
Electronic Journal of Statistics
Vol. 10 (2016) 582–607
ISSN: 1935-7524
DOI: 10.1214/16-EJS1116

Brillinger mixing of determinantal point

processes and statistical applications

Christophe A. N. Biscio
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1. Introduction

Determinantal point processes (DPPs) are models for repulsive point patterns,
where nearby points of the process tend to repel each other. They have been
introduced in their general form in [24] and extensively studied in Probability
theory, see [15] and [29]. From a statistical perspective, DPPs have been applied
in machine learning [21], spatial statistics [23, 22] and telecommunication [6, 25].
The growing interest for DPPs in the statistical community is due to their
appealing properties: They can be quickly and perfectly simulated, parametric
models can easily be constructed, their moments are known and the likelihood
has a closed form expression. Their definition and some of their properties are
recalled in Section 2.1 and we refer to [23] for more details. Some realizations
are shown in Figure 1.

We focus in this paper on stationary DPPs on the continuous space R
d and

we prove that they are Brillinger mixing. To the best of our knowledge, no
mixing property was established so far for DPPs. The Brillinger mixing prop-
erty is an important step towards asymptotic statistics for DPPs, which are
mainly unexplored in the literature. The definition, recalled in Section 2.2, is
based on the moments of the process. Specifically, a stationary point process
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is Brillinger mixing if for any k ≥ 2 the total variation of its reduced factorial
cumulant measure of order k is finite, see for instance [8] or [20]. Note that the
Brillinger mixing property only applies to stationary point processes. Already
known Brillinger mixing point processes include Poisson cluster processes and
Matérn hardcore point processes (of type I, type II and some generalizations as
in [33]), see [14] and [12]. As far as we know, the Matérn hardcore models are
the only models of repulsive stationary point processes that have been proved
to be Brillinger mixing. Our result shows that DPPs provide a new flexible class
of repulsive Brillinger mixing point processes.

In Section 4, we give some applications of the Brillinger mixing property of
DPPs. These are mainly based on general results established in [17], [10] and [11],
that we extend and/or simplify in the setting of stationary DPPs. Namely, we
prove the asymptotic normality of a wide class of functionals of order p of a DPP,
in the spirit of [17]. This result allows in particular to retrieve the asymptotic
behavior of the estimator of the intensity of a DPP, known since [30], and to get
the asymptotic normality of the kernel estimator of the pair correlation function
of a DPP, which is a new result presented in Section 4.2. The Brillinger mixing
property is useful for many other applications, see for instance [13], [18] and
[19]. In the recent contribution [2], this property is used to get the asymptotic
normality of minimum contrast estimators for parametric DPPs.

The reminder of this paper is organized as follows. Section 2 gathers some
basic facts about stationary DPPs, moment measures of a point process and
the Brillinger mixing property. Our main result stating that stationary DPPs
are Brillinger mixing is presented in Section 3. Some statistical applications
are given in Section 4. Section 5 and Section 6 contain some technical proofs
and Section 7 is an appendix dealing with the computation of the asymptotic
variance in the statistical applications of Section 4.

Remark 1.1. During the submission process of the present contribution, we
have been aware of the paper [9] submitted at the same time, which is in close
relation. In [9], the author considers the class of stationary α-DPPs, the particu-
lar case α = −1 corresponding to standard DPPs as studied in the present paper.
Denoting C the kernel of theses processes, it is proved in [9] that they are strongly
Brillinger mixing if C ∈ L1. In contrast, we prove the standard Brillinger mix-
ing property under the minimal condition C ∈ L2. Strong Brillinger mixing is
a stronger result than Brillinger mixing, but on the other hand the condition
C ∈ L1 excludes important kernels in L2 \ L1 as those associated to the most
repulsive DPPs as determined in [3]. The two papers have been elaborated inde-
pendently and turn out to be complementary to each other.

2. Preliminaries

2.1. Determinantal point processes

For d ≥ 1, we denote by B0(R
d) the class of bounded Borel sets on R

d. For
x ⊂ R

d and B ∈ B0(R
d), x(B) stands for the number of points in x ∩ B.
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We let N := {x ⊂ R
d, x(B) < ∞, ∀B ∈ B0(R

d)} be the space of locally finite
configurations of points in R

d. This set is equipped with the σ-algebra generated
by the sets {x ⊂ R

d, x(B) = n} for all B ∈ B0(R
d) and all n ∈ N ∪ {0}, where

N denotes the space of positive integers. A point process on R
d is a measurable

application from a probability space into the setN . We denote a point process by
a bold capital letter, usually X, and identify the mapping X and the associated
random set of points. All considered point processes are assumed to be simple,
i.e. two points of the process never coincide, almost surely. For further details
on point processes, we refer to [4, 5].

The factorial moment measures and especially the joint intensities of order k
of a point process, defined below, are important quantities of interest. They in
particular characterize the law of determinantal point processes.

Definition 2.1. The factorial moment measure of order k (k ≥ 1) of a simple
point process X is the measure on R

dk, denoted by α(k), such that for any family
of subsets D1, . . . , Dk in R

d,

α(k) (D1 × . . .×Dk) = E

⎛⎝ �=∑
(x1,...,xk)∈Xk

1{x1∈D1,...,xk∈Dk}

⎞⎠
where E is the expectation over the distribution of X and the symbol 	= over the
sum means that we consider only mutually disjoints k-tuples of points x1, . . . , xk.

If α(k) admits a density with respect to the Lebesgue measure on R
kd, this

density is called the joint intensity of order k of X and is denoted by ρ(k).

Important particular cases are the factorial moment measure of order one,
called the intensity measure, and the factorial moment measure of order two. If
X is stationary, then for all S ⊂ R

d, there exists ρ > 0 such that α(1)(S) = ρ|S|,
where |S| stands for the volume (Lebesgue measure) of S. In this case, for any
x ∈ R

d, ρ(1)(x) = ρ is called the intensity of the process and represents the ex-
pected number of points per unit volume. Regarding the joint intensity of order
two, for (x, y) ∈ R

2d and x 	= y, ρ(2)(x, y) may be viewed heuristically as the
probability that there is a point of the process in a small neighbourhood around
x and another point in a small neighbourhood around y. In spatial statistics,
the second order properties of a point process are often studied through the pair
correlation function (pcf). The pcf is defined for almost every (x, y) ∈ R

2d by

g(x, y) =
ρ(2)(x, y)

ρ(x)ρ(y)
.

In the stationary and isotropic case, g(x, y) = g0(r) depends only on the Eu-
clidean distance r = |x− y|. Intuitively, g0(r) is the quotient of the probability
that two points occur at distance r (taking into account the interaction in-
duced by the process) and the same probability if there was no interaction.
Consequently, for r > 0, a common interpretation, see for instance [32], is that
g0(r) > 1 characterizes clustering at distance r while g0(r) < 1 characterizes
repulsiveness at distance r.



Brillinger mixing of DPPs 585

Determinantal point processes (DPPs) are defined through their joint inten-
sities. They have been introduced in their current form by Macchi in [24] to
model the position of particles that repel each other. Since our results concern
only stationary DPPs, we restrict the definition to this subclass, which simplifies
the notation.

Definition 2.2. Let C : Rd → R be a function. A point process X on R
d is a

stationary DPP with kernel C, in short X ∼ DPP (C), if for all k ≥ 1 its joint
intensity of order k satisfies the relation

ρ(k)(x1, . . . xk) = det[C](x1, . . . , xk)

for almost every (x1, . . . , xk) ∈ R
dk, where [C](x1, . . . , xk) denotes the matrix

with entries C(xi − xj), 1 ≤ i, j ≤ k.

It is actually possible to consider complex-valued kernels and/or non-statio-
nary DPPs, but this is not the setting of this paper and we refer to [15] for a
review on DPPs in the general case. The existence of a DPP requires several
conditions on the kernel C. Sufficient conditions in the stationary case are pro-
vided in the next proposition. They rely on the Fourier transform of C and are
easy to verify in practice, unlike the general conditions for non stationary DPPs,
see [15].

We define the Fourier transform of a function h ∈ L1(Rd) as

F(h)(t) =

∫
Rd

h(x)e2iπx·tdx, ∀t ∈ R
d

and extend this definition to L2(Rd) by Plancherel’s theorem, see [31]. We have
the following existence result.

Proposition 2.3 ([23]). Assume C is a symmetric continuous real-valued func-
tion in L2(Rd). Then DPP (C) exists if and only if 0 ≤ F(C) ≤ 1.

In other words, by Proposition 2.3 any continuous real-valued covariance
function C in L2(Rd) with F(C) ≤ 1 defines a DPP. Henceforth, we assume the
following condition.

Condition K(ρ). A kernel C is said to verify condition K(ρ) if C is a symmetric
continuous real-valued function in L2(Rd) with C(0) = ρ and 0 ≤ F(C) ≤ 1.

As noticed in [15], there exist some DPPs with a non-symmetric kernel, but
this is not the rule and symmetry is assumed in all general studies on DPPs.
Similarly, continuity of C is not necessary as shown below with the Poisson point
process. But note that C being a covariance function, it is continuous if and only
if it is continuous at the origin. Therefore continuity of C is not a constraining
assumption if we are interested in DPPs different from the Poisson model. The
other conditions in K(ρ) are necessary for the existence of a stationary DPP.

By definition, all moments of a DPP are explicitly known. In particular,
assuming K(ρ), DPP (C) is stationary with intensity ρ and denoting g its pcf
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we have

g(x, y) = 1− C(x− y)2

ρ2
(2.1)

for almost every (x, y) ∈ R
2d. Consequently g ≤ 1, which shows that DPPs

exhibit repulsiveness.
A first example of stationary DPP is the stationary Poisson process with

intensity ρ, which corresponds to the kernel C(x) = ρ1{x=0}. However, this
example is very particular and represents in some sense the extreme case of
a DPP without any interaction. In particular its kernel does not satisfy K(ρ)
since it is not continuous. In contrast, K(ρ) is verified by numerous covari-
ance functions, and this makes easy the definition of parametric families of
DPPs, where the condition F(C) ≤ 1 implies some restrictions on the parame-
ter space. Some examples are given in [23] and [3], where the stationary Poisson
process appears as a degenerated case. For instance, the Gaussian kernels cor-
respond to C(x) = ρe−|x/α|2 , x ∈ R

d, where the existence condition implies
α ≤ 1/(

√
πρ1/d). Another important example is the most repulsive stationary

DPP with intensity ρ, as defined and determined in [3]. Its kernel C is the
Fourier transform of the indicator function of the Euclidean ball centered at the
origin with volume ρ, which gives

C(x) =

√
ρΓ(d2 + 1)

πd/4

J d
2

(
2
√
πΓ(d2 + 1)

1
d ρ

1
d |x|

)
|x| d2

, ∀x ∈ R
d, (2.2)

where J d
2
denotes the Bessel function of the first kind of order d

2 . Some examples

of realisations of DPPs are given in Figure 1.

Fig 1. From left to right, letting the intensity ρ = 100, realizations on [0, 1]2 of a stationary
Poisson process, a DPP with a Gaussian kernel and the maximal possible choice for the range
parameter α (α = 0.056), and a DPP with kernel (2.2).

2.2. Moment measures and Brillinger mixing

In this section, we review the definition of the cumulant and factorial cumulant
moment measures of a point process X as well as their reduced version. These
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are at the basis of the Brillinger mixing property defined in the following. The
relation with the Laplace and the probability generating functionals of X is also
described. We assume that for any bounded set A, the random variable X(A)
has moments of any order. This ensures that the quantities introduced in this
section are well defined. Note that by definition this assumption holds true for
a DPP. Further details on these topics may be found in [4, 5] and [20].

Definition 2.4. For k ∈ N, the cumulant of the k random variables X1, . . . , Xk

is, if it exists,

Cum(X1, . . . , Xk) =
∂k

∂t1 . . . ∂tk
logE

[
exp

(
k∑

i=1

tiXi

)]∣∣∣∣∣
t1=...=tk=0

.

The k-th order cumulant of the random variable X is Cumk(X) := Cum(X, . . . ,
X).

The notion of cumulant of random variables extends to point processes as
follows.

Definition 2.5. For k ∈ N, the k-th order cumulant moment measure γk of a
point process X is a locally finite signed measure on R

dk defined for any bounded
measurable sets A1, . . . , Ak in R

d by

γk

(
k∏

i=1

Ai

)
= Cum

(∑
x∈X

1{x∈A1}, . . . ,
∑
x∈X

1{x∈Ak}

)
.

Definition 2.6. For k ∈ N, the k-th order factorial cumulant moment measure
γ[k] of a point process with factorial moment measure α(r), for r ≤ k, is a locally

finite signed measure on R
dk defined for any bounded measurable sets A1, . . . , Ak

in R
d by

γ[k]

(
k∏

i=1

Ai

)
=

k∑
j=1

(−1)j−1(j − 1)!
∑

B1,...,Bj∈Pk
j

j∏
i=1

α(|Ki|)

( ∏
ki∈Bi

Aki

)
,

where for all j ≤ k, Pk
j denote the set of all partitions of {1, . . . , k} into j non

empty sets B1, . . . , Bj.

For stationary point processes, we can define the so-called reduced version of
the previous measure.

Definition 2.7. For any k ≥ 2, the reduced k-th order factorial cumulant mo-
ment measure γred

[k] of a stationary point process is a locally finite signed measure

on R
d(k−1) defined for any bounded measurable sets A1, . . . , Ak in R

d by

γ[k]

(
k∏

i=1

Ai

)
=

∫
Ak

γred
[k]

(
k−1∏
i=1

(Ai − x)

)
dx

where for i = 1, . . . , k − 1, Ai − x is the translation of the set Ai by x.



588 C. A. N. Biscio and F. Lavancier

The reduced cumulant moment measure is defined similarly. An important
property of signed measures is given by the following theorem leading to the
definition of the total variation of a signed measure.

Theorem 2.8 (Hahn-Jordan decomposition, see [7, Theorem 5.6.1]). For any
signed measure ν, there exist two measures ν+ and ν− uniquely determined by
ν such that at least one of them is finite and

ν = ν+ − ν−.

Definition 2.9. Let ν be a signed measure with Hahn-Jordan decomposition
ν = ν+ − ν−. The total variation measure |ν| of ν is defined by

|ν| = ν+ + ν−.

Following Theorem 2.8, for k ≥ 2, we denote the Hahn-Jordan decomposition
of the reduced k-th order moment factorial cumulant measure γred

[k] = γ+red
[k] −

γ−red
[k] .

Definition 2.10. A point process is Brillinger mixing if, for k ≥ 2, we have∣∣∣γred
[k]

∣∣∣ (Rd(k−1)
)
< +∞.

The different moment measures of a point process X are related to the power
series expansion of the Laplace and the probability generating functionals of X.

Definition 2.11. The Laplace functional LX of a point process X is defined
for any bounded measurable function f that vanishes outside a bounded set of
R

d by

LX(f) = E

(
e−

∑
x∈X f(x)

)
.

Definition 2.12. The probability generating functional of a point process X is
defined for any function h from R

d into [0, 1], such that 1− h vanishes outside
a bounded set, by

GX(h) = E

(
exp

(∑
x∈X

log h(x)

))
.

Notice that for any function h defined as in Definition 2.12 and taking values
within a closed subset of (0, 1], we have

GX(h) = LX(− log(h)).

Proposition 2.13 ([5, Section 9.5]). Let X be a point process with cumulant
moment measures γk and factorial cumulant moment measures γ[k]. Let f and

η be bounded measurable functions on R
d that vanish outside a bounded set.
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Assume further that η takes values in [0, 1]. Then, for all N ∈ N, we have the
following power series expansions when s ≥ 0 and s → 0

logLX(sf)

=

N∑
j=1

(−s)j

j!

∫
f(x1)f(x2) . . . f(xj)γj(dx1 × dx2 × . . .× dxj) + o(sN ),

logGX(1− sη)

=

N∑
j=1

(−s)j

j!

∫
η(x1)η(x2) . . . η(xj)γ[j](dx1 × dx2 × . . .× dxj) + o(sN ).

We conclude this section by giving the relation between γk and γ[k]. To this
end, we recall the definition of the Stirling numbers of the first and second kind
and refer to [4, Section 5.2] for a detailed presentation. 1 For x ∈ R and k ∈ N,
we denote by x[k] = x(x − 1) . . . (x − k + 1)1{0≤k≤x} the falling factorial of x.
Assuming k ≤ x and 1 ≤ j ≤ k, the Stirling numbers of the first kind Dj,k and
of the second kind Δj,k are defined by the relations

x[k] =

k∑
j=1

(−1)k−jDj,k x
j and xk =

k∑
j=1

Δj,k x
[j].

Proposition 2.14. Let A be a bounded set of Rd. For any integer k, we have
the relations

γ[k](A
k) =

k∑
j=1

(−1)k−jDj,kγj(A
j),

γk(A
k) =

k∑
j=1

Δj,kγ[j](A
j).

Proof. We denote by L andG the Laplace and probability generating functionals
of a point process with, for k ≥ 1, factorial cumulant moment and cumulant
moment measures γ[k] and γk, respectively. Let 1A be the real valued function

defined for all x ∈ R
d by 1A(x) = 1{x∈A}. By Proposition 2.13, for all N ∈ N,

we have as s → 0, s ≥ 0

logG(1− s1A) =

N∑
k=1

(−s)k

k!
γ[k](A

k) + o(sN ) (2.3)

As noticed after Definition 2.12,

logG(1− s1A) = logL(− log(1− s1A)) = logL(− log(1− s)1A).

Since s ∼ − log(1− s) as s → 0, we have by Proposition 2.13,

logG(1− s1A) =

N∑
j=1

[log(1− s)]
j

j!
γj(A

j) + o(sN ).
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By [1, (24.1.3.I.B)] we deduce that

logG(1− s1A) =

N∑
j=1

γj(A
j)

j!
j!

N∑
k=j

(−1)k−jDj,k
(−s)k

k!
+ o(sN )

=

N∑
k=1

(−s)k

k!

k∑
j=1

(−1)k−jDj,kγj(A
j) + o(sN ). (2.4)

We conclude by identifying the coefficients in (2.3) and (2.4). The proof of the
second formula is similar, starting with the other powers expansion in Proposi-
tion 2.13 and using [1, (24.1.4.I.B)] instead of [1, (24.1.3.I.B)]

3. Main result

In this section, we prove in Theorem 3.2 below that a DPP with kernel verifying
the condition K(ρ) is Brillinger mixing. We recall that this mixing property in-
volves the factorial cumulant moments of the DPP. It is not easy to deduce these
moments from the initial Definition 2.6. However, the power series expansion
of the log-Laplace functional in Proposition 2.13, which is known for a DPP,
allows us to derive a closed form expression for the factorial cumulant measures
as stated in the following lemma.

Lemma 3.1. Consider a DPP with kernel C verifying condition K(ρ) and, for
k ∈ N, denote its k-th factorial cumulant moment measure by γ[k]. For every

measurable bounded set A in R
d and k ≥ 2, we have

γ[k](A
k) = (−1)k+1(k − 1)!

∫
Ak

C(x2 − x1) . . . C(x1 − xk)dx1 . . . dxk.

Proof. By [27, Proposition 3.9], we deduce that for any bounded set A ⊂ R
d

and s small enough,

log (LX(s1A)) =

∞∑
p=1

(−s)p

p!

p∑
n=1

(−1)n+1
∑

p1+...+pn=p

p1,...,pn≥1

p!

n · p1!p2! · · · pn!∫
An

C(x2 − x1) . . . C(x1 − xn)dx1 . . . dxn.

Then, by Proposition 2.13, we have by the last equation that for all p ∈ N and
any bounded set A ⊂ R

d,

γp(A
p) =

p∑
n=1

(−1)n+1
∑

p1+...+pn=p

p1,...,pn≥1

p!

n · p1!p2! · · · pn!∫
An

C(x2 − x1) . . . C(x1 − xn)dx1 . . . dxn.
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Thus, by Proposition 2.14, we have for k ≥ 2,

γ[k](A
k) =

k∑
p=1

(−1)k−pDp,k

p∑
n=1

(−1)n+1
∑

p1+...+pn=p

p1,...,pn≥1

p!

n · p1!p2! · · · pn!∫
An

C(x2 − x1) . . . C(x1 − xn)dx1 . . . dxn. (3.1)

By [1, (24.1.2.I.B)], it is easily seen that∑
p1+...+pn=p

p1,...,pn≥1

p!

p1!p2! · · · pn!
=

∑
p1+...+pn=p

p!

p1!p2! · · · pn!
−

∑
p1+...+pn−1=p

p!

p1!p2! · · · pn−1!

= np − (n− 1)p. (3.2)

By definition

k∑
p=1

(−1)k−pDp,k(n
p − (n− 1)p) = n[k] − (n− 1)[k] (3.3)

which is null for every n < k. Therefore, by (3.2) and (3.3), only the terms n = k
is non null in the sum (3.1).

We are now in position to prove our main result.

Theorem 3.2. A DPP with kernel verifying the condition K(ρ), for a given
ρ > 0, is Brillinger mixing.

Proof. For any t > 0, we have by taking f = 1[−t,t]d in Definition 2.7,

γ[k]([−t, t]dk) =

∫
Rd

1{x∈[−t,t]d}γ
red
[k]

((
[−t, t]d − x

)k−1
)
dx.

By Lemma 3.1∫
Rd

1{x∈[−t,t]d}γ
red
[k]

((
[−t, t]d − x

)k−1
)
dx = (−1)k+1(k − 1)! Ik(t) (3.4)

where for all k ≥ 1 and t > 0, Ik(t) :=
∫
[−t,t]dk

C(x2 − x1) . . . C(x1 − xk)dx1 . . .

dxk. Since C verifies the condition K(ρ), by Mercer’s theorem, see also [22,
Section 2.3], we have for all t > 0,

C(x− y) =
∑
j∈N

λj(t)φj(x)φj(y), ∀(x, y) ∈ [−t, t]d,

where for all j ∈ N, {φj}j∈N is an orthonormal basis of L2
(
[−t, t]d

)
and λj(t)

belongs to [0, 1] by [24, Theorem 4.5.5]. Then, by orthogonality of the basis
{φj}j∈N, we have for all t > 0 and k ≥ 1,

Ik(t) =
∑
j∈N

λk
j (t) ≤

∑
j∈N

λj(t) = I1(t) (3.5)
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where I1(t) =
∫
[−t,t]d

ρdx = O(td). Thus, by Theorem 2.8, (3.4) and (3.5), there

exists a constant κ > 0 and T > 0 such that for all t ≥ T ,∣∣∣∣∫
Rd

1{x∈[−t,t]d}

[
γ+red
[k]

((
[−t, t]d − x

)k−1
)

−γ−red
[k]

((
[−t, t]d − x

)k−1
)]

dx
∣∣∣ ≤ κtd. (3.6)

Henceforth, we assume t ≥ T . By Theorem 2.8, at least one of the measure
γ+red
[k] or γ−red

[k] is finite. Let us assume without loss of generality that γ−red
[k] is

finite. Thus, by (3.6) and the monotonicity of the measure γ−red
[k] , we have∫

[−t,t]d
γ+red
[k]

((
[−t, t]d − x

)k−1
)
dx ≤ td

(
κ+ 2dγ−red

[k] ((Rd)k−1)
)
, (3.7)

so by positivity of γ+red
[k] ,∫

[−t
2 , t2 ]

d
γ+red
[k]

((
[−t, t]d − x

)k−1
)
dx ≤

∫
[−t,t]d

γ+red
[k]

((
[−t, t]d − x

)k−1
)
dx.

(3.8)

Further, for all (x, y) ∈
[−t

2 , t
2

]2d
, y + x ∈ [−t, t]d, so for all x ∈

[−t
2 , t

2

]d
we

have
[−t

2 , t
2

]d ⊂ [−t, t]d − x. It follows by (3.8) and the monotonicity of γ+red
[k]

that∫
[−t

2 , t2 ]
d
γ+red
[k]

([
−t

2
,
t

2

]d(k−1)
)
dx ≤

∫
[−t

2 , t2 ]
d
γ+red
[k]

((
[−t, t]d − x

)k−1
)
dx.

(3.9)

Hence by (3.7)–(3.9), we have

γ+red
[k]

([
−t

2
,
t

2

]d(k−1)
)

≤
(
κ+ 2dγ−red

[k] (Rd(k−1))
)
.

By letting t tend to infinity in the last equation, we see that γ+red
[k] is finite and

so is
∣∣∣γred

[k]

∣∣∣ by Definition 2.9, which concludes the proof.

4. Statistical applications

Many applications of the Brillinger mixing property for point processes may be
found in [10], [11], [13], [18] and [19]. We present in this section some of these
applications for DPPs. We prove in Section 4.1 a general central limit theorem
for certain functionals of a DPP that are involved in the asymptotic properties
of standard estimators. As an example, we apply this result to the estimator
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of the intensity of a DPP. Another important application concerns the asymp-
totic behavior of minimum contrast estimators for parametric DPPs, which is
the subject of a separate paper [2]. In Section 4.2, we obtain the asymptotic
properties of the kernel estimator of the pcf of a DPP. In particular, we prove a
central limit theorem for the pointwise estimator of the pcf and for its integrated
squared error.

4.1. Asymptotic behaviour of functionals of order p

We present an important consequence of the Brillinger mixing property, namely
a central limit theorem for a wide class of functionals of the point process and
the convergence of their moments. A first theorem was mentioned in [20] and
proved in [17]. We present here a more general version that yields in particular
the asymptotic normality of standard statistics as the natural estimator of the
intensity of the process. These results apply to stationary DPPs under condition
K(ρ) as explained and exemplified at the end of this section.

For a given set D of Rd, we denote by ∂D the boundary of D.

Definition 4.1. A sequence of subsets {Dn}n∈N of Rd is called regular if for
all n ∈ N, Dn ⊂ Dn+1, Dn is compact, convex and there exist constants α1 and
α2 such that

α1n
d ≤ |Dn| ≤ α2n

d,

α1n
d−1 ≤ Hd−1 (∂Dn) ≤ α2n

d−1

where Hd−1 is the (d− 1)-dimensional Hausdorff measure.

Note that any sequence of subsets as above grows to R
d in all directions. For

p ≥ 1, let fD be a function from R
dp into R that depends on a given set D ⊂ R

d

and define for a stationary point process X,

Np (fD) :=
∑

(x1,...,xp)∈Xp

fD(x1, . . . , xp).

By letting the set D in the last equation be a sequence of regular subsets
{Dn}n∈N, we have under some suitable conditions on the function fDn , the
following central limit theorem on the sequence {Np (fDn)}n∈N

. The proof is
postponed to Section 5.2.

Proposition 4.2. Let {Dn}n∈N and {D̃n}n∈N be two sequences of regular sets

in the sense of Definition 4.1 such that |D̃n|
|Dn|

n→+∞−−−−−→ κ for a given κ > 0.

Assume that there exists a bounded and compactly supported function F from
R

d(p−1) into R
+ such that for all n ∈ N and (x1, . . . , xp) ∈ R

dp,

|fDn(x1, . . . , xp)| ≤
1

|D̃n|
1{x1∈Dn}F (x2 − x1, . . . , xp − x1). (4.1)
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Assume further that the point process X is ergodic, admits moments of any order
and is Brillinger mixing in the sense of Definition 2.10. Then, for all k ≥ 2, we
have

Cumk

(√
|Dn|Np (fDn)

)
= O

(
|Dn|1−

k
2

)
. (4.2)

Moreover, if there exists σ > 0 such that

Var
(√

|Dn|Np (fDn)
)
−−−−−→
n→+∞

σ2, (4.3)

we have the convergence√
|Dn| [Np (fDn)− E (Np (fDn))]

distr.−−−−−→
n→+∞

N (0, σ2) (4.4)

and the convergence of all moments to the corresponding moments of N (0, σ2).

By (4.2), the variance given in (4.3) is uniformly bounded with respect to
n ∈ N. If Dn and fDn in (4.3) are sufficiently generic, the convergence (4.3) of
the variance holds true. However, in the general case, it must be assumed. To
check (4.3) in applications, it is convenient to express the variance in (4.3) in
terms of the factorial cumulant moment measures of X. In appendix, we detail
this expression for the important situations p = 1 and p = 2 with fDn(x1, x2) =
0 for x1 	= x2, see Lemmas 7.1, 7.2 and 7.3.

Proposition 4.2 applies to stationary DPPs with kernel verifying K(ρ) pro-
vided (4.1) is verified. Indeed, Soshnikov in [29] proved that a stationary DPP
is ergodic. Moreover, a DPP admits moments of any order by definition and is
Brillinger mixing under condition K(ρ) by Theorem 3.2. As a direct application
when p = 1, we retrieve a result of [30] giving the asymptotic normality of the
estimator of the intensity of a DPP.

Corollary 4.3. Let X be a DPP with kernel verifying K(ρ) for a given ρ > 0
and {Dn}n∈N be a family of regular sets. Define for all n ∈ N,

ρ̂n =
1

|Dn|
∑
x∈X

1{x∈Dn}. (4.5)

We have the convergence√
|Dn| (ρ̂n − ρ)

distr.−−−−−→
n→+∞

N(0, σ2)

where σ2 = limn→+∞ V ar
(√

|Dn|ρ̂n
)
= ρ−

∫
Rd C(x)2dx.

The proof of this corollary follows by taking p = 1 and fDn(x) =
1

|Dn|1{x∈Dn}
in Proposition 4.2. In this case, the assumption (4.3) holds by Lemma 7.1 and a
straightforward calculus. The result of Corollary 4.3 may for instance be applied
in practice to construct an asymptotic confidence interval for ρ. To this end, the
asymptotic variance σ2 must be consistently estimated. This can be achieved
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by the non-parametric estimator considered in [13]. Alternatively, assuming a
parametric form for C, one can use a likelihood approach or some minimum
contrast estimators as presented in [23] and studied from a theoretical point of
view in [2].

4.2. Applications to the empirical pair correlation function.

We consider in this section the estimation of the pcf of a stationary and isotropic
DPP in R

d. In this setting g(x, y) = g0(r) depends only on the Euclidean dis-
tance r = |x−y|. Let {Dn}n∈N

be a sequence of regular subsets of Rd in the sense
of Definition 4.1, {bn}n∈N a sequence of positive real numbers, and k a function
from R into R

+. For n ∈ N and z ∈ R
d, we denote for short Dz

n := Dn − z the
translation of Dn by z. For r > 0, we consider the kernel estimator of g0(r)

ĝn(r) =
1

σdrd−1ρ̂2n

∑
(x,y)∈X2

x �=y

1{x∈Dn, y∈Dn}
1

bn|Dn ∩Dx−y
n |

k

(
r − |x− y|

bn

)

(4.6)

where ρ̂n is given by (4.5) and σd = 2πd/2

Γ(d/2) denotes the surface-area of the d-

dimensional unit sphere. Some comments and details about this estimator may
be found, for instance, in [26, Section 4.3.5] or [8].

The following proposition gives the asymptotic normality of the pointwise es-
timator ĝn(r) for r > 0. Its proof, given in Section 6, is based on Proposition 4.2
and results from [11].

Proposition 4.4. Let {Dn}n∈N be a regular sequence of subsets of R
d. Assume

that the sequence {bn}n∈N is such that b3n|Dn| → +∞ and b5n|Dn| → 0. Let k
be a symmetric and bounded function with compact support included in [−T, T ],
for a given T > 0, and

∫
R
k(t)dt = 1. Let C be an isotropic twice differentiable

kernel on R
d \ {0} verifying K(ρ) for a given ρ > 0. Then, for all r > 0, we

have the convergence√
bn|Dn| (ĝn(r)− g0(r))

distr.−−−−−→
n→+∞

N(0, τ2r )

where τ2r = 2ρ−2 g0(r)
σdrd−1

√∫
R
k2(t)dt.

In addition to the previous result, we state the asymptotic normality of the
integrated squared error of the estimator ρ̂ 2

n ĝn where ĝn is defined in (4.6). This
quantity is the basis of an asymptotic goodness-of-fit test for stationary DPPs
as presented in [10]. For all segment I ⊂ R

+ \ {0} and n ∈ N, denote

ISEn(I) =

∫
I

(
ρ̂ 2
n ĝn(r)− ρ2g0(r)

)2
dr.
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Proposition 4.5. Let {Dn}n∈N be a regular sequence of subsets of R
d. Assume

that the sequence {bn}n∈N is such that bn → 0 and bn|Dn| → +∞. Let k be a
symmetric and bounded function with compact support included in [−T, T ], for a
given T > 0, and

∫
R
k(t)dt = 1. Let C be an isotropic twice differentiable kernel

on R
d\{0} verifying K(ρ) for a given ρ > 0. Then, for all segment I ⊂ R

+\{0},
we have as n tends to infinity,

bn|Dn|E (ISEn(I)) = 2ρ2
∫
I

g0(r)

σdrd−1
dr

∫
R

k(t)2dt+O (bn) +O(|Dn|b5n).

If in addition b5n|Dn| → 0 then√
bn|Dn| (ISEn(I)− E (ISEn(I)))

distr.−−−−−→
n→+∞

N(0, τ2)

where τ2 = 8ρ4
∫
I

(
g0(r)

σdrd−1

)2

dr
∫
R
(k ∗ k)2(s)ds and ∗ denotes the convolution

product.

Proposition 4.5 is an application to the DPP’s case of the results given in [10].
1 In addition to the Brillinger mixing, ensured by Theorem 3.2, and the prop-
erties of the sequence {Dn}n∈N, the authors need two additional assumptions.
Namely, these assumptions are the locally uniform Lipschitz continuity of the
first derivative of g0 and a second assumption related to the densities of the re-
duced factorial cumulant measures. By (2.1) and since C is twice differentiable
on R

d \ {0}, the first derivative of g0 is uniformly Lipschitz continuous on every
compact sets in R

+ \ {0} so the first assumption holds. The second assumption
is verified by Lemma 4.6 below. Consequently, Proposition 4.5 is proved by [10,
Lemma 3.4] and [10, Theorem 3.5].

Lemma 4.6. Let be an isotropic DPP with kernel C verifying the condition
K(ρ), whose reduced factorial cumulant moment measures of order 3 and 4 have
densities cred[3] and cred[4] , respectively. For all compact set K ⊂ R

d and ε > 0, we
have

sup
(u,v)∈R2d

(|u|,|v|)∈(K⊕ε)2

∣∣∣cred[3] (u, v)
∣∣∣ < +∞ (4.7)

and

sup
(u,v)∈R2d

(|u|,|v|)∈(K⊕ε)2

∫
Rd

∣∣∣cred[4] (u,w, v + w)
∣∣∣ dw < +∞, (4.8)

where K⊕ε = K + B(0, ε) and B(0, ε) is the Euclidean ball centred at 0 with
radius ε.

Proof. By (7.2)–(7.3) in Section 7, we have for all (u, v, w) ∈ R
3d,

cred[3] (u, v) = 2C(u)C(v)C(v − u)
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and

cred[4] (u, v, w) = −2 [C(u)C(v)C(u− w)C(v − w)

+C(u)C(w)C(u− v)C(v − w) + C(v)C(w)C(u− v)C(u− w)] .

Notice that K⊕ε is compact and since C verifies the condition K(ρ), it is con-
tinuous. Therefore, by (7.2), (4.7) holds immediately. Finally, (4.8) is verified
by Cauchy-Schwarz inequality and (7.3).

5. Proof of Proposition 4.2

5.1. Complement on the moments and cumulants of a point process

We present here the necessary background to prove Proposition 4.2. Let p and
k be two integers and X a point process that admits moments of any order.
Consider, for 1 ≤ i ≤ k, the random variables

Np (φi) =
∑

(x1,...,xp)∈Xp

φi(x1, . . . , xp) (5.1)

where for i = 1, . . . , p, φi is a function from R
dp to R.

For l, s ≤ kp, denote Pkp
l (resp. Ql

s) the set of all partitions of {1, . . . , kp}
(resp. {1, . . . , l}) into l (resp. s) non empty sets p1, . . . , pl (resp. q1, . . . , qs). For
r = 1, . . . , s, denote β1, . . . , β|qr| the elements of the set qr and |q| the cardinal
of a given set q. Then, as proved by Jolivet in [17, p121-122], we have

E (Np (φ1) . . . Np (φk)) =

kp∑
l=1

∑
Πl∈Pkp

l

l∑
s=1

∑
χl

s∈Ql
s

Il(Πl, χ
l
s) (5.2)

where for all l, s ≤ kp,

Il(Πl, χ
l
s) =

∫
Rdl

l∏
m=1

∏
j∈pm

1{xm=θj} × . . .

×
k∏

i=1

φi(θ(i−1)p+1, . . . , θip)

s∏
r=1

γ|qr|(dxβ1 . . . dxβ|qr |). (5.3)

The introduction of the term θ is not easy to understand at first sight. For the
sake of clarity, we give an example for p = k = 2 and Π2 := {p1, p2} a given
partition of the set {1, 2, 3, 4} into 2 non empty sets, namely p1 = {1, 4} and
p2 = {2, 3}. In this case, we have

k∏
i=1

φi(θ(i−1)p+1, . . . , θip) = φ1(θ1, θ2)φ2(θ3, θ4).
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Thus, by the last equation, we have

2∏
m=1

∏
j∈pm

1{xm=θj}

k∏
i=1

φi(θ(i−1)p+1, . . . , θip) = φ1(x1, x2)φ2(x2, x1)

and a similar calculus is done if, for l = 1, . . . , 4, we choose another partition Πl

of {1, 2, 3, 4}. We can now describe completely Cum(Np (φ1) , . . . , Np (φk)).

Theorem 5.1 ([17]). The cumulant moment Cum(Np (φ1) , . . . , Np (φk)) is
equal to the sum of integrals Il(Πl, χ

l
s) in Formula (5.2) that are indecomposable,

i.e. that can not be decomposed as a product of at least two integrals.

5.2. Proof of Proposition 4.2

Assuming (4.2) and (4.3), the proposition is proved by [16, Theorem 1]. Let us
check (4.2). By [28, Chapter II, Section 12, Equation (37)], if X and Y are two
independent random variables Cumk(X + Y ) = Cumk(X) + Cumk(Y ) and the
cumulant of order k of a constant is null for k ≥ 2. Consequently, for k ≥ 2,

Cumk

(√
|Dn| [Np (fDn)− E (Np (fDn))]

)
= Cumk

(√
|Dn|Np (fDn)

)
= |Dn|

k
2 Cumk (Np (fDn)) .

By Theorem 5.1, for every k ∈ N, Cumk (Np (fDn)) is a finite sum of inde-
composable integrals Il(Πl, χ

l
s). Thus, it is sufficient to prove that for any k ≥ 2,

each integral
∣∣Il(Πl, χ

l
s)
∣∣ = O

(
|Dn|1−k

)
. By (5.3) we have

Il(Πl, χ
l
s) =

∫
Rdl

l∏
m=1

∏
j∈pm

1{xm=θj}

k∏
i=1

fDn(θ(i−1)p+1, θ(i−1)p+2, . . . , θip)

×
s∏

r=1

γqr (dxβ1 . . . dxβ|qr |). (5.4)

Then, by Definition 2.9, we obtain from the last equation that

|Il(Πl, χ
l
s)| ≤

∫
Rdl

l∏
m=1

∏
j∈pm

1{xm=θj}

k∏
i=1

∣∣fDn(θ(i−1)p+1, θ(i−1)p+2, . . . , θip)
∣∣

×
s∏

r=1

|γqr | (dxβ1 . . . dxβ|qr|).

Using (4.1), we get

|Il(Πl, χ
l
s)| ≤

1

|D̃n|k

∫
Rdl

l∏
m=1

∏
j∈pm

1{xm=θj}

k∏
i=1

1{θ(i−1)p+1∈Dn}
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× F
(
θ(i−1)p+2 − θ(i−1)p+1, . . . , θip − θ(i−1)p+1

) s∏
r=1

|γqr | (dxβ1 . . . dxβ|qr |).

(5.5)

Let ||F ||∞ denotes the supremum of F on R
d(p−1). Since the function F

is bounded and compactly supported, there exist compacts K1, . . . ,Kp−1 such
that

∀(x1, . . . , xp−1)∈ (Rd)p−1, F (x1, . . . , xp−1)≤ ||F ||∞1{x1∈K1} . . .1{xp−1∈Kp−1}.

Then, we deduce from (5.5) that

|Il(Πl, χ
l
s)| ≤

(
||F ||∞
|D̃n|

)k ∫
Rdl

l∏
m=1

∏
j∈pm

1{xm=θj}

k∏
i=1

1{θ(i−1)p+1∈Dn}

p−1∏
η=1

1{(θ(i−1)p+η+1−θ(i−1)p+1)∈Kη}

s∏
r=1

|γqr |(dxβ1 . . . dxβ|qr |). (5.6)

Moreover, as already proved in [17, Section 4, Theorem 3], we have as n tends
to infinity,

∫
Rdl

l∏
m=1

∏
j∈pm

1{xm=θj}

k∏
i=1

1{θ(i−1)p+1∈Dn} . . .

. . .

p−1∏
η=1

1{(θ(i−1)p+η+1−θ(i−1)p+1)∈Kη}

s∏
r=1

|γqr |(dxβ1 . . . dxβ|qr|) = O (|Dn|) . (5.7)

Since |D̃n|
|Dn| −−−−−→n→+∞

κ, the right hand term of (5.6) is, by (5.7), asymptotically

of order |Dn|1−k
, which ends the proof.

6. Proof of Proposition 4.4

The proof is based on the following lemmas.

Lemma 6.1. Let {Dn}n∈N be a regular sequence of subsets of R
d. Assume

that the sequence {bn}n∈N is such that bn → 0 and b3n|Dn| → +∞. Let k be a
symmetric and bounded function with compact support included in [−T, T ], for a
given T > 0, and

∫
R
k(t)dt = 1. Let C be an isotropic twice differentiable kernel

on R
d \ {0} verifying K(ρ) for a given ρ > 0. Then, for all r > 0, we have the

convergence √
bn|Dn|

(
ρ̂ 2
n ĝn(r)− E(ρ̂ 2

n ĝn(r))
) distr.−−−−−→

n→+∞
N(0, κ2)

where κ2 = 2ρ2 g0(r)
σdrd−1

√∫
R
k2(t)dt.
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Lemma 6.2. Under the same assumptions as in Proposition 4.5, for all segment
I ⊂ R

+ \ {0}, there exists a constant M ≥ 0 such that

sup
r∈I

∣∣E (
ρ̂ 2
n ĝn(r)− ρ2g0(r)

)∣∣ ≤ b2nMρ2
∫
R

t2|k(t)|dt.

The proofs of Lemmas 6.1-6.2 are postponed to the end of this section. Let
us now prove Proposition 4.4. For all n ∈ N and r > 0, we have

ρ̂ 2
n

√
bn|Dn|(ĝn(r)− g0(r)) = An +Bn + Cn (6.1)

where

An =
√
bn|Dn|

[
ρ̂ 2
n ĝn(r)− E(ρ̂ 2

n ĝn(r))
]

Bn =
√
bn|Dn|

[
E(ρ̂ 2

n ĝn(r))− ρ2g0(r)
]

Cn =
√
bn|Dn|g0(r)

[
ρ2 − ρ̂ 2

n

]
.

By Lemma 6.1 we have the convergence

An
distr.−−−−−→

n→+∞
N(0, κ2) (6.2)

and since b5n|Dn| tends to 0 as n tends to infinity, we have by Lemma 6.2,

Bn
P−−−−−→

n→+∞
0. (6.3)

By Corollary 4.3 and the delta method, we know that
√
|Dn|(ρ̂2n−ρ2) converges

in distribution. Since bn → 0, we deduce that

Cn
P−−−−−→

n→+∞
0. (6.4)

Finally, by inserting (6.2)–(6.4) in (6.1), the proposition is proved by Slutsky’s
theorem and the almost sure convergence of ρ̂ 2

n to ρ2.

6.1. Proof of Lemma 6.1

We need the following result.

Lemma 6.3. Let r > 0 and D a subset of R
d such that the Euclidean ball

B(0, r) is included in D. Then, for all x ∈ B(0, r), we have D�r ⊂ D ∩Dx.

Proof of Lemma 6.3. By definition, D ∩Dx = {u ∈ D, u+ x ∈ D} and

D�r = {u ∈ D, ∀v ∈ B(0, r), u+ v ∈ D} .

Since x ∈ B(0, r), we have the inclusion D�r ⊂ D ∩Dx.
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Define for all n ∈ N and (x1, x2) ∈ R
2d,

fDn(x1, x2) = 1{x1∈Dn, x2∈Dn}
1

|Dn ∩Dx1−x2
n |

k

(
r − |x1 − x2|

bn

)
.

Notice by (4.6) that

bnσdr
d−1ρ̂ 2

n ĝn(r) =
∑

(x1,x2)∈X2

x1 �=x2

fDn(x1, x2). (6.5)

The support of k is included in [−T, T ] so for any (x1, x2) ∈ R
2d,∣∣∣∣k(r − |x1 − x2|

bn

)∣∣∣∣1{x2∈Dn} ≤
∣∣∣∣k(r − |x1 − x2|

bn

)∣∣∣∣1{|x1−x2|<r+Tbn}

≤
∣∣∣∣k(r − |x1 − x2|

bn

)∣∣∣∣1{|x1−x2|<r+T}

as soon as bn < 1 which we assume without loss of generality since {bn}n∈N

tends to 0. Then, by Lemma 6.3 and since k is bounded, there exists M > 0
such that for all n ∈ N,

|fDn(x1, x2)| ≤
M1{x1∈Dn}

|D�(r+T )
n |

1{|x1−x2|≤r+T}.

Therefore, by (4.2) in Proposition 4.2 and (6.5), we have for all k ≥ 3,

Cumk

(√
|Dn|bnσdr

d−1ρ̂ 2
n ĝn(r)

)
= O(|Dn|1−

k
2 )

whereby for all k ≥ 3,

Cumk

(√
bn|Dn|ρ̂ 2

n ĝn(r)
)
= O

(
b−k/2
n |Dn|1−

k
2

)
which tends to 0 when n goes to infinity since b3n|Dn| → ∞. Further, the con-
vergences of Cumk

(√
bn|Dn|ρ̂ 2

n ĝn(r)
)
for k = 1, 2 are proved in [11] under con-

ditions that we have already verified after Proposition 4.5. Finally, Lemma 6.1
is proved by the cumulant method, see [16, Theorem 1].

6.2. Proof of Lemma 6.2

By (4.6) and Defintion 2.1, we have for all n ∈ N and r ∈ I,

E
(
ρ̂ 2
n ĝn(r)

)
=

ρ2

σdrd−1bn

∫
Rd

∫
Rd

1{x∈Dn,y∈Dn}∣∣Dn ∩Dx−y
n

∣∣ k
(
r − |x− y|

bn

)
ρ(2)(x, y)

ρ2
dxdy

=
ρ2

σdrd−1bn

∫
Rd

∫
Rd

1{x∈Dn,y∈Dn}∣∣Dn ∩Dx−y
n

∣∣ k
(
r − |x− y|

bn

)
g0(|x− y|)dxdy.
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To shorten, denote kbn(.) =
1
bn
k
(

.
bn

)
. By the substitution z = x − y and since

y ∈ Dz
n if and only if z ∈ Dy

n, we obtain from the last equation that

E
(
ρ̂ 2
n ĝn(r)

)
=

ρ2

σdrd−1

∫
Rd

∫
Rd

1{y∈Dz
n∩Dn}

|Dn ∩Dz
n|

kbn(r − |z|)g0(|z|)dzdy

=
ρ2

σdrd−1

∫
Rd

kbn(r − |z|)g0(|z|)dz.

Converting this integral into polar coordinates and by symmetry of k, we get

E
(
ρ̂ 2
n ĝn(r)

)
= ρ2

∫ +∞

0

(
t

r

)d−1

kbn(r − t)g0(t)dt

= ρ2
∫ +∞

− r
bn

k (u)

(
r + ubn

r

)d−1

g0(r + ubn)du.

For all n large enough, we have for all r ∈ I that t
bn

≥ T , hence

E
(
ρ̂ 2
n ĝn(r)

)
= ρ2

∫ T

−T

k (u)

(
r + ubn

r

)d−1

g0(r + ubn)du.

Assume that I writes [rmin, rmax] for rmax > rmin > 0 and define for s ∈ R
+,

f(s) :=
(
s
r

)d−1
g0(s). Notice that I⊕Tbn := [rmin−Tbn, rmax+Tbn] ⊂ R

+ \{0}
as soon as n is large enough which we assume without loss of generality. Since
g0(.) is of class C2 on I⊕Tbn , so is f(.). Thus by Taylor-Lagrange expansion, we
have

E
(
ρ̂ 2
n ĝn(r)

)
= ρ2

∫ T

−T

k (u)

(
f(r) + f ′(r)ubn +

∫ r+ubn

r

f ′′(s)(ubn + r − s)ds

)
du. (6.6)

Since k is symmetric, we have
∫ T

−T
uk(u)du = 0. Moreover,

sup
s∈I⊕Tbn

|f ′′(s)| ≤ 1

rd−1
min

sup
s∈I⊕Tbn

∣∣∣(sd−1g0(s)
)′′∣∣∣ ,

showing that f ′′(.) is uniformly bounded on I⊕Tbn by a constant M . Further, for

all n ∈ N and s ∈ [r, r+ubn], |ubn+r−s| ≤ |ubn|. Finally, since
∫ T

−T
k(u)du = 1,

by (6.6), we obtain for n large enough,∣∣E (
ρ̂ 2
n ĝn(r)− ρ2g0(r)

)∣∣ ≤ b2nMρ2
∫
R

u2|k(u)|du, ∀r ∈ I.

7. Appendix

We gather here some results useful to compute the asymptotic variance in Propo-
sition 4.2 and Corollary 4.3.
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Let X a stationary point process on R
d and cred[2] , c

red
[3] and cred[4] the densities

of its factorial cumulant moment measures of order 2, 3 and 4, respectively,
assuming they exist. If X is a DPP with kernel C verifying the condition K(ρ),
for a given ρ > 0, then we deduce from Definitions 2.2 and 2.6 that for all
(u, v, w) ∈ R

3d,

cred[2] (u) =− C2(u), (7.1)

cred[3] (u, v) = 2 C(u)C(v)C(v − u), (7.2)

cred[4] (u, v, w) =− 2
[
C(u)C(v)C(u− w)C(v − w) + C(u)C(w)C(u− v)C(v − w)

+ C(v)C(w)C(u− v)C(u− w)
]
. (7.3)

Lemma 7.1. Let f be a function from R
d into R that is bounded, measurable

and compactly supported. Then we have

Var

(∑
x∈X

f(x)

)
=

∫
R2d

f(x)f(x+ y)cred[2] (y)dxdy + ρ

∫
Rd

f2(x)dx.

Proof. Notice that(∑
x∈X

f(x)

)2

=
∑

(x,y)∈X2

f(x)f(y) +
∑
x∈X

f2(x).

Then, denoting ρ(2) the density of the second order factorial moment measure,
we have by Definitions 2.1 and 2.6,

Var

(∑
x∈X

f(x)

)
=

∫
R2d

f(x)f(y)
(
ρ(2)(x, y)− ρ2

)
dxdy + ρ

∫
Rd

f2(x)dx

=

∫
R2d

f(x)f(y)c[2](x, y)dxdy + ρ

∫
Rd

f2(x)dx.

Finally, by Definition 2.7, we have

Var

(∑
x∈X

f(x)

)
=

∫
R2d

f(x)f(x+ y)cred[2] (y)dxdy + ρ

∫
Rd

f2(x)dx.

Lemma 7.2. Let f be a function from R
2d into R that is bounded, measurable

and compactly supported. Then, we have

Var

⎛⎝ �=∑
(x,y)∈X2

f(x, y)

⎞⎠
=

∫
R2d

(
f2(x, x+ y) + f(x, x+ y)f(x+ y, x)

)
cred[2] (y)dxdy
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+ ρ2
∫
R2d

(
f2(x, y) + f(x, y)f(y, x)

)
dxdy

+

∫
R3d

[f(x, x+ y) + f(x+ y, x)]

[f(x+ y, x+ u) + f(x+ u, x+ y)] cred[3] (y, u)dxdydu

+ 2ρ

∫
R3d

[f(x, y) + f(y, x)] [f(y, y + u) + f(y + u, y)] cred[2] (u)dxdydu

+ ρ

∫
R3d

[f(x, y) + f(y, x)] [f(y, x+ u) + f(x+ u, y)] cred[2] (u)dxdydu

+ ρ3
∫
R3d

[f(x, y) + f(y, x)] [f(y, u) + f(u, y)] dxdydu

+

∫
R4d

f(x, x+ y)f(x+ u, x+ v)cred[4] (y, u, v)dxdydudv

+ 4ρ

∫
R4d

f(x, y)f(y + u, y + v)cred[3] (u, v)dxdydudv

+ 2

∫
R4d

f(x, y)f(x+ u, y + v)cred[2] (u)c
red
[2] (v)dxdydudv

+ 4ρ2
∫
R4d

f(x, y)f(x+ u, v)cred[2] (u)dxdydudv.

Proof. This lemma is a generalization of [13, Lemma 5] for a function f non
necessary symmetric. The variance is first computed with respect to the facto-
rial moment measure by Definition 2.1. Then, the factorial moment measure is
written in terms of the factorial cumulant moment measure by [4, Corollary 5.2
VII] and the result is obtained by using Definition 2.7. We refer to the proof
of [13, Lemma 5] for the detailed calculus, the only change being the use of the
following decomposition in place of the original one,⎛⎝ �=∑

(x,y)∈X2

f(x, y)

⎞⎠2

=

�=∑
(x,y)∈X2

f2(x, y) + f(x, y)f(y, x)

+

�=∑
(x,y,u)∈X3

[f(x, y) + f(y, x)] [f(y, u) + f(u, y)]

+

�=∑
(x,y,u,v)∈X4

f(x, y)f(u, v).

Lemma 7.3. Let f be a function from R
2d into R that is bounded, measurable,

symmetric and compactly supported. Let h be a function from R
d into R that is

bounded, measurable and compactly supported. Then, we have

Cov

⎛⎝ �=∑
(x,y)∈X2

f(x, y),
∑
u∈X

h(u)

)
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=

∫
R3d

f(x, x+ y)h(u+ x)cred[3] (y, u)dxdydu

+ ρ

∫
R3d

f(x, y)h(u+ x)cred[2] (u)dxdydu

+ ρ

∫
R3d

f(x, y)h(u+ y)cred[2] (u)dxdydu

+

∫
R2d

f(x, y + x) [h(x) + h(y + x)] cred[2] (y)dxdy

+ ρ2
∫
R2d

f(x, y) [h(x) + h(y)] dxdy.

Proof. Notice that⎛⎝ �=∑
(x,y)∈X2

f(x, y)

⎞⎠(∑
u∈X

h(u)

)

=

�=∑
(x,y,u)∈X3

f(x, y)h(u) +

�=∑
(x,y)∈X2

f(x, y)(h(x) + h(y)).

Then, by the last equation and Definition 2.1, we have

Cov

⎛⎝ �=∑
(x,y)∈X2

f(x, y),
∑
u∈X

h(u)

)

=

∫∫∫
f(x, y)h(u)

(
ρ(3)(x, y, u)− ρρ(2)(x, y)

)
dxdydu

+

∫∫
f(x, y)(h(x) + h(y))ρ(2)(x, y)dxdy.

Finally, the proof is concluded by [4, Corollary 5.2 VII] and Definition 2.7.
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