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FIRST-PASSAGE TIMES FOR RANDOM WALKS WITH
NONIDENTICALLY DISTRIBUTED INCREMENTS

BY DENIS DENISOV, ALEXANDER SAKHANENKO AND VITALI WACHTEL

University of Manchester, Nankai University and Universität Augsburg

We consider random walks with independent but not necessarily iden-
tical distributed increments. Assuming that the increments satisfy the well-
known Lindeberg condition, we investigate the asymptotic behaviour of first-
passage times over moving boundaries. Furthermore, we prove that a properly
rescaled random walk conditioned to stay above the boundary up to time n

converges, as n → ∞, towards the Brownian meander.

1. Introduction and main results.

1.1. Introduction. Let Xk , k ≥ 1, be independent, real valued random vari-
ables and consider the random walk

Sn := X1 + X2 + · · · + Xn, n ≥ 1.

For a real-valued sequence g = {gn} let

(1) Tg := min{n ≥ 1 : Sn ≤ gn}
be the first crossing of the moving boundary gn by Sn. The main purpose of the
present paper is to study the asymptotic behaviour of the upper tail

P(Tg > n), n → ∞,

for random walks with nonidentically distributed increments in the domain of at-
traction of the Brownian motion. An important particular case of this problem is
the case of a constant boundary gn ≡ −x for some x. In this case, Tg ≡ τx , where

τx := min{n ≥ 1 : Sn ≤ −x}.
If all Xk’s have identical distribution and Sn is oscillating, then the problem of

finding the asymptotics

P(τx > n), n → ∞,

has attracted considerable attention and is well understood. In this case, the fol-
lowing elegant result (see Doney [8]) is available: if

P(Sn > 0) → ρ ∈ (0,1)
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then, for every fixed x ≥ 0,

(2) P(τx > n) ∼ V (x)nρ−1L(n),

where V (x) denotes the renewal function corresponding to the weak descending
ladder height process. (Here, and in what follows all unspecified limits are taken
with respect to n → ∞.)

In particular, if EX1 = 0 and EX2
1 < ∞ (we are still in the i.i.d. case) then the

ladder heights have finite expectations and, consequently, for every fixed x ≥ 0,

(3) P(τx > n) ∼
√

2

π

E[−Sτx ]√
n

.

The use of the Wiener–Hopf factorisation is a traditional approach to deriva-
tion of (2) and (3). In turn, the Wiener–Hopf factorisation essentially relies on the
following important properties:

(a) duality relation: if X1,X2, . . . ,Xn are independent and identically dis-
tributed then the distribution of random path {Sk, k ≤ n} coincides with that of
{Sn − Sn−k;k ≤ n} after duality transformation;

(b) simple geometry of semi-infinite intervals of the real line, which is well
adapted to the duality transformation.

Now, what if the increments Xk have different distributions, as we assume in
this paper? Clearly, one loses the duality property and, therefore, there is no hope
to generalise the factorisation approach via the Wiener–Hopf identities to such
random walks. Moreover, when we consider moving boundaries the benefits of the
simple geometry of fixed semi-infinite intervals are no longer available. Naturally
this leads to the following question: how can one investigate first-passage times of
random walks with nonidentically distributed increments? In the present paper, we
suggest to use the universality approach.

The suggested approach is based on the universality of the Brownian motion
that attracts random walks with the finite variance. To see the connection between
boundary problems for random walks and the Brownian motion, consider a similar
problem for the Brownian motion and define for each x > 0 the stopping time

τ bm
x := inf

{
t > 0 : x + W(t) ≤ 0

}
.

Then, for every fixed x > 0,

P
(
τ bm
x > t

) ∼
√

2

π

x√
t
, t → ∞.

Noting that the continuity of paths of the Brownian motion yields the equality
x = E[−W(τ bm

x )], we obtain

(4) P
(
τ bm
x > t

) ∼
√

2

π

E[−W(τ bm
x )]√

t
, t → ∞.
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Comparing (3) and (4), we see that the asymptotic behaviour of the tail of τx

for any random walk with i.i.d. increments having zero mean and finite variance
coincides, up to a constant, with that of τ bm

x . Having this in mind, one may assume
that a version of (3) should be valid for all random walks from the normal domain
of attraction of the Brownian motion.

We will now briefly indicate how we can use universality of the Brownian mo-
tion to establish (3). Consider the easier case when random walk crosses the level
−xn = −uBn, where u > 0 is a fixed number and Bn is the norming sequence
in the functional central limit theorem (FCLT). Then, by the FCLT, we have the
relation

P(τxn > n) = P
(
xn + min

k≤n
Sk > 0

)
= P

(
u + min

k≤n
Sk/Bn > 0

)

→ P
(
u + min

t≤1
W(t) > 0

)
= P

(
τ bm
xn

> Bn

)
.

Since one always has a certain rate of convergence in the functional CLT, the same
relation remains valid for u = un decreasing to zero sufficiently slow. Namely, if
un goes to zero slower than the rate of convergence, then for xn = unBn we have

P(τxn > n) ∼ P
(
τ bm
xn

> Bn

) ∼
√

2

π

xn

Bn

.

It is not at all clear, how to use the FCLT in the case of a fixed x. In this
case, a direct application of the universality results in significant errors due to
the FCLT approximation. However, this method becomes applicable when supple-
mented with probabilistic understanding of the typical behaviour of a random walk
staying above gn for a long time.

The universality approach to the analysis of the asymptotics for first passage
times is a far more general method than the Wiener–Hopf factorisation. It has
already been used in several instances, where the Wiener–Hopf method does not
seem to be applicable because of either the complex geometry and/or problems
with duality.

• Ordered random walks [4, 5, 18]. These papers studied the exit times of multi-
dimensional random walks from Weyl chambers.

• Random walks in cones [7], where the exit times of multidimensional random
walks from general cones were studied.

• Integrated random walks [6], where a two-dimensional Markov chain was con-
sidered to study exit times for integrated random walk.

• Conditioned limit theorems for products of random matrices; see [14].
• Limit theorems for Markov walks conditioned to stay positive; see [11] and [12].

Besides asymptotic results, we can use the universality approach to construct con-
ditioned processes and prove functional limit theorems for conditioned process.

There are 4 main steps in the universality approach used in the above papers:
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(i) Quantify the repulsion from the boundary, which allows the random walks
to reach quickly the high level of order B1−ε

n .
(ii) Use the repulsion and recursive estimates to show the finiteness of the

mathematical expectation of the overshoot over the high level.
(iii) Use strong coupling (KMT) to replace the trajectory of a random walk with

the Brownian motion after the reaching of the high level. Apply the asymptotics
for the crossing time by the Brownian motion.

(iv) Use the finiteness of the expectation of the overshoot for the additional
control of the error in the approximation.

The method is potentially applicable to the analysis of a large class of stochastic
processes. However, the main restriction of the method was the necessity to use
a strong coupling, which is difficult to prove and is rarely available. For example,
papers [11, 14] and [12] depend on [13], where an FCLT with a rate of convergence
(strong coupling) was proved. The present paper deals with this deficiency and
allows one to use directly the FCLT instead of the strong coupling. This is an
important methodological novelty of the present paper besides a number of a new
results. Functional limit theorems hold in a number of situations and we plan to
develop the methodology further to study exit times (including higher dimensions)
for other stochastic processes.

1.2. Statement of main results. We shall always assume that

EXk = 0 and 0 < σ 2
k := EX2

k < ∞ for all k ≥ 1.

Define S0 = B2
0 = 0 and

B2
n :=

n∑
k=1

σ 2
k , n ≥ 1.

About the real numbers {gn} used in definition (1) we assume that

(5) gn = o(Bn)

and

(6) P(Tg > n) > 0 for all n ≥ 1.

It is worth mentioning that assumption (6) is equivalent to the following condition:
n∑

k=1

essupXk > gn for all n ≥ 1,

where essupXk := sup{x : P(Xk ≥ x) > 0}.
To formulate our main results we introduce the classical random broken line

(7) s(t) = Sk + Xk+1
(t − B2

k )

σ 2
k+1

for t ∈ [
B2

k ,B2
k+1

]
, k ≥ 1.
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We always consider

(8) sn(t) := s
(
tB2

n

)
/Bn

as random process defined for t ∈ [0,1] with values in the space C[0,1] of con-
tinuous functions endowed with the supremum norm. It is well known that the
Lindeberg condition

(9) L2
n(ε) := 1

B2
n

n∑
k=1

E
[
X2

k; |Xk| > εBn

] → 0 for every ε > 0

is necessary and sufficient for the validity of the FCLT for sn(·).
Now we may present the main result of the paper.

THEOREM 1. Let {Xn} be a sequence of independent random variables with
zero means and finite variances and assume that conditions (5), (6) and (9) hold.
Then

(10) P(Tg > n) ∼
√

2

π

Ug(B
2
n)

Bn

,

where Ug is a positive, slowly varying function with the values

(11) 0 < Ug

(
B2

n

) = E[Sn − gn;Tg > n] ∼ E[−STg ;Tg ≤ n].
Asymptotic formula (10) generalises (3) to all random walks satisfying the Lin-

deberg condition and to all boundaries satisfying (5) and (6). For homogeneous
in time random walks, Novikov [19, 20] and Greenwood and Novikov [17] have
found conditions on gn under which one has a version of (10) with a positive con-
stant instead of Ug .

The main novelty of Theorem 1 consists in the slowly varying function Ug . This
function, as we shall see later, is not always asymptotically equivalent to a positive
constant and may converge to infinity or to zero. This new, in comparison to (3)
for i.i.d. increments and constant boundaries, effect is due to the fact that the rate
of convergence in the FCLT can be arbitrarily slow under the Lindeberg condition.

In order to analyse P(Tg > n) under the Lindeberg condition we have modified
the universality approach described in the previous subsection. First we use the fact
that FCLT is equivalent to the convergence to zero of the Prokhorov distance and
that the Prokhorov distance can be seen as an implicit rate of convergence in the
FCLT. Second we have managed to avoid recursive arguments, which are typical
for all previous versions of the universality approach. This occurred thanks to a
new derivation of an upper bound for P(Tg > n); see Lemmas 24 and 25. These
changes allowed us to avoid the use of the KMT coupling.

Note also that (10) implies trivially that

(12) log P(Tg > n) ∼ − logBn.



3318 D. DENISOV, A. SAKHANENKO AND V. WACHTEL

EXAMPLE 2. One of the simplest cases of walks with nonidentically dis-
tributed increments are weighted random walks. Let {ξk} be independent, iden-
tically distributed random variables with zero mean and unit variance. And let {ak}
be a sequence of positive numbers. We consider weighted increments Xk = akξk .
If

a2
n∑n

k=1 a2
k

→ 0

then the Lindeberg condition is fulfilled and we may apply Theorem 1 to the walk
with weights {ak}. In particular, if an = np+o(1) for some p > −1/2 then B2

n =
n2p+1+o(1), and hence, by (12),

log P(Tg > n)

logn
→ −p − 1

2
.

This improves Theorem 1.2 from Aurzada and Baumgarten [2], where the case of
gn ≡ 0 has been considered under the assumptions c1k

p ≤ ak ≤ c2k
p for all k and

Eeλ|ξ1| < ∞ for some λ > 0.
Moreover, if we additionally assume that an = np	(n), where 	 is a slowly

varying function, then Bn ∼ np+1/2	(n)√
2p+1

and, consequently,

P(Tg > n) ∼ Lg(n)

np+1/2 ,

where Lg is slowly varying.
Using (12), one can obtain logarithmic asymptotics for P(Tg > n) also for faster

growing weight sequences. If, for example, an = exp{nα	(n)} with some α ∈ (0,1)

then log P(Tg > n) ∼ nα	(n).

Using Theorem 1 we can also obtain the conditional functional theorem. Recall
that the distribution of the Brownian meander is the limiting distribution, as ε → 0,
of the Wiener process W on [0,1] conditioned on mint∈[0,1] W(t) > −ε; see [9].

THEOREM 3. Under the assumptions of Theorem 1, the distribution of the
process sn(·), conditioned on {Tg > n}, converges weakly on C[0,1] towards the
Brownian meander. In particular,

(13) P(Sn > gn + vBn|Tg > n) → e−v2/2 for all v ≥ 0.

Relation (13) and the functional limit theorem generalise corresponding results
of Greenwood and Perkins [15, 16], where the case of i.i.d. increments satisfying
E[X2

1 log(1 + |X1|)] < ∞ and monotone decreasing boundaries has been consid-
ered. In the case of i.i.d. increments and constant boundaries, these limit theorems
have been obtained by Bolthausen [3]. We are not aware of any similar results for
random walks with nonidentically distributed increments.
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REMARK 4. It will be clear from the proofs of Theorems 1 and 3 that our
approach applies also to the Brownian motion. If g is a continuous function with
g(0) < 0 and |g(t)| = o(

√
t), then

(14) P
(
T bm

g > t
) ∼ 	g(t)√

t
as t → ∞,

where

T bm
g := inf

{
t ≥ 0 : W(t) = g(t)

}
and lg(t) is a slowly varying function. Relation (14) improves results from
Novikov [21] and Uchiyama [26]: In [26], upper and lower bounds for P(T bm

g > t)

are obtained for decreasing boundary functions g(t), and in [21] it has been shown
(see Theorem 2 there) that if the function g(t) is monotone then, as t → ∞,

√
tP

(
T bm

g > t
) →

√
2

π
EW(Tg) ∈ [0,∞].

Furthermore, repeating the proof of our Theorem 3, one can show that the distri-
bution of {W(ut)/

√
t;u ∈ [0,1]} conditioned on {T bm

g > t} converges, as t → ∞,
weakly on C[0,1] towards the Brownian meander.

1.3. Asymptotic behaviour of Ug . For arbitrary t ∈ [B2
k ,B2

k+1] we define func-
tion Ug in the following natural way:

(15) Ug(t) := Ug

(
B2

k

) + (t − B2
k )

σ 2
k+1

(
Ug

(
B2

k+1
) − Ug

(
B2

k

))
.

Theorems 1 and 3 state that for any random walk belonging to the domain of at-
traction of the Brownian motion and for any boundary sequence gn = o(Bn), with
necessary condition (6), we have universal limiting behaviour of conditional distri-
butions. In (10) we also have the universal leading term: B−1

n , and the dependence
on the boundary {gn} and on the distribution of the increments {Xk} concentrates
in the function Ug only. In order to obtain exact asymptotics for P(Tg > n), we
have to determine the asymptotic behaviour of Ug .

Here we want to present conditions (necessary and/or sufficient) under which
the function Ug(t) have finite and/or positive limit as t → ∞. Our simplest result
is as follows.

PROPOSITION 5. Suppose that all assumptions of Theorem 1 are fulfilled and

(16) g := sup
n

gn < ∞.

Then the expectation E[−STg ] and the limit limt→∞ Ug(t) are defined and

(17) 0 < Ug(∞) := lim
t→∞Ug(t) = E[−STg ] = E[g − STg ] − g ≤ ∞.

In addition, if for some integer M the sequence {gn} is nonincreasing for all
n ≥ M then the function Ug(t) is nondecreasing for t ≥ B2

M .
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In the following two assertions we investigate the case when

(18) Ug(∞) = lim
t→∞Ug(t) < ∞.

It is worth mentioning that the study of Ug simplifies significantly in the case when
boundary gn is nonincreasing. In order to use this fact we introduce decreasing
envelopes of the sequence {gn}:
(19) min

k≤n
gk =: g

n
≤ gn ≤ gn := sup

k≥n

gk ≤ ∞, n ≥ 1.

PROPOSITION 6. Suppose that conditions (16) and (18) are fulfilled together
with all assumptions of Theorem 1. Then, with necessity,

(20)
∞∑

n=1

1

Bn

E[−Xn;−Xn > εBn] < ∞ for each ε > 0

and

(21)
∞∑

n=2

σ 2
n

B3
n

(g − gn) < ∞.

Below, in Example 9, we will show that condition (20) does not follow from the
assertions of Theorems 1 and 3.

THEOREM 7. Suppose that all assumptions of Theorem 1 are satisfied and

(22)
∞∑

n=2

σ 2
n

B3
n

(g
1
− g

n
) < ∞.

Assume in addition that there exists a nondecreasing sequence {hn > 0} of positive
numbers such that

(23)
∞∑

n=1

1

Bn

E[−Xn;−Xn > hn + gn−1 − g
n
] < ∞

and

(24)
∞∑

n=1

σ 2
n

B3
n

hn < ∞.

Then the expectation E|STg | is finite, the limit limt→∞ Ug(t) exists and

(25) 0 ≤ Ug(∞) := lim
t→∞Ug(t) = E[−STg ] < ∞.
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Note that, for all n ≥ 1,

E[−Xn;−Xn > hn + gn−1 − g
n
] ≤ E[−Xn;−Xn > hn].

Remark, that if for some integer M the sequence {gn} is nonincreasing for all
n > M then conditions (21) and (22) are equivalent. Note also that if gn =
O(Bn/log1+γ Bn), for some γ > 0, then (21) and (22) take place, and if hn =
O(Bn/log1+γ Bn) then (24) is fulfilled. Thus we have proved the following.

COROLLARY 8. Suppose that condition (22) together with all assumptions of
Theorem 1 hold and in addition

(26)
∞∑

k=1

1

Bk

E
[
−Xk;−Xk >

CBk

log1+γ B2
k

]
< ∞

for some γ > 0 and some C > 0. Then E|STg | < ∞ and (25) is true.

1.4. Particular cases. We consider several special cases in Proposition 6 and
Theorem 7.

EXAMPLE 9. Let Xn be a symmetric random variable with four values:

P(Xn = ±√
n) = pn

2
, P(Xn = ±an) = 1 − pn

2
,

where

pn := 1

n log(2 + n)
and an :=

√
1 − npn

1 − pn

.

Clearly, EXn = 0 and EX2
n = 1. Therefore, Bn = √

n for this sequence of random
variables.

Let us first show that this sequence satisfies the Lindeberg condition. Fix some
ε ∈ (0,1) and note that an < 1 for each n ≥ 1. Then, for every n > ε−2,

L2
n(ε) = 1

n

n∑
k=1

E
[
X2

k; |Xk| > ε
√

n
] = 1

n

∑
k∈(ε2n,n]

kpk = O
(
log−1 n

)
.

In order to see that (20) does not hold here, we choose ε = 1/2. Then
∞∑

k=2

1

Bk

E[−Xk;−Xk > Bk/2] =
∞∑

k=2

1√
k

√
kpk =

∞∑
k=2

1

k log(2 + k)
= ∞.

Applying now Proposition 6 we conclude that E[−STg ] = ∞ and, consequently,
√

nP(Tg > n) → ∞
by Theorem 1 for any boundary gn = o(

√
n) with g < ∞.
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This example shows that assumptions of Theorem 1 are not sufficient for con-
dition (20) to hold.

EXAMPLE 10. Let {ξk} be a sequence of independent, identically distributed
random variables with the probability density function

f (x) = |x|−3
I
{|x| ≥ 1

}
.

This sequence is still in the domain of attraction of the standard normal distri-
bution, but not in the normal domain of attraction. Due to the symmetry of the
distribution of these variables, the probability P(τ0 > n) = P(T0 > n) that the cor-
responding random walk stays positive up to time n is asymptotically equivalent
to c/

√
n (see, e.g., [10], Chapter XII.7, Theorem 1a).

Let us consider different truncations of these increments. For every n ≥ 1, define

Xn := ξnI
{|ξn| ≤ √

n logp(n + 2)
}
, p ∈ R.

Clearly, B2
n ∼ n logn as n → ∞. Furthermore, it is not hard to see that the Lin-

deberg condition holds for every p < −1/2. Note also that
√

n logn is also the
norming sequence for the random walk with increments {ξk}. In other words, we
have the same type of convergence towards Brownian motion for all random walks
considered in this example.

If we take p < −1/2, then P(−Xn > Bn/ log1+γ Bn) = 0 for all sufficiently
large values of n with any γ ∈ (0,−p − 1/2). Therefore, (26) holds, and conse-
quently, P(τx > n) ∼ c/

√
n logn. This means that the truncation has changed the

tail of Tg .
But if we choose p > 1/2, then E[−Xn;−Xn > Bn] ∼ B−1

n . Recalling that
Bn ∼ √

n logn, we conclude that the series in (20) is infinite. This implies that
P(Tg > n) 
 1/

√
n logn.

Comparing (26) and (20), we see that the difference consists only in logarithmic
correction terms. In order to study the influence of these corrections, we consider
again weighted random walks.

COROLLARY 11. Let {Xk = akξk} where {ak} is a sequence of positive num-
bers and {ξk} are independent, identically distributed random variables with zero
mean and unit variance. If for some γ > 0, the following condition holds:

(27) f γ (x) :=
∞∑

k=1

ak

Bk

I

{
x >

Bk

ak log1+γ Bk

}
∼ fγ (x) → ∞ as x → ∞

with some function fγ , then (26) is equivalent to the assumption

(28) E
[
(−ξ1)fγ (−ξ1); ξ1 < 0

]
< ∞.

Furthermore, if (27) is true for γ = −1, then condition (20) is equivalent to

E
[
(−ξ1)f−1(−ξ1); ξ1 < 0

]
< ∞.
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Indeed, for positive weights {an} condition (26) coincides with
∞∑

k=1

ak

Bk

E
[
−ξ1;−ξ1 >

Bk

ak log1+γ Bk

]
= E

[
(−ξ1)f γ (−ξ1); ξ1 < 0

]
< ∞.

Then, applying the Fubini theorem, we infer that the last condition is equiv-
alent to (28). Similar calculations with γ = −1 imply that (20) is equal to
E[(−ξ1)f −1(−ξ1); ξ1 < 0] < ∞.

EXAMPLE 12. First, consider the case when ak = kp with some p ≥ 0. It is
easy to see that

B2
n =

n∑
k=1

k2p ∼ n2p+1/(2p + 1) ∼ na2
n/(2p + 1)

and that we may take fγ (x) = c(p)x log1+γ x for all real γ . From this relation we
infer that (26) reduces to

E
[
ξ2

1 log1+γ (−ξ1); ξ1 < 0
]
< ∞, γ > 0,

whereas (20) is equivalent to E[ξ2
1 ; ξ1 < 0] < ∞. Therefore, in the case of regu-

larly varying weights we have to assume slightly more than the finiteness of the
second moment.

EXAMPLE 13. The situation becomes very different in the case of Weibullian
weights. Indeed, assume that ak = exp{kα}, where 0 < α < 1. Then, using the
L’Hospital rule, we get

B2
n =

n∑
k=1

e2kα ∼
∫ n

0
e2xα

dx ∼ 1

2α
n1−αe2nα = 1

2α
n1−αa2

n.

Hence, the sum in (27) is equal to

f γ (x) = 1√
2α

∞∑
k=1

1 + o(1)

k(1−α)/2 I

{
x >

k(1−α)/2(1 + o(1))

log1+γ (k1−αekα
/
√

2α)

}

= 1√
2α

∞∑
k=1

1 + o(1)

k(1−α)/2 I
{
x > kβ(α,γ )(1 + o(1)

)}
,

β(α, γ ) = 1 − 3α − 2αγ

2
.

It is not difficult to see that β(α, γ ) < 0 and f γ (x) = ∞ when α ≥ 1/3 and γ > 0.
Hence, condition (28) never holds in this case.

On the other hand, if β(α, γ ) > 0 then

f γ (x) ∼ fγ (x) = 1√
2α

∫ x1/β(α,γ )

0

1

t (1−α)/2 dt = 1√
2α

2

1 + α
x

1+α
2β(α,γ ) .
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Thus, for α < 1/3 and sufficiently small γ > 0 condition (28) becomes

E
[
(−ξ1)

1+ 1+α
2β(α,γ ) ; ξ1 < 0

] = E
[
(−ξ1)

1+ 1+α
1−3α−2αγ ; ξ1 < 0

]
< ∞.

For γ = −1, note that the necessary condition (20) reduces to

E
[
(−ξ1)

1+ 1+α
1−α ; ξ1 < 0

]
< ∞, α < 1.

So we see that condition (28) and equivalent condition (26) are much more restric-
tive in the case of Weibullian weights.

REMARK 14. In the case gn ≡ −x, some estimates for the overshoot can be
obtained from Arak [1]. All these estimates contain third absolute moments of
the increments, since the main purpose of [1] is to derive a Berry–Esseen-type
inequality for the maximum of partial sums. For example, according to Lemma 1.7
in [1],

BnP(τx > n) ≤ C

(
x + max

k≤n

E|Xk|3
EX2

k

)
.

Letting n → ∞ and combining (10) with (17), we obtain

E[−Sτx ] ≤ C

(
x + sup

k≥1

E|Xk|3
EX2

k

)
.

2. Proof of Theorem 1. Throughout the remaining part of the paper, we will
assume that the conditions of Theorem 1 hold everywhere except Lemmas 24
and 25.

2.1. Estimates in a boundary problem. The main purpose of this subsection is
to derive appropriate estimates for P(Tg > n) using ideas from the FCLT. Define

(29) Zk := Sk − gk and Z∗
k = ZkI{Tg > k}, k ≥ 1.

For every h > 0 and each m ≥ 1, consider the stopping times

(30) ν(h) := inf{k ≥ 1 : Zk > h} and νm := min
{
ν(Bm),m

}
.

To state the main result of this paragraph we introduce the notation

(31) Gn := max
k≤n

|gk| and ρn := 3πn + 2
Gn

Bn

,

where πn denotes the classical Prokhorov distance (see Lemma 16 below for de-
tails) between the distributions on C[0,1] of the Brownian motion and the process
sn(t) defined in (8).
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PROPOSITION 15. Let integers m, n satisfy

(32) Bm ≤ 3

5
Bn, 1 ≤ m < n.

Then

αm,n := ∣∣BnP(Tg > n) − 2ϕ(0)EZ∗
νm

∣∣
≤ ρnBnP(Tg > νm) + 2EZ∗

νm

B2
m

B2
n

+ E
[
Z∗

νm
;Z∗

νm
> 3Bm

]
,

(33)

where ϕ stands for the density of the standard normal distribution.

The main idea behind the proof of this proposition is to apply the FCLT to the
random walk restarted at the stopping time νm. More precisely, we replace at this
time moment the random walk by the Wiener process and the moving boundary gn

by the constant boundary. The three terms on the right-hand side of (33) are errors
in this approximation.

Having Proposition 15 the remaining part of Theorem 1 will consist in proving
that, for an appropriately chosen m = m(n), these three errors are negligible and in
showing that EZ∗

νm
is asymptotically equal to a positive slowly varying function.

We prepare the proof of this proposition by a series of lemmas. Later on in this
subsection we suppose that integers k,m,n and real y satisfy the conditions:

(34) 1 ≤ k ≤ m < n, 0 ≤ y < ∞.

Let

(35) Qk,n(y) := P
(
y + min

k≤j≤n
(Zj − Zk) > 0

)
.

With ν = ν(Bm), we have

P(Tg > n) = P
(
min
j≤n

Zj > 0
)

= P
(
ν ≤ m,Tg > ν,Zν + min

ν≤j≤n
(Zj − Zν) > 0

)

+ P
(
ν > m,Tg > m,Zm + min

m≤j≤n
(Zj − Zm) > 0

)
.

Hence, by the strong Markov property at time νm = min{ν,m},
P(Tg > n) = E

[
Qνm,n(Zνm);Tg > νm

]
= E

[
Qνm,n

(
Z∗

νm

);Tg > νm

] = EQνm,n

(
Z∗

νm

)(36)

since events {Tg > νm} and {Z∗
νm

> 0} coincide and Qνm,n(0) = 0.
The rest of the subsection is devoted to estimation of the functions Qk,n. We

are going to use the following property which may be considered as one of the
definitions of the Prokhorov distance πn.
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LEMMA 16. For each n ≥ 1, we can define a random walk {Sk, k ≥ 1} and a
Brownian motion Wn(t), t ∈ [0,∞), on a common probability space so that

P
(

max
0≤t≤B2

n

∣∣s(t) − Wn(t)
∣∣ > πnBn

)

= P
(

max
0≤t≤1

∣∣sn(t) − Wn

(
tB2

n

)
/Bn

∣∣ > πn

)
≤ πn.

This result follows from Strassen’s result [25] applied together with the Skoro-
hod lemma [24] to the Wiener process Wn(tB

2
n)/Bn).

REMARK 17. As it was shown in Theorem 1 in [22] for each α > 2 and every
εn > 0, it is possible to construct a Wiener process Wn(t) such that

P
(

max
t≤B2

n

∣∣s(t) − Wn(t)
∣∣ > CαεnBn

)
≤ L(α)

n (εn),

where C is an absolute constant and

L(α)
n (ε) :=

n∑
k=1

E min
{ |Xk|α
(εBn)α

,
X2

k

(εBn)2

}

may be called “truncated Lindeberg fraction of order α”.
The function L

(α)
n is very useful in estimating the rate of convergence in the

functional central limit theorem for the random walk Sn. It is known (see, e.g.,
Remark 2 in [22]) that the Lindeberg condition (9) is equivalent to

L(α)
n (ε) → 0 for every ε > 0.

Moreover, there exists a sequence εn → 0 such that

L(α)
n (εn) ≤ εn → 0 as n → ∞.

As a result,

πn ≤ Cαεn → 0,

and this relation is equivalent to the Lindeberg condition.

To state the next lemma we introduce further notation. For every 1 ≤ k < n we
define

(37) B2
k,n := B2

n − B2
k > 0 and εk,n := πnBn + Gn

Bk,n

.

(Recall that Gn = maxk≤n |gk|.) It is well known that

(38) Q(y) := P
(
y + min

t≤1
W(t) > 0

)
= 2

∫ y+

0
ϕ(x)dx.

It is easy to see from (38) that

(39)
∣∣Q(x + z) − Q(x)

∣∣ ≤ 2ϕ(0)|z| for all real x, z.
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LEMMA 18. For all 1 ≤ k < n and y ≥ 0,

(40)
∣∣∣∣Qk,n(y) − Q

(
y

Bk,n

)∣∣∣∣ ≤ πn + 4ϕ(0)εk,n.

PROOF. For every 1 ≤ k < n, consider

qk,n(y) := P
(
y + min

k≤j≤n
(Sj − Sk) > 0

)
= P

(
y + min

B2
k ≤t≤B2

n

(
s(t) − s

(
B2

k

))
> 0

)
,

where s(t) is the random broken line defined in (7). It follows from (29) that, for
all 1 ≤ k ≤ j ≤ n, ∣∣(Zj − Zk) − (Sj − Sk)

∣∣ = |gk − gj | ≤ 2Gn.

Hence, for Qk,n defined in (35), we have

(41) qk,n(y−) ≤ Qk,n(y) ≤ qk,n(y+) where y± := y ± 2Gn.

On the other hand, it is easy to see that∣∣∣ min
B2

k ≤t≤B2
n

(
s(t) − s

(
B2

k

)) − min
B2

k ≤t≤B2
n

(
Wn(t) − Wn

(
B2

k

))∣∣∣ ≤ 2 max
t≤B2

n

∣∣s(t) − Wn(t)
∣∣,

where Wn(t) is the Wiener process introduced in Lemma 16. Applying Lemma 16
we obtain

qk,n(y+) ≤ πn + P
(
y+ + min

B2
k ≤t≤B2

n

(
Wn(t) − Wn

(
B2

k

))
> −2πnBn

)

= πn + P
(

y+ + 2πnBn

Bk,n

+ min
t≤1

W(t) > 0
)

= Q

(
y

Bk,n

+ 2εk,n

)
+ πn,

(42)

where we used the fact that W(t) = (Wn(tB
2
k,n)−Wn(B

2
k ))/Bk,n is also a standard

Wiener process. Using the same arguments we obtain

(43) qk,n(y−) ≥ Q

(
y

Bk,n

− 2εk,n

)
− πn.

It is easy to see from (39) that, for x, ε ≥ 0,

Q(x + ε) ≤ Q(x) + 2ϕ(0)ε

and

Q(x − ε) ≥ Q(x − ε) − 2ϕ(0)ε.

So, with x = y/Bk,n and ε = 2εk,n we have∣∣∣∣Q
(

y

Bk,n

± 2εk,n

)
− Q

(
y

Bk,n

)∣∣∣∣ ≤ 4ϕ(0)εk,n.

Applying this inequality together with (41)–(43) we immediately obtain (40). �
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LEMMA 19. Under conditions (32) and (34),

(44)
∣∣�∗

k,n(y)
∣∣ ≤ δ∗

k,n(y) := ρnBnI{y > 0} + 2y
B2

m

B2
n

+ yI{y > 3Bm},

where

(45) �∗
k,n(y) := BnQk,n(y) − 2yϕ(0).

PROOF. First of all note that if m satisfies (32) then, for 1 ≤ k ≤ m,

(46) Bk,n ≥ Bm,n ≥ 4

5
Bn, ϕ(0) ≤ 2

5
, πn + 4ϕ(0)εk,n ≤ ρn.

In the last relation we have used (37) and (31). Set

(47) δk,n(y) := BnQ

(
y

Bk,n

)
− 2yϕ(0).

Next we will bound δk,n(y) for y ≥ 0 from above and below. Since Q(y) ≤ 2yϕ(0)

for all y ≥ 0 we have the following upper bound:

δk,n(y) ≤ 2yϕ(0)

(
Bn

Bk,n

− 1
)

≤ y(B2
n − B2

k,n)

Bk,n(Bk,n + Bn)

≤
(

25

36

)
yB2

k

B2
n

≤ yB2
m

B2
n

.

(48)

We will need two different lower bounds. First, it follows immediately from
(47) that

(49) δk,n(y) ≥ −2yϕ(0) ≥ −y ∀y ≥ 0.

Second, definition (38) and the inequality ϕ(x) ≥ ϕ(0)(1 − x2/2) yield for y ≥ 0,

Q(y) = 2
∫ y

0
ϕ(x)dx ≥ 2

∫ y

0
ϕ(0)

(
1 − x2/2

)
dx = 2ϕ(0)

(
y − y3/6

)
.

Then we have

δk,n(y) ≥ BnQ

(
y

Bn

)
− 2yϕ(0) ≥ −Bn

2ϕ(0)

6

(
y

Bn

)3

≥ −3ϕ(0)
yB2

m

B2
n

≥ −2
yB2

m

B2
n

for all y ∈ [0,3Bm].
(50)

It follows from inequalities (48)–(50) that

(51)
∣∣∣∣BnQ

(
y

Bk,n

)
− 2yϕ(0)

∣∣∣∣ ≤ 2
yB2

m

B2
n

+ yI{y > 3Bm} ∀y ≥ 0.
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On the other hand, we obtain from (40) and (46) that

(52)
∣∣∣∣Qk,n(y) − Q

(
y

Bk,n

)∣∣∣∣ ≤ ρnI{y > 0}

since Qk,n(0) = 0 = Q(0). Combining (51) and (52) we immediately find (44).
�

PROOF OF PROPOSITION 15. It follows from (36) and (45) that∣∣BnP(Tg > n) − 2ϕ(0)EZ∗
νm

∣∣ = ∣∣E�∗
νm,n

(
Z∗

νm

)∣∣.
Hence, by Lemma 19,∣∣E�∗

νm,n

(
Z∗

νm

)∣∣ ≤ E
∣∣�∗

νm,n

(
Z∗

νm

)∣∣ ≤ Eδ∗
νm,n

(
Z∗

νm

)
= ρnBnP

(
Z∗

νm
> 0

) + 2EZ∗
νm

B2
m

B2
n

+ E
[
Z∗

νm
;Z∗

νm
> 3Bm

]
.

It is easy to see that the obtained estimate coincides with (33) once we recall that
P(Tg > νm) = P(Z∗

νm
> 0). Thus, the proof of the proposition is completed. �

2.2. Martingale-type properties of the sequence Z∗
n . In this subsection we are

going to study the asymptotic behaviour of the sequences EZ∗
n and EZ∗

νm
. The

results of this subsection will play a key role in our proof of the fact that the
function Ug is slowly varying.

LEMMA 20. For all m ≥ 1 we have

(53) EZ∗
m = −E[STg ;Tg ≤ m] − gmP(Tg > m)

and

(54) EZ∗
νm

= −E[STg ;Tg ≤ νm] − E[gνm;Tg > νm].

COROLLARY 21. For all n ≥ m ≥ 1, we have

EZ∗
νm

− EZ∗
n ≤ 2GnP(Tg > νm),

(55)
EZ∗

m − EZ∗
n ≤ 2GnP(Tg > m),∣∣EZ∗

νm
− EZ∗

n

∣∣ ≤ α∗
m,n := 2GnP(Tg > νm) + E[−ZTg ;νm < Tg ≤ n](56)

and

(57) max
m≤k≤n

∣∣EZ∗
k − EZ∗

n

∣∣ ≤ 2GnP(Tg > m) + E[−ZTg ;m < Tg ≤ n] ≤ α∗
m,n.
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REMARK 22. If {gn} is nonincreasing for all n ≥ M ≥ 1, then the sequence
{Z∗

n} is a submartingale (for n ≥ M), and hence, the sequence {EZ∗
n} is nonde-

creasing for n ≥ M whereas the function Ug(t) is nondecreasing when t ≥ B2
M .

Indeed, to show that {Z∗
n} is a submartingale set Fn := σ(X1,X2, . . . ,Xn).

Then we have

E
[
Z∗

n+1|Fn

] = E
[
(Sn+1 − gn+1)I{Tg > n + 1}|Fn

]
= E

[
(Sn+1 − gn+1)

(
I{Tg > n} − I{Tg = n + 1})|Fn

]
= E

[
(Sn+1 − gn+1)|Fn

]
I{Tg > n}

− E
[
(Sn+1 − gn+1)I{Tg = n + 1}|Fn

]
= (Sn − gn+1)I{Tg > n} − E

[
(Sn+1 − gn+1)I{Tg = n + 1}|Fn

]
= Z∗

n + (gn − gn+1)I{Tg > n}
+ E

[
(gn+1 − Sn+1)I{Tg = n + 1}|Fn

]
.

Since gn+1 ≥ Sn+1 on the event {Tg = n + 1} and gn ≥ gn+1 for all n ≥ M , we
obtain the submartingale property.

To show that Ug(t) is nondecreasing note that Ug(B
2
n) = E[Z∗

n] by (11) and
the latter sequence is nondecreasing since {Z∗

n} is a submartingale. As Ug(t) is
obtained by linear interpolation (15) between B2

n , it is nondecreasing as well.

PROOF OF LEMMA 20. For any bounded stopping time ν ≥ 1, by the optional
stopping theorem,

0 = ESTg∧ν = E[STg ;Tg ≤ ν] + E[Sν;Tg > ν].
Therefore,

E[Sν;Tg > ν] = −E[STg ;Tg ≤ ν].
From this equality and the definition of Z∗

n , we get

E
[
Z∗

ν

] = E
[
(Sν − gν);Tg > ν

] = −E[STg ;Tg ≤ ν] − E[gν;Tg > ν].
Taking ν = m and ν = νm, we obtain respectively (53) and (54). �

PROOF OF COROLLARY 21. From (53) (with m := n) and (54), we have

EZ∗
νm

− EZ∗
n = E[STg ;νm < Tg ≤ n] − E[gνm;Tg > νm] + gnP(Tg > n)

= E[ZTg ;νm < Tg ≤ n] + E[gTg − gνm;νm < Tg ≤ n]
+ E[gn − gνm;Tg > n].

This equality implies (56) and the first estimate in (55) since ZTg ≤ 0 and |gk| ≤
Gn for all k ≤ n.
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Similarly, using (53) again with m := k and m := n we obtain

EZ∗
k − EZ∗

n = E[STg ;k < Tg ≤ n] − gkP(Tg > k) + gnP(Tg > n)

= E[ZTg ;k < Tg ≤ n] + E[gTg − gk;k < Tg ≤ n]
+ (gn − gk)P(Tg > n).

This equality with k = m implies the second estimate in (55). In addition, for
n ≥ k ≥ 1, ∣∣EZ∗

k − EZ∗
n

∣∣ ≤ 2GnP(Tg > k) + E[−ZTg ;k < Tg ≤ n].
Noting that the right-hand side in the last inequality is a nonincreasing function of
k we obtain (57). �

2.3. Upper bounds. It follows from the Lindeberg condition (9) that

(58) λn := min
{
ε > 0 : Ln(ε) ≤ ε

} → 0, σ 2
n := max

k≤n

σ 2
k

B2
n

≤ 2λ2
n → 0

and from (5) that ρn = 3πn + 2Gn/Bn → 0. In particular, these relations imply

(59) N1 := max
{
n : 3πn + 2

Gn

Bn

+ 2λ2
n > 1/8

}
< ∞.

Since B2
n = B2

n−1 +σ 2
n ≤ B2

n−1 +B2
nσ 2

n ≤ B2
n−1 +B2

n/8, and also by (59) we have
respectively

(60) sup
n>N1

B2
n

B2
n−1

≤ 8

7
, sup

n>N1

Gn

Bn

≤ 1

16
.

In what follows the symbols N1,N2, . . . and C1,C2, . . . denote finite positive
constants which may depend on the sequence of numbers g = {gn} and on the
fixed joint distribution of random variables {Xn}.

The main purpose of this subsection is to derive asymptotically sharp upper
bounds for P(Tg > n) and P(Tg > νn). These bounds will be later used in the
analysis of the error terms from Proposition 15 and Corollary 21.

We collect these bounds, together with some moment inequalities, in the fol-
lowing proposition.

PROPOSITION 23. There exists an integer N2 ≥ N1 such that, for all n > N2,

(61) BnP(Tg > n) < 3EZ∗
n

and

(62)
∣∣EZ∗

n + E[STg ;Tg ≤ n]∣∣ ≤ 3Gn

EZ∗
n

Bn

<
EZ∗

n

4
.
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In addition, for all m, n such that

(63) n ≥ m > N2 and Bm ≥ 8Gn

we have

(64) EZ∗
m ≤ 4EZ∗

n, EZ∗
νm

≤ 6EZ∗
n, P(Tg > νm) ≤ 20

EZ∗
n

Bm

,

and

(65) α∗
m,n ≤ 40(2Gn + λnBn)

EZ∗
n

Bm

.

The most important step in the proof of this proposition is the derivation of (61),
which is an easy consequence of Lemma 25. We prepare the proof of that lemma
by the following simple generalisation of Lemma 7 from Greenwood and Perkins
[15].

LEMMA 24. If X1,X2, . . . ,Xn are independent for some n ≥ 1, then

P(Sn > x,Tg > n) ≥ P(Sn > x)P(Tg > n) ∀x ∈ R.

PROOF. The statement of the lemma is obvious for x ≤ gn. Therefore, we
shall always assume that x > gn. We are going to use induction. If n = 1 then, for
every x > g1,

P(S1 > x,Tg > 1) = P(S1 > x) ≥ P(S1 > x)P(Tg > 1).

Assume now that the inequality holds for n. For every x > gn+1, we have

P(Sn+1 > x,Tg > n + 1)

=
∫
R

P(y + Sn > x,y + Sn > gn+1, Tg > n)P(Xn+1 ∈ dy)

=
∫
R

P(y + Sn > x,Tg > n)P(Xn+1 ∈ dy)

≥
∫
R

P(y + Sn > x)P(Tg > n)P(Xn+1 ∈ dy)

≥ P(Sn+1 > x)P(Tg > n + 1).

Thus, the proof is completed. �

LEMMA 25. If X1,X2, . . . ,Xn are independent for some n ≥ 1, then

(66) EZ+
n P(Tg > n) ≤ EZ∗

n.
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PROOF. If P(Tg > n) = 0, then inequality (66) is obvious. If P(Tg > n) > 0,
then by Lemma 24

E
[
Z∗

n | Tg > n
] = E[Sn − gn | Tg > n] =

∫ ∞
0

P(Sn > gn + x | Tg > n)dx

≥
∫ ∞

0
P(Sn > gn + x)dx = E(Sn − gn)

+ = EZ+
n .

Therefore, EZ∗
n ≥ P(Tg > n)EZ+

n . �

Note that Lemmas 24 and 25 are the only lemmas in Section 2 in which we do
not impose all assumptions of Theorem 1.

LEMMA 26. For all n ≥ m > N1,

(67) β∗
m,n := E[−ZTg ;n ≥ Tg > νm] ≤ 40(Gn + λnBn)

EZ∗
n

Bm

.

PROOF. Note that −ZTg = −ZTg−1 − gTg−1 + gTg − XTg < 2Gn − XTg be-
cause −ZTg−1 < 0. Hence, for any ε > 0,

β∗
m,n ≤ 2GnP(Tg > νm) + E[−XTg ;n ≥ Tg > νm]

≤ (2Gn + εBn)P(Tg > νm)

+ E[−XTg ;−XTg > εBn,n ≥ Tg > νm].
(68)

By the definition of νm [see (30)], for 2 ≤ j ≤ n we have

βj,m,n := E[−XTg ;Tg = j > νm,−XTg > εBn]
≤ E[−Xj ;Tg > j − 1 ≥ νm,−Xj > εBn]
= E[−Xj ;−Xj > εBn]P(Tg > j − 1 ≥ νm)

≤ E[−Xj ;−Xj > εBn]P(Tg > νm)

≤ E
[
X2

j ; |Xj | > εBn

]P(Tg > νm)

εBn

.

It follows now from (68) that

β∗
m,n ≤ (2Gn + εBn)P(Tg > νm) +

n∑
j=2

βj,m,n

≤ (2Gn + εBn)P(Tg > νm) +
n∑

j=2

E
[
X2

j ; |Xj | > εBn

]P(Tg > νm)

εBn

≤
(

2Gn + εBn + L2
n(ε)Bn

ε

)
P(Tg > νm).
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Letting ε = λn and applying (58) we obtain

β∗
m,n ≤ (2Gn + 2λnBn)P(Tg > νm),

combining this with the last inequality in (64), we obtain (67). �

PROOF OF PROPOSITION 23. By the central limit theorem, Zn/Bn converges
in distribution to W(1). Hence, applying Fatou’s lemma, we have

lim inf
n→∞

EZ+
n

Bn

≥ EW(1)+ =
∫ ∞

0
xϕ(x) dx = ϕ(0) >

1

3
.

From this estimate and Lemma 25, we conclude that (61) is valid with

N2 := max
{
n ≥ N1 : EZ+

n ≤ Bn/3
}
< ∞.

Next, the first inequality in (62) follows from (61) and (53). The second one in
(62) is a corollary of the second bound in (60).

Now, by the Markov inequality,

(69) P
(
Z∗

νm
> Bm

) ≤ EZ∗
νm

Bm

.

On the other hand,

(70) P
(
Z∗

νm
∈ (0,Bm]) = P(νm = m,Tg > m) ≤ P(Tg > m).

As νm ≤ m [see (30)], we obtain, by combining (69) and (70),

(71) P(Tg > m) ≤ P(Tg > νm) = P
(
Z∗

νm
> 0

) ≤ EZ∗
νm

Bm

+ P(Tg > m).

As m > N1 we can apply (60) to obtain from (55) with m = n that

EZ∗
νm

≤ EZ∗
m + Bm

8
P(Tg > νm).

This fact and (71) yield

P(Tg > νm) ≤ EZ∗
m

Bm

+ 1

8
P(Tg > νm) + P(Tg > m).

Hence,

(72) P(Tg > νm) ≤ 8

7

EZ∗
m

Bm

+ 8

7
P(Tg > m) < 5

EZ∗
m

Bm

,

where the last inequality follows from (61).
From (55), (61) and (63), we obtain

EZ∗
m − EZ∗

n ≤ 2GnP(Tg > m) ≤ 6Gn

EZ∗
m

Bm

≤ 3

4
EZ∗

m.
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This proves the first inequality in (64). Similarly,

EZ∗
νm

− EZ∗
n ≤ 2GnP(Tg > νm) ≤ 10Gn

EZ∗
m

Bm

≤ 10

8
EZ∗

m ≤ 40

8
EZ∗

n = 5EZ∗
n,

which implies the second estimate in (64).
At last, substituting the first estimate from (64) into (72), we obtain the third

inequality in (64). So, all estimates in (64) are proved. Finally, the last inequality
(65) follows from (56), the third inequality in (64) and from Lemma 26. �

2.4. Rate of convergence in Theorem 1. We are going to prove Theorem 1 and
to obtain the following rate of convergence in (10).

THEOREM 27. Under the assumptions of Theorem 1, the asymptotics in (10)
holds with the function Ug defined in (15) which is slowly varying. Moreover, for
all n ≥ 1,

(73) α∗
n :=

∣∣∣∣Bn

P(Tg > n)

EZ∗
n

− 2ϕ(0)

∣∣∣∣ ≤ C1
(
ρ2/3

n + λ1/2
n

) → 0

for some C1 < ∞.

We split the proof into several steps. As it has been mentioned before, the main
idea is to use Proposition 15 with an appropriately chosen m(n). Define

(74) m(n) := min
{
k ≥ 1 : B2

k ≥ (
ρ2/3

n + λ1/2
n

)
B2

n

}
and

(75) N3 := max
{
n ≥ N2 : ρ2/3

n + λ1/2
n + 2λ2

n > (3/5)2}
< ∞.

LEMMA 28. If n > N3, then the number m = m(n) defined in (74) satisfies
conditions (32) and (63). In addition, for all n > N3,

(76) α∗
n ≤ 72

(
ρ2/3

n + λ1/2
n

) + βm(n)

EZ∗
n

,

where βm := E[Z∗
νm

;Z∗
νm

> 3Bm].
PROOF. Consider integer m = m(n) from (74) with n > N3. We have from

(58) and (75) that

(77) B2
m(n) = B2

m(n)−1 + σ 2
m(n) ≤ (

ρ2/3
n + λ1/2

n

)
B2

n + 2λ2
nB

2
n ≤ (3/5)2B2

n.

So, condition (32) is fulfilled in this case. Furthermore, it follows from (59) that
2Gn/Bn < ρn ≤ 1/8 for n > N3 ≥ N1. Hence, by (74),

Bm(n) ≥ 3
√

ρnBn = ρnBn/ρ
2/3
n ≥ 4ρnBn ≥ 4(2Gn/Bn)Bn = 8Gn.
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So, m(n) satisfies also the condition (63) and we may apply Propositions 15 and
23 for m = m(n).

Comparing definitions (33) and (73), we obtain for m = m(n) that

(78) α∗
nEZ∗

n ≤ αm,n + 2ϕ(0)
∣∣EZ∗

νm
− EZ∗

n

∣∣ ≤ βm + δm,n,

where, using (33) and (56), we have

δm,n = 2EZ∗
νm

B2
m

B2
n

+ ρnBnP(Tg > νm) + α∗
m,n.

From estimates (64) and (65), we obtain

δm,n ≤ 12EZ∗
n

B2
m

B2
n

+ (20ρn + 40ρn + 40λn)EZ∗
n

Bn

Bm

because 2Gn/Bn < ρn. Now we have from (65) the bound

δm,n ≤ 12EZ∗
n

B2
m

B2
n

+ (
60ρ2/3

n + 40λ3/4
n

)
EZ∗

n

since Bm(n) ≥ 3
√

ρnBn and Bm(n) ≥ 4
√

λnBn by (74), and thus, due to (77),

δm,n ≤ (
72ρ2/3

n + 12λ1/2
n + 24λ2

n + 40λ3/4
n

)
EZ∗

n.

So, using (78), we obtain now (76) because λn ≤ 1/4 by (59). �

LEMMA 29. The function Ug is slowly varying. In addition, there exists a
constant C2 < ∞ such that

(79) P(Tg > j − 1) ≤ C2EZ∗
n

B
1/3
n

B
4/3
j

for all j ∈ [1, n].

PROOF. First, note that by (65) and (74),

α∗
m,n

EZ∗
n

≤ 40
2Gn + λnBn

Bm(n)

≤ 40
(ρn + λn)Bn

Bm(n)

≤ 40
(ρn + λn)√
ρ

2/3
n + λ

1/2
n

≤ 40
(
ρ2/3

n + λ3/4
n

)
.

Then, combining (15) and (57), we have

sup
t∈[B2

m(n),B
2
n]

∣∣∣∣ Ug(t)

Ug(B2
n)

− 1
∣∣∣∣ = max

m(n)≤k≤n

∣∣∣∣EZ∗
k

EZ∗
n

− 1
∣∣∣∣ ≤ α∗

m,n

EZ∗
n

≤ 40
(
ρ2/3

n + λ3/4
n

) → 0.
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Noting that the first inequality in (77) implies that

(80)
Bm(n)

Bn

→ 0,

we infer that Ug is slowly varying.
By a property of slowly varying functions (see, e.g., [23], page 20), for every

a > 0 the function

Va(t) :=
maxB2

1≤x≤t x
aUg(x)

ta

is also slowly varying and Va(t) ∼ Ug(t) as t → ∞. Taking a = 1/3, we conclude
that

max
1≤k≤n

B
1/3
k EZ∗

k

B
1/3
n EZ∗

n

= max
1≤k≤n

B
1/3
k Ug(B

2
k )

B
1/3
n Ug(B2

n)
≤ B

1/3
n V1/3(B

2
n)

B
1/3
n Ug(B2

n)

≤ C3 := sup
t≥B2

1

V1/3(t)

Ug(t)
< ∞ for all n ≥ 1,

(81)

due to the facts that V1/3(t) ∼ Ug(t) and Ug(t) > 0 for t ≥ B2
1 .

First, if n ≥ j − 1 > N2 then it follows from (61) and (81) that

P(Tg > j − 1) ≤ 3EZ∗
j−1

Bj−1
≤ 3C3B

1/3
n EZ∗

n

B
1+1/3
j−1

≤
(

8

7

)4/3 3C3B
1/3
n EZ∗

n

B
4/3
j

.

Here, we also used (60). Second, for all j ∈ [1, n] we infer from (81) that

P(Tg > j − 1) ≤ 1 = Bj

EZ∗
j

EZ∗
j

Bj

≤ Bj

EZ∗
j

C3B
1/3
n EZ∗

n

B
4/3
j

.

So, (79) is proved with C2 := 3(8/7)4/3C3 + C3 max1≤j≤N2+1 Bj/EZ∗
j < ∞. �

LEMMA 30. For all m > N1,

(82) βm := E
[
Z∗

νm
;Z∗

νm
> 3Bm

] ≤ 6C2EZ∗
mL2/3

m (1).

PROOF. Note that

Zνm = Zνm−1 + gνm−1 − gνm + Xνm < Bm + 2Gm + Xνm <
3

2
Bm + Xνm,

since Zνm−1 < Bm and 2Gm/Bm < 1/8 < 1/2 by (60). Hence, for 1 ≤ j ≤ m,

E
[
Z∗

νm
;νm = j,Z∗

νm
> 3Bm

]
≤ E

[
3

2
Bm + Xj ;Tg > νm = j,Xj >

3

2
Bm

]

≤ E[2Xj ;Tg > νm = j,Xj > Bm] ≤ 2E[Xj ;Tg > j − 1,Xj > Bm]
= 2E[Xj ;Xj > Bm]P(Tg > j − 1) ≤ 2E

[
X2

j /Bm;Xj > Bm

]
P(Tg > j − 1).
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So, we have the bound

(83) βm = E
[
Z∗

νm
;Z∗

νm
> 3Bm

] ≤ 2

Bm

m∑
j=1

E
[
X2

j ; |Xj | > Bm

]
P(Tg > j − 1).

Now introduce notation:

vj := E
[
X2

j ; |Xj | > Bn

]
and Vj :=

j∑
k=1

vk ≤ B2
j .

We have from (79) and (83) that

βm ≤ 2

Bm

m∑
j=1

vj P(Tg > j − 1) ≤ 2C2EZ∗
m

B
1−1/3
m

m∑
j=1

vj

B
4/3
j

≤ 2C2EZ∗
m

B
2/3
m

m∑
j=1

vj

V
2/3
j

.

It is clear that
n∑

j=1

vj

V
2/3
j

=
m∑

j=1

Vj − Vj−1

V
2/3
j

≤
∫ Vm

0

dx

x2/3 = 3V 1/3
m .

As a result, we have

E
[
Z∗

νm
;Z∗

νm
> 3Bm

] ≤ 6C2EZ∗
m

V
1/3
m

B
2/3
m

= 6C2EZ∗
mL2/3

m (1).

This completes the proof of the lemma. �

PROOF OF THEOREM 27. First, the function Ug is slowly varying by
Lemma 29. Second, by Lemma 28 we may apply Proposition 23 with m = m(n).
As a result, we have from (64) and (82) that

(84)
βm(n)

EZ∗
n

≤ 6C2L
2/3
m(n)(1)

EZ∗
m(n)

EZ∗
n

≤ 24C2L
2/3
m(n)(1).

Note that Bm(n) ≥ λ
1/4
n Bn ≥ λnBn by (74) and since λn ≤ 1 by the definition of

N1. Thus, using (9) and (58), we obtain

λ1/2
n B2

nL2
m(n)(1) ≤ B2

m(n)L
2
m(n)(1) =

m(n)∑
k=1

E
[
X2

k; |Xk| > Bm(n)

]

≤
n∑

k=1

E
[
X2

k; |Xk| > Bm(n)

] ≤
n∑

k=1

E
[
X2

k; |Xk| > λnBn

]

= B2
nL2

n(λn) ≤ B2
nλ2

n.

So, L2
m(n)(1) ≤ λ

2−1/2
n , and hence, L

2/3
m(n)(1) ≤ λ

1/2
n . Substituting this estimate into

(84), we find from (76) that

α∗
n ≤ 72

(
ρ2/3

n + λ1/2
n

) + 24C2λ
1/2
n ∀n > N3.



FIRST-PASSAGE TIMES FOR WALKS WITH NON-I.I.D. INCREMENTS 3339

Thus, the inequality (73) is proved with

C1 := 72 + 24C2 + max
1≤n≤N3

α∗
n

ρ
2/3
n + λ

1/2
n

< ∞.

Next, convergence to 0 of the right-hand side of (73) follows from (5) and (9)
as it was mentioned at the beginning of Section 2.3. �

PROOF OF THEOREM 1. The convergence in (73) implies the validity of (10).
The asymptotic relation in (11) follows immediately from (62) since Gn/Bn → 0
by (5), and the positivity of Ug(B

2
n) is ensured by (6). Thus, the proof of Theorem 1

is complete. �

3. Proof of Theorem 3. In this section, we prove weak convergence of the
sequence of the processes sn(·), conditioned on {Tg > n}, towards the Brownian
meander M(t), t ∈ [0,1]. Recall that processes sn(t) = s(tB2

n)/Bn, t ∈ [0,1] were
defined in (7) and (8).

We shall use the approach from [4] which is based on the strong approximation
of the broken line process s(t) by the Brownian motion; see Lemma 16.

Let f : C[0,1] �→ R be a nonnegative uniformly continuous with respect to the
uniform topology function with values in the interval [0,1]. Our purpose is to show
that

(85) E
[
f (sn) | Tg > n

] → E
[
f (M)

]
as n → ∞.

Let m(n) be the sequence defined in (74). Recall that if n > N3 then m(n)

satisfies all the conditions on pairs (m,n) imposed in Section 2. Thus, it follows
from (40) and (46) that

Qk,n(y) ≤ πn + 4ϕ(0)εk,n + Q

(
y

Bk,n

)

≤ ρn + 2ϕ(0)
y

Bk,n

≤ ρn + y

Bn

, k ≤ m(n).

(86)

In particular,

Qk,n(y) ≤ 2y

Bn

for all k ≤ m(n) and y ≥ ρnBn.

Since Bm(n) ≥ ρnBn, we have by the Markov property,

P
(
Tg > n,Z∗

νm(n)
> 3Bm(n)

) =
∫ ∞

3Bm(n)

P
(
Z∗

νm(n)
∈ dy

)
Qνm(n),n(y)

≤
∫ ∞

3Bm(n)

P
(
Z∗

νm(n)
∈ dy

) 2y

Bn

= 2

Bn

E
[
Z∗

νm(n)
;Z∗

νm(n)
> 3Bm(n)

]
.
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Then, in view of Lemma 30 and (10),

P
(
Tg > n,Z∗

νm(n)
> 3Bm(n)

) ≤ 12C2E[Z∗
m]

Bn

L2/3
m (1)

= 12C2Ug(B
2
m(n))

Bn

L2/3
m (1)

= o
(
P(Tg > n)

)
, n → ∞,

since L
2/3
m (1) → 0 and Ug(B

2
m(n)) ∼ Ug(B

2
n). Hence, since f is bounded from

above,

(87) E
[
f (sn);Tg > n,Z∗

νm(n)
> 3Bm(n)

] = o
(
P(Tg > n)

)
.

Using (86) once again, we have

Qm(n),n(y) ≤ 2ρ2/3
n for all y ≤ ρ2/3

n Bn.

Therefore, by the Markov property,

P
(
Tg > n,Z∗

νm(n)
≤ ρ2/3

n Bn

) ≤ 2ρ2/3
n P

(
0 < Z∗

νm(n)
≤ ρ2/3

n Bn

)
≤ 2ρ2/3

n P
(
Z∗

νm(n)
> 0

)
.

Applying the last inequality in (64) and recalling that Bm(n) ≥ ρ
1/3
n Bn, we get

(88) P
(
Z∗

νm(n)
> 0

) ≤ 20
EZ∗

n

Bm(n)

≤ 20ρ−1/3
n

EZ∗
n

Bn

.

Therefore,

P
(
Tg > n,Z∗

νm(n)
≤ ρ2/3

n Bn

) ≤ 40ρ1/3
n

EZ∗
n

Bn

= o
(
P(Tg > n)

)
.

This implies that

(89) E
[
f (sn);Tg > n,Z∗

m(n) ≤ ρ2/3
n Bn

] = o
(
P(Tg > n)

)
.

For every k ≥ 0 and every y ∈ R, define a functional f (k, y; ·) by the following
relation:

f (k, y;h) := f

(
y +

(
h(t) − h

(
B2

k

B2
n

))
I

{
t ≥ B2

k

B2
n

})
, h ∈ C[0,1].

It follows from the definition of νm(n) that

maxk≤νm(n)
|Sk − Sνm(n)

|
Bn

≤ maxk≤νm(n)
|Zk − Zνm(n)

|
Bn

+ 2Gn

Bn

≤ Bm(n) + Z∗
νm(n)

Bn

+ 2Gn

Bn

≤ 4Bm(n)

Bn

+ 2Gn

Bn
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on the event {Z∗
νm(n)

∈ (0,3Bm(n)]}. Using the fact that Gn = o(Bn) and (80), we
conclude that

maxk≤νm(n)
|Sk − Sνm(n)

|
Bn

→ 0

on the event {Z∗
νm(n)

∈ (0,3Bm(n)]}.
From this estimate and the uniform continuity of the functional f , we infer that

f (sn) − f

(
νm(n),

Sνm(n)

Bn

, sn

)
= o(1) on the event

{
Z∗

m(n) ∈ (0,3Bm(n)]}.
Combining this with (87) and (89), we obtain

E
[
f (sn);Tg > n

]
= E

[
f

(
νm(n),

Sνm(n)

Bn

, sn

)
;Tg > n,Z∗

νm(n)
∈ (

ρ2/3
n Bn,3Bm(n)

]]

+ o
(
P(Tg > n)

)
.

(90)

By the Markov property at νm(n),

E
[
f

(
νm(n),

Sνm(n)

Bn

, sn

)
;Tg > n,Z∗

νm(n)
∈ (

ρ2/3
n Bn,3Bm(n)

]]

=
m(n)∑
k=1

∫ 3Bm(n)

ρ
2/3
n Bn

P
(
Z∗

k ∈ dy, νm(n) = k
)

× E
[
f

(
k,

y + gk

Bn

, sn

)
;y + min

j∈[k,n](Zj − Zk) > 0
]
.

We now note that it suffices to show that, uniformly in y ∈ (ρ
2/3
n ,3Bm(n)] and

k ≤ m(n),

(91) E
[
f

(
k,

y + gk

Bn

, sn

)
;y + min

j∈[k,n](Zj −Zk) > 0
]

= (
Ef (M)+o(1)

)√ 2

π

y

Bn

.

Indeed, this relation implies that

E
[
f

(
νm(n),

Sνm(n)

Bn

, sn

)
;Tg > n,Z∗

νm(n)
∈ (

ρ2/3
n ,3Bm(n)

]]

=
√

2

π

Ef (M) + o(1)

Bn

E
[
Z∗

νm(n);Z∗
νm(n)

∈ (
ρ2/3

n Bn,3Bm(n)

]]
.

It is clear that

E
[
Z∗

νm(n);Z∗
νm(n)

≤ ρ2/3
n Bn

] ≤ ρ2/3
n BnP

(
Z∗

νm(n)
> 0

)
.
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Applying (88), we obtain

E
[
Z∗

νm(n);Z∗
νm(n)

≤ ρ2/3
n Bn

] ≤ 20ρ1/3
n EZ∗

n = o
(
EZ∗

n

)
.

Furthermore, by Lemma 30 and the second inequality in (64),

E
[
Z∗

νm(n);Z∗
νm(n)

> 3Bm(n)

] = o
(
EZ∗

n

)
.

As a result,

E
[
Z∗

νm(n);Z∗
νm(n)

∈ (
ρ2/3

n Bn,3Bm(n)

]] = (
1 + o(1)

)
EZ∗

n

and, consequently,

E
[
f

(
νm(n),

Sνm(n)

Bn

, sn

)
;Tg > n,Z∗

νm(n)
∈ (

ρ2/3
n ,3Bm(n)

]]

= (
Ef (M) + o(1)

)√ 2

π

EZ∗
n

Bn

.

Plugging this into (90) and taking into account (10), we get

E
[
f (sn);Tg > n

] = (
Ef (M) + o(1)

)
P(Tg > n),

which is equivalent to (85).
In order to prove (91), we apply Lemma 16. Set wn(t) := Wn(tB

2
n)/Bn and

define

An :=
{

max
t∈[0,1]

∣∣sn(t) − wn(t)
∣∣ ≤ πn

}
.

Then, on this set we have, uniformly in k,∥∥∥∥
(
sn(t) − sn

(
B2

k

B2
n

))
I

{
t ≥ B2

k

B2
n

}
−

(
wn(t) − wn

(
B2

k

B2
n

))
I

{
t ≥ B2

k

B2
n

}∥∥∥∥ ≤ 2πn.

Since f is uniformly continuous, there exists δn → 0 such that∣∣f (k, z; sn) − f (k, z,wn)
∣∣ ≤ δn on the event An.

Using now (86), we conclude that∣∣∣∣E
[
f

(
k,

y + gk

Bn

, sn

)
− f

(
k,

y + gk

Bn

,wn

)
;An,y + min

j∈[k,n](Zj − Zk) > 0
]∣∣∣∣

≤ δnQk,n(y) = o

(
y

Bn

)

uniformly in k ≤ m(n) and y ∈ (ρ
2/3
n Bn,3Bm(n)]. On the set An, we also have{

y − ρnBn + min
B2

k ≤t≤B2
n

(
Wn(t) − Wn

(
B2

k

))
> 0

}

⊆
{
y + min

j∈[k,n](Zj − Zk) > 0
}

⊆
{
y + ρnBn + min

B2
k ≤t≤B2

n

(
Wn(t) − Wn

(
B2

k

))
> 0

}
.
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From these estimates and P(Ac
n) ≤ πn = o(y/Bn), we obtain

E
[
f

(
k,

y + gk

Bn

, sn

)
;y + min

j∈[k,n](Zj − Zk) > 0
]

≤ E
[
f

(
k,

y + gk

Bn

,wn

)
;y + ρnBn + min

B2
k ≤t≤B2

n

(
Wn(t) − Wn

(
B2

k

))
> 0

]

+ o

(
y

Bn

)
(92)

and

E
[
f

(
k,

y + gk

Bn

, sn

)
;y + min

j∈[k,n](Zj − Zk) > 0
]

≥ E
[
f

(
k,

y + gk

Bn

,wn

)
;y − ρnBn + min

B2
k ≤t≤B2

n

(
Wn(t) − Wn

(
B2

k

))
> 0

]

+ o

(
y

Bn

)
.

(93)

Since ρnBn = o(y) for y ≥ ρ
2/3
n Bn, we get from (4)

P
(
y ± ρnBn + min

B2
k ≤t≤B2

n

(
Wn(t) − Wn

(
B2

k

))
> 0

)
∼

√
2

π

y

Bn

.

Furthermore, by Theorem 2.1 in Durrett, Iglehart and Miller [9],

E
[
f

(
k,

y + gk

Bn

,wn

) ∣∣∣ y ± ρnBn + min
B2

k ≤t≤B2
n

(
Wn(t) − Wn

(
B2

k

))
> 0

]
→ Ef (M).

Applying these relations to the right-hand sides in (92) and (93), we obtain (91).
Thus, the proof is completed.

4. Proofs of the asymptotic properties of the function Ug .

4.1. Proof of Proposition 5. If g = supn≥1 gn is finite, then g − STg ≥ 0.
Hence, by the monotone convergence theorem,

En := E[g − STg ;Tg ≤ n] − g ↑ Ug(∞) = E[g − STg ] − g ≤ ∞.

Next, from (53) we have

Ug

(
B2

n

) = EZ∗
n = E[g − STg ;Tg ≤ n] − g + (g − gn)P[Tg > n].

Using now (61) and (5), we obtain for n > N2 that∣∣EZ∗
n − En

∣∣ ≤ (g − gn)P[Tg > n] ≤ o(Bn) · 3EZ∗
n/Bn = o

(
EZ∗

n

)
.
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Thus,

(94) 0 < Ug

(
B2

n

) = EZ∗
n ∼ En ↑ Ug(∞) ≤ ∞.

Hence, the limit in (17) is well defined. Moreover, the sequence of positive num-
bers EZ∗

n in (94) is asymptotically equivalent to the sequence of nondecreasing
numbers En. Consequently, EN4 > 0 for some N4 < ∞. Hence, Ug(∞) ≥ EN4 >

0.
Thus, all assertions of Proposition 5 are proved because the property of nonin-

creasing sequences {gn} mentioned there was proved in Remark 22.
Moreover, convergence (94) allows us to obtain the following.

LEMMA 31. If ḡ = supn≥1 gn < ∞, then there exists constant C5 < ∞ such
that

(95) BnP(Tg > n) ≥ C5 > 0 for all n ≥ 1.

PROOF. We have from (10) and (94) that

0 < BnP(Tg > n) ∼ Ug

(
B2

n

) ∼ En ↑ Ug(∞) ∈ (0,∞).

This fact implies (95). �

4.2. Proof of Proposition 6. We split the proof into two steps.

LEMMA 32. If ḡ < ∞, then

(96) E[ḡ − STg ] ≥ C5

2

∑
k>1

σ 2
k (ḡ − ḡk)

B3
k

,

where C5 is the same constant as in Lemma 31.

PROOF. We have from (95) that

E[ḡ − STg ] ≥ ∑
k>0

(ḡ − gk)P(Tg = k) ≥ ∑
k>0

(ḡ − ḡk)P(Tg = k)

= ∑
k>0

(ḡ − ḡk)
[
P(Tg > k − 1) − P(Tg > k)

]

= (ḡ − ḡ1)P(Tg > 0) + ∑
k>0

(ḡk − ḡk+1)P(Tg > k)

≥ C5
ḡ − ḡ1

B1
+ C5

∑
k>0

ḡk − ḡk+1

Bk

= C5
∑
k>1

(ḡ − ḡk)

(
1

Bk−1
− 1

Bk

)
.
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But

1

Bk−1
− 1

Bk

= B2
k − B2

k−1

BkBk−1(Bk + Bk−1)
≥ σ 2

k

2B3
k

.

So, (96) is proved. �

LEMMA 33. If ḡ < ∞, then for every ε > 0 there exists a constant N5 < ∞
such that

(97) E[ḡ − STg ] ≥ C5

4

(
1 − e−ε2/8) ∑

n>N5

E[−Xn;−Xn > εBn]
Bn

,

where C5 the same constant as in Lemma 31.

PROOF. It follows from (13) that, for every ε > 0,

P
(

Zn

Bn

<
ε

2

∣∣∣ Tg > n

)
→ 1 − e−(ε/2)2/2 = 1 − e−ε2/8 > 0.

Hence, there exists N6 < ∞ such that

(98) P
(

Zn

Bn

<
ε

2

∣∣∣ Tg > n

)
≥ 1 − e−ε2/8

2
> 0 for all n ≥ N6.

Using (5), we find N5 < ∞ such that N5 ≥ N6 and

(99) gn−1 − gn < εBn/2 for all n ≥ N5.

Next, since STg = XTg + ZTg−1 + gTg−1 ≤ XTg + ZTg−1 + ḡ, we have

(100) E[ḡ − STg ] ≥ E[−XTg − ZTg−1] = ∑
n>0

bn,

where

(101) bn := E[−XTg − ZTg−1;Tg = n] = E[−Xn − Zn−1;Tg > n − 1,Zn ≤ 0].
Using (99), we obtain the following inclusions of events:

{−Xn > εBn,Zn−1 < εBn/2} ⊆ {Zn = Xn + Zn−1 + gn−1 − gn < 0},
{−Xn > εBn,Zn−1 < εBn/2} ⊆ {−Xn − Zn−1 > −Xn/2}.

Hence, it follows from (101) that

bn ≥ E[−Xn/2;Tg > n − 1,−Xn > εBn,Zn−1 < εBn/2]
= E[−Xn/2;−Xn > εBn]P[Tg > n − 1,Zn−1 < εBn/2].(102)
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Since Bn > Bn−1, we have from (95), (98) and (99) that for n > N5

P
(
Tg > n − 1,Zn−1 <

εBn

2

)

≥ P
(
Tg > n − 1,Zn−1 <

εBn−1

2

)

= P(Tg > n − 1)P
(
Zn−1 <

εBn−1

2

∣∣∣ Tg > n − 1
)

≥ C5(1 − e−ε2/8)

2Bn

.

This inequality together with (100), (101) and (102) imply (97). �

Proposition 6 immediately follows from Lemmas 32 and 33.

4.3. Proof of Theorem 7. Introduce the notation:

T := Tg, Mn := hn + g
1
− g

n
, Mn := ∑

k>n

Mk

σ 2
k

B3
k

,

Hn := hn + gn−1 − g
n

> 0, F n := ∑
k>n

1

Bk

E[−Xk;−Xk > Hk],
(103)

It follows from (22) and (24) that Mn → 0, and Fn → 0 by (23). Hence, there
exists finite N7 such that

(104) N7 := min{n > N2 : Fn + Mn ≤ 1/8} < ∞.

Define also En := maxN7≤k≤n EZ∗
k .

LEMMA 34. If n ≥ m ≥ N7, then

(105) F ∗
m := E[−XT ;−XT > HT ,N7 < T ≤ m] ≤ 4EnFN7

and

(106) M∗
m := E[MT ;N7 < T ≤ m] ≤ 4EnMN7 .

PROOF. Since F ∗
N7

= M∗
N7

= 0, we consider only the case when n ≥ m > N7.
First, note that from (61) and (60) we have

(107) P(T > k) ≤ 3
EZ∗

k

Bk

≤ 3
En

Bk

≤ 4
En

Bk+1
if n ≥ k ≥ N7 > N2.
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Using (107), we obtain

F ∗
m =

m∑
k=N7+1

E[−Xk;−Xk > Hk,T = k]

≤
m∑

k=N7+1

E[−Xk;−Xk > Hk,T > k − 1]

=
m∑

k=N7+1

E[−Xk;−Xk > Hk]P(T > k − 1)

≤ 4En

∑
k>N7

1

Bk

E[−Xk;−Xk > Hk].

Now (105) follows from the definition (103).
Next, it is easy to see that

M∗
m =

m∑
k=N7+1

MkP(T = k) =
m∑

k=N7+1

Mk

(
P(T > k − 1) − P(T > k)

)

= MN7+1P(T > N7) − MmP(T > m) +
m−1∑

k=N7+1

(Mk+1 − Mk)P(T > k).

Applying again (107) and noting that {Mk} is positive and increasing by (19), we
obtain

M∗
m ≤ 3En

MN7+1

BN7

+ 3En

m−1∑
k=N7+1

Mk+1 − Mk

Bk

= 3En

m∑
k=N7+1

Mk

(
1

Bk−1
− 1

Bk

)
+ 3En

Mm

Bm

≤ 3En

∑
k>N7

Mk

(
1

Bk−1
− 1

Bk

)
.

Now, using (60) we have

1

Bk−1
− 1

Bk

= B2
k − B2

k−1

Bk−1Bk(Bk−1 + Bk)
≤ σ 2

k

2B3
k−1

≤
(

8

7

)3/2 σ 2
k

2B3
k

≤ 4

3

σ 2
k

B3
k

.

Thus, (106) is proved. �

LEMMA 35. For all n > N7,

(108) En ≤ 4C6 − 4g
1
, E(±)

n := E
[
(g

1
− ST )±;T ≤ n

] ≤ 3C6 + 3|g
1
|,

where C6 := E[(g
1
− ST )+;T ≤ N7] < ∞.
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PROOF. To prove this assertion, first note that

−ST = −ST −1 − XT ≤ −gT −1 − XT ≤ −gT −1 + HT − XT I{−XT > HT }
if only HT ≥ 0. Hence, with HT = hT + gT −1 − g

T
> 0 we obtain

(g
1
− ST )+ ≤ (

hT + g
1
− g

T
− XT I{−XT > HT })+ = MT − XT I{−XT > HT }

with a positive right-hand side. Thus, for m ≥ N7,

E(+)
m := E

[
(g

1
− ST )+;T ≤ m

]
≤ E

[
(g

1
− ST )+;T ≤ N7

] + E[MT ;N7 < T ≤ m]
+ E[−XT ;−XT > HT ,N7 < T ≤ m] = C6 + F ∗

m + M∗
m.

Next, using (105), (106) and (104) we obtain

E(+)
m ≤ C6 + 4En(FN7 + MN7) ≤ C6 + 4En/8 = C6 + En/2.

Now, we have from (62) that

0 <
3

4
EZ∗

m ≤ E[−ST ;T ≤ m] = E[g
1
− ST ;T ≤ m] − g

1

= E(+)
m − E(−)

m − g
1
≤ E(+)

m − g
1
≤ C6 − g

1
+ En

2
.

(109)

Taking maximum in (109) with respect to m ∈ [N7, n], we find

3

4
En ≤ C6 − g

1
+ En

2
.

Hence, the first inequality in (108) is proved.
At last, we obtain from (109) with m = n that

E(+)
n ≤ C6 + En/2 ≤ 3C6 − 2g

1
, E(−)

n < E(+)
n − g

1
≤ 3C6 − 3g

1
.

So, all inequalities in (108) are proved. �

Now, from (108) by the monotone convergence theorem we obtain

E(±)
n = E

[
(g

1
− ST )±;T ≤ n

] ↑ E(g
1
− ST )± ≤ 3C6 + 3|g

1
| < ∞.

Hence, E|g
1
− ST | ≤ 6C6 + 6|g

1
| < ∞, and there exists a finite limit

lim
n→∞ E[−ST ;T ≤ n] = lim

n→∞ E[g
1
− ST ;T ≤ n] − g

1

= lim
n→∞E(+)

n − limE(−)
n − g

1

which is equal to limt→∞ Ug(t) as it follows from (11).
All assertions of Theorem 7 are now proved.
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