toy example. Consider a linear classification problem. We assume that the co-
variate vector X|Y follows the normal distribution N(sign(Y )u0, I2), where Y ∈
{1,−1} and u0 = (1,0). We set the sample size for each group to be 100. For the
positive class (i.e., Y = 1), we replace one observation by an outlier generated from
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FIG. 1. Illustration of the effect of one outlier for the toy example. As the outlier gets more extreme,
the estimated decision boundaries become near orthogonal to the Bayes boundary.

the normal distribution N((u1,0)T , I2) with u1 ∈ {−90,−180,−240}. For this ex-
ample, three loss functions are considered: the exponential loss �(u) = exp(−u)

used in AdaBoost, the deviance loss �(u) = log(1 + exp(−u)) for logistic regres-
sion and the hinge loss �(u) = (1 − u)+ for the SVM. We set the tuning parameter
λ = 0 for both AdaBoost and logistic regression. For the SVM, we set the tun-
ing parameter λ = 1/200. Denote β̂ada, β̂log and β̂svm as the estimates obtained by
these three methods.

Figure 1 shows the decision boundaries of the Bayes classifier, AdaBoost, logis-
tic regression and SVM for four cases. When there is no outlier, the Bayes decision
boundary is x1 = 0. The decision boundaries of AdaBoost, logistic regression and
SVM are close to the optimal Bayes boundary. As the effect of the outlier in-
creases (i.e., u1 decreases), the decision boundaries of these three methods change
significantly and the corresponding classification errors increase. For the case with
u1 = −240, their decision boundaries are almost orthogonal to the optimal Bayes
decision boundary. For that case, the classification errors of AdaBoost, logistic
regression and SVM are 0.45, 0.45 and 0.445, respectively. Although these three
methods tend to have very poor classification performance as the effect of the out-
lier increases, we observe that ‖β̂ada‖, ‖β̂log‖ and ‖β̂svm‖ are always bounded.
Therefore, the definition of the breakdown point in (2.2) is not effective for this
problem. In addition, we check the inner product between these estimates (β̂ada,
β̂log and β̂svm) and the theoretical best coefficient vector β0 = (1,0)T . We found
that the inner products decrease dramatically as the effect of the outlier increases.
In the case with u1 = −240, all inner products are negative, which indicates that



ANGULAR BREAKDOWN POINT FOR CLASSIFICATION 3367

the angles between the estimates (β̂ada, β̂log and β̂svm) and β0 are larger than π/2.
In this case, classification by these methods is completely failed due to one extreme
outlier.

2.2. Definition of angular breakdown point. Motivated by the above toy ex-
ample and the effect of outliers on classification which will be theoretically studied
in Section 3.1, we propose the following novel angular breakdown point to quan-
tity the robustness of large margin classification methods.

DEFINITION 1 (Population anglular breakdown point). The angular break-
down point for large margin classification is defined by

ε(β0,Zn) = min
{
m

n
: β̂(Z̃n) ∈ S−

0

}
,

where S−
0 = {β : βT β0 ≤ 0}.

As a remark, we note that the angular breakdown point represents the minimum
fraction of outliers needed such that the angle between the estimated coefficient
β̂(Z̃n) and the true coefficient β0 is at least π/2, the case when the classifica-
tion method can be equivalent to the random guessing or have low discriminating
power depending on the distribution of the uncontaminated sample Zn. In practice,
the true coefficient β0 is unknown and the angular breakdown point in Definition 1
is intractable computationally. To assess the robustness of the estimate, we define
the following sample angular breakdown point, considering the difference between
estimates with and without outliers. This is similar to the traditional breakdown
point. Without loss of generality, we assume that the estimate of β using the orig-
inal sample Zn, denoted as β̂(Zn), is nonzero throughout this paper.

DEFINITION 1′ (Sample angular breakdown point). The sample angular
breakdown point for large margin classification is defined by

ε(β̂,Zn) = min
{
m

n
: β̂(Z̃n) ∈ Ŝ−

0

}
where Ŝ−

0 = {
β : βT β̂(Zn) ≤ 0

}
.

As we will see below, the sample angular breakdown point generally has the
same properties as those of the population angular breakdown point. In Sections 3
and 4, we study the theoretical properties of our proposed angular breakdown
point.

3. Angular breakdown point in linear classification. In this section, we
first study the effect of outliers on linear classification theoretically. Then we
study the theoretical properties of the proposed angular breakdown point for bi-
nary classification with linear learning, where both bounded and unbounded loss
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functions are studied. Before proceeding further, we introduce some notation. Let
Zn−m = {zi = (xi, yi), i = 1, . . . , n − m} and Z

o
m = {zo

i = (xo
i , yo

i ), i = 1, . . . ,m}
denote the n − m uncontaminated and m contaminated observations, respectively,
with Z̃n = Zn−m ∪Z

o
m representing the whole sample. Denote β̃ = (b,βT )T . Then

the objective function for the linear binary classification with sample Z̃n can be
formulated as

Lλ,n(β̃, Z̃n) =
[

1

n

n−m∑
i=1

�
(
yi

(
b + βT xi

)) + λJ (β)

]
+ 1

n

m∑
i=1

�
(
yo
i

(
b + βT xo

i

))

:= Gλ,n(β̃,Zn−m) + Fn

(
β̃,Zo

m

)
,

(3.1)

where Gλ,n(β̃,Zn−m) and Fn(β̃,Zo
m) are two terms only involving the uncontam-

inated and contaminated observations, respectively. We assume that the penalty
function J (β) satisfies conditions: (1) J (β) ≥ 0 and J (β) = J (−β); (2) J (β) = 0
if and only if β = 0 and (3) J (β) → ∞, as ‖β‖ → ∞.

3.1. Effect of outliers on linear classification. To follow up the toy example,
we now theoretically study the effect of outliers on linear classification. To this
end, we need to introduce linearly separable datasets. A dataset D = {(xi, yi), i =
1, . . . , n} ⊆ X ×{−1,1} of binary classification is linearly separable, if there exists
a hyperplane αT x + a = 0 for some α ∈ Rp and a ∈ R such that (αT xi + a)yi > 0
for any (xi, yi) ∈ D.

PROPOSITION 1. Suppose that the nonnegative loss function �(u) satisfies the
following conditions: (i) �(0) < ∞; (ii) limu→−∞ �(u) = ∞. Then the following
two conclusions hold: (1) For the original observations Zn and any contaminated
observations Zo

m, we have ‖β̂(Zn)‖ < ∞ and ‖β̂(Z̃n)‖ < ∞ for any λ > 0; (2) If
neither Zn nor Z̃n is linearly separable, we have ‖β̂(Zn)‖ < ∞ and ‖β̂(Z̃n)‖ < ∞
for λ = 0. Therefore, β̂(Z̃n) does not break down in terms of the breakdown point
defined in (2.2).

In general, Z̃n is not linearly separable when there exists outliers. Furthermore,
the commonly used methods such as the SVM, penalized logistic regression, Ad-
aBoost and the least square loss all satisfy the assumptions in Proposition 1. The
estimates of these methods will not break down in terms of the breakdown point
defined in (2.2). However, as shown in the toy example, these methods can be
sensitive to outliers and break down if an extreme outlier exists. Thus, even if we
move the outliers arbitrarily, the norm of β̂ can be still finite and, therefore, the
traditional breakdown point (2.2) will not be effective for classification problems.
In addition, we point out that the general definition of breakdown point proposed
by Genton and Lucas (2003) can be also ineffective here. According to the general
definition, an estimator breaks down if the uncontaminated sample does not affect
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the estimator any more. Since (3.3) below shows that the estimates of SVM, pe-
nalized logistic regression, AdaBoost and the least square loss are always affected
by the remaining uncontaminated sample, these methods cannot be viewed as a
breakdown. However, we can see from Figure 1 that the classification boundaries
of these methods are badly affected and the corresponding classification errors are
close to 0.5, the case of random guessing.

From both Proposition 1 and the toy example, we see that ‖β̂(Z̃n) − β̂(Zn)‖ =
∞ is not attainable in general, and thus the traditional breakdown point in (2.2) is
not applicable for classification problems. Given ‖β̂(Z̃n)‖ < ∞, since there are at
least two observations zi1 , zi2 such that yi1 = 1 and yi2 = −1, one can check that
|b̂| < ∞ under the condition of Proposition 1. Therefore, without loss of generality,
we assume that the minimization of the objection function in (3.1) is taken over
the set 	BL = {(b,β), |b| < ∞, β ∈ Rp} to simplify the analysis.

To further illustrate the effect of outliers, we first consider the case with a
single outlier (i.e., m = 1) denoted by zo

1 = (xo
1 , yo

1 ) with yo
1 ∈ {1,−1}. Then

Z̃n = Zn−1 ∪ {zo
1} and

Lλ,n(β̃, Z̃n) =
[
λJ (β) + 1

n

n−1∑
i=1

�
((

b + βT xi

)
yi

)] + 1

n
�
((

b + βT xo
1
)
yo

1
)

:= Gλ,n(β̃,Zn−1) + Fn

(
β̃,Zo

1
)
,

(3.2)

where Z
o
1 = zo

1. Denote the minimizer of (3.2) by(
b̂, β̂(Z̃n)

) = arg min
(b,β)∈	BL

Lλ,n(β̃, Z̃n).

Assume that �(u) is a nonnegative, unbounded and continuous decreasing
function with limu→−∞ �(u) = ∞. To better understand the effect of this out-
lier, we set ‖xo

1‖ → ∞. Note that for any β with βT xo
1yo

1/‖xo
1‖ < 0, we have

�((b + βT xo
1 )yo

1 ) → ∞ as ‖xo
1‖ → ∞ for any bounded b. As a result, the min-

imizer (b̂, β̂(Z̃n)) of Lλ,n(β̃, Z̃n) must satisfy β̂(Z̃n) ∈ S+
zo

1
:= {β : βT x̄o

1yo
1 ≥ 0},

where x̄o
1 = xo

1/‖xo
1‖. Therefore, the effect of the outlier zo

1 is equivalent to impos-
ing a constraint on the feasible solution. Specifically, it can be rewritten as

(3.3) min
(b,β)∈	BL

Gλ,n(β̃,Zn−1) s.t. β ∈ S+
zo

1
.

To further study (3.3), we observe that the set S+
zo

1
is a cone, that is, if β ∈ S+

zo
1
,

then cβ ∈ S+
zo

1
for any constant c ≥ 0. For λ > 0, one can see that ‖β̂λ(Z̃n)‖ is still

finite, based on the fact that Gλ,n(0,Zn−1) < ∞ and Gλ,n(β̃,Zn−1) = ∞ with
‖β‖ = ∞. For λ = 0, we have the same conclusion by Proposition 1.

When ‖xo
1‖ is large, as shown in (3.3), the main effect of the contaminated

observation (xo
1 , yo

1) for large margin classifiers is to impose a constraint on the
feasible solution, equivalently, to change the direction of β̂(Z̃n) rather than its
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norm. When m = 1, β̂(Z̃n) belongs to the feasible set S+
zo

1
controlled by the outlier

(xo
i , yo

i ), and it also depends on the uncontaminated data set Zn−1. Since it is
difficult to measure the exact deviation of β̂(Z̃n) from the theoretical optimizer
β0 ∈ Rp , we consider the worst outlier by maximizing the minimum angle between
β0 and S+

zo
1
, that is,

(3.4) max
zo

1

min
β∈S+

zo1

∠(β0, β).

Note that (3.4) is equivalent to

(3.5) min
zo

1

max
β∈S+

zo1

βT
0 β/

(‖β0‖‖β‖)
.

We define βT
0 β/(‖β0‖‖β‖) = 0, if β = 0 or β0 = 0. When zo

1 = (xo
1 , yo

1 ) satisfies
xo

1yo
1 = −c1 · β0 for any c1 > 0, one can show that (3.4) equals to the optimal

value π/2, and equivalently (3.5) equals to 0. The assumption that ‖xo
1‖ → ∞ is

satisfied by setting c1 → ∞. For this worst outlier, since β̂(Z̃n) ∈ S+
zo

1
, we have

(β̂(Z̃n))
T β0 ≤ 0, that is, ∠(β0, β̂(Z̃n)) ≥ π/2.

In general, if there are m outliers Z
o
m such that ‖xo

i ‖ → ∞ for any i ∈
{1,2, . . . ,m}, we define S+

Zo
m

= ⋂m
i=1 S+

zo
i
, where S+

zo
i
’s are similarly defined as S+

zo
1
.

The optimal solution β̂(Z̃n) is constrained in S+
Zo

m
, and it is also affected by the

uncontaminated sample Zn−m. Thus, it is reasonable to consider the worst Z̄o
m

defined as

(3.6) Z̄
o
m = arg min

Zo
m

[
sup

β∈S+
Z

o
m

βT
0 β/

(‖β0‖‖β‖)] := arg min
Zo

m

A
(
Z

o
m

)
.

We can check that the optimal solution in (3.6) is achieved at Z̄
o
m := {zo

i =
(xo

i , yo
i ) : xo

i yo
i = −ciβ0,0 < ci → ∞,1 ≤ i ≤ m} and A(Z̄o

m) ≤ 0. Therefore, for
any possible β̂(Z̃n), we have (β̂(Z̃n))

T β0 ≤ 0, that is, the angle between β̂(Z̃n)

and the true coefficient β0 is at least π/2.
In summary, as shown in the above theoretical study, for binary linear classifica-

tion, the main effect of outliers for large margin classifiers is to impose a constraint
on the feasible solution, equivalently, to change the direction of β̂(Z̃n) rather than
its norm.

3.2. Large margin classifiers with unbounded loss functions. In this section,
we evaluate the angular breakdown point for different loss functions. We make the
following assumption:

(A1) Suppose that �(u) is a decreasing and continuous function with
limu→∞ �(u) = 0 and limu→−∞ �(u) = Cl ≤ ∞.
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The assumption (A1) is a very weak assumption, which covers many commonly
used loss functions such as the hinge loss for the SVM, the deviance loss for logis-
tic regression and the exponential loss for AdaBoost. For an unbounded loss with
Cl = ∞, we have the following conclusion.

THEOREM 1. (i) Assume that �(u) satisfies (A1) with Cl = ∞. Then the pop-
ulation angular breakdown point ε(β0,Zn) = 1/n for binary classification and the
same is true for the sample angular breakdown point in Definition 1′. (ii) The same
conclusion holds for the square loss (1 − y(b + βT x))2.

Theorem 1 indicates that for linear binary classification, the angular breakdown
point for methods with an unbound loss is 1/n, that is, a single outlier is sufficient
to result in angular breakdown. In fact, from the proof of Theorem 1, we can check
that the conclusion of Theorem 1 still holds, if the condition limu→∞ �(u) = 0 in
(A1) is relaxed to be limu→∞ �(u) = Cr < ∞.

3.3. Large margin classifiers with bounded loss functions. In this section, we
study the proposed angular breakdown point for a bounded loss with Cl < ∞ in
binary classification. This includes the sigmoid loss function �(u) = (1 + eu)−1

[Mason et al. (2000)], the ψ-loss used in ψ-learning [Shen et al. (2003)] and the
truncated hinge loss in the robust SVM [Wu and Liu (2007)]. Recall that the objec-
tive function for the linear binary classification with sample Z̃n can be formulated
as

Lλ,n(β̃, Z̃n) = Gλ,n(β̃,Zn−m) + Fn

(
β̃,Zo

m

)
.

When a bounded loss �(·) is used, a nonconvex optimization is encountered and the
global minimizer may not be achieved. The breakdown point of global minimizer
is analyzed in this paper. However, the breakdown point of local minimizer is still
unclear and deserves further study. We would like to point out that asymptotically,
as n → ∞ and m/n → 0, bounded loss functions are more robust than unbounded
ones. In fact, due to �(u) ≤ Cl < ∞, we have Lλ,n(β̃, Z̃n) − Gλ,n(β̃,Zn−m) → 0
as n → ∞. Therefore, the effect of outliers disappears when Cl < ∞ as n → ∞.
Note that m can be finite or increase to infinity with a lower order than n.

We now focus on the finite sample analysis of the angular breakdown point for
bounded loss functions. Recall that (b̂, β̂(Z̃n)) = arg minβ̃∈	BL

Lλ,n(β̃, Z̃n). Let
I (·) be the indicator function and

Gu
λ,n(β̃,Zn−m) = Gλ,n(β̃,Zn−m) + m

n
Cl,

Gl
λ,n(β̃,Zn−m) = Gλ,n(β̃,Zn−m) + m

n
�(0)I (β̃ = 0).

Note that 0 ≤ �(u) ≤ Cl . The terms m
n
Cl and m

n
�(0)I (β̃ = 0) are the upper

and lower bounds of Fn(β̃,Zo
m), indicating the largest and smallest effects of out-

liers, respectively. Therefore, Gu
λ,n(β̃,Zn−m) and Gl

λ,n(β̃,Zn−m) are the upper



3372 J. ZHAO, G. YU AND Y. LIU

and lower bounds of Lλ,n(β̃, Z̃n), respectively. One can see that Gu
λ,n(β̃,Zn−m) is

a nondecreasing function of m. Moreover, we can check that Gl
λ,n(β̃,Zn−m) is a

nonincreasing function of m, by using the fact that Gλ,n(0,Zn−m) = n−m
n

�(0) and
checking the case of β̃ = 0 and β̃ �= 0 separately.

Recall that 	BL = {(b,β) : |b| < ∞, β ∈ Rp} and S−
0 = {β : βT β0 ≤ 0}. We de-

fine S+
0 = {β : βT β0 > 0}, 	+

BL = {(b,β) : β ∈ S+
0 , |b| < ∞}, 	−

BL = {(b,β) : β ∈
S−

0 , |b| < ∞}. Theorem 2 below studies the angular breakdown point for bounded
loss functions.

THEOREM 2. Assume that β0 �= 0 and the loss function �(u) satisfies (A1)
with �(0) ≤ Cl < ∞. Then the following two statements are equivalent:

(1) β̂(Z̃n) does not break down in terms of the proposed population angular
breakdown point when there are m arbitrary outliers in the training sample of
size n;

(2) minβ̃∈	+
BL

Gu
λ,n(β̃,Zn−m) < minβ̃∈	−

BL
Gl

λ,n(β̃,Zn−m).

Furthermore, the corresponding population angular breakdown point is m0/n,
where m0 is the smallest value of m such that (2) fails. The same is true for the
sample angular breakdown point by replacing β0 with β̂(Zn) in the associated
notation.

From Theorem 2, we can conclude that the loss function with a smaller Cl leads
to a more robust classifier. For the case with m = 0, the equivalence between the
two statements (1) and (2) in Theorem 2 can be shown directly. We also note that
m0 defined in Theorem 2 always exists. First, one can show that Gu

λ,n(β̃,Zn−m) is
a nondecreasing function of m, while Gl

λ,n(β̃,Zn−m) is a nonincreasing function

of m. Furthermore, given n, as m → n, we have Gu
λ,n(β̃,Zn−m) → λJ (β)+Cl and

Gl
λ,n(β̃,Zn−m) → λJ (β) + �(0)I (β = 0). Note that �(0) < Cl , J (β) = J (−β)

and −β ∈ S−
0 if β ∈ S+

0 . Thus, when m is large enough, the inequality (2) in Theo-
rem 2 fails. Therefore, m0 always exists. In the following Proposition 2, we derive
a lower bound of m0. We assume that the estimate based on the sample Zn without
any outlier does not break down in terms of our definition of angular breakdown.

PROPOSITION 2. Under the assumption of Theorem 2, suppose that the es-

timate ˆ̃
β(Zn) = (b̂, β̂T )T based on Zn does not break down, that is, δL(Zn) =

minβ̃∈	−
BL

Lλ,n(β̃,Zn) − minβ̃∈	+
BL

Lλ,n(β̃,Zn) > ε1, where ε1 is a positive con-

stant. Then m0 ≥ nε1/(4Cl). The same is true for the sample angular breakdown
point by replacing β0 with β̂(Zn) in the associated notation.

From Proposition 2, we observe that the lower bound of m0 is related to
δL(Zn)/Cl up to a constant. Note that minβ̃∈	+

BL
Lλ,n(β̃,Zn) = minβ̃∈	BL

Lλ,n(β̃,
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Zn) which is the global minimum. The term δL(Zn), as the gap between the global
minimum and the local minimum obtained on the region of breakdown, can be
viewed as a measure of the performance of the loss �(·) on the data set Zn. A loss
function that is not very flat tends to have a larger value of δL(Zn), and conse-
quently deliver a larger lower bound of m0. A loss function with a smaller upper
bound Cl also tends to deliver a larger lower bound of m0. However, a loss func-
tion with small Cl may have a small value of δL(Zn). We cannot conclude that a
loss function with a smaller upper bound is more robust.

Note that the assumption δL(Zn) > ε1 is weak. We can show that it holds with
probability tending to 1. Let B(β̃0, η) be a neighborhood of β̃0 with radius η > 0.
We assume the following identification condition that for any η0 > 0, there exists
ε0 > 0, such that

(3.7) inf
β̃ /∈B(β̃0,η0)

E�
(
β̃T X̃Y

)
> E�

(
β̃T

0 X̃Y
) + ε0.

Since β0 �= 0 and β0 is an inner point of S+
0 , there exists some constant ε̃0 > 0

such that infβ̃∈	−
BL

E�(β̃T X̃Y ) > E�(β̃T
0 X̃Y ) + ε̃0 = infβ∈	+

BL
E�(β̃T X̃Y ) + ε̃0.

Under conditions of standard learning theory, we have

min
β̃∈	+

BL

Lλ,n(β̃,Zn) →p inf
β̃∈	+

BL

E�
(
β̃T X̃Y

)
,

min
β̃∈	−

BL

Lλ,n(β̃,Zn) →p inf
β̃∈	−

BL

E�
(
β̃T X̃Y

)
.

Therefore, as n → ∞, the assumption on δL(Zn) in Proposition 2 holds with prob-
ability tending to 1. It is also important to note that m0 is generally larger than
1 as shown in our numerical studies in Section 5. In contrast, as we have seen in
Section 3.2, the angular breakdown point for unbounded loss functions is 1/n.

For example, for AdaBoost, logistic regression and linear SVM, Cl = ∞, and
consequently the lower bound of m0 is 0. This means that a single outlier can
make these methods break down. On the other hand, for the sigmoid loss, Cl = 1,
and consequently, m0 ≥ nδL(Zn)/4, where δL(Zn) converges to a positive num-
ber under mild conditions. Next, we briefly discuss the evaluation of m0. Since
the population angular breakdown point has the same lower bound as the sam-
ple angular breakdown point, we can evaluate m0 by checking the sample angular
breakdown point numerically. For the sample angular breakdown point, to evaluate
m0, we only need to calculate δ̃L(Zn), where

δ̃L(Zn) = min
β̃∈	̂−

BL

Lλ,n(β̃,Zn) − min
β̃∈	̂+

BL

Lλ,n(β̃,Zn),

with 	̂−
BL = {(b,β) : |b| < ∞, βT β̂(Zn) ≤ 0} and 	̂+

BL = {(b,β) : |b| < ∞, βT ×
β̂(Zn) > 0}. To calculate δ̃L(Zn), we first obtain the global minimizer ˆ̃

β by
solving the optimization problem minβ̃ Lλ,n(β̃,Zn). Since the global minimizer
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ˆ̃
β = (b̂, β̂(Zn))

T ∈ 	̂+
BL, we have min

β̃∈	̂+
BL

Lλ,n(β̃,Zn) = Lλ,n(
ˆ̃
β,Zn). Thus,

we only need to compute min
β̃∈	̂−

BL
Lλ,n(β̃,Zn). When a nonconvex loss is used,

some algorithms such as Difference of Convex functions (DC) algorithm [Horst
and Thoai (1999), Wu and Liu (2007)] can be used. Then we can calculate δ̃L(Zn)

and the lower bound of m0 is nδ̃L(Zn)/(4Cl).

4. Angular breakdown point for classification with kernel. We only focus
on the discussion on linear classification so far. Next, we generalize the definition
of angular breakdown point for kernel classification. Both unbounded and bounded
loss functions are considered. Kernel methods have been widely used for nonlinear
learning; see Schölkopf and Smola (2002) for a comprehensive review.

Suppose that the uncontaminated observations are from X × Y and contam-
inated ones are from X o × Y , where Y equals {1,−1}. Here, X and X o can
be the same or different. Let X0 = X ∪ X o, and H be the Reproducing Kernel
Hilbert Space (RKHS) [Wahba (1990)] with the kernel K(x,x), where x ∈ X0.
Denote (b0, f0) be the true parameters associated with the loss �(u), that is,
(b0, f0) = arg minb∈R,f ∈H E(�(Y [b + f (X)])). Without loss of generality, we as-
sume |b0| ≤ M0 < ∞. Consequently,

(b0, f0) = arg min
(b,f )∈	BK

E
(
�
(
Y

[
b + f (X)

]))
,

where 	BK = {(b, f ) : |b| ≤ M0 < ∞, f ∈ H}. Suppose that we have m outliers
{(xo

i , yo
i ), i = 1, . . . ,m}. By the reproducing property of the kernel, taking the fea-

ture map φ(x) = K(x, ·), the corresponding objective function can be written as
follows:

Lλ,n(b, f, Z̃n) = λ‖f ‖2
H + 1

n

[
n−m∑
i=1

�
(
yi

(
b + f (xi)

)) +
m∑

i=1

�
(
yo
i

(
b + f

(
xo
i

)))]

=
[
λ‖f ‖2

H + 1

n

n−m∑
i=1

�
(
yi

[
b + 〈

f,φ(xi)
〉
H

])]

+ 1

n

m∑
i=1

�
(
yo
i

[
b + 〈

f,φ
(
xo
i

)〉
H

])

:= Gλ,n(b, f,Zn−m) + Fn

(
b,f,Zo

m

)
.

(4.1)

Similar to the linear case, when the dataset is not linearly separable in the origi-
nal feature space, we only need to minimize the object function over 	BK with
M0 being sufficiently large. Let (b̂, f̂λ) = arg min(b,f )∈	BK

Lλ,n(b, f, Z̃n). By the
representer theorem [Kimeldorf and Wahba (1970)], we have

f̂λ(·) =
n−m∑
i=1

α̂iK(xi, ·) +
m∑

i=1

α̂o
i K

(
xo
i , ·) =

n−m∑
i=1

α̂iφ(xi) +
m∑

i=1

α̂o
i φ

(
xo
i

)
,
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for some constants α̂i and α̂o
i . Furthermore, by the reproducing property of the

kernel, we have f0(x) = 〈f0(·), φ(x)〉H. Thus,

〈f̂λ, f0〉H =
n−m∑
i=1

α̂if0(xi) +
m∑

i=1

α̂if0
(
xo
i

)
.

Similar to the linear case, the angular breakdown point for kernel learning can be
defined as follows.

DEFINITION 2. The population angular breakdown point for large margin
classifiers with kernel is defined as

εH(f0,Zn) = min
{
m

n
: 〈f̂λ, f0〉H ≤ 0

}
.

As in the linear case, outliers affect the angle between f̂λ and f0 in the feature
space. For the unbounded kernel (e.g., the polynomial kernel with X0 = Rp), as
‖φ(xo

i )‖H → ∞, then the effect of outliers is similar to the linear case, by impos-
ing the constraint yo

i 〈f,φ(xo
i )〉 ≥ 0 on the direction of f in the feature space.

In practice, since f0 is always unknown, we can calculate the sample angular
breakdown point for large margin classifiers with kernel defined as follows.

DEFINITION 2′ . The sample angular breakdown point for large margin clas-
sifiers with kernel is defined as

εH(f̂ ,Zn) = min
{
m

n
: 〈f̂λ, f̂Zn

〉H ≤ 0
}
,

where f̂λ is defined above and f̂Zn
is the estimates of f0 using the observations

Zn.

Without loss of generality, we assume that f̂Zn
�= 0 throughout this paper. Sim-

ilar to the linear case, the sample angular breakdown point generally has the same
properties as those of the angular breakdown point. Theorem 3 below studies the
angular breakdown point for kernel learning with unbounded loss functions.

THEOREM 3. Suppose that (A1) holds with Cl = ∞ and that H is a RKHS
with the finite dimension d . Furthermore, assume that (1) the kernel function
K(x,y) is continuous; (2) for any M > 0, there exists d points x1, . . . , xd ∈ X0
such that K(xi, xi) > M ; and (3) {K(·, xi)}di=1 are linearly independent. Then we
have εH(f0,Zn) ≤ d/n. The same conclusion holds for the sample angular break-
down point in Definition 2′.

Theorem 3 shows the breakdown point of kernel learning with some assump-
tions on the kernel. Note that the RKHS associated with the polynomial kernel
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K(x,x) = (xT x + c)m has a finite dimension for any constant c. Therefore, if
X = Rp , there exists x1, . . . , xd in {x : x ∈ Rp,‖x‖ > cM} for a large cM such that
the assumptions of Theorem 3 hold.

In fact, the assumption that the RKHS has a finite dimension is not necessary.
Theorem 3 can be generalized in the following Proposition 3 without the assump-
tion on the dimension of RKHS.

PROPOSITION 3. Assume that (A1) holds with Cl = ∞. Given an increasing
series {Mi} with Mi → ∞, denote by Ii the set with the smallest cardinality such
that (1) minxt∈X0,t∈Ii

K(xt , xt ) > Mi , (2) f0 ∈ span{φ(xt ), xt ∈ X0, t ∈ Ii}. De-
fine I0 = lim supi |Ii |. Then εH(f0,Zn) ≤ |I0|/n. The same is true for the sample
angular breakdown point in Definition 2′ by replacing f0 with f̂Zn

in (2).

Theorem 3 and Proposition 3 provide upper bounds for the angular breakdown
point of kernel learning using unbounded loss functions and unbounded kernels.
For a bounded kernel, such as Gaussian kernel K(x,y) = exp(−‖x − y‖2/(2σ 2)),
the feature map φ(x) = K(x, ·) has a bounded norm and consequently the effect
of outliers is limited compared to the case of an unbounded kernel. Therefore,
bounded kernels should be more robust than unbounded ones. This is confirmed
by the lower bound on the breakdown point shown in Theorem 4 below.

To make the conditions in Proposition 3 more clear, we will show the follow-
ing Proposition 4 which can be considered as a special case of Proposition 3. Let
{ei(x), i = 1,2, . . .} denote the orthogonal basis of H obtained from the spec-
tral decomposition. Denote the kernel function K(x,y) = ∑∞

i=1 ei(x)ei(y) and
the feature map φ : x �→ (e1(x), e2(x), . . .)T . Suppose that f0 belongs to a finite
subspace of H. Without loss of generality, we assume that f0 ∈ span{ei(x), i =
1, . . . , d}. For any positive integer m, denote span{e1(x), . . . , em(x)} as Hm, which
is the subspace of H spanned by only the first m basis. The kernel function asso-
ciated with Hm is denoted as Km(x, y) = ∑m

i=1 ei(x)ei(y) = 〈φm(x),φm(y)〉Hm ,
where the feature map is φm(x) = (e1(x), . . . , em(x))T .

PROPOSITION 4. Assume that f0 ∈ Hd , K(x,y) is continuous and (A1) holds
with Cl = ∞. Suppose that there exists some positive integer m with m ≥ d

such that the following conditions hold: (i) For any M > 0, there exist m points
x1, . . . , xm, such that Km(xi, xi) > M , 1 ≤ i ≤ m; (ii) {φm(xi),1 ≤ i ≤ m} is lin-
early independent. Then εH(f0,Zn) ≤ m/n.

Note that the RKHS H is considered to be of infinite dimension in Proposi-
tion 4 while the function f0 is assumed to belong to a finite dimensional subspace.
Moreover, the assumption that f0 ∈ Hd is only for convenience. Specifically, f0
can be in any subspace H̃ of finite dimensions, and Hm can be a subspace con-
taining H̃ such that the assumptions of Proposition 4 hold. Conditions (i) holds
when Km(x, y) is unbounded and X0 = Rp . Since d ≤ m, it is obvious that
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f0 ∈ Hd ⊆ Hm which is of finite dimensions. The proof of Proposition 4 is very
similar to that of Theorem 3. From the proof of Theorem 3, we can check that
f0(·) ∈ span{φm(xi),1 ≤ i ≤ m}. Thus, the conditions in Proposition 4 are special
cases of those of Proposition 3.

Next, we derive the lower bound of the angular breakdown point. We con-
sider two cases: the case with both the loss function and the kernel being un-
bounded, and the case either the loss or the kernel function being bounded. Let
supx∈X0

K(x,x) ≤ CK ≤ ∞. Suppose that we replace m observations in Zn by m

outliers (xo
i , yo

i ) ∈ X0 ×Y , i = 1, . . . ,m. Recalling (4.1), we have

(4.2) Lλ,n(b, f, Z̃n) = Gλ,n(b, f,Zn−m) + Fn

(
b,f,Zo

m

)
.

Recall that |b| ≤ M0 < ∞ in 	BK . For the optimal solution f̂λ, we can check that
‖f̂λ‖H <

√
�(0)/λ. Let Go

1 = �(−M0 − √
CK�(0)/λ), which is the upper bound

of �(y[b + 〈f,φ(x)〉H]) for any ‖f ‖H <
√

�(0)/λ. Let

δλ(Zn) = inf
(b,f )∈T −

λ

Gλ,n(b, f,Zn) − inf
(b,f )∈T +

λ

Gλ,n(b, f,Zn),

where T +
λ = {(b, f ) : 〈f,f0〉H > 0,‖f ‖H ≤ √

�(0)/λ, |b| ≤ M0 < ∞} and T −
λ =

{(b, f ) : 〈f,f0〉H ≤ 0,‖f ‖H ≤ √
�(0)/λ, |b| ≤ M0 < ∞}. Note that even there is

no outlier, it is still possible that the estimate breaks down in the finite sample case
due to the limited sample size. In this case, the definition of breakdown point is
meaningless. Similar to Proposition 2, we make the following assumption to avoid
this trivial case:

(A2) Suppose that the estimate (b̂, f̂ ) based on Zn does not break down in
terms of our definition of angular breakdown, that is, δλ(Zn) ≥ ε2, where ε2 is a
positive constant.

The assumption (A2) is similar to the assumption on δL(Zn) in Proposition 2.
As the discussion after Proposition 2, the assumption (A2) is also weak. Under
a identification condition similar to (3.7) and other mild conditions, we can prove
that the probability P(δλ(Zn) > ε2) tends to 1 as n → ∞. Theorem 4 below derives
a lower bound of the angular breakdown point for the kernel classification.

THEOREM 4. Suppose (A1) and (A2) hold. Then

εH(f0,Zn) ≥ m1/n,

where m1 is the smallest integer larger than nε2/(4 min{Go
1,Cl}) and ε2 is de-

fined in (A2). The same conclusion holds for the sample angular breakdown point
defined in Definition 2′, by replacing f0 with f̂Zn

in the definition of δλ(Zn) in
(A2).

The lower bound of the angular breakdown point shown in Theorem 4 is related
to δλ(Zn) up to a constant. A larger value of δλ(Zn) delivers a larger lower bound of
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the proposed angular breakdown point. Similar to the linear case, the term δλ(Zn)

can be viewed as a measure of the performance of the loss �(u) on the data set
Zn. The lower bound in Theorem 4 can be applied to two cases. For the case
with unbounded kernel and unbounded loss functions with CK = ∞ and Cl = ∞,
we have εH(f0,Zn) ≥ 1/n. For the case with at least one of CK and Cl being
bounded, we have min{Go

1,Cl} < ∞ and m1 → ∞ as n → ∞. Combined with
the results in Theorem 3, we can conclude that binary large margin classifiers with
either bounded kernel or bounded loss functions tend to be more robust than those
with unbounded kernel and loss functions.

Interestingly, in contrast to the essential role of bounded loss functions for lin-
ear learning, robustness can be achieved for kernel learning through either bounded
kernel or bounded loss functions. Therefore, when an unbounded loss function is
used, such as exponential loss or hinge loss, methods using the polynomial ker-
nel K(x,x) = (xT x + c)m with X = Rp , are less robust than methods using the
Gaussian kernel K(x,y) = exp(−‖x −y‖2/(2σ 2)) in terms of angular breakdown
point. Hable and Christmann (2011) showed that the SVM is finite sample qualita-
tive robustness, when the kernel is bounded and continuous, and the loss function
satisfies uniform Lipschitz condition. This result matches with our result about the
role of a bounded kernel in achieving robustness.

5. Simulation. In this section, we perform simulation studies to compare the
robustness of large margin classifiers using different loss functions. The bounded
sigmoid loss and three unbounded losses, including the exponential loss for the
AdaBoost, the deviance loss for the penalized logistic regression and the hinge
loss for the SVM, are considered. We study four examples, including two linear
classification examples and two kernel classification examples.

EXAMPLE 1 (Linear classification). Consider two classes with the class la-
bel Y ∈ {1,−1} and the covariate vector X|Y follows the normal distribution
N(sign(Y )u1, I10), where u1 = (1,1,0, . . . ,0)T ∈ R10. Only the first two covari-
ates are useful to distinguish two classes. For each class, we generate 50 training
samples to fit the models, 50 tuning samples to choose the best tuning parameters
and 2500 test samples to evaluate different methods.

As shown in Section 3, for linear binary classification, the angular breakdown
point for a method with an unbounded loss is 1/n, that is, a single outlier is suf-
ficient to result in angular breakdown. To show the rational of our proposed an-
gular breakdown criterion and verify this theoretical result, we replace the first
observation in the positive class by one outlier generated independently from the
distribution N(u0, Ip), where u0 = [(1 − r)+ − r]u1 and r is a parameter con-
trolling the severity of that particular outlier. We study 11 different cases with
r = 0,25,50,75, . . . ,250. Clearly, when r = 0, there is no outlier in the training
dataset. For each case, we repeat the simulation 100 times. To evaluate different
methods, we compare their average testing errors and the proportions of angular
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FIG. 2. Performance comparison of the average testing errors (left panel) and the proportions of
angular breakdown (right panel) of Example 1.

breakdown (PAB). The definition of angular breakdown point for a given method
needs β0 as the minimizer of the corresponding expected loss. The exact calcula-
tion of β0 can be difficult depending on the form of the loss function. For simplic-
ity, in this simulation example, we use the direction of the Bayes decision bound-
ary, that is, βBayes = (1/

√
2,1/

√
2,0,0, . . . ,0)T as the true β0 to check whether

each method breaks down according to Definition 1. Thus, for a given method,
the corresponding PAB can be calculated by PAB = 1

100
∑100

k=1 I (β̂T
k βBayes), where

β̂k’s are estimates of β0, and I (x) is the indicator function which equals to 1 if
x ≤ 0, and 0 otherwise.

Figure 2 shows the performance comparison of the average testing errors and
the proportions of angular breakdown for Example 1. As r = 0, there is no outlier
in the training dataset. The performance of different methods using either bounded
or unbounded loss functions are very similar to the performance of the Bayes clas-
sifier. In this case, none of these methods breaks down according to our proposed
angular breakdown criterion. As the effect of the outlier increases (r increases),
both the average testing errors and the proportions of angular breakdown of the
methods using unbounded loss functions increase rapidly. Among the three meth-
ods with unbounded loss functions, as expected, the exponential loss for AdaBoost
has the worst performance, followed by the penalized logistic regression, and then
the SVM. The hinge loss for the SVM appears to be the most robust one among
those three unbounded loss functions. When the outlier is severe enough, such
as r = 250, the performance of the penalized logistic regression, AdaBoost and
SVM are almost the same as random guessing. All of these three methods break
down in most simulation replications. In contrast, the method using the bounded
sigmoid loss is very robust. As r increases from 0 to 250, its average testing errors
are always very close to the Bayes error and it never breaks down. This verifies
our theoretical result that for the linear binary classification, a single outlier is
sufficient to result in angular breakdown for the methods using unbounded loss
functions while the methods using bounded loss are more robust. Thus, the pro-
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FIG. 3. The l2 norms of the estimated coefficient vectors.

posed angular breakdown point is an effective measure to quantify the robustness
of classification methods.

To examine the performance of the traditional breakdown point (2.2), we also
calculate the l2 norms of the estimated coefficient vectors. As shown in Figure 3,
all of these methods have bounded l2 norms, even for the methods using the un-
bounded loss functions. Thus, none of these methods breaks down according to the
traditional breakdown criterion. This further confirms that the traditional criterion
of breakdown is not suitable for classification problems.

EXAMPLE 2 (High dimensional linear classification). For this high dimen-
sional linear classification example, the dimension p = 100. The other settings
are the same as those of Example 1. Only the first two dimensions are use-
ful to distinguish two classes. The direction of the Bayes decision boundary
βBayes = (1/

√
2,1/

√
2,0,0, . . . ,0)T . For each class, we generate 80 training sam-

ples to fit the models, 80 tuning samples to choose the best tuning parameters and
2500 test samples to evaluate different methods.

Figure 4 shows the performance comparison of the average testing errors and
the proportions of angular breakdown for Example 2. It also indicates that a sin-

FIG. 4. Performance comparison of the average testing errors (left panel) and the proportions of
angular breakdown (right panel) of Example 2.
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gle outlier is sufficient to result in angular breakdown for the methods using un-
bounded loss functions while the methods using bounded loss functions are more
robust. This example also demonstrates that our proposed angular breakdown point
criterion can be also used for high dimensional data.

EXAMPLE 3 (Kernel classification). Consider two classes with the class label
Y ∈ {1,−1}. Let the covariate vector X = (R cos(2πθ),R sin(2πθ)), where θ ∼
Uniform(0,1) and

R|Y = +1 ∼ the distribution with the density
2

π
exp

(
−R2

π

)
I (R > 0);

R|Y = −1 ∼ the distribution with the density
12

π
exp

(
−36R2

π

)
I (R > 0).

For each class, we generate 50 training samples, 50 tuning samples and 2500 test
samples. Furthermore, we replace the first observation in the negative class by one
outlier (R0 cos(π/4),R0 sin(π/4)), where R0 follows the half-normal distribution

with the density function 2θ0
π

exp(−R2
0θ2

0
π

)I (R0 > 0). We create 10 different values
of θ0 ∈ [10−2,10−5] which are placed evenly on the logarithmic scale. We also
consider the case with no outlier in the training dataset. For each case, we repeat the
simulation 100 times. In each simulation, we use the polynomial kernel K(s, t) =
(sT t +1)2 for all methods. In our definition of the angular breakdown point for the
kernel case, we need to know f0. In general, f0 depends on different loss functions
and is difficult to compute. For this example, we replace f0 by fBayes = x2

1 + x2
2 −

π log(6)/35 which corresponds to the Bayes classifier. Thus, for a given method,
PAB for this example can be obtained by PAB = 1

100
∑100

k=1 I (〈f̂k, fBayes〉H), where

f̂k’s are estimates of f0.
Figure 5 displays the results for Example 3. When there is no outlier in the train-

ing dataset (the first case in the plot), the performance of all methods using either

FIG. 5. Performance comparison of the average testing errors (left panel) and the proportions of
angular breakdown (right panel) of Example 3. The values on the X axes represent the case indices.
As the case index increases, the effect of the outlier becomes more extreme (the value of θ0 decreases).
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bounded or unbounded loss functions are very similar to the performance of the
Bayes classifier. None of methods breaks down according to our proposed angu-
lar breakdown criterion. As the magnitude of the outlier increases (θ0 decreases),
for the methods using unbounded loss functions, both the average testing errors
and the proportions of angular breakdown increase. Among the three methods us-
ing the unbounded loss functions, the AdaBoost method obtains the worst perfor-
mance while the SVM performs best. This is caused by the difference between the
exponential loss of the AdaBoost and the hinge loss of the SVM, in the sense that
the exponential loss assigns much larger loss values for misclassified points than
the corresponding loss values of the hinge loss. For this kernel example, compared
with the penalized logistic regression, SVM and AdaBoost, the method using the
bounded sigmoid loss is very robust and delivers the best performance. The aver-
age testing errors corresponding to the sigmoid loss are always very close to the
Bayes error, and the method never breaks down in all these cases.

EXAMPLE 4 (Kernel classification with noisy features). Consider two classes
with the class label Y ∈ {1,−1} and the covariate vector X = (R cos(2πθ),

R sin(2πθ),X3,X4, . . . ,X10), where we use the same method shown in Exam-
ple 3 to generate R and θ . The noisy features X3,X4, . . . ,X10 follow a nor-
mal distribution with mean 0 and standard deviation 0.25. For each class, we
generate 100 training samples, 100 tuning samples and 2500 test samples. For
each experiment, we replace the first observation in the negative class by an out-
lier (R0 cos(π/4),R0 sin(π/4),O3,O4, . . . ,O10), where we use the same method
shown in Example 3 to generate R0. The features O3,O4, . . . ,O10 are generated
from a normal distribution with mean 0 and standard deviation 0.25. The polyno-
mial kernel K(s, t) = (sT t +1)2 is used for all large margin classification methods.

For this example, we also have fBayes = x2
1 + x2

2 −π log(6)/35. Figure 6 shows
the performance comparison of the average testing errors and the proportions of

FIG. 6. Performance comparison of the average testing errors (left panel) and the proportions of
angular breakdown (right panel) of Example 4. The values on the X axes represent the case indices.
As the case index increases, the effect of the outlier becomes more extreme (the value of θ0 decreases).
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angular breakdown. It indicates that the method using the bounded sigmoid loss de-
livers much lower misclassification errors than the other methods using unbounded
loss functions. The proportion of angular breakdown of the sigmoid method is
much smaller than the PAB of the other methods such as AdaBoost, SVM and pe-
nalized logistic regression. These results indicate that for the kernel classification,
the method using bounded loss can be also more robust than the method using un-
bound loss. They also demonstrate that the proposed angular breakdown point is
an effective measure to quantify the robustness of kernel classification methods.

6. Real data analysis. In this section, we study the robustness of different
loss functions using the Wisconsin Diagnostic Breast Cancer (WDBC) data. The
goal of the corresponding breast cancer study is to use a digitized image of a
fine needle aspirate of a breast mass to diagnose the corresponding breast can-
cer status. More details on the WDBC data are provided at the UCI Machine
Learning Repository (https://archive.ics.uci.edu/ml/machine-learning-databases/
breast-cancer-wisconsin/wdbc.names). The dataset has 569 subjects. For each sub-
ject, there are 30 real-valued input features and a binary response of diagnosis in-
dicating either malignant or benign of the corresponding cancer. For this analysis,
we first scale the data by standardizing each input feature to have mean zero and
standard deviation one. We randomly split the whole dataset into training, tun-
ing and test sets of sizes 100 (50 in each class), 100 (50 in each class) and 369,
respectively.

To study the robustness of different losses, we randomly select m training sam-
ples and flip their labels [from malignant (benign) to benign (malignant)]. We study
11 cases with m = 0,5,10, . . . ,50. For each case, we use linear learning and repeat
the simulation 100 times. When m = 0, there is no outlier in the training dataset.
The estimate of β0 obtained by each method in this case is used to calculate the
proportion of angular breakdown according to Definition 1′. We report both the
average testing errors and the proportions of angular breakdown of different meth-
ods.

Figure 7 provides the performance comparison of the average testing errors and
the proportions of angular breakdown using the WDBC data. When there is no
outlier in the training data, all these four methods obtain excellent performance.
However, as the number of outliers increases, the average testing errors of the pe-
nalized logistic regression, AdaBoost and SVM increase significantly while the
average testing error of the method using the sigmoid loss does not increase much.
For the worst case with 50 outliers, the performance of the method using the sig-
moid loss is still reasonable while the average testing errors of the penalized logis-
tic regression, AdaBoost and SVM are 0.463, 0.469 and 0.44, respectively. In ad-
dition, as the number of outliers increases, the proportions of angular breakdown
of the three methods with unbounded loss functions also increase significantly.
Compared with the penalized logistic regression and AdaBoost, the SVM is more

https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.names
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.names
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FIG. 7. Performance comparison of the average testing errors (left panel) and the proportions of
angular breakdown (right panel) using the WDBC data.

robust in terms of the proportion of angular breakdown. Among these four meth-
ods, the method using the bounded sigmoid loss delivers the lowest proportion of
angular breakdown. For the worst case with 50 outliers, the corresponding PAB
is only 0.08 while the PAB’s of the penalized logistic regression, AdaBoost, and
SVM are 0.61, 0.61 and 0.48, respectively. Based on this real data analysis, we
can conclude that the method using the bounded loss function is more robust than
those methods with unbounded loss functions. The proposed angular breakdown
criterion works well for classification.

7. Discussion. Robustness is a very important consideration for statistical
modeling. Most existing robustness measures such as breakdown point focus on
regression problems. New criteria tailored for classification are greatly needed.
For classification, we are more concerned about the classification boundary than
the parameter estimation of the corresponding classification function. Motivated
by this observation, we propose the novel angular breakdown point criterion to
quantify robustness of different classification methods. Our theoretical and numer-
ical studies indicate that large margin classification methods with bounded loss
functions tend to be more robust than those with unbounded ones. This is consis-
tent with existing studies on robust classification in the literature. In this paper, we
focus on the angular breakdown point of binary large margin classification meth-
ods. The proposed angular breakdown point can be generalized to multicategory
classification, which can be explored for future work. In addition, our theoreti-
cal results can help us design new classification methods that have high angular
breakdown point. As shown in Proposition 2 and the following discussion, the
lower bound of the angular breakdown point depends on Cl [the upper bound of
the loss function �(u)] and δL(Zn) (the gap between the global minimum and the
local minimum in the breakdown region). If the upper bound Cl is small and the
gap δL(Zn) is large, the classification method will have a high angular breakdown
point. In practice, we can use bounded loss (e.g., the sigmoid loss studied in this



ANGULAR BREAKDOWN POINT FOR CLASSIFICATION 3385

paper) to control Cl . In addition, we can design the loss function to be not very flat
in order to obtain a large value of δL(Zn). We need to consider these two aspects
to design the loss function with a high angular breakdown point.

Let us consider the following example about the clipped loss �c(y, xT β) =
min(1, �(y, xT β)). This loss function is bounded and, therefore, could deliver
robust classification performance. However, since it is nonconvex, it is not easy
to solve the optimization problem. To solve this issue, Yu et al. (2010) pro-
posed the ρ relaxed loss function �ρ(y, xT β) = ρ�(y, xT β) + 1 − ρ, which is
a convex relaxation of the clipped loss. It has been shown that �c(y, xT β) =
min0≤ρ≤1 �ρ(y, xT β). The parameter ρ controls the degree of the convexity and
the upper bound of the loss function. Motivated by the idea of Yu et al. (2010),
we may design a new loss function �̃ρ(u), where ρ controls both the convexity
and the upper bound of the loss function. The tuning parameter ρ can be chosen
by maximizing the lower bound of the angular breakdown point. In this case, as
shown in Proposition 2, the lower bound of the angular breakdown point of the
method using the loss function �̃ρ will be a function of ρ. Considering the family
of loss functions {�̃ρ : 0 ≤ ρ ≤ 1}, in order to obtain a good loss function with a
high angular breakdown point, we can find the parameter ρ which maximizes the
lower bound of the sample angular breakdown point, that is,

ρ∗ = arg max
ρ∈[0,1]

n

4Cl

·
(

min
β̃∈	̂−

BL

Lλ,n(β̃,Zn) − min
β̃∈	̂+

BL

Lλ,n(β̃,Zn)
)
,

where 	̂−
BL = {(b,β) : |b| < ∞, βT β̂(Zn) ≤ 0} and 	̂+

BL = {(b,β) : |b| <

∞, βT β̂(Zn) > 0}. Therefore, if we consider a family of loss functions with some
parameters, our criterion is useful to choose these parameters that lead to a high
angular breakdown point.

APPENDIX: SELECTED PROOFS

A.1. Proof of Theorem 1.

PROOF. We only prove the conclusions on the population angular breakdown
point. The conclusion on the sample angular breakdown point can be proved by
the same argument, where β0 is replaced by β̂(Zn) in the proof.

(i) According to the analysis in Section 3.1, we consider one outlier (xo
1 , yo

1 ) ∈
Rp ×{1,−1}, such that xo

1yo
1 = −c ·β0 with the positive number c → ∞. Accord-

ing to the definition of S+
zo

1
, we have β̂T (−β0) ≥ 0, that is, β̂ ∈ S−

0 . Consequently,
the angular breakdown point is 1/n for any unbounded loss �(u) satisfying (A1).

(ii) Now we consider the square loss function �(z, f ) = (1 − yf (x))2 with
f (x) = b + βT x and z = (x, y). Recall that, for the uncontaminated observations
{zi = (xi, yi), i = 1, . . . , n− 1}, ‖xi‖ is assumed to be bounded. Taking the outlier



3386 J. ZHAO, G. YU AND Y. LIU

zo
1c = (xo

1c, y
o
1c) = (−cβ0,1) with c → ∞, we have

Lλ,n(β̃, Z̃n) =
[
λJ (β) + 1

n

n−1∑
i=1

(
1 − yi

(
b + βT xi

))2

]

+ 1

n

(
1 − yo

1c

(
b + βT xo

1c

))2

:= Gλ,n(β̃,Zn−1) + Fn

(
β̃, zo

1c

)
.

(A.1)

Denote ˆ̃
β be the minimizer of Lλ,n(β̃, Z̃n) over β̃ = (b,β) ∈ 	BL = {(b,β), |b| <

∞, β ∈ Rp}. Regardless λ = 0 or not, since Lλ,n(β̃, Z̃n)|β̃=0 = 1, it is easy to see

that ˆ̃
β = (b̂, β̂T )T has a bounded norm. Thus, the minimization of Lλ,n(β̃, Z̃n)

can be taken over the set 	
(1)
BL := {(b,β) : |b| < M,‖β‖ < M} for some M being

sufficiently large. Therefore, given Zn−1, Gλ,n(β̃,Zn−1) is bounded on the set
	

(1)
BL.
Let (x̃o

1c, y
o
1c) = ((1, xo

1c)
T , yo

1c). For any small ε > 0, define Ec,ε = {β̃ : ‖β̃‖ ≥
ε, |β̃T x̃o

1c|/‖β̃‖‖x̃o
1c‖ > ε} and D+

c,ε := {β̃ : sign(β̃T x̃o
1cy

o
1c) = 1} ∩ Ec,ε . Note that

‖x̃o
1c‖ ≥ c‖β0‖ → ∞, as c → ∞. Thus, as c → ∞, for any β̃ ∈ D+

c,ε , we have

(
1 + β̃T x̃o

1cy
o
1c

)2 − (
1 − β̃T x̃o

1cy
o
1c

)2 = 2‖β̃‖∥∥x̃o
1c

∥∥ β̃T x̃o
1c

‖β̃‖‖x̃o
1c‖

→ ∞,

min
{(

1 + β̃T x̃o
1cy

o
1c

)2
,
(
1 − β̃T x̃o

1cy
o
1c

)2} → ∞.

(A.2)

Define D−
c,ε = −D+

c,ε . Then for any β̃ ∈ D+
c,ε , we have −β̃ ∈ D−

c,ε . The first part of
(A.2) indicates that for any β̃ ∈ D+

c,ε , we have Fn(β̃, zo
1c) < Fn(−β̃, zo

1c). That is,
the minimum of Fn(β̃, zo

1c) is achieved in the set D+
c,ε ∪ D0

c ∪ Ec
c,ε , where D0

c =
{β̃ : β̃T x̃1cy

o
1c = 0} and Ec

c,ε denotes the complement of Ec,ε . The second part of

(A.2) shows that the optimal value ˆ̃
β is achieved only in the set D0

c ∪ Ec
c,ε .

When ˆ̃
β ∈ D0

c , it follows that b̂ − cβ̂T β0 = 0. Since c → ∞, β0 �= 0 and |b̂| <

M , we know that β̂T β0 → 0, as c → ∞. Therefore, β̂ ∈ S−
0 = {β : βT β0 ≤ 0}.

When ˆ̃
β ∈ Ec

c,ε , then ˆ̃
β ∈ {β̃ : ‖β̃‖ < ε}∪ {β̃ : |β̃T x̃o

1c|/‖β̃‖‖x̃o
1c‖ < ε} := A1 ∪A2,

where A1 and A2 are defined accordingly. When ˆ̃
β ∈ A1, since ε can be arbitrarily

small, letting ε → 0, we have ‖β̂‖ → 0. Next, we consider the case of ˆ̃
β ∈ A2.

Since x̃o
1c = (1,−cβT

0 )T , it follows that x̃o
1c/‖x̃o

1c‖ → (0,−βT
0 )T /‖β0‖, as c →

∞. Letting ε → 0, we have |β̂T β0|/‖β̂‖‖β0‖ → 0. Moreover, it is easy to see that
‖β̂‖ ≤ λ−1�(0). Therefore, β̂ ∈ S−

0 = {β : βT β0 ≤ 0}. This completes the proof.
�



ANGULAR BREAKDOWN POINT FOR CLASSIFICATION 3387

A.2. Proof of Theorem 3.

PROOF. We only prove the conclusions on the population angular breakdown
point. The conclusion on the sample angular breakdown point can be proved by
the same argument, where f0 is replaced by f̂Zn

in the proof.
Denote the orthogonal basis of H by ei(x), i = 1, . . . , d . Then K(x,y) =∑d
i=1 ei(x)ei(y) with the feature map φ : x �→ (e1(x), . . . , ed(x)). Since f ∈ H,

we have f (x) = ∑d
i=1 αiei(x) for some constant αi . Therefore, we have f (·) =

[α1, . . . , αd ]T . By the assumption, for any series {Mc, c = 1,2, . . . , } with Mc →
∞, we have d different elements {xc,i , i = 1, . . . , d} ∈ X , c = 1,2, . . . , such
that φ(xc,i), i = 1, . . . , d are linear independent. Consequently, span{φ(xc,i), i =
1, . . . , d} = Rd . Recall that f (·) ∈ Rd . Without loss of generality, we assume that
there exists constants γc,1, . . . , γc,d being positive, such that

f0(·) = ∑
1≤i≤d0

γc,i

φ(xc,i)√
K(xc,i, xc,i)

− ∑
i≥d0+1

γc,i

φ(xc,i)√
K(xc,i, xc,i)

:= ∑
1≤i≤d0

γc,i φ̃(xc,i) − ∑
d0+1≤i≤d

γc,i φ̃(xc,i).

(A.3)

Then we take the outlier (xo
c,i , y

o
c,i), i = 1, . . . , d , such that xo

c,i = xc,i and yo
c,i =

−1 for 1 ≤ i ≤ d0 and yo
c,i = 1 as d0 + 1 ≤ i ≤ d . Therefore, for any f ∈ H and

any 1 ≤ i ≤ d0,

〈
f, yo

c,iφ
(
xo
c,i

)〉 = −〈
f,φ(xc,i)

〉 = −
√

K(xc,i, xc,i)
〈
f, φ̃(xc,i)

〉
and for d0 + 1 ≤ i ≤ d ,

〈
f, yo

c,iφ
(
xo
c,i

)〉 = 〈
f,φ(xc,i)

〉 = √
K(xc,i, xc,i)

〈
f, φ̃(xc,i)

〉
.

Let Sc := {f : 〈f, φ̃(xc,i)〉 > 0, for some 1 ≤ i ≤ d0} ∪ {f : 〈f, φ̃(xc,i)〉 <

0 for some d0 + 1 ≤ i ∈ d}. For any ε > 0 and any f ∈ Sc with ‖f ‖H > ε, due
to K(xc,i, xc,i) → ∞, as c → ∞, we have min1≤i≤d〈f, yo

c,iφ(xo
c,i)〉 → −∞. Con-

sequently, max1≤i≤d �(η + 〈f, yo
c,iφ(xo

c,i)〉) → ∞ according to assumption (A1)
and (η, f ) ∈ 	BK . Therefore, as ε being sufficiently small and c being suffi-
ciently large, it follows that the optimal solution f̂λ ∈ Sc

c = {f : 〈f, φ̃(xc,i)〉 ≤
0, for all 1 ≤ i ≤ d0} ∩ {f : 〈f, φ̃(xc,i)〉 ≥ 0 for all d0 + 1 ≤ i ∈ d}. Consequently,
by (A.3), we know 〈f̂λ, f0〉 ≤ 0. �

SUPPLEMENTARY MATERIAL

Supplement to “Assessing robustness of classification using an angular
breakdown point” (DOI: 10.1214/17-AOS1661SUPP; .pdf). The supplementary
material contains the remaining proof of the theoretical results.

https://doi.org/10.1214/17-AOS1661SUPP
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