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There are several cutting edge applications needing PCA methods for
data on tori, and we propose a novel torus-PCA method that adaptively fa-
vors low-dimensional representations while preventing overfitting by a new
test—both of which can be generally applied and address shortcomings in two
previously proposed PCA methods. Unlike tangent space PCA, our torus-
PCA features structure fidelity by honoring the cyclic topology of the data
space and, unlike geodesic PCA, produces nonwinding, nondense descrip-
tors. These features are achieved by deforming tori into spheres with self-
gluing and then using a variant of the recently developed principal nested
spheres analysis. This PCA analysis involves a step of subsphere fitting, and
we provide a new test to avoid overfitting. We validate our torus-PCA by ap-
plication to an RNA benchmark data set. Further, using a larger RNA data
set, torus-PCA recovers previously found structure, now globally at the one-
dimensional representation, which is not accessible via tangent space PCA.

1. Introduction. Dimension reduction on non-Euclidean manifolds with
PCA-like methods has been a challenging task for which two usually success-
ful categories of methods have been developed in the last decade: extrinsic (tan-
gent space) approaches, for example, Arsigny et al. (2006), Boisvert et al. (2006),
Fletcher et al. (2004), Gower (1975), and intrinsic (geodesic) ones, for example,
Huckemann and Ziezold (2006). A critical review of PCA methods has been given
in Huckemann, Hotz and Munk (2010); Sommer (2013) is another recently devel-
oped intrinsic PCA method. However, for the very simple non-Euclidean case of
the flat and compact space of a torus (a direct product space of two or more angles),
these approaches are not adequate. Namely, tangent space PCA (TS-PCA) fails to
take into account the periodicity of the torus and, even worse, geodesic PCA is
completely inapplicable because almost all geodesics densely wind around, as in
Figure 1.
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(a) Flat torus as square in R? with (b) Curved torus embedded in R3.
edges identified.

F1G. 1. Flat (a) and curved (b) torus representation. Except for horizontal and vertical geodesics
(grey) in (a), and diagonal ones, all other geodesics wind around (a) and (b). All geodesics (black)
with an irrational slope in (a) are dense.

In this paper we propose the novel tool of torus-PCA (T-PCA), which not only
removes these defects but also more flexibly adapts to low dimension in a statisti-
cally controlled way to guard against overfitting. This is achieved by transforming
the “geometrically benign” structure of the torus into a statistically benign ge-
ometry, namely one that does not allow for dense geodesics. We note that these
dense geodesics are in the closure of the nondense geodesics, which in turn can
be viewed as 1D subtori, and so an attempt for principal nested tori still suf-
fers from the statistically nonbenign geometry. Specifically, we deform tori into
spheres by choosing a nearby statistically benign geometry with clever mapping
and self-gluing and then use a modification of the recently developed principal
nested spheres analysis (PNS) of Jung, Dryden and Marron (2012). In particular,
this PNS analysis involves a step of small sphere fitting and we provide a new test
to avoid overfitting. However, deforming the geometry of the torus into that of a
sphere, locally glued to itself (to honor periodicity), creates singularities (where
curvature is unbounded). Notably, although locally respecting the flat geometry of
the torus, ignoring periodicity, TS-PCA introduces in fact not only geometric but
also topological singularities (the tangent space is not homeomorphic to the torus).

At this point we recall that within a sphere of radius r > 0, every subsphere with
the same radius r is a great subsphere and one of smaller radius is a proper small
subsphere. In this paper we speak of small subspheres to include great and proper
small subspheres.

Some torus-specific PCA approaches have been developed apart from TS-PCA
and geodesic PCA. Using wrapped normals, Kent and Mardia (2009) circumvent



1334 B. ELTZNER, S. HUCKEMANN AND K. V. MARDIA

the problem of winding geodesics and provide for an intrinsic parametric model
with the same number of degrees of freedom as classical PCA. The PCA used
by Altis et al. (2008) is a particular case of Kent and Mardia (2009). Allowing
only geodesics that wind around at most once, as proposed by Kent and Mardia
(2015), further reduces the degrees of freedom. As discussed in Huckemann and
Eltzner (2015) for classical PCA in R” the space of k-dimensional affine sub-
spaces (0 < k < n) has dimension (n — k)(k + 1); in contrast for PNS in the n-
dimensional sphere, the space of k-dimensional small subspheres has dimension
(n —k)(k+2) (1 <k <n—1). For this reason (building on PNS), T-PCA more
flexibly favors lower dimensional representations than TS-PCA, while this flexi-
bility is better controlled against overfitting than in classical PNS.

Sargsyan, Wright and Lim (2012) may have been the first to treat toroidal
data describing RNA structures in a spherical geometry. In their construction they
halved the corresponding seven torus angles defined below and treated them as
polar angles from a seven-dimensional sphere, thus taking only a very first step
toward T-PCA. On this seven-dimensional sphere they investigated a test data set
which we call the benchmark data. However, Sargsyan, Wright and Lim (2012)
neither discussed nor exploited the drastic change of geometry, let alone amended
by self-gluing, and only applied geodesic PCA [see Huckemann and Ziezold
(2006)], maximizing projected variance and not minimizing residual variance. In-
cidentally, some pitfalls of using projected variance for compact manifolds were
noted in Huckemann, Hotz and Munk (2010).

RNA structure analysis and challenges, a bigger picture. The last decades have
witnessed finding an unexpected variety of RNA shape and function, and this va-
riety is ever increasing. Base sequences, also called primary structures and con-
sisting of polymers of four different nucleotides, are nowadays easily accessible
by high throughput sequencing, and it is one ultimate goal to link these sequences
to biological function. Biological function, however, is highly dependent on the
3D structure (or fold) which manifests at different levels [e.g., Brewer (2013),
Chakrabarti, Chen and Varner (2011), Chapman, Sidrauski and Walter (1998),
Seetin and Mathews (2012)]. At the bottom level is the single residue geometry
usually described by dihedral angles between neighboring planes, each spanned
by three adjacent atoms, similar to pages of an open book (Figure 2). The structure
of each nucleotide can be described by six angles for the polymeric backbone and
one angle for the nucleotide’s base, giving a total of seven angles (Figure 3 and Ta-
ble 1). Secondary structure is given by self-interaction within the RNA molecule
via base pairing and other interactions forming specific patterns such as A-helices,
hairpin loops and others. At the top level, fertiary and higher order structure arises
from interacting lower order structure patterns via further base and backbone bind-
ings.

In contrast to primary structure, the 3D structure is not easily accessible but
needs to be reconstructed by elaborate technology such as X-ray crystallography.
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FI1G. 2. lllustration of a dihedral (torsion) angle defined by four atoms or three bonds, it is the
opening angle between two pages of a book [reproduced from Mardia (2013)].

However, experimental structures are prone to misinterpretation and various er-
rors. For example, backbone inconsistencies, where different reconstructed atoms
occupy the same spatial location, frequently occur during reconstruction [Jain,
Richardson and Richardson (2015), Richardson et al. (2008)]. To avoid or correct
such errors, the space of possible 3D structures is often restrained or constrained
to previously observed structures. This is typically done at the nucleotide or paired
nucleotide level [éech et al. (2013), Schneider, Moravek and Berman (2004),
Wadley et al. (2007), Yang et al. (2003)]. Specifically, use is made of so-called
rotamers describing empirical modes of probability distributions of nucleotide or
nucleotide pair conformations. As these distributions are relatively peaked, limit-
ing the conformational space to such rotamers avoids the introductions of incor-
rect conformations by limiting the conformational space to previously observed
3D patterns.

Among the many challenges along this path, we discuss two specific ones: data
reduction methods and alignment strategies.
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(a) 8D structure of an RNA residue. (b) 2D scheme of an RNA residue.

FI1G. 3. Part of an RNA backbone (phosphate groups with central atom denoted by P, followed by
sugar rings that connect along the atoms labeled by C4" and C3’, to which a nucleic base is bound).
Dihedral angles (Greek letters) are defined by three bonds, the central bond carries the label; pseu-
do-torsion angles (bold Greek letters) are defined by the pseudo-bonds between bold printed atoms
[Figure 3(b)]. Underlying each pseudo-torsion angle are three heminucleotide angles. The precise
definitions with same canonical atom notation are given in Table 1. The subscript “—" denotes an-
gles of the neighboring residue. Figure 3(a) is reproduced from Frellsen et al. (2009).
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TABLE 1
Atom bonds (2nd column) defining angles (1st column) with
description (3rd column). The two sets of heminucleotide
angles (each of which can be approximated by a pseudo-torsion
angle) define the backbone, which in conjunction with the base
angle x define a residue. Figure 3(a) shows the geometry of
these atoms. (N denotes nitrogen)

03— P —05-cCY
P — 05— C5 — C4 Heminucleotide angles
05— Cc5'—c4d -3y

C5'— c4— c3'— 0%
C4— C3'— 03— P Heminucleotide angles
c3—-03- P - 0%

X VY ® > R ™K

04— C1'— N1— C2 For pyrimidine (monocyclic) bases
04— C1"— N9— C4 For purine (bicyclic) bases

n C4d— p—_c4d— p

Pseudo torsion angles
6 P—-C4d- P-4

vy C1'— C2'— C3’'— C4’' Sugar pucker angle

To the end of backbone reconstruction, single residue conformation space is
explored and dimension reduction methods are applied to identify errors in exper-
imental structures, provided among others by the popular free software of Davis
et al. (2007). For example, removing inconsistencies, Murray et al. (2003) have
found that RNA backbone is rotameric locally at hemi-nucleotide level, that is,
among others, when reducing the 7D single residue space to a 3D backbone angu-
lar space, involving angles on only one side of the base (cf. Table 1 and Figure 3),
conformer groups of each of the two sugar puckers (explained in Section 3) follow
essentially one angle only. In our second application below, we revisit the data cor-
responding to one sugar pucker and generalize the result to finding a 1D structure
common to all conformer groups.

On the one hand, matching RNA strands requires elaborate registration and
alignment strategies [e.g., Mardia (2013)], building on statistical [e.g., Dryden and
Mardia (2016), Srivastava and Klassen (2016)] and Bayesian [e.g., Green and Mar-
dia (2006)] shape technology including non-Euclidean averaging and elastic curve
representations [e.g., Laborde et al. (2013), Liu, Srivastava and Zhang (2011)].
On the other hand, averaging and exploring the 7D single residue space can be
achieved via dynamically simulating similar structures [e.g., Chen and Garcia
(2013), Duarte and Pyle (1998), Estarellas et al. (2015)], and probabilistic ap-
proaches to this end require dimension reduction methods [e.g., Frellsen et al.
(2009)]. In this context and also for higher-order structure prediction, it is nec-
essary to explore not only the variation of single residue geometries typical for
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specific secondary structure elements but also single residue geometries for in-
termediate and transition regions between structure elements [e.g., Dunbrack and
Karplus (1994), Jain, Richardson and Richardson (2015)].

Applying torus-PCA to RNA structure analysis we provide for a novel dimen-
sion reduction method at residue level, and we apply it within the focus of current
research to single residue geometries. However, it readily generalizes to simulta-
neous analysis of geometries of residue sequences (7n angles for n residues) but
such an extension is left for future research. We measure effectively the statistical
performance of our method by dimension reduction and faithfulness in terms of
preserving previously known structure.

All of the angles used in our applications are defined in Table 1 and displayed in
Figure 3. First we use the benchmark data set of Sargsyan, Wright and Lim (2012)
which consists of neighborhoods of three known cluster centers in the n—6-plot [as
in Figure 7(a), the pseudo-torsion angles 7, 6 are depicted in Figure 3(b); cf. also
Table 1]. We find that T-PCA retrieves the underlying clusters in an effective way.
This benchmark data set is a subset of a large RNA data set carefully selected for
high experimental X-ray precision (0.3 nanometers) by Duarte and Pyle (1998),
updated by Wadley et al. (2007) and analyzed by them and others, for example,
Murray et al. (2003), Richardson et al. (2008). Next we use another subset of this
large RNA data set with C2’-endo sugar pucker (this and the other sugar pucker
are explained fully in Section 3), subsequently called the C2 data set, where we
compare our method to TS-PCA and show that T-PCA captures not only much
more variance in the one-dimensional subspace but also the wrong topology in
TS-PCA hides and tears apart subtle structural similarities.

In contrast, T-PCA provides structure fidelity, as global and local structural
similarities are naturally preserved, most of it already visible in the 1D T-PCA
representation, generalizing the above finding of Murray et al. (2003) that RNA
backbone is locally rotameric at heminucleotide level, to:

These RNA conformers are rotameric at full residue level, possibly in a nonlinear
sense, however.

In Section 2 we introduce torus PCA, which is the center-piece of our method-
ology. In Section 3 we apply our method to the benchmark and C2 data sets and
review the results. The paper ends with a discussion and further illustrations in
Supplement A [Eltzner, Huckemann and Mardia (2018a)]. An implementation of
our T-PCA method and the RNA data sets we use are included as supplementary
material, that is, Supplement B [Eltzner, Huckemann and Mardia (2018b)] and
Supplement C [Eltzner, Huckemann and Mardia (2018c)], and can be found at
http://www.stochastik.math.uni-goettingen.de/SFB755_B8.

Residues and residual variance. To avoid confusion, we clarify that the bio-
chemical term residue denotes a RNA molecule segment corresponding to a single
nucleic base (Section 3) whereas the statistical term residual variance denotes un-
explained variation (Section 2.3).
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(a) Cutting open along a (b) Separately collapsing (c¢) Identifying the points
circle, giving two cir- each circle to a point. restores the cyclic
cles. topology.

F1G. 4. Self-gluing of T2: From a donut to a sausage. These operations are only topological;
Figure 5 reflects the changes in geometry.

2. Torus PCA. Our dimension reduction procedure proceeds in two steps.
First, the data space is deformed from a torus to a sphere with self-gluing, that
is, parts of the sphere are topologically identified with themselves; see Figures 4
and 5. Several degrees of freedom are present in the deformation map we propose,
and we discuss consequences of specific parameter choices. The second step is the
dimension reduction for which we use a well-established procedure for dimension
reduction on spheres with some extensions to take into account the original torus
geometry and the self-gluing of the sphere.

2.1. Torus deformation schemes. Let TP = (S1)*P be the D-dimensional
unit torus and SP = {x e RP*!: ||x|| = 1} the D-dimensional unit sphere, D € N.
The definition of the data-adaptive deformation mapping P : T? — SP de-
fined in this section is based on comparing squared Riemannian line elements.
If Yy € S =10, 27] /~ (k=1,..., D) where ~ denotes the usual identification
of 0 with 27, the squared line element of T2 is given by the squared Euclidean
line element

D
dstp = dyi.
k=1

For SP, in polar coordinates ¢y € [0, 7]fork=1,..., D—1and ¢p €[0, 2]/ ~,
whose relation to embedding Euclidean coordinates xi is given by

x| =cos ¢y,
k—1
V2<k<D:x= (H sinog) coS ¢,
j=1

D
XD41 = (H Sin¢j),
j=1
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F1G. 5. All possibilities for gluing for T2, illustrated by a data set uniform in a square with three
outliers. Using mean centered (b), the square is near the equatorial great circle [Y1 = 7 for SO (e)
and Yy = 1 for SI (f)], and thus the square suffers little distortion, in comparison to the outliers. For
gap centered (a), the outliers are less distorted, and for SO (c) the square is particularly distorted
because the equatorial great circle (Y| = ) is then between outliers and square. In both cases, SO
decreases the spread of the outliers, SI increases it, more drastically for mean centered. Due to the
torus’ periodicity, lines of same type in the flat torus angle plots [top row, (a) and (b)] are identified.
The respective outer angle is halved, the respective inner angle is unscaled [middle row, (c) and (d)].
Due to collapsing of some identified lines to points (the singularity set, in Figure 4 this is the circle
along which the donut is cut), north and south pole of each sphere are identified [bottom row, (e)

and ()].

the spherical squared line element is given by

D k-1
(1) ds3p =d¢7 + Z(]‘[ sin’ ¢,-) dgy.

k=2 \j=1
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In fact, this squared line element is not defined for the full sphere but only for
o€ 0,m) (k=1,..., D —1), that is, the singularities of ¢ = 0, 7 are excluded.
The singularities at ¢y = 0, = will account for singularities of P which results in
a self-gluing as explained below.

Angular distortions in a spherical geometry. Following colloquial usage, we use
“distortion” as synonymous with “deformation” in the following. Because in (1),
d ¢12 comes with the factor 1, no deformation at all occurs for ¢y, that is, this angle
corresponds to spherical distances without distortion. In the summation for k = 2,
we have a factor sin? ¢1 of d¢%, which shows how the angle ¢ distorts the angle
¢», and finally the deformation factor ]_[[.):_11 sin? ¢ j of dqﬁ,z) reflects the distortions
of ¢p by all other angles. For this reason, in the following we will refer to ¢p as
the innermost angle and to ¢ as the outermost angle.

We now make an important note for later use:

REMARK 2.1. Near the equatorial great circle given by ¢ = 5 (k =
1,..., D — 1) the squared line element ds? is nearly Euclidean. Distortions oc-
cur whenever leaving the equatorial great circle. More precisely, distortions are
higher when angles ¢ with low values of the index k (outer angles) are close to
zero or 1, than when angles ¢, with high values of the index k (inner angles) are
close to zero or 7.

DEFINITION 2.2 (Torus to Sphere Deformation). With a data-driven permuta-
tion p of {1, ..., D}, data-driven central angles uy (k =1, ..., D) and data-driven
scalings a, all of which are described below, set

T
2) bk = >
where p(k) is the index k permuted by p and the difference (Vpk) — mpk)) 18
taken modulo 27 such that it is in the range (—m, 7].

+api) (Upw) — Hpw), k=1,...,D,

We now explain in detail how the choices are data driven. Further illustration
including practical advice is given in Supplement A [Eltzner, Huckemann and Mar-
dia (2018a)]. First, we comment on the general applicability of T-PCA.

REMARK 2.3. The singularity set introduced, forms a subtorus of dimension
D —2.In consequence, T-PCA is applicable whenever there is a structural data gap
in all angles except for at most two—the larger the gap, the higher the structural
fidelity.

In general, the scalings are restricted to the choices oy = 1/2 and oy = 1,
k' = p(k). If all of the k’th torus angles of the data are within an interval of length
7, choose apy =1 (k' =1, ..., D — 1) leading to unscaled (U) angles. Otherwise,
we choose oy = 1/2 (k' =1, ..., D — 1) leading to halved (H) angles. In practical
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situations the torus data are often spread out over more than half circles for sev-
eral angles. Then we choose (H) angles. In fact, for all of the analyses below, we
chose (H) angles and discuss below only the gluing effects corresponding to (H)
angles. Notably, the innermost angle ¢p always remains unscaled, «p = 1. This is
depicted in the second row of Figure 5.

The central angles u; will be chosen such that the mapped data points come to
lie near the equatorial great circle and omit the singularities. Two plausible choices
are:

(i) with the circular intrinsic mean Wk’imr, set g = kaimr to obtain mean cen-
tered data;

(ii) with ¥y gap, the center of the largest gap between neighboring ¥ values
of data points and v oap its antipodal point, define iy = v gap 1O ODtain gap
(antipode) centered data.

While the implementation for (ii) is straightforward, for (i) we have used the fast
algorithm from Hotz and Huckemann (2014). Mean centered data has the merit
that the intrinsic means for each angle ¢ are mapped to the equatorial great circle
thus minimizing deformation of the data.

For a strongly skewed data distribution, say spread out over a half circle, mean
centered data using halved angles may touch the singularities, leading to high dis-
tortion there, while gap centered data will still be confined to a 7 /2 neighborhood
of the equator. On the other hand, for data sets with outliers, gap centered center-
ing may be less robust than mean centered, making the latter more favorable, as
depicted in Figures 5(c) and 5(e).

REMARK 2.4. Robustness w.r.t. outliers is surprisingly different on a compact
space than on the usually considered noncompact spaces. Specific loci of outliers
occurring nearly antipodal to the data bulk do not much affect the location of the
mean, the largest data gap, however, is much more sensitive to these loci.

The choice of the permutation py is driven by analyses of the data spread

n
€) Uk2=2(1ﬂk,i — )?, k=1,...,D,
i=1

for each angle, where vy ; € S! are the torus data and n is the number of data
points on 7P If the angles are ordered by increasing data spread, such that 05(1)

is minimal and 01%( p) 1s maximal, in view of Remark 2.1, the change of distances

between data points caused by the deformation factors sin ¢ ;j in equation (1) is
minimized. We call this ordering spread inside (SI), because variation is concen-
trated on the inner angles of the sphere. The opposite ordering is called spread
outside (SO). Figure 5 illustrates different effects of SI and SO ordering of angles.
We will restrict our considerations to these two options.
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Self-gluing in case of halved angles, “From a donut to a sausage.” In the fol-
lowing we give a brief overview of this procedure for (H) halved angles [not for
(U) angles for the reasons given above].

Due to periodicity on the torus, iy = 0 is identified with ¥ = 2 for all
k=1,...,D. In contrast, for all angles ¢y (k=1,...,D — 1), ¢ = 0 denotes
spherical locations different from ¢y = m. For a representation respecting the
torus’ topology, however, it is necessary to identify these locations accordingly.
Due to the spherical geometry, each of those regions is of dimension D — j — 1, in
which all angles vary except for j of the ¢, ..., ¢p_1 which are set to fixed values
in {0, }. In the topology of the torus, all those regions with a specific choice of
fixed angles are identified with one another. In particular, there are 2(D — 1) such
regions of highest dimension D — 2 on the sphere (where only one angle is fixed
to 0 or ), two of which are pairwise identified in the topology of the torus. In
fact, in the topology of the torus, each of these D — 1 regions of highest dimension
D — 2 itself carries the topology of a torus of dimension D — 2, each glued to each
others’ torus along a subtorus of dimension D — 3 and so on. Thus the self-gluing
of SP giving the topology of T can be iteratively achieved along a topological
subsphere of dimension D — 2, which is suitably divided into 2(D — 1) regions
that are pairwise identified by way of a torus, sharing common boundaries which
correspond to lower dimensional tori.

Example 2.5 details the case D = 3, and Figures 4 and 5 illustrate the case
D =2 as well as different choices for the permutation p.

EXAMPLE 2.5. For D =3, on S? we have the squared line element
ds? = d¢? + sin” ¢1 (dp3 + sin® g2 d¢3),

where the angle ranges are ¢, ¢2 € [0, ], ¢3 € [0, 271).

Due to the spherical geometry in the region determined by ¢; = 0 mod 7 or
¢2 = 0 mod 7, the circle ¢3 € [0, 277) is a single point, say, ¢3 = 0. This region is
a topological circle on S® comprising four arcs

A1 ={(0,¢2,0):0<¢p <7}, Ay ={(m,¢2,0):0<¢p <7},
A3 ={(¢1,0,0):0 < ¢ <7}, Ay ={(¢1,7,0):0<¢1 <7}.

Imposing the topology of the torus, when using halved angles, for ¢1 and ¢»
we also have the identification O = r which results in the identification of A with
Aj and of Az with A4 with endpoints identified as one single point, forming a
topological figure eight.

2.2. Linking the torus’ deformation to PNS. For data sets on a torus, having
applied a deformation on the resulting self-glued S” (see Section 2.1), we modify
principal nested sphere analysis (PNS) by Jung, Dryden and Marron (2012), Jung
et al. (2010) for dimension reduction.
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Assume a d-dimensional sphere S¢ C RP+! with center x € RP*+! and radius
r > 0, and an affine d-dimensional plane A4 c RPH! with distance s < r from x.
For d > 2 then the intersection $¢ N A ¢ RP*+! is a (d — 1)-dimensional sub-
sphere S9~1 of §¢ with radius r = /1 — s2. If r = 1 (i.e., s = 0) this subsphere
is a great subsphere, otherwise it is a proper small subsphere. For d = 1 we pick
just one point ., writing in expedient abuse of notation: S® = {1}. In order to in-
clude all, great, proper small subspheres and the ultimate point, we call these small
subspheres.

The PNS iteration leads to a sequence of small subspheres

) SPosP 5. 58258 580 ={ul,

where the ultimate point p is called the nested mean. Each sd d=1,...,D)is
a d-dimensional sphere, the radii of which decrease monotonically with decreas-
ing dimension (due to nesting). At each reduction step, the residual variances not
explained by the corresponding subsphere are given as signed distances. Points
lying inside the small subsphere—if it is a proper small sphere—receive a pos-
itive distance, points lying outside a negative distance. Indeed, for most realistic
data applications, with probability one, all subspheres are proper small subspheres.
However, to avoid overfitting, we want to ensure that the “small subsphere” is not
too small but rather a great subsphere is fitted; see Section 2.4. In this case the
direction of positive distance is picked at random. Similarly, we pick the direction
of positive distance at random for the reduction fromd =1tod =0.

The classical PNS algorithm consists of two parts which alternate, namely the
fitting of a subsphere S? and the projection to this subsphere 7y : S9! — §¢
(d=D —1,...,0) giving the fitted values explained by this subsphere. As SP
is glued to itself in T-PCA, distances through the glued part can be shorter than
spherical distances. In such cases these distances are used in the fitting step as well
as in the projection step. More precisely, our fitting procedure is done in two steps
to avoid local minima. In the first step, we minimize the sum of squares of spherical
distances. The resulting subsphere is taken as a starting point for the second step.

For the second step, we use the torus metric

1

D 2

§:TPxTP >R™  (p,q) (Zmin(lpi —qil%, (27 — | pi _Qi|)2)> :
i=1

Assuming a data set A and a corresponding adaptive deformation P4 : TP — SP
we define the following function on the sphere

5) §:SP xSP - R0 (x,y)f—>5(Pj1(x),P,Z1(Y))

using the inverse deformation le , which is well defined except for the singular-
ities which are of dimension D — 2. This is a metric when we take into account
the topological identifications. To considerably lower computational speed for data



1344 B. ELTZNER, S. HUCKEMANN AND K. V. MARDIA

analyses, we orthogonally project data to lower dimensional subspheres using the
spherical geometry only. On the deformed torus this can be viewed as a nonorthog-
onal projection. For the minimization in the second step, however, we use § as the
distance function.

2.3. Comparing variances. In Euclidean spaces, PCA variances are additive
with monotone decrements leading to a convex variance plot as a property of the
metric because decrements correspond to the nonincreasingly ordered eigenvalues
of the corresponding covariance matrix. This means that every component can be
thought of as contributing a fixed amount of variance and thus the sum of such
individual variances can be understood as explained variance. If one views the
principal components as defining a nested sequence of subspaces, the amount of
variance which is not explained by the components spanning the subspace is equal
to the residual variance of data around the subspace. Explained variance and resid-
ual variance add to 1 and thus yield equivalent descriptions of data variance.

In non-Euclidean spaces, linear PCA is not applicable and nonlinear dimension
reduction methods do not come with a similar notion of additive variance [see the
discussion for various definitions of intrinsic variances in Huckemann, Hotz and
Munk (2010)]. This means that explained variance can no longer be defined in
a straightforward way. However, residual variance is still a well-defined notion;
therefore we use residual variances in the following to define cumulative variances
and to compare results of different approaches.

Recall that T-PCA just as PNS yields a sequence of subspaces S? > §P~! 5
o+ 8§15 89 = {u} with projections 774 : $4t! — §¢ c §4t (@ =0,...,D—1).
From these we define the iterated projections

[ly=mgomgy10---0mp_1
and finally the residual variances (variance not explained by S¢) of a data set .A

Varaa= Y. 82(¢. Ma(@), d=0,...,D—1
geA

and V4, p,,p =0, where § is from (5). Due to nestedness, these sequences are non-

increasing with d. However, the decrements V4 p a1 —Va,p a(d=1,...,D)
are not necessarily nonincreasing, so the resulting curve in the variance plot need
not be convex. Still, this allows to define that {u}, S L., 8 explain the cumula-

tive variance up to dimension d

Va.Pg.0—VAryd d=0,...,D,

which is nondecreasing in d.
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2.4. Avoiding overfitting. In the PNS algorithm a cluster of points concen-
trated around a single center may still be best fitted by a “very” small subsphere. As
this overfitting is obviously undesirable, Jung, Dryden and Marron (2012), Jung,
Foskey and Marron (2011) have fitted a great subsphere in such cases; Jung, Fos-
key and Marron (2011) have given a decision rule whereas Jung, Dryden and Mar-
ron (2012) have given a test for this purpose. We propose the following new test
based on a geometrically better suited model and highlight its attractive properties.
In particular we show how robust our test is under the null model of Jung, Dryden
and Marron (2012), which is a misspecified model for our case. We also indicate
some limitations of the two previous procedures.

New model. Let S9 be a fitted small subsphere, 2 < d < D. For ease of notation,
we now move and rescale S¢ to the unit sphere S¢, without loss of generality, and
p € S? is the center of the also moved and rescaled fitted small subsphere S¢~!
S?. For our purpose, we can restrict our probability model for g € S¢, say, g(g; p),
to depend only on the angular distance r = d(p, q) € [0, ]. Further, suppose that
volge denotes the surface volume of the d-dimensional unit sphere. Then, due to
symmetry, g fully characterizes the spherical angular marginal density of r

(6) h(r; p) :==volga-1 - g(y (r); p). rel0,r].

Here, y is any curve along a great circle connecting p with its antipodal,
parametrized by r € [0, 7r] such that Vr : d(p, y (r)) = r. Using the spherical vol-
ume element dgs 2 (g) at ¢ = y (r) we note that

h(r;
1=/g(q;p)dsd€2(q)=/vg 2

4
dsa2(q) =/ h(r; p) sind_l(r)dr,
sd—1 0

which means that A (-; p) is indeed a marginal density with respect to the spherical
angular measure

du(r)y=sin?"'(rydr,  rel0,nl.
Then the Lebesgue angular marginal density f(-; p) of r is defined as

f@r; p)i=sin?" (s p), /0 f(r;pydr=1,

since it gives the marginal density corresponding to A(-; p) with respect to the
Lebesgue measure on [0, 7 ].

Note that these densities are well studied for d = 2 where the angle r is called
colatitude [see, e.g., Mardia and Jupp (2000)]; for the uniform distribution in polar
coordinates for any d on which this discussion is based, see, for example, Mardia,
Kent and Bibby (1979).

For the following, we will need the density of the “folded normal distribution”
on [0, 00):

F(r;p,0) ::\/21_710 <€XP<—%) +eXp<_%)>'
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That is, we have

7 Frip.o) = P cosn( ™ >0
( (r,,o,a —maexp(—F—T)cos (;), r = V.

This density has two positive parameters, o and o . Note that here r is on [0, 00)
so it is not restricted to [0, 7], a fact which will be of importance later on where we
will truncate this distribution. For p — oo this tends to a usual normal distribution
centered at po, while it becomes a halved normal distribution (of doubled height)
for p — 0. For p <1 the mode stays fixed at the origin; for p > 1 it moves to the
right.

With the above discussion on the marginals we therefore choose g o« F yield-
ing the spherical angular marginal density ~ and the Lebesgue angular marginal
density f:

h(r;p,p,6)1=g/ﬂaf(r;p,0),
@) (p,0o)
@ pyp, o) @smd*l(r)ﬂr;p,a), rel0. 7],

C(p,o)
where we have truncated F(r; p, o) from (7) and C(p, o) is the normalization.
These will be referred to as h- and f-distribution, respectively, in the following.

Subsequently, it will be important to note the following property of these dis-
tributions, for dimension d = 2, as a surface of revolution over R?. In polar coor-
dinates (r, ©) — F(r; p, a)%, the case p > 1 yields a ring while the case p =0
yields a symmetric Gaussian distribution. Due to its smoothness it is a good candi-
date for a test distribution for the angular spherical marginal density (6) to distin-
guish “just” concentrated data near p (p is at r = 0) from concentrated data along
a distinct subsphere (a ring in 2D) around p.

Likelihood ratio test. Suppose we are given the sample {q1, ..., , g,} from the
f-distribution with the spherical distances r; = d(p,q;) (i =1, ..., n) where the
center p of the subsphere is known. If p < 1, the & distribution has its maximum
at r = 0, that is, there is no proper small spherical structure about the center p. If
p > 1, there is a proper small spherical structure about the center p. Thus, p =1
forms the boundary between the two cases.

Therefore, we can formulate our hypotheses as follows for testing for a great
subsphere:

9) Hp: p =1 (great subsphere) vs. Hjp:p > 1 (small subsphere).
The log likelihood up to a constant is given by

Lp,olfri}l_;)=—nInC(p,0)+(d—1) Zlnsin(ri)
i=1
2 2

n
np T rip
—— —nl E ——=+1 h(—) ).
> n n(a)+i:1( 792 + Incos ( . ))
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Note that the normalization C(p, o) can be easily computed numerically so we can
determine the MLEs for p and ¢ using standard numerical optimization. For Hj,
the MLEs need to be constrained under p > 1. Then twice the log of the likelihood
ratio (with negative sign) is given by

A =2sup{t(p,ol{ri}_|): pe(1,00),0 e RT}

(10)
—2sup{L(p,ol{ri}iey):p=1,0 eRT}.

From Wilks’ theorem, the statistic A, under Hy, is asymptotically distributed as Xlz.
We use a 5% significance level for our test, which means that when Hj is rejected,
we keep the fitted small subsphere if A > X1270,95 ~ 3.84; otherwise, we perform a
great subsphere fit.

Comparison with the decision rule of Jung, Foskey and Marron (2011). This
rule is based on another type of angular 4 and f [versus our angular f and & given
by (8)]

1
hyung(rs p, p, o) := Tlr)f(r; p,0),

sin“ ™" (
Srung(r; p,p,0) :=F(r;p,0).

In their decision rule, a great sphere is fitted if the probability distribution does
not exhibit a ring-shaped local maximum, which is the case if p < 2. But this
model leads to a singularity of the density Ajung at p, which is not a desirable
feature. In contrast, our A-distribution leads to a smooth distribution on the sphere
as illustrated by the above considerations about the surface of revolution. Our £
distribution is compared with the hjyyng distribution in Figure 6 for appropriate
values of p. Our & distribution is the same for all d but for illustration, we have
used d = 2 for hyyng which depends on d.
In validation of our test we carried out two simulation studies:

Dy: We simulate data under Hp in (9) by choosing p = 1 in (8) and average over
the nuisance parameter o by 1000 samples, where in each o is uniform in
[0.1,0.4].

D1: We simulate data under H; in (9) by choosing various combinations of p €
{1.2,1.5,2,3} and o € {0.15, 0.2, 0.5} in (8), and for each we average using
1000 samples.

The results in Table 2 show that our test at asymptotic level of 5%, that is, it
rejects a small sphere when A > X12,0.95 ~ 3.84 with A from (10), holds asymp-
totically the level and that the Type 2 error asymptotically decays to zero, very
quickly for larger p. Since for N = 100, 150 and 200 the true levels are above
5%, we have estimated the asymptotic levels yielding a true level of 5% in Table 3
and display the corresponding Type 2 error there also. This estimation is a matter
of minutes for N = 100 and below one hour for N = 1000. Based on these sim-
ulations and as a rule of thumb, we recommend using our test for sample sizes



1348 B. ELTZNER, S. HUCKEMANN AND K. V. MARDIA

“““ h]ung: p= 2.5
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FI1G. 6. The probability densities for o = 0.5 along the geodesic y in s4 from (6) for our h (invari-
ant under d) and the hyyng (for d = 2) distribution. Displaying a value for p below the respective
boundary, at the boundary and above the boundary; namely, p = 1 for our h and p = 2 for the hjyng
distribution.

beginning with N = 300. This is certainly the case for our application to the C2
data set with N = 649; cf. Section 3.2. On the benchmark data set with N = 181,
as discussed in Section 3.1, our test also does well, although the sample size seems
slightly below the asymptotic regime. For both data sets we have used our test
against overfitting a small sphere at asymptotic level of 5%.

Assessment of robustness of our test under the null distribution of Jung, Dryden
and Marron (2012). We now assess the robustness of our test under a misspecified
model, namely, the von Mises—Fisher distribution, which is the null distribution of
Jung, Dryden and Marron (2012). To carry this out, we note the following points
related to their test. First, we note that they have translated their null hypothesis

TABLE 2
Type 1 errors (rejecting Hy) for Do and Type 2 errors (accepting Hy) for D1 for our test with
various parameter values in a simulation with 1000 repetitions and asymptotic level of 5%, that is,
rejecting for A > X120.95 ~ 3.84 with A from (10)

Type 1 (Dy) Type 2 (Dy)
p=12 p=15 p=2 p=2 p=3
Sample size p=1 o =0.15 0=0.2 0=0.2 oc=0.5 o =0.15

100 7.4% 80.4% 41.2% 3.4% <0.1% <0.1%
150 6.1% 79.9% 29.3% 0.5% <0.1% <0.1%
200 5.5% 73.2% 20.2% <0.1% <0.1% <0.1%
300 5.0% 71.2% 8.3% <0.1% <0.1% <0.1%
500 5.0% 59.7% 1.0% <0.1% <0.1% <0.1%

1000 4.9% 34.7% <0.1% <0.1% <0.1% <0.1%
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TABLE 3
We estimate the asymptotic level for our test leading to a true level of 5%, that is, achieving a Type 1
error (rejecting Hy) for Do of 5%. The table gives the asymptotic level and Type 2 errors (accepting
Hy) for Dy for our test with various parameter values in a simulation with 1000 repetitions

Asymptotic level Type 2 (Dq)
(Dy) p=12 p=1.5 p=2 p=2 p=3

Sample size p=1 o =0.15 o=0.2 0=0.2 0=0.5 o =0.15

100 3.0% 85.0% 54.4% 5.1% <0.1% <0.1%

150 4.0% 81.1% 31.8% 0.9% <0.1% <0.1%

200 4.4% 76.4% 24.2% 0.1% <0.1% <0.1%

300 5.0% 71.2% 8.3% <0.1% <0.1% <0.1%

500 5.0% 59.7% 1.0% <0.1% <0.1% <0.1%
1000 5.0% 34.7% <0.1% <0.1% <0.1% <0.1%

of a compact cluster into fitting by a great subsphere through a von Mises—Fisher
distribution. The parameters of this distribution are estimated via MLE. Then a
Student z-like test statistic of distances to the estimated center point is used as
their test statistic. Next, we note that for their test statistic, they simulate boot-
strap quantiles from the von Mises—Fisher distribution with parameters given by
the MLE. However, Jung, Dryden and Marron (2012) have given neither a theo-
retical result (like we have the asymptotic p-value of our test statistics A), nor a
simulation study to assess their test statistics under their null hypothesis. We have
reimplemented their data driven procedure so as to use their null hypothesis and
have carried out the following simulation study:

D(: Here, we directly simulate spherical samples leading to a great circle, from
the null hypothesis of the test of Jung, Dryden and Marron (2012), namely
from a von Mises—Fisher distribution with density in x proportional to ekm!x
with a high value of the concentration parameter x = 10 to give a fair chance.
We average over 1000 samples with p uniform on the sphere.

As shown in Table 4, we note that our test is more conservative on the null hy-
pothesis of the test of Jung, Dryden and Marron (2012). Further, the true level of
the test of Jung, Dryden and Marron (2012) also decreases with sample size, and
almost reaches the simulated level for N = 1000. In passing, we note that estimat-
ing the simulated level leading to a true level of 5% for the test by Jung, Dryden
and Marron (2012), however, is impractical, as for N = 100 already, estimation
takes weeks.

3. Application to RNA structure. RNA is usually single stranded, and the
single strand interacts with itself and forms complex shapes (this is in contrast
to DNA which usually takes a double-stranded helical conformation). This means
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TABLE 4
Type 1 errors [rejecting the null hypothesis of Jung, Dryden and Marron
(2012) which is a von Mises—Fisher distribution] for the test of Jung,
Dryden and Marron (2012) and errors under this misspecified model for
our test, with concentration parameter k = 10 in a simulation with 1000
repetitions. For their test we use a simulated level of 5% and for our test
we use an asymptotic level of 5%

Sample size Jung, Dryden and Marron (2012) Our test
100 17.0% 1.0%
150 13.4% 0.2%
200 13.4% <0.1%
300 8.8% <0.1%
500 8.4% <0.1%

1000 5.9% <0.1%

that the geometry is rather variable even on the scale of single atoms. As described
in Section 1, each nucleic base corresponds to a backbone segment described by
6 dihedral angles and one angle for the base, giving a total of seven angles; cf.
Table 1 and Figure 3. The distribution of these seven angles over large samples
of RNA strands have been studied in detail, see Frellsen et al. (2009), Murray
et al. (2003), Richardson et al. (2008), Schneider, Moravek and Berman (2004),
Wadley et al. (2007). Figure 3(a) details a segment of the RNA backbone with
seven angles for each residue giving the 3D folding structure. An approximation
of the geometric folding structure on the level of single residues is given by the two
pseudo-torsion angles n and 6 [Figure 3(b)]. These two (dihedral) angles provide
at once a two-dimensional visualization [Figure 7(a)]; see, for example, Duarte
and Pyle (1998), Wadley et al. (2007).

Finally, the dihedral angle v, [Figure 3(b) and Table 1] quantifies the folding
(pucker) of the sugar ring. Only two modes of folding are geometrically and ener-
getically possible, which are characterized by either C3’ or C2’ being outside the
plane spanned by C1’-O1’-C4’ and toward the direction of O5’. If C2’ lies outside
the plane then v, ~ 325°, this is called C2’-endo sugar pucker; whereas if C3’ lies
outside the plane then vy ~ 35°, this is called C3’-endo sugar pucker. The hydroxy
group attached to the C2" atom in RNA causes the C3’-endo sugar pucker to be
energetically preferred [see, e.g., Egli, Portmann and Usman (1996)], and thus this
is about 10 times more abundant than the C2’-endo sugar pucker in the large RNA
data set of Duarte and Pyle (1998) and Wadley et al. (2007).

For our application below we use two subsets of a large classical data set (8301
residues), which was carefully selected for high experimental X-ray precision (0.3
nanometers) by Duarte and Pyle (1998), updated by Wadley et al. (2007) and an-
alyzed by them and others, for example, Murray et al. (2003), Richardson et al.
(2008).
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FI1G. 7. (a) The benchmark data set of Sargsyan, Wright and Lim (2012) with their three preselected
clusters in the n—6 plot. (b) The benchmark data set plotted for the two most discriminant angles («,
¢) chosen out of the seven dihedral angles; in the “donut to sausage” transformation along the
dashed lines the corresponding angles are collapsed to a single point.

3.1. The benchmark data set. This benchmark data set has been carefully se-
lected by Sargsyan, Wright and Lim (2012) to validate their method. From the C3’-
endo sugar pucker they took clusters labeled I (“triangles,” 59 points), II (“crosses,”
83 points) and V (“disks,” 39 points) by Wadley et al. (2007) totaling 181 data
points, which form three clusters in the n—6 plot as shown in Figure 7(a). While
clusters I and II correspond to distinct structural elements featuring base stacking,
the residues in cluster V belong to a wider variety of structural elements.

Visualization is obviously not possible in the 7D space of all torsion angles.
However, we find that the angle pair («, ¢) is the most discriminatory, and a plot is
given in Figure 7(b). The “disks” cluster is not very concentrated, in contrast to the
“crosses” cluster which is twice as big. Parts of the “disks” are very close to the
“crosses” cluster. In fact upon close inspection, due to periodicity, the “triangles”
and “crosses” clusters are also rather close in the n—0 plot in Figure 7(a).

We have applied T-PCA to all seven angles and depict the two-dimensional rep-
resentation for SI ordering in Figure 8(a) (which is hardly visually distinguishable
from SO ordering). To see that the data are, in fact, very well approximated by
the best fit circle we use a planar representation of the first two T-PCs in Fig-
ure 8(b). Using the same symbols for Figure 8 as in Figure 7 shows that the three
preselected clusters can be rather well distinguished by eye. We note that the first
component explains 84% of data variation. In comparison in Figure 8(c) we adapt
Figure 6 from Sargsyan, Wright and Lim (2012). Again the clusters can be well
discriminated along the first GeoPC [horizontal in the 2D approximation in Fig-
ure 8(b)]. In contrast to T-PCA, however, the data are not well approximated by the
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F1G. 8. Two-dimensional PCA approximations of the benchmark data set via T-PCA with SI or-
dering in natural spherical coordinates (a), in planar coordinates (b) and GeoPCA adapted from
Sargsyan, Wright and Lim (2012), Figure 6, (c). The symbols represent the same clusters as in Fig-
ure .

first GeoPC, as the projections to the second GeoPC component [vertical in the 2D
approximation in Figure 8(c)] feature maximal data range. In fact, both GeoPCs
explain roughly similar amounts of data variation.

Thus Figure 8 illustrates the power of T-PCA going significantly beyond the
analysis of Sargsyan, Wright and Lim (2012). Not only can the preselected clusters
be separated but the data are very accurately approximated by their projection to
the 1D component.
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3.2. The 1D structure of C2 data set. We now describe in detail how our C2
data set is extracted from the large RNA data set. Notably, some of the RNA struc-
tures in this data set are only short pieces adhering to a protein or another RNA
structure. Therefore, we prune by removing residues further than 50° in torus dis-
tance from their nearest neighbor. This leads to 7, 544 residues and 649 of these
are residues with C2’-endo sugar pucker, that is, v, € [300°, 350°]. This produces
a moderately large data set to analyze (in contrast to the very large data set of all
other residues including C3’-endo sugar pucker).

Murray et al. (2003) noted that this data set is locally rotameric, as, among
others, conformer clusters essentially extend along the 8 angle, considering only
the three heminucleotide angles « — B — y [Figure 9(a)]. Already in this heminu-
cleotide space, these individual 1D cluster patterns compete with the group spread
along the o angle and in full 7D residual space; there are more competing fea-
tures, which, in the 2D TS-PCA plot involving all seven angles, manifest as three
diffused stripe shaped clusters [Figure 9(b)]. Here the 1D pattern of the largest
conformer group can be traced along the shifted second diagonal. The two con-
former groups next in size, which are close in heminucleotide angles, are ripped
apart in TS-PCA due to its wrong topology, because they are far from the base
point of the tangent space that is controlled by the dominating cluster. Notably,
the correct topology could not even be forced onto that plot because, due to the
winding effects illustrated in Figure 1, boundary loci correspond to different torus
loci.

Due to its larger flexibility and higher fidelity, T-PCA recovers a 1D pattern as
the overall dominating structure, reflecting the proximity of the second and third
largest cluster in the second component [Figure 9(c) and (d) in planar represen-
tation for better illustration, which is, of course, periodic]. Notably, according to
Remark 2.3, structural fidelity can be expected due to the large gaps in the 8 and
y angles; cf. Figure 9(a). Using T-PCA, we generalize the finding of a locally
rotameric structure by Murray et al. (2003) to:

In full 7D angular space, the RNA residue conformers are rotameric, essentially
following a single angle that is a nonlinear combination of the original ones,
however.

Upon yet closer inspection, the fine clustering along the 1D component reflects the
clustering in the complementary heminucleotide § — ¢ — ¢ angles from Murray
et al. (2003), Figure 4(c), rear part.

3.3. Comparing T-PCA with TS-PCA. We summarize our use of T-PCA and
TS-PCA using all seven angles for the C2 data in Table 5(a) and Figure 10(a).
In 1D, T-PCA captures 73% of the variance whereas TS-PCA captures only 44%
of the variance. Only when adding a second dimension TS-PCA captures more
variance (81%) than the 1D component of T-PCA. Higher order PCs, both for T-
PCA and TS-PCA, explain roughly the same amount of data variance.
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FIG.9. Residues with C2'-endo sugar pucker with clustering following Murray et al. (2003). Three-
-dimensional heminucleotide angles (a); two-dimensional TS-PCA (b) approximation; two-dimen-
sional T-PCA (SI) approximation, the small circle gives the 1D approximation (c); two-dimensional
T-PCA (SI) approximation in planar representation (d).

To highlight the differences between the two PCA methods, let us consider the
example of three points. There is an exactly fitting small circle used by T-PCA.
Indeed, if applied to the n—0 plot [Figure 7(a)], T-PCA would reduce the three
clusters rather accurately to a 1D circle. In contrast, TS-PCA approximates three
points only along a straight line in the tangent space, and such an approximation
is only possible if data lie favorably such as in the n—6 plot; see Figure 7(a). The
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TABLE 5
Cumulative variances for T-PCA (SI) and for TS-PCA

(a) C2 data (b) Simulated simplex data
Dimension T-PCA (SI) TS-PCA Dimension T-PCA (SI) TS-PCA
1 74% 44% 1 39% 18%
2 83% 81% 2 50% 34%
3 90% 90% 3 63% 48%
4 95% 94% 4 77% 62%
5 98% 97% 5 89% 75%
6 99% 99% 6 95% 88%
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a—¢ plot [Figure 7(b)], however, illustrates that a 1D approximation for all seven
angles is not possible for TS-PCA, while it is possible for T-PCA [Figure 8(b)].

In fact, usually T-PCA requires one dimension less than TS-PCA because k
points in general position span a k-dimensional affine subspace, which is detected
by TS-PCA, and the surface of a (k — 1)-dimensional sphere, which is detected by
T-PCA. We illustrate this using a simulated simplex data set with points in general
position, namely, 800 7D angles distributed independently at one of eight simplex
vertices, 7 apart with Gaussian noise of variance (;/3)2. The results are displayed
in Table 5(b) and Figure 10(b). If there are affine data dependencies, however, this
advantage of T-PCA over TS-PCA by one dimension is lost. Indeed the C2 data
set features such affine dependencies between angles, which is already visible in
Figure 9(a), and hence in Figure 10(a), T-PCA outperforms TS-PCA in terms of
explained variance only in dimension one.

4. Discussion. We have provided a novel framework for torus PCA to perform
PCA-like dimension reduction for angular data. Previous attempts have not been

— TPCA
TS-PCA

80

60 /

40

Cumulative Variance [%]
\\
Cumulative Variance [%]

5 0 2 1 6
Dimension

1 2 3 4
Dimension

(a) C2 data (b) Simulated simplex data

F1G. 10.  Scree plots of cumulative variances for T-PCA (SI) compared to TS-PCA.
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satisfactory, because, on the one hand, the geometry featuring dense geodesics
leads to severe restrictions for geodesic approaches while, on the other hand,
Euclidean approximations disregard periodicity. We have used an adaptive defor-
mation to a statistically benign geometry, allowing for increased and statistically
controlled flexibility whilst at the same time guaranteeing structure fidelity. In ap-
plication to dihedral angles of RNA structures we have validated our method using
a classical benchmark data set. Using a C2-endo sugar pucker residue data set we
have given evidence on how T-PCA is better and more meaningful than TS-PCA,
and we have illustrated that the significant interdependence found by Murray et al.
(2003) in a 3D representation is seen by T-PCA remarkably in 1D.

There are several benefits coming with dimension reduction to 1D. In view of
data clustering, it allows to build on powerful and well established statistical 1D
methods for mode detection [e.g., Diimbgen and Walther (2008), Huckemann et al.
(2016), Schmidt-Hieber, Munk and Diimbgen (2013)], and this challenge will be
taken up in future research.
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SUPPLEMENTARY MATERIAL

Supplement A: Data (DOI: 10.1214/17-AOAS1115SUPPA; .pdf). An illustra-
tion how to choose data-driven parameters for torus PCA.

Supplement B: Data (DOI: 10.1214/17-AOAS1115SUPPB; .zip). RNA residue
data used for the analysis in this paper.

Supplement C: Implementation (DOI: 10.1214/17-AOAS1115SUPPC; .zip).
Source code of the T-PCA implementation used for this paper.
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