The Annals of Applied Statistics

2017, Vol. 11, No. 4, 1833-1874
https://doi.org/10.1214/17-AOAS1041

© Institute of Mathematical Statistics, 2017

ELICITABILITY AND BACKTESTING: PERSPECTIVES FOR
BANKING REGULATION!

BY NATALIA NOLDE? AND JOHANNA F. ZIEGEL3
University of British Columbia and University of Bern

Conditional forecasts of risk measures play an important role in inter-
nal risk management of financial institutions as well as in regulatory capital
calculations. In order to assess forecasting performance of a risk measure-
ment procedure, risk measure forecasts are compared to the realized finan-
cial losses over a period of time and a statistical test of correctness of the
procedure is conducted. This process is known as backtesting. Such tradi-
tional backtests are concerned with assessing some optimality property of a
set of risk measure estimates. However, they are not suited to compare dif-
ferent risk estimation procedures. We investigate the proposal of comparative
backtests, which are better suited for method comparisons on the basis of
forecasting accuracy, but necessitate an elicitable risk measure. We argue that
supplementing traditional backtests with comparative backtests will enhance
the existing trading book regulatory framework for banks by providing the
correct incentive for accuracy of risk measure forecasts. In addition, the com-
parative backtesting framework could be used by banks internally as well as
by researchers to guide selection of forecasting methods. The discussion fo-
cuses on three risk measures, Value at Risk, expected shortfall and expectiles,
and is supported by a simulation study and data analysis.

1. Introduction. Financial institutions rely on conditional forecasts of risk
measures for the purposes of internal risk management as well as regulatory capi-
tal calculations. The two ingredients at the heart of risk measurement are the choice
of a suitable risk measure and of a forecasting method, with the forecasting method
being typically preceded by the choice of a model and estimation method for the
(conditional) loss distribution of the underlying portfolio of risky assets. Tradition-
ally, the choice of a risk measure was based on theoretical considerations linked to
practical implications. Emmer, Kratz and Tasche (2015) give a recent account of
the pros and cons of popular risk measures with an attempt to determine the best
risk measure in practice. On the other hand, Cont, Deguest and Scandolo (2010)
highlight the need to consider the entire “risk measurement procedure,” which in-
cludes not just the choice of a risk measure but also how it is then estimated from
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the data. In particular, the notion of robustness as sensitivity to outliers is used
to compare several risk measurement procedures. In the risk management context,
this should also be balanced with robustness to deviations from model assumptions
as well as responsiveness or sensitivity to tail events. Davis (2016) introduces a
notion of consistency of risk measures and discusses how this is relevant in the
context of financial risk management.

The performance of a (trading book) risk measurement procedure can be moni-
tored over time via a comparison of realized losses with risk measure forecasts, a
process known as backtesting; see, for example, Christoffersen (2003) and McNeil,
Frey and Embrechts (2005). Based on results of a backtest, the risk measurement
procedure is deemed as adequate or not. Traditional backtests perform a statistical
test for the null hypothesis:

Hp: “The risk measurement procedure is correct.”

If the null hypothesis is not rejected, the risk measurement procedure is consid-
ered as adequate. For Value at Risk (VaR), the Bank for International Settlements
[(2013), pages 103—-108] has devised a three-zone approach based on a binomial
test for the number of exceedances over the VaR threshold. Traditional backtests
are concerned with assessing an optimality property of a set of risk measure esti-
mates; for details, see Section 2.2. They are not suited to compare different risk
estimation procedures, and they may be insensitive with respect to increasing in-
formation sets; examples of this fact are provided in Holzmann and Eulert (2014),
Davis (2016). Moreover, traditional backtests may not provide banks with the right
incentive of developing procedures which aim for accuracy of risk measure fore-
casts; for an illustration, see Section A of the online supplement [Nolde and Ziegel
(2017)] (abbreviated “OS” in the sequel). In this simulation-based example, we
show how optimization with respect to the test statistic of a traditional backtest
may lead to unreasonable ordering of forecasting procedures.

In view of the anticipated revised standardized approach, which “should provide
a credible fallback in the event that a bank’s internal market risk model is deemed
inadequate” [Bank for International Settlements (2013), pages 5-6], Fissler, Ziegel
and Gneiting (2016) have recently proposed to replace traditional backtests by
comparative backtests based on strictly consistent scoring functions. Comparative
backtests also naturally lead to a three-zone approach, which will be described in
detail in Section 2.3. Furthermore, they allow for conservative tests and are sen-
sitive with respect to increasing information sets. Roughly, this means that a risk
measurement procedure that correctly incorporates more risk factors will always
be preferred over a simpler procedure that uses less information. However, com-
parative backtests necessitate an elicitable risk measure. Examples of elicitable
risk measures are VaR and expectiles, while expected shortfall (ES) is not elic-
itable. However, ES turns out to be jointly elicitable with VaR, which allows for
comparative backtests also for ES; for details and a literature review on elicitable
risk measures, see Section 2.1.
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The paper raises the point of distinguishing between traditional backtesting
(current regulatory practice) and comparative backtesting. We highlight the defi-
ciency of the former in giving financial institutions the right incentive for forecast
accuracy, and argue that the existing regulatory framework can be enhanced by
inclusion of comparative backtesting. On the methodological side, we show that
traditional backtesting can be formalized in the form of conditional calibration
tests, which provide a unifying framework for many of the existing backtests of
popular risk measures. This contributes to our understanding of those often ad hoc
procedures and allows us to view them as part of a bigger picture. The paper then
provides a detailed investigation of the proposal of comparative backtests.

In our discussion of traditional and comparative backtests, we are focusing on
the following three risk measures: VaR, a popular risk measure that is elicitable;
expectiles, the only coherent and elicitable risk measures; and ES, a coherent and
comonotonically additive risk measure, which is jointly elicitable together with
VaR, and which is the new standard measure in banking regulation. VaR at level
a € (0, 1), denoted VaR,, of a random variable X is defined as

VaRy (X) =inf{x | Fx(x) > a},

where Fyx is the cumulative distribution function of X. From the statistical per-
spective, VaR, is simply the «-quantile of the underlying distribution, assuming
the quantile is single-valued. Positive values of X are interpreted as losses in this
manuscript; hence we are interested in VaR, for values of o close to one. The
Bank for International Settlements [(2013), pages 103—108] specifically requests
VaR,, values for « = 0.99, which we refer to as the standard Basel VaR level. ES
of an integrable random variable X at level v € (0, 1) is given by

1 1
ES,(X) = ﬁ/ VaR, (X) da.
- v

The Bank for International Settlements (2014) proposes v = 0.975 as the standard
Basel ES level, as ES 975 should yield a similar magnitude of risk as VaRg 99 under
the standard normal distribution. As introduced by Newey and Powell (1987), the
T-expectile e, (X) of X with finite mean is the unique solution x = e;(X) to the
equation

(L.1) r/oo(y—mex(y):(l—r)/_xoo<x—y>de<y).

As shown in Bellini et al. (2014), Ziegel (2016), t-expectiles are elicitable co-
herent risk measures for T € [1/2, 1). Expectiles generalize the expectation just
as quantiles generalize the median. Considering the level, T = 0.99855 leads to a
comparable magnitude of risk as VaRg.99 and ESp 975 under the standard normal
distribution; see Bellini and Di Bernardino (2017).

The paper is organized as follows. Section 2 contains a theoretical discussion
of backtesting risk measures. In Section 2.1 we define the notion of elicitability,
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introduce identifiability and review characterizations of consistent scoring func-
tions for VaR, expectiles and (VaR, ES). In Section 2.2 we define what we mean
by a calibrated risk measurement procedure and describe how this concept is re-
lated to the notion of calibration of Davis (2016) and to traditional backtests in
general. We move on to comparative backtests in Section 2.3, where we also ex-
plain the comparative three-zone approach. Section 2.4 discusses the choice of the
scoring function. Section 3 contains numerical studies of the proposed backtest-
ing methodologies. We first review some of the existing approaches to forecasting
risk measures in Section 3.1. A simulation study is described in Section 3.2, while
an application to the returns on the NASDAQ Composite index is presented in
Section 3.3. Section 4 concludes the paper with a summary and a discussion of
the findings, in particular, in relation to banking regulation. Section B in the OS
contains the necessary background material for computing and estimation of ex-
pectiles, and gives a derivation of an extreme value-based estimator; some of the
results here are of interest in their own right. Technical results on the characteriza-
tion of consistent scoring functions with positive-homogeneous score differences
are delegated to Section C of the OS. Finally, Section D of the OS reports results of
a simulation study which investigates the performance of backtesting procedures
in the setting where the out-of-sample size is small.

2. Backtesting of risk measures.

2.1. Preliminaries. A risk measure p is usually defined on some space of ran-
dom variables. In this paper, we only consider risk measures that are law-invariant;
that is, two random variables X and Y with the same distribution £(X) = L(Y) are
assigned the same value of p. Therefore, we view a risk measure p as a map from
some collection of probability distributions P to the real line R. Then the risk of
X with distribution £(X) is p(£(X)). In some instances, where no confusion can
arise, we abuse notation and write p(X) instead of p(L(X)). Let ® = (p1, ..., pr)
be a vector of k > 1 risk measures.

DEFINITION 1. A scoring function S : R x R — R is called strictly consis-
tent for ® with respect to P if

(2.1) E(S(O(L(X)), X)) < E(S(r, X))

forall r = (r1, ..., 1) # OL(X)) = (p1(L(X)), ..., pr(L(X))) and all X with
distribution £(X) € P. The scoring function S is consistent if equality is allowed
in (2.1). The vector of risk measures ® is called elicitable with respect to P if
there exists a strictly consistent scoring function for it.

Elicitability is useful for model selection, estimation, generalized regression,
forecast ranking, and, as we will detail in this paper, allows for comparative back-
testing. Elicitable functionals were already studied in the thesis of Osband (1985),
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although the terminology was coined by Lambert, Pennock and Shoham (2008).
A comprehensive literature review on elicitability can be found in Gneiting (2011),
where particular emphasis is on the case k = 1. Recent advances on the case k > 2
can be found in Frongillo and Kash (2015), Fissler and Ziegel (2016).

The question of elicitability of risk measures has recently received considerable
attention. All available results in the case k = 1 are based on the simple but power-
ful observation that a necessary requirement of elicitability is convex level sets in a
distributional sense [Osband (1985)]; see also Gneiting (2011), Theorem 6. Weber
(2006) was the first to study risk measures with convex level sets. Bellini and
Bignozzi (2015) used his results to study elicitability for the broad class of mon-
etary risk measures. Under weak regularity assumptions, they show that elicitable
monetary risk measures are so-called shortfall risk measures [Follmer and Schied
(2002)]. For more specific classes of risk measures, such as coherent, convex or
distortion risk measures, the same result can be shown without any additional reg-
ularity assumptions [Ziegel (2016), Delbaen et al. (2016), Kou and Peng (2016),
Wang and Ziegel (2015)]. While expected shortfall is itself not elicitable, Fissler
and Ziegel (2016) have shown that the pair ® = (VaRy, ESy) is elicitable; see also
Acerbi and Szekely (2014).

The classes of (strictly) consistent scoring functions for VaR,, 7-expectiles and
(VaR,, ES)) have been characterized. The following three propositions state suffi-
cient conditions for (strict) consistency. Under mild regularity assumptions given
in the cited literature and up to equivalence, these conditions are also necessary.
Here, two scoring functions are called equivalent if their difference is a function
of the realization x € R only. Let Py denote the class of all Borel-probability dis-
tributions on R, and let P; € Py denote the class of all distributions with finite
mean.

PROPOSITION 1 [Thomson (1979), Saerens (2000)]. All scoring functions of
the form

(2.2) Sryx)=(1—a—1{x>r})G@r)+ 1L{x > r}G(x),

where G is an increasing function on R, are consistent for VaRy, o € (0, 1), with
respect to Py. The scoring functions of the above form are strictly consistent for
VaR,, with respect to P’ C Py if G is strictly increasing, G (X) is integrable for all
X with distribution in P’, and all distributions in P’ have a unique o-quantile.

PROPOSITION 2 [Gneiting (2011)].  All scoring functions of the form
S(r,x) =1{x > r}(1 = 27) (¢ (r) — p(x) — ¢'(r)(r — x))
— (1 =0)(@) =@ () —x)),

where ¢ is a convex function with subgradient ¢, are consistent for the T-expectile,
T € (0, 1), with respect to Py. If ¢ is strictly convex, then the scoring functions
of the above form are strictly consistent for the T-expectile relative to the class
P’ C Py such that ¢ (X) is integrable for all X with distribution in P’.

2.3)
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PROPOSITION 3 [Fissler and Ziegel (2016)].  All scoring functions of the form
S(ri,r2,x) =1{x > ri}(—=G1(r1) + G1(x) — Ga2(r2)(r1 — x))
+ (1 =v)(G1(r1) — G2(r2)(r2 — r1) + Ga(r2)),

where G is an increasing function, Qé = G and G, is increasing and concave, are
consistent for (VaR,,, ES)), v € (0, 1), with respect to P1. If Gy is strictly increas-
ing and strictly concave, then the above scoring functions are strictly consistent
with respect to the subclass P' C Py of the distributions P € Py with a unique
v-quantile and such that G1(X) is integrable when X has distribution P.

2.4)

In risk management applications, it may be useful to allow only for strictly pos-
itive risk measure predictions. As shown in Section 2.4, this opens up the possi-
bility for attractive choices of homogeneous scoring functions in the above propo-
sitions. If r € (0, 00) is assumed in (2.2) or (2.3), then, for strict consistency, we
only need that G or ¢ are defined on (0, 00), and that they are strictly increasing
or strictly convex on this domain, respectively. In the case of (2.2), this can be
checked by a fairly straightforward computation. For the claim concerning (2.3), it
is useful to consider the decomposition of the score difference derived in the proof
of Gneiting (2011), Theorem 10. Furthermore, it is sufficient to require integrabil-
ity of G(X)1{X > 0} or ¢(X)1{X > 0} for all X with distribution in P’. If we
restrict to predictions with (71, r) € R x (0, 00) in (2.4), G> only has to be defined
on (0, co) and has to be strictly increasing and strictly concave on this domain.

Closely connected to elicitability is the concept of identifiability. In fact, for
k = 1, identifiability implies elicitability under some additional assumptions; see
Steinwart et al. (2014). For k > 2, it is currently unclear whether such a general
result holds; see Fissler and Ziegel (2016).

DEFINITION 2. The vector of risk measures ® is called identifiable with re-
spect to P if there is a function V : RF x R — R such that

EV(rX)=0 < r=0(L(X))
for all X with distribution £(X) € P.

Identification functions are not uniquely defined. In fact, one can multiply any
identification function for a functional by a function depending only on the predic-
tion r and taking values in the space of invertible k x k-matrices to obtain another
identification function for the same functional.

VaR,, for a € (0, 1) is identifiable with respect to the class Py C Py of distri-
butions with unique quantiles with identification function

(2.5) Virx)=1—a—1{x > r},
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the t-expectile for T € (0, 1) is identifiable with respect to P; using the identifica-
tion function

(2.6) V(r,x)=|1—1—1{x > r}|(r — x),
and (VaR,, ES,) for the level v € (0, 1) has identification function

1—v—1{x > r} )

1
rL—ry— :]l{x >ri}ry —x)

2.7) V(ri,rm,x)= (

with respect to P; N Py.

2.2. Calibration and traditional backtests. We fix the following notation.
Suppose that ® = (py, ..., px) is an identifiable functional with identification
function V with respect to P. Let {X;};en be a series of negated log-returns
adapted to the filtration F = {F;};en and {R;};cN a sequence of predictions of
®, which are F;_j-measurable. Hence the predictions are based on the informa-
tion about {X,};cn available at time ¢t — 1 represented by the sigma-algebra F;_;.
Let £(X;|F;—1) denote the conditional law of X, given the information F;_|. We
assume that all conditional distributions £(X;|F;—1) and all unconditional distri-
butions £(X;) belong to P almost surely.

Inspired by the insightful paper of Davis (2016), we give the following defini-
tion.

DEFINITION 3. The sequence of predictions {R;};cN is calibrated for ® on
average if

E(V(R:, X)) =0 forall r € N;

it is super-calibrated for ® on average if E(V (R;, X)) > 0 component-wise for
all ¢ € N. The sequence of predictions {R;};¢N is conditionally calibrated for ® if

E(V(R:, X)|Fi—1) =0 almost surely, for all 7 € N;

it is conditionally super-calibrated for © if E(V (R;, X;)|F;—1) > 0 component-
wise, almost surely, for all ¢ € N. Sub-calibration is defined analogously.

If one knows the conditional distributions £(X,|F;_1) and strives for the best
possible prediction of ® based on the information in J;_1, it is natural to use

(2.8) O(L(X: | Fi-1))

as a predictor, which we term the optimal F-conditional forecast for ®. For the
same reason, we call ® (L(X;)) the optimal unconditional forecast. Recall that we
freely abuse notation in using ® either as a functional defined on a space of random
variables or on a space of probability distributions.
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Calibration characterizes optimal forecasts in the following sense. The optimal
unconditional forecast is the only deterministic forecast that is calibrated for ® on
average. However, there may be other forecasts that are calibrated for ® on aver-
age which are not deterministic and thus different from the optimal unconditional
forecast. Likewise, the optimal conditional forecast is the only JF-predictable con-
ditionally calibrated forecast for ® up to almost sure equivalence. It is clear that
conditional calibration implies calibration on average by the tower property of con-
ditional expectations, but the converse is generally false. The notions of calibration
introduced here are analogous to the notions of cross-calibration for probabilistic
forecasts introduced in Strihl and Ziegel (2017).

We have introduced the notions of super- and sub-calibration as they can often
be related to over- or under-estimation of the risk measure at hand. However, this
depends on the specific identification function, and so some care must be taken.
We give details for a correct interpretation for VaR, expectiles and (VaR, ES) in
Section 2.2.2.

For simplicity, we focus on one-step ahead predictions in this paper. Clearly,
multi-step ahead predictions are equally important. In some instances the same
theory and concepts can be transferred from the former case to the latter.

Following Fissler, Ziegel and Gneiting (2016), we call any backtest that con-
siders a null hypothesis of the type “The risk measurement procedure is correct” a
traditional backtest. Traditional backtests are similar to goodness-of-fit tests, that
is, they allow to demonstrate that the risk measurement procedure under consid-
eration is making incorrect predictions, if the respective null hypothesis can be
rejected. Despite the somewhat misleading terminology that a traditional backtest
is passed if the null hypothesis is not rejected, this does not mean that, in this
case, one can be sure that the null hypothesis is correct (with a prespecified small
probability of error), as this would necessitate that we control the power of the test
explicitly. This can virtually never be done, as the alternative is too broad; see also
Bank for International Settlements (2013), pages 103—105. As argued by Fissler,
Ziegel and Gneiting (2016), these issues may put the use of the traditional back-
test in regulatory frameworks in question. However, they may be useful for model
verification just as goodness-of-fit tests have their established role in statistics.

Testing the null hypothesis

(2.9) Hp: The sequence of predictions {R;};cN is calibrated for ® on average

amounts to performing a traditional backtest. We describe here how tests for av-
erage calibration can be constructed, but we do not implement them because the
stronger notion of conditional calibration appears more adequate in a dynamic risk
management context. In our data example in Section 3.3, for the more flexible
models, the null hypothesis of conditional calibration cannot be rejected, which
indicates that testing for average calibration is superfluous. However, there may
be situations where achieving average calibration is already difficult, and then the
following tests may be useful.
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Given a series of observations {X;},=1.... » and forecasts {R;};=1,...,, we define
V,:=( /n) Y7 V(R:, X;). Let ﬁn be a heteroscedasticity and autocorrelation
consistent (HAC) estimator of the asymptotic covariance matrix X, = cov(y/nV,)
(see Andrews, 1991). Then one can hope that /n ) Y 27,, is asymptotically stan-
dard normal under suitable assumptions on the identification function and the
data-generating process. For k = 1, sufficient mixing assumptions are detailed in
Giacomini and White [(2006), Theorem 4], but a multivariate generalization of this
result remains to be worked out. Giacomini and White [(2006), Theorem 4] show
that, for k = 1, the test is consistent against the alternative |E(V,)| > & > 0 for all
n sufficiently large for any 6 > 0.

Conditional calibration is a stronger notion than average calibration, and it ap-
pears more natural in a dynamic risk management context. A traditional backtest
for conditional calibration considers the null hypothesis

2.10) Hp: The sequence of predictions {R;};eN
' is conditionally calibrated for ®.

The requirement E(V (R;, X;)|F;—1) = 0, almost surely, is equivalent to stating
that E(h,V (R;, X;)) = 0 for all ;_;-measurable RX-valued functions ;. Follow-
ing Giacomini and White (2006), we consider an F-predictable sequence {h;};en
of g x k-matrices h; called test functions to construct a Wald-type test statistic:

1 (1
(2.11) T =n<;thV(Rt, Xt)) Qn1<;Zh,V(Rt,X,)),
t=1 t=1

where

1 n
—Z h,V(R;, X)) (b, V(R;, X,))

:

is a consistent estimator of the variance of the g-vector h;V (R;, X;). Ideally, the
parameter g should be chosen such that the rows of h, generate ;_1. In applica-
tions, the choice of the test functions is motivated by the principle that they should
represent the most important information available at time point # — 1. In our sim-
ulation study, we obtained good results with ¢ = 1 or g = 2; for further details,
see Section 3.2.2. We call this type of traditional backtests conditional calibration
tests. In cases where h; = 1, we refer to these tests as simple conditional calibra-
tion tests. Theorem 1 in Giacomini and White (2006) states that, under the null

. d . . .
hypothesis (2.10), T} — x 5 as n — 00, subject to certain assumptions on the data-
generating process {X;};cn and test function sequence {h;};cn. This asymptotic
result justifies a level 5 test which rejects Hy when 77 > qu 1=y where X; -

denotes the 1 — n quantile of the qu distribution. Giacomini and White [(2006),

. .. d .
Theorem 3] provide conditions such that 77 — X(f as n — oo for multi-step ahead
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predictions, while Theorem 2 of Giacomini and White (2006) considers consis-
tency of the test against global alternatives. The theorems of Giacomini and White
(2006) are formulated in terms of score differences and not identification functions,
but their proofs solely rely on the martingale difference property of h; V (R;, X;)
and can thus be applied in our context.

Commonly used backtests for VaR, and ES,, are closely related to conditional
calibration tests for specific choices of the test functions h,. In fact, choosing
h; =1 in the case of VaR,, the conditional calibration test for VaRy, is closely re-
lated to the standard backtest for VaR, based on the number of VaR exceedances
[Bank for International Settlements (2013), pages 103—-108]. In the case of ES,,
the conditional calibration test for (VaR,, ES,) is related to the backtest for ES,
of McNeil and Frey (2000) based on exceedance residuals. We give further details
in Examples 1, 2 and 3 below.

The notion of a calibrated risk measure (or statistic) of Davis (2016) is closely
related to our notion of a calibrated sequence of predictions. Davis (2016) con-
siders which risk measures are calibrated for which classes of models; that is, he
attempts to characterize the largest class of data-generating processes such that V,
goes to zero a.s. as n — 00 if {R;};eN 1s a sequence of optimal conditional fore-
casts for the risk measure. It turns out that for quantiles only minimal assumptions
are necessary, whereas assumptions need to be stronger to work with the mean, for
example. The focus of our work is more statistical. Choosing F-predictable test
functions h; encoding the available information at time point # — 1, we investigate
whether and how it is possible to test in finite samples that the sequence {R;};eN
is conditionally calibrated.

2.2.1. One-sided calibration tests. In certain situations, it may be meaningful
to assess super- or sub-calibration. For example, the standard backtest for VaR,
described in the Bank for International Settlements [(2013), pages 103—-108], is a
test for conditional super-calibration. This is due to the fact that over-estimation of
VaRy, is not a problem as far as the regulator is concerned. Holding more capital
than minimally required should always be allowed.

Suppose we wish to test the hypothesis of conditional super-calibration that
E[V (R, X¢)|Ft—1] > 0 component-wise for all ¢; that is, in the case of a k-variate
risk measure, we are interested in Hy = ﬂf: 1 Ho,i, where

Hoi: E[Vi(R.X)|IF_1]=0 foralls,i=1,... k.

For each component i of the risk measure, leth; ; = (h; 11, ..., hi4) be an F; ;-
measurable (g; x 1)-vector of non-negative test functions. If i; ; 1, ..., hj ;4 gen-
erate F;_1, then Hy; = ﬂzizl Ho ;.¢, where

H()’i,g: E[Vi(Rt,Xt)hi’,y(]ZO forallt,i:1,...,k,E:1,...,q,-.
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We combine all of the test functions into a (¢ x k) matrix h, with g = Zf: 14i»
which has the following structure:

hl,t 0 0

0 hy, --- 0

ht = . . . .
0 0 oo hyy

Setting Z; = h,;V(R;, X;), the above hypothesis of conditional super-calibration
can alternatively be expressed as Hy = fn:l Hy m,m with Hy ,, 1 E(Z; ) = 0 for
allt, m=1,...,q.

From the proof of Giacomini and White [(2006), Theorems 1 and 3] it follows
that, under Hy given at (2.10),

n
212) T=(To,....,To) =i '@'2Y. 2,3 N, 1), n— o,
t=1

where I, denotes the (¢ x ¢) identity matrix. Hence we can obtain an asymp-
totic test for Hp , with the p-value given by 7, = ¢(ﬁ_1(§n ;,1,1/2 Y1 Zim)s
m=1,...,q; that is, 1, is the (asymptotic) probability of obtaining a more ex-
treme outcome than the one observed, assuming the null hypothesis Hy ;, is true.
Let 71y, ..., m(q) be the ordered p-values. The classical Bonferroni multiple test
procedure rejects the global null hypothesis Hp if the smallest of the p-values
71y < n/q, where 1 is the desired level of the (global) test. As an alternative, fol-
lowing Hommel (1983), we obtain a level 5 test by rejecting the global hypothesis
H, if for at least one m we have

q
mn
2.13 T < ——, C, = 1/rrm=1,...,q.
(2.13) (m)_qu q ;/ q

Hommel’s rejection rule has the advantage of allowing to detect situations with
both small effects in many components and with large effects in few components.
Other testing procedures in this context could also be used.

2.2.2. Examples.

EXAMPLE 1. Christoffersen (1998) calls a sequence of VaR,, forecasts effi-
cient with respect to F if

E[1{X; > R}|Fi—1]=1—« almost surely, r =1,2, ....

This requirement is the same as the one of conditional calibration of {R;};eN by
(2.5). In fact, the dynamic quantile test of Kuester, Mittnik and Paolella (2006)
[see also Christoffersen (1998), Engle and Manganelli (2004)] has similarities to
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a conditional calibration test. In analogy to their test, it is natural to consider test
functions

h; = (1, V(ri—1,x1=1), -, V(ri—p, xt—p), ’”t)/

for p > 1. This is also in line with the suggestion in Giacomini and White (2006)
whouse h; = (1, V(r;—1, x,—1))".

The standard backtest for VaR, specified in the Basel documents [Bank for
International Settlements (2013), pages 103—108] uses the test statistic

B=> 1{X;> R},

t=1

which is the number of exceedances over the estimated VaR,, denoted R;, for
time point ¢. Under the null hypothesis (2.10) of conditionally calibrated VaR,-
forecasts, for one-step ahead forecasts, B is a binomial random variable with pa-
rameters n and 1 — «; see Rosenblatt (1952), Diebold, Gunther and Tay (1998),
Davis (2016). It is remarkable that this result holds under essentially no assump-
tions on {X;};en or {R;};eN. However, when moving away from one-step ahead
forecasts to multi-step ahead forecasts, things become more intricate and one has
to resort to general limit theorems such as presented above for testing if 8 has
mean n(1 — o). This test is a test for conditional super-calibration with h; =1
because, for VaR,,, we obtain using (2.5)

n

T3:=) hV(R.X)=) (X <R} —a)

[=1 t=1

=Y (X >R} —(1-a)=—(8-n(l -a)),

t=1

and thus testing the null hypothesis that 8 has mean less or equal to n(1 — «) is
equivalent to testing that 73 has mean greater or equal to zero. This null hypothesis
says that the conditional VaR predictions are at least as large as the true conditional
VaR. Assuming that it is an incentive of a bank to state VaR estimates that tend to
be lower than the true ones, a more prudent null hypothesis from the viewpoint of
a regulator would be the opposite one-sided hypothesis that the conditional VaR
predictions are at most as large as the true conditional VaR, that is, a test for con-
ditional sub-calibration.

For one-step ahead predictions, alternatively to theory presented in this section,
one can exploit the fact that the exceedance indicators 1{X; > R;},t=1,...,n
at the boundary of the null hypothesis, are independent Bernoulli random vari-
ables with success probability 1 — «, which allows for an exact test rather than an
asymptotic one.
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EXAMPLE 2. We consider the vector of risk measures ® (L(X)) = (01 (L(X)),
m(L(X))) = (VaR, (X), ES, (X)) for some v € (0,1). Let r;; and ry; denote
forecasts of VaR,(X;) and ES,(X;), respectively. Assuming X; = u; + o:Z;,
where u; and o; are F;_|-measurable and the Z;’s form an independent and identi-
cally distributed (i.i.d.) sequence of random variables with zero mean and variance
one, for backtesting ES, McNeil and Frey (2000) introduced the following test
statistic based on exceedance residuals:

1 nXt—l"

2,t
= ~“1{X; >ri14}.
#{t:X[ >r1,,}§ Oy { ! Lt}

(2.14) Ty

It turns out that the ES backtest of McNeil and Frey (2000) is closely related to a
conditional calibration test as follows. For n reasonably large, we have that #{r :
x; >r1,}/n~1—v. Therefore, for the test statistic 74 in (2.14), we obtain

1 " 1 Xt — 1y 1 "
T4%_Z pn ’ ]l{xt>’”1,t}:;thv(rl,t,’”z,t,xt)
1=1 ! =1

with h; = ot_l ((r2. —r1.1)/(1 —v), 1). Replacing o; by an estimate 6; is natural
when considering the test of McNeil and Frey (2000) as a conditional calibra-
tion test. The estimated volatility &; is then simply a part of the F;_|-measurable
test function sequence {h;};cn that supposedly encodes the relevant information
of F;_1. Of course, this test is only reasonable if o; is estimated as part of the
forecasting model with the information at time point ¢ — 1. The recently proposed
backtests for ES of Acerbi and Szekely (2014) are in the same spirit as the test of
McNeil and Frey (2000).

The backtest for ES suggested by Costanzino and Curran (2015) tests if the
whole tail of the distribution beyond the VaR,-level has been estimated correctly.
Strictly speaking, the test is therefore not a test for the accuracy of a sequence of
point forecasts for (VaR,,, ES,) but rather a test for the accuracy of a sequence of
probabilistic forecasts for tomorrow’s loss distribution with emphasis on the left
tail. Other tests in this spirit but of comparative type can be found in Gneiting and
Ranjan (2011).

As ES is only identifiable jointly with VaR, one has to be careful when formu-
lating a one-sided test for ES. Let (], r3) = © (L(X)). Then it holds for all (ry, r2)
that

- F
=SBV X) =8 =k T ),

This shows that, similarly to the VaR case, testing the null hypothesis of sub-
calibration for the ES component EV;(rq, 2, X) < 0 is equivalent to testing that
ry < r2. Hence the test of conditional sub-calibration of (VaR, ES) is a test that
the conditional VaR and ES predictions are at least as large as their optimal con-
ditional predictions. The Hommel’s procedure described in Section 2.2.1 can then
be applied with p-value 7, = 1 — ®(73,,,), where the 73 ;,,’s are defined in (2.12).
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EXAMPLE 3. One could conceive a backtesting framework for expectiles as
well in a similar spirit to the ES backtesting procedure proposed by McNeil and
Frey (2000). Assuming, as in the example above, that X; = u; + o;Z;, where u;
and o; are JF;_j-measurable and the Z;’s are i.i.d. with zero mean and variance
one, the conditional 7-expectile satisfies

ec( Xy | Fro1) = we +orer(Zy),

and we see that the residuals
Xi —er (X | Fio1) _

Oy

Zy — e (Zy)

form an i.i.d. sequence of random variables with zero t-expectile. This implies
that V(e;(Z;), Z;) with V given at (2.6) is an i.i.d. sequence of random variables
with mean zero, which can be tested using a bootstrap [as in Efron and Tibshi-
rani (1993), Section 16.4]. Here it is necessary to replace the true volatility o; by
an estimate. This is analogous to the suggestion of McNeil and Frey (2000) for
ES. Noticing that the identification function for expectiles at (2.6) is positively
1-homogeneous, we obtain that

EV (ex(Z1), Zi) =EV (e (X)), X;)o, ' =0.

This equality suggests that it is natural to perform a conditional calibration test
for expectiles with test function h; = 6,_1 and test statistic 77 given at (2.11).
This yields a valid asymptotic test under the assumptions in Giacomini and White
(2006), Theorem 1. These assumptions are weaker than the model assumption
Xy =p +0o1Z;.

In the case of expectiles, as in the case of VaR, a test for conditional super-
calibration assesses the null hypothesis that all conditional expectile estimates are
at least as large as the true conditional expectile.

2.3. Elicitability, forecast dominance and comparative backtests. Suppose
now that the functional ® = (py, ..., px) is elicitable with respect to P. Let
{X:}:en be a series of negated log-returns adapted to the filtration F = {F;};en
as well as to the filtration F* = {F};en. Let {R;};en and {R]};en be two se-
quences of predictions of ®, which are F and F*-predictable, respectively. We
assume that all conditional distributions £(X;|F;—1), £L(X,|F;" ;) and all uncon-
ditional distributions £(X;) belong to P almost surely. We refer to the predictions
{R/}/en as the standard procedure, while {R;};cn is the internal model. The two
filtrations F and F* acknowledge the fact that the internal model and the standard
model may be based on different information sets. For example, one model may
include more risk factors than the other, or certain expert opinion may be used to
adjust one model but not the other.
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DEFINITION 4. Let S be a consistent scoring function for ® with respect to P.
Then {R;};en S-dominates {R]};enN (on average) if

E(S(R:, X:) — S(R], X)) <0 for all r € N.
Furthermore, {R;};en conditionally S-dominates {R}};cn if

(2.15)  E(S(R:, X1) — S(R}, X¢)|F,) <0 almost surely, for all 7 € N.

The definition of conditional dominance is asymmetric in terms of the role of
the standard procedure and the internal procedure. The standard procedure and the
information F* it is based on are considered as a benchmark of predictive ability,
which is why we condition on 5 | and not on ;1. Any method that dominates
the benchmark has superior predictive ability relative to this benchmark.

Clearly, conditional S-dominance implies S-dominance on average. Ehm et al.
[(2016), Definition 2] introduced the notion of dominance of one sequence of pre-
dictions over the other if one S-dominates the other on average for all consistent
scoring functions S for ®. The notion of dominance is a strong one; that is, in the
data examples of Ehm et al. (2016) it was almost never observed that one fore-
cast dominates the other. This makes the concept difficult to employ in an applied
decision-making context. Furthermore, currently, a clear theoretical understanding
of the notion of dominance remains elusive.

There are several reasons why the predictions {R;};cn should be preferred over
{R/}/en if the former dominates the latter. First, comparison of forecasts with re-
spect to the described dominance relations is consistent with respect to increasing
information sets. That is, if 7, C F; for all ¢ and {R;};eN, {R}};en are the opti-
mal conditional forecasts with respect to their filtrations as defined at (2.8), then
the internal procedure dominates the standard procedure, both conditionally and
on average [Holzmann and Eulert (2014), Theorem 1]. The same is true if {R;};eN
is F*-conditionally optimal and {R}};cn is just F*-predictable [Holzmann and
Eulert (2014), Corollary 2]; see also Tsyplakov (2014).

Second, in the case k = 1, for most important functionals, including VaR and
expectiles, strictly consistent scoring functions are order sensitive or accuracy re-
warding in the following sense. Essentially, if @(L(X)) <r <r*orr* <r <
®(L(X)) for some random variable X, then

(2.16) E(S(O(L(X)), X)) <E(S(r, X)) <E(S(r*, X));

see Nau (1985), Lambert (2013) for details. Therefore, if the risk measure forecasts
{R;};en are always closer than {R;};cn to the optimal F*-conditional forecast,
that is, © (L(X;|F})) < R; < R} or ®(L(X|F;)) > R; > R} for all t € N almost
surely, then {R;};cn conditionally dominates {R}};cn. There are different propos-
als for notions of order sensitivity in the case k > 2; see, for example, Lambert,
Pennock and Shoham (2008), but the situation is less clear in this case.



1848 N. NOLDE AND J. F. ZIEGEL

The condition for conditional S-dominance in (2.15) can be formulated equiva-
lently as

E((S(R:, X;) — S(R}, X;))h;) <0  forall h; > 0, F* ;-measureable

forall # € N. It is tempting to work with a vector h, of F*-predictable test functions
in order to test for conditional S-dominance as suggested in the conditional calibra-
tion tests. However, we are interested in comparing the standard procedure to the
internal procedure and reach a definite answer as to which one is to be preferred.
If E((S(Rr, X1) — S(R, Xi)hy ;) > 0 but E((S(R, X;) — S(R/, Xi)hy,j) <0
for different components hy ;, h; ; of the vector h;, no clear preference for either
method can be given. Therefore, we do not pursue this approach further.
In comparative backtesting we are interested in the following null hypotheses:

H, : The internal model predicts at least as well as the standard model,
H(;r :  The internal model predicts at most as well as the standard model.

The null hypothesis Hj," is analogous to the null hypothesis of a correct model and
estimation procedure but now adapted to a comparative setting. As mentioned in
the Introduction, considering a backtest as passed if the null hypothesis cannot be
rejected is anti-conservative or aggressive in nature, and may therefore be prob-
lematic in regulatory practice. On the other hand, the null hypothesis H(;r is such
that the comparative backtest is passed if we can reject H(;r . This means that we
can explicitly control the type I error of allowing an inferior internal model over
an established standard model.
Let

1 n
A=l — E(S(R;, X;) — S(RF, X;)),
1’250%Pnt221 ( (R:, X7) ( ¢ t))

(2.17) .
o]
hoe = lim inf ;E(S(R,, X)) — S(RY, Xy))-

It is clear that S-dominance on average implies A, < A* < 0. If the sequence
of score differences {S(R;, X;) — S(R/, X;)}ien is first-order stationary, then
A* = Ay, and A, < 0 implies S-dominance on average. If A* in (2.17) is nonpos-
itive, then the internal procedure is at least as good as the standard procedure,
whereas the internal procedure predicts at most as well as the standard procedure
if A, > 0. It may happen that A, and A* have different signs. Then we cannot order
the two risk measurement procedures in terms of predictive performance. How-
ever, in finite samples this issue never occurs. Ordering risk measurement proce-
dures is a compromise in the quest for conditional dominance. On the one hand, it
is clearly a weaker notion than conditional dominance, but, on the other hand, in fi-
nite samples, it introduces a meaningful order on all risk measurement procedures
given a sensible choice of the scoring function S; see Section 2.4.
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Therefore, we reformulate our comparative backtesting hypotheses as

Hy : A" <0,
H: x>0
The test statistic
1 n

AyS:=="(S(R, X;) — S(R}, X;))

t=1

S

for n large enough has expected value less or equal to zero under H, , whereas
under H0+ its expectation is non-negative. Tests of H0+ or Hy based on a suit-
ably rescaled version of A,S are so-called Diebold—Mariano tests; see Diebold
and Mariano (1995). Under certain mixing assumptions detailed in Giacomini and
White (2006), Theorem 4,

A,S —E(A,S)
YN

is asymptotically standard normal with &,f_an HAC estimator [Andrews (1991)] of
the asymptotic variance, 0,% = var(y/n A, S). Therefore, using the test statistic

A, S
(2.18) T YN
we obtain an asymptotic level-n test of HO+ if we reject the null hypothesis when
®(Ty) < n,and of H, if we reject the null hypothesis when 1 — @ (7y) < 7.

Based on the outcome of the tests of H(;L and H, , Fissler, Ziegel and Gneiting
(2016) suggest the following three-zone approach. We fix a significance level n €
(0, 1), for example, n = 0.05. If H; is rejected at level 5, then H(;r will not be
rejected at level 5. Similarly, if HJ is rejected at level n, then H,,” will not be
rejected at level 5. Therefore, we say that the internal procedure is in the red region;
that is, it fails the comparative backtest if H,, is rejected. The internal procedure
is in the green region; that is, it passes the backtest if H0+ is rejected. The internal
procedure needs further investigation; that is, it falls in the yellow region if neither
H(;r nor H, can be rejected. For an illustration of these decisions, see Fissler,
Ziegel and Gneiting (2016), Figure 1.

There is one important difference between the three-zone approach described
in the Bank for International Settlements [(2013), pages 103—108] for traditional
VaR backtests and the three-zone approach of Fissler, Ziegel and Gneiting (2016)
described here. In the former approach, the zones arise from varying the confidence
level of the hypothesis test, whereas in the latter approach the confidence level is
fixed a priori, and the zones arise to separate cases where there is enough evidence
to clearly decide for superiority of one procedure over the other in contrast to cases
where there is no clear evidence.
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2.4. Choice of the scoring function. Based on (2.2), (2.3) and (2.4), one has a
large number of choices for strictly consistent scoring functions for VaR, expectiles
and (VaR, ES). In the case of VaR, the standard choice is to take G (r) = r in (2.2),
leading to the classical asymmetric piecewise linear loss [see (2.19) below], also
known as linlin, hinge, tick or pinball loss; see Koenker (2005) for its relevance in
quantile regression. In the case of expectiles, one could argue that a natural choice
is taking ¢ (r) = r? in (2.3), which simplifies to the squared error function for the
mean (up to equivalence). This is also the scoring function suggested by Newey
and Powell (1987) for expectile regression. Consistent scoring functions for (VaR,
ES) have only recently been discovered; see Acerbi and Szekely (2014), Fissler
and Ziegel (2016). Therefore, there is no natural classical choice for the functions
G1, Gy in (2.4).

A scoring function S is called positive homogeneous of degree b (or b-
homogeneous) if for all r = (r, ..., ry) and all x

S(cr,cx) = ch(r, x) for all ¢ > 0.

Efron (1991) argues that it is a crucial property of a scoring function to be positive
homogeneous in estimation problems such as regression. Patton (2011) underlines
the importance of positive homogeneity of the scoring function for forecast rank-
ing. Positive homogeneous scoring functions are also favorable because they are
so-called “unit consistent” [see, e.g., Acerbi and Szekely (2014)]; that is, if » and
x are given in, say, U.S. dollars with » = $10 and s = $5, then, for a positive ho-
mogeneous scoring function S, the score S(r, x) = S($10, $5) = ($)25(10, 5) will
have unit (U.S. dollars)b . In particular, changing the units, from, say, U.S. dol-
lars to million U.S. dollars, will not change the ordering of forecasts assessed by
this scoring function, and will thus also leave the results of comparative backtests
unchanged. Concerning the choice of the degree b of homogeneity, Patton (2006)
shows that, in the case of volatility forecasts, b = 0 requires weaker moment condi-
tions than a larger choice of b for the validity of Diebold—Mariano tests which are
used in comparative backtesting. Concerning the power of Diebold—Mariano tests,
Patton and Sheppard (2009) find the best overall power for volatility forecasts for
the choice b = 0.

Section C in the OS presents results which characterize positive homogeneous
scoring functions for the risk measures that are of interest in this paper. Note that
we only allow for predictions » > 0 or r = (rq, r2) with r, > 0. As we are interested
in risk measures for losses, this is not a real restriction; see also Section 3.2.

For some orders of homogeneity b, there is no strictly consistent scoring func-
tion for the risk measures of interest in this paper. In particular, the attractive choice
b = 0 can often not be realized. However, for comparative backtesting we are not
interested in absolute values of expected scores but only in differences of expected
scores. Therefore, it is sufficient to have a scoring function such that the resulting
score differences are homogeneous. Such homogeneous score differences of order
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b = 0 exist for VaR, expectiles and (VaR, ES), as shown by the results delegated
to the OS (Section C). Examples below list scoring functions which will be used
subsequently in the simulation study and real data analysis.

EXAMPLE 4. For the comparative backtests for VaR that we investigate in
Section 3.2, we consider the classical 1-homogeneous choice obtained by choosing
G(r) =r in (2.2), leading to the scoring function
(2.19) Stryx)=(1—a—1{x>r})r+1{x > rix.

Guided by the arguments given above, we alternatively consider the 0-homo-
geneous score differences by choosing G(r) = logr, r > 0, which leads to the
score

(2.20) S(r,x)=(1—a—1{x >r})logr + 1{x > r}logx, r>0.

EXAMPLE 5. The choice ¢(r) = r? in (2.3) leads to the strictly consistent
scoring function

2.21) Sr,x)=—1{x>r}(1 —-27)(x — r)2 + {1 —-1t)r(r—2x)

for the t-expectile e;. Besides this 2-homogeneous choice, in Section 3.2, we
also investigate the 0-homogeneous alternative that arises by choosing ¢ (r) =
—log(r), r > 0, and hence we obtain the scoring function

(2.22) S(rx)—]l{x>r}(1—2r)(log +1——>—|—(1—r)(10gr—1+ )

EXAMPLE 6. For (VaR,, ES,), we consider the (1/2)-homogeneous scoring
function given by choosing G1(x) =0, G>(x) = x12, x > 01in (2.4) for compara-
tive backtesting in Section 3.2. It is given by

ri+r
+(1_)1 2

NG 22

As for the other risk measures, we also consider the 0-homogeneous alternative by
choosing G{(x) =0, Go(x) =logx, x > 0, which yields the scoring function

Lia —v)(% —1+10g(r2)>.

(2.23) S(ri,r,x)=1{x > r1}

(2.24) S, x) = 1{x > ry}—

Acerbi and Szekely (2014) proposed a class of 2-homogeneous scoring func-
tions for (VaR,, ES,) depending on a parameter W > 0. It is strictly consistent
when the class P of distributions is restricted to contain only distributions F* with

ES,(F) < W VaR, (F).

In practice, it is generally not possible to say what magnitude of W is realistic
to cover all possible applications. Therefore, we prefer to work with the homoge-
neous choices of strictly consistent scoring functions above and, more generally,
of the form in Theorem C.3 of the OS.
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3. Numerical studies.

3.1. Forecasting of risk measures. In this section we discuss a number of
estimation procedures for producing conditional forecasts of the three risk mea-
sures discussed in this paper, namely, the VaR, expectile and ES. Owing to the
widespread use of VaR in the banking sector, a great number of methods exist to
produce its point forecasts; see, for example, Kuester, Mittnik and Paolella (2006)
for an extensive review. In contrast, estimation and forecasting of expectiles in the
risk measurement context is a relatively recent topic; see, for example, Kuan, Yeh
and Hsu (2009). However, in many cases, similar methods as those used for VaR
forecasting can be adopted for expectiles.

For illustrative purposes, we consider the following framework for forecasting
of the risk measures. Suppose the series of negated log-returns {X;};en can be
modeled as

(3.1) Xy =+ 0124,

where {Z;};cn is a sequence of i.i.d. random variables with zero mean and unit
variance, and u; and o; are measurable with respect to the sigma algebra F;_1,
representing the information about the process { X, };cn available up to time ¢ — 1.
In order to capture typical time dynamics of financial time series, one possibility
is to assume that the conditional mean pu, follows an ARMA process, while the
condition variance o> evolves according to a GARCH model specification.

Let p denote any of the three risk measures we consider. In the above setting,
conditionally on the information up to time # — 1, the one-step ahead forecast of p

1S

(3.2) P(LX: | Fi—1)) = e + 01 p(L(2)),

where Z is used to denote a generic random variable with the same distribution
as the Z;’s. Following McNeil and Frey (2000) and Diebold, Schuermann and
Stroughair (2000), one can adopt a two-stage estimation procedure for the forecast
o (L(X; | Fi—1)). First u; and oy are estimated via the maximum likelihood pro-
cedure under a specific assumption* on the distribution of the innovations Z, in
(3.1). The second stage involves estimation of p(L£(Z)), the risk measure for i.i.d.
sequence {Z;};cN, based on the sample of standardized residuals

(3.3) {fz = (x; — lll‘)/&t}-

4An alternative is to use the quasi-maximum likelihood estimation (MLE) procedure in which
innovations Z; are assumed to be standard normal. This is justified by a result in Bollerslev and
Wooldridge (1992) stating that u; and o; would be consistently estimated even if the distribution of
innovations is not normal, provided that the models for ; and o; are correctly specified. As pointed
out in Kuester, Mittnik and Paolella (2006), the correct specification of dynamics for u; and o; may
be difficult to fulfill in practice.
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We consider the following three approaches to handle the second stage in the fore-
casting procedure: fully parametric (FP), filtered historical simulation (FHS), and
a semiparametric estimation based on extreme value theory (EVT).

3.1.1. Fully parametric estimation. Under the fully parametric approach, a
specific (parametric) model is assumed for the sequence of innovations {Z;};¢N.
Examples of typically used probability distributions include the normal, Student’s
t and a skewed-t distribution [see, e.g., Ferndndez and Steel (1998)]. Parameters
of the assumed distribution for Z,’s, denoted Fz, can be estimated based on the
standardized residuals {Z;} in (3.3) using, for example, the maximum likelihood
method. If the model for Z;’s coincides with the one used to estimate the filter
in the first stage, then no additional estimation is required at the second stage
with all model parameters coming directly from the first stage estimation. The
fitted distribution is used to compute the estimate of a given risk measure. In the
case of VaR,(Z), this is given by the a-quantile, F 7 "(@), whereas a T-expectile
er(Z) can be computed as discussed in Section B.1 of the OS, where we give
analytic expressions for expectiles of several commonly used distributions. Since
we consider only continuous distributions Fz, the ES can be computed as

ES,(Z2) =E(Z|Z > VaR,(2)),

where we use numerical integration to evaluate the conditional expectation.

3.1.2. Filtered historical simulation. The method employs a nonparamet-
ric estimation of the risk measures based on the standardized residuals {Z;} in
(3.3), which can be seen as representing a filtered time series; see, for example,
Christoffersen (2003), Chapter 5.6. In particular, we draw a sample {2;"; 1<i<N}
of alarge size N (e.g., N = 10,000) from {Z;; 1 <t <n} and then take the empiri-

cal estimate of a given risk functional as the estimate for p(L£(Z)). The empirical
a-quantile gives the VaR estimate VaRFHS (Z). The empirical T-expectile éfHS (2)
is obtained using the least asymmetric welghted squares via iterative minimization
of

Za)l (T) - er) )

wi (1) =11{Z} > er} + (1 — 0)1{Z} < e} with respect to e;.

The ES is estimated by the empirical version of the conditional expectation given
that the residual exceeds the corresponding VaR estimate:

1 A (A
HS(Z): - E z * VaR (Z)}
#izi=1,...,N,2r>VaR. >(Z)} o
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3.1.3. EVT-based semiparametric estimation. Risk is naturally associated
with extremal events, and hence risk measure estimates rely on accurate estimation
of a tail of the underlying distribution. However, inference about the distributional
tails is notoriously difficult, as there are frequently not enough data points in the
tail regions either to give a proper justification for a parametric model or to obtain
reliable empirical estimates. Hence, unless a sufficiently long time series is avail-
able relative to the desired risk level for risk measure estimation, the two methods
outlined in Sections 3.1.1 and 3.1.2 are unlikely to produce accurate forecasts.
An alternative is to base estimation on asymptotic results of extreme value theory
(EVT). For a detailed account, refer to, for example, Embrechts, Kliippelberg and
Mikosch (1997).

The main premise is that, for a sufficiently high threshold u, conditional ex-
cesses of random variable Z satisfy

(3.4) Z—ul|Z>u~GP(y,%),

where GP(8, &) denotes the generalized Pareto distribution with scale 8 > 0 and
shape parameter £ € R. It is common in applications to set the threshold at an upper
order statistic, that is, u = z41) for some k < n, where z(1) > z) > -+ > z)
are the decreasing order statistics of the sample {zy, ..., z,} from Fz. This leads
to the following EVT-based estimates of VaR,(Z) and ES,(Z) [see McNeil and
Frey (2000)]:

_— 3 f o
(3.5) VaRSVT(Z)zu-i—ﬂTu((i) —1), £#0,
g an
and
3.6 BV (z)=var"V T (z < L. Aﬁ_éu )
G0 I VT s

with (By, £) being parameter estimates of the GP distribution fitted to excesses
over u. In the spirit of the above EVT-based estimators for VaR and ES, we derive
an estimator for the 7-expectile. The details are provided in Section B.2 of the OS.

In the discussion above we assume that threshold « or, equivalently, k, the num-
ber of upper order statistics, is given so as to ensure adequacy of the approximation
in (3.4). However, in practice, an accurate choice has to be made to balance the
bias-variance trade-off, as a too large value of u increases variability of the param-
eter estimates of 8, and &, while insufficiently large u introduces the bias due to
invalidity of (3.4). Various techniques have been proposed to assist with the choice
of threshold such as graphical tools based on linearity of the mean excess function.
As such methods require judgement at every time step at which conditional fore-
casts of risk measures are to be made, they are prohibitive for our purposes. Hence
we adopt a pragmatic approach as in McNeil and Frey (2000), and take k£ = 60 in
samples of size n = 500.
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3.2. Simulation study. In practice, traditional backtesting is perhaps the most
commonly used way to evaluate and subsequently choose among a number of com-
peting forecasting procedures. While traditional backtesting is certainly suitable to
capture some aspects of forecasting procedures, it does not provide information
on the relative performance of different procedures with respect to the accuracy
of forecasts, a seemingly natural criterion for a forecasting method. The aim of
the present simulation study is to illustrate the use of the methodologies for tradi-
tional and comparative backtests discussed in the paper as well as to highlight the
different messages delivered by the two types of backtests.

3.2.1. Setup and forecasting methods. The data {X,};c7 used for the analysis
are generated from an AR(1)-GARCH(1, 1) process:

X =ur + €, my =—0.05+0.3X;_1,
(.7 2 2 2
€ = U[Z[, Gt =0.01 + 0.16,_1 + 0.850’,_1,

where innovations {Z;};c7z form a sequence of independent random variables with
a common skewed-t distribution (see Example B.6 in the OS) with shape parameter
v =5 and skewness parameter y = 1.5.

Quality of a forecasting procedure is determined by various factors. In a para-
metric or semiparametric set-up, potential model misspecification as well as esti-
mation uncertainty in small samples can be detrimental for prediction. Nonpara-
metric methods, while requiring no assumptions on the underlying model, are also
subject to sampling variability and have strong limitations when dealing with ex-
treme or tail events. The forecasting procedures we consider in the simulation
study aim to cover a spectrum of models and estimation methods. We assume
that the underlying process follows an AR(1)-~GARCH(1, 1) dynamics with inno-
vations {Z;};cz coming from one of the following three distributions: the normal,
the Student’s t and the skewed-t distribution as in Example B.6 in the OS. We then
consider the following estimation procedures:

e fully parametric estimation (Section 3.1.1) with the methods abbreviated as “n-
FP”, “t-FP” and “st-FP” under the assumption of normal, t and skewed-t dis-
tributed innovations, respectively;

e filtered historical simulation (Section 3.1.2) with the methods abbreviated as
“n-FHS”, “t-FHS” and “st-FHS”;

e EVT-based estimation (Section 3.1.3) with the methods abbreviated as “n-
EVT”, “t-EVT” and “st-EVT”.

In addition to the abovementioned methods, we supplement results with the op-
timal forecasts (abbreviated as “opt”), which uses the knowledge of the data-
generating process.
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Estimation is conducted using the moving window of size 500, and forecasts
are evaluated based on the out-of-sample size of 5000 verifying observations. Sec-
tion D of the OS provides an additional study in which only 250 verifying obser-
vations are used for backtesting.

The analysis is implemented using the open source software R
[R Core Team (2015)]. The code is available at https://github.com/nnolde/
Elicitability-and-Backtesting.

3.2.2. Backtesting of risk measure forecasts. Table 1 contains an overview of
the one-step ahead forecasts obtained under the procedures described in the pre-
vious section. In particular, we report the average forecasts based on the series of
moving estimation windows for each of the three considered risk measures, de-
noted VaR,, ¢; and ES,. The « levels for VaR are chosen in accordance with
typical values used for internal risk management (such as ¢ = 0.90 and o = 0.95)
as well as the standard Basel VaR level o = 0.99. For expectiles and ES, the levels
are selected in such a way that the risk measure forecasts agree under the standard
normal model.

In order to link to the previously used approaches to assess the quality of VaR
forecasts (and to make comparisons between the methods), we computed the per-
centage of times the observations exceeded the VaR, forecasts, commonly referred
to as the percentage of violations. Based on the values reported under the column
“% Viol.” in Table 1, we observe that some of the misspecified models were ac-
tually able to hit nearly exactly the expected proportion of violations by matching
the risk measure level (1 — «). This is the case, for instance, for “n-EVT” and
“t-EVT” methods at @ = 0.99. Although large deviations from the risk measure
confidence level do suggest substantial method deficiencies (as in the case of “n-
FP” and “t-FP” methods), these values also highlight that the deviations from the
(1 — a) level alone are unlikely to provide a good basis for differentiating the
methods’ performance in terms of prediction.

In addition to risk measure average forecasts, Table 1 also reports the average
scores along with the corresponding method rankings using two different (con-
sistent) scoring functions for each of the three considered risk measures. As the
scoring functions we use require risk measure forecasts to be positive, we set the
scores across all methods to zero in those few cases where forecasts are negative.
Note that in the case of (VaR,,, ES,), only the forecasts for ES, are restricted to be
positive.

The method rankings based on the average scores appear to be reasonable, and
suggest some more general conclusions with respect to method selection on the ba-
sis of forecasting accuracy. Similar to the results of traditional backtesting, the nu-
merical values in Table 1 provide further support to the observation that the choice
of the likelihood model in fitting the AR(1)-GARCH(1, 1) filter has an apprecia-
ble influence on the accuracy of forecasts, perhaps more than previously thought


https://github.com/nnolde/Elicitability-and-Backtesting
https://github.com/nnolde/Elicitability-and-Backtesting

TABLE 1
Risk measure forecasts and method comparisons based on the sample average of consistent scoring functions in the simulation study; see Section 3.2 for
details. The average scores S are divided by one minus the associated risk measure level to avoid very small values for presentation purposes. “% Viol.”
column shows the percentage of times observations exceeded the corresponding forecasts of VaRy,. The values in brackets indicate method ranks based

on their average scores

a=0.90 7 =0.96561 v =0.754
VaR, % Viol. ] ] e — T ES, —_ —
Method leq. 2.19)]  [eq. (2.20)] leq. 221)]  [eq. (2.22)) leq. 2.23)]  [eq. (2.24)]
n-FP 0.440 94 07496 (9)  —04325(7) 0440 1.0149(9  —1.0526(9 0440  0.6685(10) —0.8119 (9)
n-FHS 0406 102 0.7484(8)  —0.4288(9) 0542  1.0006(7)  —1.3076(7) 0450  0.6626(5)  —0.8361 (4)
nEVT 0406 102 07477(71)  —04304(8) 0553  1.0039(8) —13188(5)  0.449  0.6655(9)  —0.8270 (8)
t-FP 0348 122 07527 (10) —0.3944 (10) 0424  1.0200 (10) —0.904 (10) ~ 0.421  0.6645(7)  —0.8040 (10)
+FHS 0413 100  07473(6)  —0.4350(5)  0.550 09899 (5)  —1.3055(8) 0456  0.6622(4)  —0.8356 (5)
CEVT 0410 103 07471(5)  —04329(6) 0562 09944(6) —13137(6) 0457 0.6654(8)  —0.8289 (7)
SL-FP 0.417 9.9  07442(2) —04391(2) 0559 098654  —13378(3) 0461  0.6606(2)  —0.8460 (3)
SLFHS 0412 101 07451 (4)  —04387(3) 0550 09808 (2)  —13342(4) 0455  0.6606 (3)  —0.8488 (2)
SLEVT 0410 102 07449 (3)  —04363(4) 0561 09844 (3)  —1.3409(2) 0457  0.6642(6)  —0.8350 (6)
opt 0.424 9.5 07431 (1)  —0.4454(1) 0565 09643 (1)  —1.4257(1) 0467 0.6575(1)  —0.8704 (1)
«=0.95 7 =0.98761 v =0.875
n-FP 0.586 59 09925(8)  —0.1055(9)  0.586  1.9845(10) —0.4650 (10)  0.587  0.8177 (10) —0.3975 (10)
nFHS  0.632 50 09910(7)  —0.1123(7) 0801 1.8718(7)  —0.8939(5)  0.667 0.8121(8)  —0.4261 (7)
nEVT  0.628 51 09930(9)  —0.1080(8) 0810 1.8756(8)  —0.8935(6)  0.670 0.8121(7)  —0.4259 (8)
t-FP 0.518 73 10106 (10)  —0.0555(10)  0.631  1.9008 (9  —0.6419(9) 0716 0.8137(9  —0.4233(9)
+FHS  0.631 510 09902(5)  —0.1148(5) 0822  1.8428(5)  —0.8929(7)  0.675 0.8112(5)  —0.4292(5)
tEVT  0.630 51 09910(6)  —0.1128(6)  0.826  1.8506(6)  —0.8885(8)  0.677 0.8117(6)  —0.4274 (6)
SLFP 0.639 49 098582  —0.1227(2) 0832 1.8313(4) —09156(3)  0.688  0.8096 (3)  —0.4356 (3)
SLFHS  0.632 50 09887(3)  —0.1161(3) 0821 1.8164(2) —09174(2)  0.675 08096 (2)  —0.4357 (2)
SLEVT  0.630 51 09890 4)  —0.1154(4) 0825 1.8221(3)  —09153(4)  0.677 0.8100(4)  —0.4341 (4)
opt 0.649 47 09834(1)  —0.1267(1) 0837 17481 (1) —1.0189(1)  0.696 0.8070 (1)  —0.4503 (1)
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TABLE 1
(Continued)
o=0.99 7 =0.99855 v =0.975
VaR, % Viol. LS L5 e L5 L5 B, LS L5
Method leg. (2.19)]  [eq. (220)] [eq. 22D)]  [eq. (222)] leq. 2.23)]  [eq. (224)]
n-FP 0.859 2.5 1.8649 (10) 0.7041 (10) 0.859 8.4605 (10) 2.1097 (10) 0.863 1.1638 (10) 0.3969 (10)
n-FHS 1.193 1.1 1.7398 (8) 0.4992 (7) 1.492 6.1819 (7) 0.0652 (6) 1.218 1.1268 (8) 0.2453 (8)
n-EVT 1.189 1.0 1.7115 (5) 0.4801 (5) 1.480 6.1153 (5) 0.0651 (5) 1.243 1.1240 (7) 0.2381 (7)
t-FP 0.948 1.8 1.7605 (9) 0.5679 (9) 1.186 6.0364 (3) 0.2244 (9) 1.781 1.1472 (9) 0.2847 (9)
t-FHS 1.207 1.1 1.7392 (7) 0.5025 (8) 1.629 6.7232 (9) 0.0771 (8) 1.246 1.1205 (5) 0.2334 (6)
t-EVT 1.203 1.0 1.7064 (4) 0.4755 (4) 1.546 6.1387 (6) 0.0658 (7) 1.266 1.1208 (6) 0.2328 (5)
st-FP 1.214 0.9 1.6987 (3) 0.4734 (3) 1.583 5.9688 (2) —0.0491 (2) 1.287 1.1156 (2) 0.2195 (2)
st-FHS 1.209 1.1 1.7339 (6) 0.4991 (6) 1.614 6.4895 (8) 0.0236 (3) 1.245 1.1161 (3) 0.2221 (4)
st-EVT 1.202 0.9 1.6929 (2) 0.4651 (2) 1.543 6.0779 (4) 0.0306 (4) 1.265 1.1164 (4) 0.2215 (3)
opt 1.227 0.9 1.6614 (1) 0.4369 (1) 1.574 4.9567 (1) —0.3749 (1) 1.297 1.1066 (1) 0.1887 (1)

8681
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in the context of using the quasi-maximum-likelihood methods. Within each likeli-
hood model, at lower levels for risk measure, fully parametric and FHS approaches
tend to demonstrate better predictive performance, whereas at higher levels EVT-
based methods seem to have an advantage, in particular, in the case of VaR. When
the likelihood model is misspecified in fitting the AR(1)-GARCH(1, 1) filter, the
nonparametric methods such as FHS and the semiparametric methods such as
EVT-based estimation allow for greater flexibility to diminish the effects of model
misspecification than the fully parametric approaches do. While in many cases
rankings obtained from each pair of consistent scoring functions coincide, there
also exist some discrepancies. This is not a surprise in the presence of misspec-
ified models and estimation uncertainty as already pointed out by Patton (2014).
For models for which the mean score is finite, the weak law of large numbers sug-
gests convergence of the sample average (score) to the true mean (score) as the
out-of-sample size tends to infinity. However, the convergence can be fairly slow.
We found that in our simulation study the out-of-sample size of at least 1000 data
points is necessary to achieve some stability in rankings. Hence, in finite sample
situations, one has to be aware of the effects of sampling variability on the final
rankings of the forecasting methods. Section D of the OS discusses results of a
study where only 250 verifying observations were considered to perform back-
testing. In small samples, results of both traditional and comparative backtesting
may be greatly distorted by unrepresentative samples even when the underlying
data-generating process is stationary.

Table 2 illustrates the traditional backtesting methodology presented in Sec-
tion 2.2. Test statistics 77 in (2.11) and 7> in (2.12) are used, respectively, for
two-sided and one-sided conditional calibration tests. The one-sided tests for VaR,,
and t-expectile are tests for super-calibration with p-values given by ® (7). In the
case of (VaR,, ES,)), we make use of Hommel’s procedure [Hommel (1983)] with
the adjusted p-values computed as 7 = g C, min{m,)/m;m = 1, 2} and capped at
one, where 7, =1 — ®(7T>,,) for the one-sided tests of sub-calibration; see (2.13).
(The classical Bonferroni multiple test procedure resulted in qualitatively similar
conclusions.) For the simple conditional calibration tests, we set k; = 1. The test
functions that were found to work well in this simulation study for general condi-
tional calibration tests are

(1,r) for VaR,,
(3.8) h, = 167" for expectile e,
6, Y((ray —r1.0)/(1 =v), 1) for (VaR,, ES,)
in the case of two-sided tests, and
(1, Irtl)/ for VaR,,
o for expectile e,

1 Jriyl 0 0
0 0 1 67!

3.9) h; = /
) for (VaR,, ES,)
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in the case of one-sided tests. The choice of test functions is important as it affects
the properties of the test. For example, we found that inclusion of the lagged values
of the identification function as in Example 1 resulted in tests which rejected all
of the models including the optimal forecaster for VaRg g9 in the two-sided con-
ditional calibration tests. A possible explanation for this phenomenon is that for a
chosen test function the distribution of the test statistic becomes heavily skewed,
making convergence to the asymptotic distribution slow. Another contributing fac-
tor, suggested by a referee, could be the instability of the Q! estimate in (2.11)
due to high correlation of lagged values of the identification function. As discussed
in Giacomini and White (2006), the choice of the test function with too few or too
many components will also have direct implications on the power of the tests.

As expected, the numerical results in Table 2 show that the backtesting de-
cisions based on the general conditional calibration tests are more conservative
in comparison to the corresponding simple conditional calibration tests, subject
to a sensible choice of the test function. This is particularly visible for one-
dimensional risk measures (VaR and expectiles) when performing the two-sided
tests. The two-sided conditional calibration tests for these two risk measures sug-
gest the importance of the correct specification of the likelihood used in fitting
the AR(1)-GARCH(1, 1) filter. The entirely parametric methods with misspec-
ified models (here “n-FP” and “t-FP”) fail traditional backtests even when test-
ing for simple conditional calibration (with the exception of VaRggp). The gen-
eral conditional tests are able to pick up the misspecified likelihoods at least in
some instances, for example, when forecasting VaRg o9 and using the (symmet-
ric) t distribution instead of the true asymmetric underlying model, and similarly
for T-expectiles with T = 0.96561 and T = 0.98761. The general conditional two-
sided calibration tests also detect the differences in the second stage of risk mea-
sure forecasting when different methods are applied to filtered series of innova-
tions. For instance, at the highest risk measure levels, the EVT-based methods
tend to pass the conditional backtests in contrast to their empirical and in some
cases even parametric (correctly specified) counterparts; see panels for VaRg g9
and 0.99855-expectile. This is true even under a misspecified likelihood model in
the AR(1)-GARCH(1, 1) filter.

We also note that the tests for one-dimensional risk measures appear to have
better power properties than the tests for the two-dimensional risk measure,
(VaR,, ES)), although a more thorough investigation into finite sample proper-
ties of these tests would be necessary to draw more definitive conclusions. It can
also be observed that the one-sided tests are less conclusive than their two-sided
analogues. This is perhaps not a surprise, as it may well happen that a method is
not good at predicting the risk measure but gives a correct bound, and thus should
not be rejected by a one-sided calibration test.

Finally, Figures 1-3 display the traffic light matrices for the three risk measures
and two forms of consistent scoring functions for each. These plots complement



TABLE 2

P-values for traditional backtests in the simulation study; see Section 3.2 for details. The one-sided tests for VaRy and t-expectile are tests of
super-calibration, and of sub-calibration for (VaR,,, ES)). The test functions used in general conditional calibration tests are given in (3.8) and (3.9).
Values in boldface are significant at the 5% level

a=0.90 7 =0.96561 v =0.754
T-expectile (VaR,, ES,)
two-sided one-sided two-sided one-sided two-sided one-sided
Method simple general simple general simple general simple general simple general simple general
n-FP 0.146 0.018 0.927 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
n-FHS 0.576 0.058 0.288 0.863 0.887 0.048 0.443 0.193 0.881 0.184 0.712 0.744
n-EVT 0.608 0.056 0.304 0911 0.684 0.042 0.658 0.364 0.754 0.672 1.000 0.629
t-FP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.086 0.006 0.041 0.011
t-FHS 0.962 0.006 0.481 1.000 0.728 0.030 0.636 0.330 0.936 0.512 0.960 0.256
t-EVT 0.514 0.011 0.257 0.772 0.360 0.023 0.820 0.542 0.880 0.475 0.815 0.008
st-FP 0.740 0.090 0.630 1.000 0.429 0.084 0.786 0.546 0.569 0.824 1.000 0.991
st-FHS 0.851 0.091 0.425 1.000 0.708 0.123 0.646 0.400 0.909 0.796 0.956 0.744
st-EVT 0.674 0.066 0.337 1.000 0.377 0.098 0.812 0.596 0.935 0.706 0.851 0.032
opt 0.228 0.294 0.886 1.000 0.234 0.458 0.883 0.850 0.401 0.337 0.732 1.000
a =0.95 7 =0.98761 v =0.875
n-FP 0.006 0.004 0.003 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
n-FHS 0.948 0.042 0.526 1.000 0.702 0.067 0.351 0.158 0.912 0.349 0.997 0.609
n-EVT 0.797 0.075 0.398 1.000 0.868 0.062 0.434 0.208 0.720 0.549 1.000 0.762
t-FP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000
t-FHS 0.700 0.053 0.350 1.000 0.793 0.027 0.603 0.325 0.951 0.492 0.864 0.368
t-EVT 0.654 0.106 0.327 0.981 0.713 0.033 0.643 0.363 0.699 0.771 1.000 0.845
st-FP 0.794 0.261 0.603 1.000 0.568 0.066 0.716 0.467 0.655 0.898 0.907 0.249
st-FHS 0.897 0.111 0.449 1.000 0.729 0.073 0.635 0.393 0.908 0.690 0.904 0.875
st-EVT 0.797 0.180 0.398 1.000 0.643 0.077 0.679 0.435 0.599 0.968 1.000 1.000
opt 0.284 0.552 0.858 1.000 0.315 0.523 0.843 0.798 0.311 0.624 0.263 0.194
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TABLE 2
(Continued)
a=0.99 7 =0.99855 v =0.975
T-expectile (VaR,, ES))
two-sided one-sided two-sided one-sided two-sided one-sided
Method simple general simple general simple general simple general simple general simple general
n-FP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
n-FHS 0.420 0.007 0.210 0.630 0.377 0.045 0.188 0.100 0.653 0.231 0.549 0.538
n-EVT 1.000 0.186 0.500 1.000 0.300 0.080 0.150 0.085 0.886 0.226 0.804 0.577
t-FP 0.000 0.000 0.000 0.000 0.003 0.010 0.002 0.001 0.000 0.000 1.000 1.000
t-FHS 0.679 0.029 0.339 1.000 0.783 0.013 0.391 0.212 0.697 0.717 1.000 1.000
t-EVT 0.888 0.140 0.444 1.000 0.509 0.067 0.254 0.145 0.995 0.498 0.807 1.000
st-FP 0.454 0.221 0.773 1.000 0.601 0.048 0.301 0.169 0.695 0.419 0.597 0.511
st-FHS 0.584 0.018 0.292 0.876 0.826 0.026 0.413 0.238 0.843 0.758 1.000 1.000
st-EVT 0.554 0.270 0.723 1.000 0.552 0.087 0.276 0.162 0.962 0.564 0.868 1.000
opt 0.364 0.576 0.818 1.000 0.825 0.491 0.588 0.513 0.131 0.571 0.073 0.101
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FIG. 1. Traffic light matrices for VaRy, forecasts at the test confidence level n = 0.05. The top and
bottom rows are based on the scoring functions in (2.19) and (2.20), respectively.

the method rankings on the basis of just the average scores with the tests of pre-
dictive ability at the test level n = 5%. Along the vertical axis we consider hypo-
thetical “standard” models with the investigated “internal” models displayed along
the horizontal axis. The red and green cells correspond to situations in which the
comparative backtest is failed or passed, while yellow cells indicate cases where
no conclusive evidence is available to pass or fail the comparative backtest. The
rows in each figure correspond to different scoring functions used to compare the
methods.

Inconclusive traffic light matrices can result if all methods are performing rea-
sonably well or if the chosen scoring function has poor discrimination ability. In
the case of VaR, as the discrimination ability of both chosen scoring functions
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FI1G. 2. Traffic light matrices for t-expectile forecasts at the test confidence level n = 0.05. The top
and bottom rows are based on the scoring functions in (2.21) and (2.22), respectively.

seems good at level o« = 0.99, it is likely that at « = 0.90 several models show
a reasonable predictive ability. This is in line with the largely inconclusive tradi-
tional backtests at level o« = 0.90. At o = 0.90, the scoring function in (2.19) is
better at identifying models with the correctly specified likelihood than the scor-
ing function in (2.20), for which with just a few exceptions only the “t-FP” method
fails the comparative backtests as an internal method against all the other possible
standard methods. At o = 0.99, the two scoring functions result in a good agree-
ment with “n-FP” being the worst forecaster (i.e., failing the comparative backtests
against all the other methods), the optimal method passing comparative backtests

against all other methods [the exception is “st-EVT” under the scoring function in
(2.20)].
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F1G. 3.  Traffic light matrices for (VaR,, ES,) forecasts at the test confidence level n = 0.05. The
top and bottom rows are based on the scoring functions in (2.23) and (2.24), respectively.

The situation is less clear for the T-expectile. At level T = 0.96561, the “n-FP”
method fails the comparative backtest against most of the other methods under both
scoring functions; the use of the scoring function in (2.22) suggests failing the “t-
FP” method as well. The “st-EVT” method would pass the comparative backtest
against the models with the normal likelihood and “t-FP.”” At level t = 0.99855,
both scoring functions do not discriminate the methods much except for flagging
the optimal forecaster as better than most other methods and failing the “n-FP”
method. Expectiles have been used much less as a risk measure, and it may be
possible that the present methods are indeed suboptimal for expectile prediction
at high levels. Again, this is in line with the results of the traditional backtests, in
particular, the conditional two-sided tests.
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For (VaR,, ES,), the large number of conclusive comparative backtesting re-
sults indicates that we can discriminate well between methods, and, as in the case
of VaR, it appears less important which method to use at a lower level than at a
higher level. In particular, we once again see that the methods with the correctly
specified likelihood show superior predictive performance. According to the scor-
ing function in (2.23), the “st-EVT” method fails the comparative backtest against
its parametric and nonparametric counterparts “st-FP” and “st-FHS” at lower lev-
els of v. No definitive conclusions with respect to these models can be drawn at
v =0.975.

3.3. Data analysis: NASDAQ composite index. We have fitted an AR(1)-
GARCH(1, 1) model to the negated log-returns of the NASDAQ Composite in-
dex using a moving estimation window of 500 data points. The time series we
consider is from Feb. 8, 1971 until May 18, 2016, which gives us an out-of-sample
size n =10,920 to perform backtesting. The data is publicly available and has been
downloaded from http://finance.yahoo.com. (The code and the data used are posted
at https://github.com/nnolde/Elicitability-and-Backtesting.) While for illustrative
purposes we used the entire time series available to us at the time of manuscript
preparation, we do note that results are subject to sampling variability, especially
if only a small out-of-sample size is available to perform backtesting. Please refer
to Section D of the OS for further discussion of this issue.

Table 3 summarizes results of traditional and comparative backtesting for six
forecasting methods (refer to Section 3.2 for details on these methods) and, as
before, for the three risk measures [VaR, expectile and the (VaR, ES) pair] at their
standard Basel levels.

In the case of VaRg g9, the traditional backtests based on the two-sided simple
conditional calibration tests are passed only under the n-EVT and st-EVT methods.
So here the choice of the likelihood function in fitting the AR(1)-GARCH(1, 1)
filter seems to have a lower impact than the choice of the method at the second
stage of forecasting applied to the fitted residuals. At this relatively high risk mea-
sure level, the EVT-based methods outperform their other competitors based on
both the traditional backtests and the average scores. It should also be noted that
the two scoring functions have led to the same rankings of the forecasting proce-
dures. The fully parametric methods (n-FP and st-FP) show the worst performance
in terms of their predictive ability. n-FP falls into the red region against all other
methods, whereas st-FP fails against the EVT methods and cannot win against the
FHS methods; see the traffic light matrices in Figure 4 (top row).

On the other hand, for the 0.99855-expectile, the tests of simple conditional cali-
bration are rejected (at 5% level) for all the methods that use the normal likelihood.
Those methods that use the skewed-t likelihood also tend to rank higher, although,
in terms of significance, most methods fall into the yellow region (apart from the
n-FP method). The ranking of forecasts is different for the two scoring functions
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FI1G. 4. Traffic light matrices for VaRy (top row) based on scoring functions in (2.19) (left) and
(2.20) (right), for t-expectile (middle row) based on scoring functions in (2.21) (left) and (2.22)
(right), and for (VaR,, ES,) (bottom row) based on scoring functions in (2.23) (left) and (2.24)
(right) at the test confidence level n = 0.05 for the data analysis in Section 3.3.
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TABLE 3

Summary of traditional and comparative backtesting based on the negated log-returns on the
NASDAQ Composite index with an AR(1)-GARCH(1, 1) filter fitted over a moving estimation
window of 500 observations and the out-of-sample size of n = 10,920; refer to Section 3.3 for

details. The second column reports the average risk measure forecasts. “% Viol.” gives the
percentage of VaRq g9 forecast exceedances. The simple CCT and general CCT columns contain the
p-values for two-sided simple and general conditional calibration tests, respectively. The final two

columns show the average scores, scaled by one minus the risk measure confidence level for

presentation purposes, based on the specified scoring functions along with the corresponding
method ranks (in brackets)

Method VaRgyo99 % Viol. simple CCT general CCT E[eq. (2.19)] E[eq. (2.20)]

n-FP 2.363 2.3 0.000 0.000 3.8497 (6) 1.3017 (6)
n-FHS 2758 1.3 0.017 0.028 3.5842 (3) 1.1604 (3)
n-EVT 2.774 1.2 0.112 0.152 3.5675 (2) 1.1550 (2)
st-FP 2.739 1.3 0.004 0.012 3.5976 (5) 1.1669 (5)
st-FHS 2785 12 0.046 0.108 3.5904 (4) 1.1609 (4)
st-EVT 2.811 1.1 0.181 0.290 3.5654 (1) 1.1517 (1)
€0.99855 simple CCT  general CCT S [eq. (2.21)] S [eq. (2.22)]
n-FP 2.363 0.000 0.000 25.9030 (6)  0.9660 (6)
n-FHS 2.986 0.049 0.002 19.7333(2)  0.2933 (4)
n-EVT 2.966 0.023 0.001 19.8196 (5)  0.3084 (5)
st-FP 3.041 0.163 0.011 19.8159(4)  0.2509 (1)
st-FHS 3.078 0.227 0.011 19.7533 (3)  0.2589(2)
st-EVT 3.037 0.112 0.006 19.6963 (1)  0.2687 (3)
ES).975 simple CCT  general CCT  S[eq.(2.23)] S [eq. (2.24)]
n-FP 2375 0.000 0.000 1.7020 (6) 1.0492 (6)
n-FHS 2777 0.022 0.035 1.6587 (4)  0.9637 (4)
n-EVT 2.813 0.261 0.015 1.6560 (1) 0.9607 (2)
st-FP 2.810 0.001 0.248 1.6622(5)  0.9691 (5)
st-FHS 2.816 0.139 0.067 1.6582(3)  0.9617 (3)
st-EVT 2.857 0.327 0.117 1.6563(2)  0.9597 (1)

used. The 0-homogeneous choice at (2.22) clearly ranks the methods using the nor-
mal likelihood lower than those using the skewed-t likelihood in agreement with
the results of the simple conditional calibration tests, which is an argument in favor
of using (2.22) rather than (2.21).

For both VaRg g9 and 0.99855-expectile, the conditional calibration tests with
the test functions as in the simulation study lead to the failure of the correspond-
ing traditional backtest; see Table 3 for the expectile. This may seem overly con-
servative for practical purposes, and suggests either reexamining suitability of the
GARCH-type filter for these data or the use of a more appropriate test function. For
VaRy 99, we performed the conditional calibration tests also with the test function
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h, = (1, V(r;—1,x,—1)) (see Example 1), and the resulting p-values are reported
in Table 3. They lead to conclusions similar to those based on the simple condi-
tional calibration tests. This example underlines the importance of further studies
on appropriate choices of test functions.

The results for (VaR,,, ES,) with v = 0.975 suggest better performance when a
more flexible model such as the skewed-t is used to fit the AR(1)-GARCH(1, 1)
filter, although the use of EVT-based methods has a potential to compensate for
likelihood misspecifications. Again, fully parametric methods (n-FP and st-FP)
fall into the red region in the comparative backtests against most of the other more
flexible alternatives; see the bottom panels in Table 3 and Figure 4. The outcomes
show one interesting aspect which is not in contradiction with the theory but may
be puzzling and merit further investigation in future studies: The conditional cali-
bration test rejects all methods using a normal likelihood, but the scoring functions
rank the n-EVT method as the best or second best performing method. It seems that
the test function used in the conditional calibration test is sensitive to the likelihood
function used in fitting the AR(1)-GARCH(1, 1) filter, whereas the scoring func-
tions are more sensitive to the method at the second stage giving preference to the
EVT methods.

4. Discussion. In the paper we have discussed two approaches to backtest-
ing risk measure forecasts. We differentiate between traditional backtesting, which
gives a “yes” or “no” answer to the question of whether a method is acceptable or
not, and comparative backtesting, specifically aimed at comparing the predictive
performance of different forecasting methods. In general, there appears to be a
need for both traditional and comparative backtesting methodologies. The former
poses a requirement of identifiability on the risk measure functional, and serves
the purpose of categorizing methods based on whether the backtest is passed or
not, albeit with a somewhat limited ability to fail misspecified models. However,
traditional backtesting does not provide a statistically justifiable basis for method
comparisons often sought when assessing the performance of, say, a newly pro-
posed forecasting procedure against an existing one or when defending an internal
procedure against some standard procedure. Comparative backtesting provides a
methodology to serve exactly these purposes. For methods that are deemed accept-
able under a traditional backtest, comparative backtesting allows to rank methods
according to their predictive performance based on a chosen consistent scoring
function, provided that the risk measure under consideration is an elicitable func-
tional.

Traditional backtesting, which we formalize in the form of conditional calibra-
tion tests, provides a unifying framework for currently available backtests of risk
measures. To assess performance of different calibration tests in a controlled envi-
ronment, a simulation study was conducted. It emerged that in fact many methods
based on misspecified models may pass traditional backtests. And while the out-
come of the backtest is the same in all such cases (a pass), differences in risk
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measure forecasts under different methods will ultimately lead to different capital
requirements. One practical implication of this is that such backtests may create a
wrong incentive of minimizing the capital, subject to passing the backtest, rather
than aiming for a more accurate forecasting method. From the simulation study,
we have also seen that general conditional calibration tests have a slightly better
ability at detecting methods with misspecified models in comparison to the cor-
responding simple conditional calibration tests, with the latter being able to flag
only the most under-performing methods. However, for the real data, often, simple
and general conditional calibration tests produced similar results, suggesting that
in practice the use of simple conditional calibration tests may suffice. General con-
ditional calibration tests offer a more refined alternative, but require the choice of
a test function. Further research is necessary to gain more insight into the choice
of the test function for different risk measures and how this choice affects the out-
comes of the tests.

In light of the above mentioned limitations of traditional backtests, regulators
may additionally apply a comparative backtest in cases where a traditional back-
test is passed. This necessitates a standard model against which the bank’s internal
model is to be tested. Such a standard model should not be confused with the stan-
dardized approaches currently used by regulators for trading book risk manage-
ment of banks that either are not able to go for the (internal) model-based approach
or do not pass the regulatory backtesting. These standardized approaches do not
produce risk measure forecasts, and hence could not be incorporated into the com-
parative backtesting framework. However, comparative backtests will create the
correct incentive for the banks to develop risk measure forecasting methods that
aim for accuracy of forecasts, and hence can adequately quantify the risks. If the
Basel committee were to introduce comparative backtesting, a foresting method
to serve as the “standard model” should be chosen among flexible methods that
have low model risk and are known to do well under a fairly broad range of cir-
cumstances. One such possibility could be the filtered historical simulation with a
GARCH filter fitted using a flexible likelihood model such as the skewed-t in our
numerical examples.

In summary, our recommendation to the Basel committee would be to adopt
a two-stage backtesting framework. At stage I, a calibration test is applied in
line with the current practice. In terms of implementation, the easiest option is
to use the two-sided simple conditional calibration test. Conditionally on pass-
ing the stage I test, stage Il will then assess the bank’s “internal model” against
the regulator’s “standard model” via a comparative backtest. From the regulatory
point of view, the statistical significance of the comparative backtests can be nicely
summarized by means of traffic light matrices highlighting which methods pass or
fail against a standard procedure, and when not enough evidence is available to
make a conclusive statement. Provided that the regulatory risk measure is elic-
itable, comparative backtests require a choice of a consistent scoring function for
that risk measure. In the case of backtesting ES, the current regulatory risk measure



ELICITABILITY AND BACKTESTING 1871

for banks’ trading books, the 0-homogeneous scoring function in equation (2.24)
would be a reasonable choice, as it is unit consistent and has milder moment re-
strictions on the underlying stochastic process than other positive homogeneous
alternatives. Additionally, based on the data analysis, it yields results in rankings
which are in better agreement with the outcomes of the calibration tests and leads
to slightly more conclusive results in terms of the traffic light matrix entries versus
the considered 1/2-homogeneous alternative.

It is worth noting that the comparative backtesting methodology can also be
used by financial institutions internally to select better performing methods among
competing alternatives. The same would apply to academic literature seeking to
compare different forecasting methods, with the comparison done on the basis of
forecast accuracy, in addition to calibration.

There are still many open problems and follow-up questions that require further
investigation to create a fuller understanding of the usability of the presented back-
testing methodologies. In the context of traditional backtesting, we found condi-
tional calibration tests to be better at detecting model misspecifications. However,
these conditional tests require the user to choose a set of test functions. An explo-
ration of potential test function choices and their influence on finite sample proper-
ties of the tests in a broader context than covered in our simulation study would be
beneficial to guide practical applicability of these backtests. A choice problem also
arises in the context of comparative backtesting where it is possible to make use of
any member of the family of consistent scoring functions for a given risk measure
functional. Here, different aspects of the resulting backtests can be assessed. One
particular aspect to consider is the existence of the mean score (or difference in
scores) for the underlying process. Financial time series tend to have fairly heavy
tails and this would place restrictions on the choice of a suitable scoring func-
tion. From this perspective, the proposed scoring functions with 0-homogeneous
score differences allow to study heavier-tailed processes than the h-homogeneous
choices (with b > 0). Finally, we have not explored the potentially promising pos-
sibility of using conditional comparative backtests. There are many open questions
on how they should be formulated and implemented to be informative in practice.

Some of the risk measures used in practice are in fact nonelicitable. A prominent
example here is the ES. In such cases the notion of joint elicitability may open the
door to the ability to conduct backtests, in this case for multivariate risk measure
functionals. We have explored the joint elicitability of VaR and ES, and, on the ba-
sis of our simulation study, the backtesting results show a good ability to identify
and differentiate among methods relying on correct and misspecified model for-
mulations. However, further research is needed to provide a clearer interpretation
of both traditional and comparative backtests. For example, in the case of the pair
(VaR, ES), the question would be whether it is a poor forecasting of VaR or ES or
both that caused a (traditional or comparative) backtest to fail.
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