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Abstract

According to the Dudley-Wichura extension of the Skorohod representation theorem,
convergence in distribution to a limit in a separable set is equivalent to the existence
of a coupling with elements converging a.s. in the metric. A density analogue of
this theorem says that a sequence of probability densities on a general measurable
space has a probability density as a pointwise lower limit if and only if there exists
a coupling with elements converging a.s. in the discrete metric. In this paper the
discrete-metric theorem is extended to stochastic processes considered in a widening
time window. The extension is then used to prove the separability version of the
Skorohod representation theorem. The paper concludes with an application to Markov
chains.
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1 Introduction

Let X3, Xo,...,X be random elements in a general space (F, &) with distributions
P, P,...,P. Let f1,fo,...,f be the densities of P;, P,,..., P with respect to some
measure ) on (E, ). Note that such a measure \ always exists, we could for instance
take A\ =P+ ° 27"P,. If

n=1
liminf f,, = f a.e. A
n—oo
we write
X, — X in density as n — oo.

Note that f,/f is defined almost everywhere P. It is the Radon-Nikodym derivative
dP, /dP of the absolutely continuous part of P, with respect to P. Thus convergence in
density does not depend on A and is equivalent to

liminf dP,/dP =1 a.e. P.

n—oo

*Department of Mathematics, University of Iceland, Dunhaga 5, 107 Reykjavik, Iceland. E-mail: hermann@
hi.is


http://dx.doi.org/10.1214/16-ECP4644
http://www.imstat.org/ecp/
mailto:hermann@hi.is
mailto:hermann@hi.is

Convergence in density and the Skorohod representation

In general, liminf,, ,, f, = f a.e. A\ is weaker than lim,, .., f, = f a.e. A and stronger
than convergence in total variation. However, if (F, £) is discrete (that is, if F' is countable
and & = 2F = the class of all subsets of F) then these three modes of convergence are
equivalent and simplify to

nh~>H;o PX,=2)=PX=2), z€E;
see Theorems 6.1 and 7.1 in Chapter 1 of [12].

Let (X'l, Xo,... , X) denote a coupling of X, X5,..., X; this means that the random
elements X 1, Xg, ceey X are defined on a common probability space and have the marginal
distributions P, P,, ..., P. In a 1995 paper [11], Section 5.4, this author showed that
convergence in density is equivalent to the existence of a coupling converging in the
discrete metric:

Theorem 0. It holds that

X, — X in density as n — oo
if and only if there exists a coupling (Xl, Xg, . ,X) of X1, Xs,..., X such that for some
random variable N taking values in IN = {1,2,...},

X,=X, n>N. (1.1)

This density result is analogous to the Skorohod representation theorem which says
that convergence in distribution on a complete separable metric F with £ the Borel sets
(a Polish space) is equivalent to the existence of a coupling converging a.s. in the metric.
Skorohod proved this theorem in the 1956 paper [10], Dudley removed the completeness
assumption in the 1968 paper [7], and Wichura showed in the 1970 paper [13] that it is
enough that the limit probability measure P is concentrated on a separable Borel set;
for historical notes, see [8]. Theorem 0 was rediscovered by Sethuraman [9] in 2002.
For recent developments going beyond separability and considering convergence in
probability, see the series of papers [2]-[6] by Berti, Pratelli and Rigo.

In the present paper we extend Theorem 0 to stochastic processes considered in a
widening time window. The main result, Theorem 2.1, is established in Section 2 while
Section 3 contains corollaries elaborating on that result. In Section 4, we show how this
yields a new proof of the separability version of the Skorohod representation theorem.
Section 5 concludes with an application to Markov chains.

2 Convergence in a widening time window

In this section we consider continuous-time stochastic processes without restriction
on state space or paths. Also we allow the state space to vary with time and include
infinity in the time set. Discrete-time processes are considered at the end of the section.

Let (E', &), t € [0,00], be a family of measurable spaces. Let H be a non-empty
subset of the product set {(2%),cjo,o] : 2° € E®,s € [0,00]} and let H be the smallest
o-algebra on H making the maps taking (z°).¢cjo,oc) € H to0 2t € E* measurable for all
t € [0,00]. Fort € [0,00), let (H*,H') be the image space of (H, ) under the map taking
(25)sef0.00] € H 10 (25)scf0,0)-

If Z = (Z°)scjo,] is @ random element in (H, H) write Z* = (Z°) (o) for a segment
of Z in a finite time window of length ¢ € [0, 00). Note that Z’ is a random element in
(H',H'). We also write Z for a random element in (H', H!) even if no Z is present.

According to the following theorem, convergence in density in all finite time windows
is the distributional form of discrete-metric convergence in a widening time window.
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(Note that the coupling in this theorem is not a full coupling of Z,, Z,, ..., Z but only

a coupling of Z!*,Z%,... Z. Extensions to a full coupling are considered in the next
section.)
Theorem 2.1. Let Zy,Z,, ..., Z be random elements in (H,H) where (H,H) is as above.
Then

Vt €[0,00): Z! — Z' in density as n — o (2.1)
if and only if there exists a sequence of numbers 0 < t; < t; < --- — oo and a coupling
(28,2, ... Z) of Z'' 2%, ... Z such that for some N-valued random variable N,

Zi» =7, n>N. (2.2)

Proof. First, assume existence of the coupling. Fix ¢t € [0,00), take m € IN such that
tm > t, and note that then (2.2) yields Z; = Z! forn > max{N,m}. Use this and the fact
that (1.1) implies convergence in density to obtain (2.1).

Conversely assume that (2.1) holds. With ¢ € [0,00) and n € IN, let @ be the distribu-
tion of Z, let Q! be the distribution of Z?, let Q!, be the distribution of Z!, let f! be the

n’

density of Z! with respect to some measure \' on (H*,H!), and let v/ be the measure
on (H',H') with density ¢! := inf;>, f!. Due to the assumption (2.1), ¢!, increases to
a density of Z* as n — co. Thus by monotone convergence, the measures v/, increase
setwise to Q°,

<< QY te[0,00).
Thus there are numbers 1 = nyg < ny < ng < ... such that
0<QF—vf <27 keNu{o}

For A € H and z* € H*, let q;(A|z"*) be the conditional probability of the event {Z € A}
given Z¥ = z*. Then

Q(A) :/qk<A|~>ko7 AcH.

Since vf < QF the measure v, is absolutely continuous with respect to Q*. Thus we
can extend v¥ from (H*, 1*) to a measure v, on (H,H) by

vg(A) := /qk(A\ ) dyﬁk, AeH.
The last three displays yield
0<Q -1 <27% keNu{o.

Let h, be a density of v, with respect to Q. For integers k < m let v}, ,,, be the measure
with density ming¢;<m h; with respect to (). Partition H into sets Ay, ..., A, € H such
that ming¢j<m hj = h; on A; and thus

Vk,m('mAi) :Vi('mAi)a k<i<m.

Now define t,, = k if ny, < n < ng4+1. The last two displays yield

m

0<Q—v,m= Z (Q( NA4;)—v(-N Al)> < i 9—i — 9—tntl
i=tn

i=tp
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Let p,, be the measure with density inf; <, h; with respect to @ and send m — oo to

nXx

obtain 0 < Q — p,, < 27 *»*1, Thus the p, increase setwise to Q,

0=:po < p1 < Q. (2.3)

Let u* be the marginal of p, on (H ’“,7—[’“). Note that v/ is the marginal of v, on
(H*,#H*) and that ,, < vy, and vi» < vi» (since nt < n). Thus pt» < vi. Now v} has
density inf;>,, f! and Q! has den31ty It and thus ! < QY. Since pl» < vi» this yields

ubn Qn"', n € IN. (2.4)

Keep in mind (2.3) and (2.4) throughout the following coupling construction.
Let (2, F, P) be a probability space supporting the following collection of independent
random elements with distributions to be specified below:

N, Vi, Vo, ..., Wi, Wa,...
Let N be IN-valued with distribution function (see (2.3))
P(N <n)=pu,(H), nel.
Let V,, be a random element in (H,#) with distribution (see (2.3))

% (arbitrary distribution if P(N = n) = 0).
Let W, be a random element in (H®» H!») with distribution (see (2.4))
Qtr — ptn
ﬁ (arbitrary distribution if P(N > n) = 0).
PutZ=V ~ to obtain that Z has the same distribution as Z,
o (o)
= Z P(V, € )P(N=n)= Z(Mn — pn-1) = Q.
n=1 n=1

Put Z!» = V' on {N < n} and Z!» = W,, on {N > n} to obtain that Z!» has the same
distribution as Z!,

= ip(vf; € )P(N =k)+P(W,, € )P(N > n)

Z (" = i) + (@ = i) = Qyp
By definition Z = V and thus Z‘» = V. Also by definition, Z» = V% on {N < n}.
Thus Zt” = Z' when n > N, that is, (2.2) holds.

IfZ = (Z',72%,...,2%) write Z*¥ = (Z',Z2,...,Z%) for a segment in a finite time
window of length & € INU {0}. The following is a discrete-time version of Theorem 2.1.
Corollary 2.2. Let Z1,Z,, ..., Z be random elements in some product space (E*,£') @
(B2 &) ® - @ (E>,E). Then

VkeIN: ZF - Z* in density as n — oo

if and only if there exists a sequence of integers 0 < k; < k3 < --- — oo and a coupling
(Z’fl, z’;2, ..., L) of Z’fl , Z’;Q, ..., Z such that for some IN-valued random variable N,

Zkn =7k n> N.

Proof. Apply Theorem 2.1 to (Z1L1+SJ)SE[0’OO], (ZQLHSJ)SE[O,OO], oo (Z3)) i (0,00] - (OF TE-
peat the proof of Theorem 2.1 with ¢ and ¢,, replaced by k£ and kn.) O
ECP 21 (2016), paper 63. http://www.imstat.org/ecp/
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3 Extensions to a full coupling

The coupling in Theorem 2.1 is not a full coupling of Z1, Z,, ..., Z but only a coupling
of fo , Zt227 ..., Z. However, in the discrete-time case of Corollary 2.2, if we restrict all but
the infinite-time state space to be discrete, then there is the following simple extension
of the coupling. It will be used in Section 4 to establish the separability version of the
Skorohod representation theorem.

Corollary 3.1. Let Z,Z,,...,7Z be random elements in the product space (E',£') ®
(E2,E2)® -+ @ (E*,£%) where (E',EY), (E?,£?), ... are discrete and (E>,£>) is some
measurable space. Then

Vk e N: ZF - Z* in density as n — oo
if and only if there exists a coupling (Zl7 22, e Z) of Z1,7Zs,...,7Z such that, for some
IN-valued random variable N and integers 0 < k1 < ko < --- — o0,

Proof. Due to Corollary 2.2, we only need to show that (Z’fl, Z’Q"Q, ..., Z) can be extended
to a coupling of Z1, Zs, . . ., Z. For that purpose set, forn € Nand i*» € E' x E?x .- -x EF»,

Qn ik» = the conditional distribution of Z,, given {Zkn = iFny, (3.1)

Let the probability space (2, F, P) supporting Z’fl , 212“2, ..., Z, N be large enough to also
support random elements in (E1, &) @ (E%,€?) @ - @ (B>, E%),

Vi, ne€N, i* € B' x E? x ... x EFn,

that are independent, independent of (Z’{l , 212“2, 2, N), and such that

kn

n,ikn

=i* and V,, j», has distribution Q,, i,

Note that V:"an = Zk» . Thus we can extend Z*» to a Z, by setting Z,, := V Then

n, Zﬁ,’” .

P(Z, €)=Y P(Vyn € )P(Z =iF) =) Qi ()P(ZEr =iF).

ikn ikn

Since ZfL has the same distribution as Z’Tj we obtain from this and (3.1) that Zn has the
same distribution as Z,,, as desired. O

In Corollary 3.1 we obtained a full coupling of Z1, Zo, ..., Z in the discrete-time case
by restricting Z* and Z* to a discrete state space for k € IN but without restricting the
state space of Z;° and Z°°. We shall now much weaken this restriction at the expense of
putting a restriction on Z;° and Z*°.

Corollary 3.2. Let Z1,Z>,...,7Z be random elements in the product of Polish spaces

(EL,EY @ (E?,E2) @ --- ® (E>,£>). Then the coupling (Z¥*,Z%*,...,Z) in Corollary 2.2

can be extended to a coupling (Zl, Zo,..., Z)ofZ,,7Zy,..., 7.

Proof. Set (G,G) = (ELEY) @ (E%E?) @ -+ @ (E>,E%). Let (2, F,P) be the probability
space supporting the random elements Z]fl, 252, ..., Z, N in Corollary 2.2. Since a
countable product of Polish spaces is Polish, there exist probability kernels @, (-|-),
n € N, such that Q,,(A|z*») is the conditional probability of {Z,, € A} given Zk» = z*=,

ECP 21 (2016), paper 63. http://www.imstat.org/ecp/
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AeGandzFr € E' x E?2 x - x EFn, According to the Ionescu-Tulcea extension theorem
(see [1], Section 2.7.2), the set function defined, with A € F, A',4?... € Gand n € NN, by

PAx A x--- x A" x E"H ... x B

)
:/AP(dw) /A1 Ql(dZ1|ZI1Cl / Qn (dzn | Z (w))

extends to a probability measure P on (Q F)w Q=0xGxGx...and F =
o(F x G x G x...). Note that Q,({z, : Zk» # z Zk) =0 as. P foralln € N
which implies that P(U>2, {(w,21,22,...) : Zfn ( ) # 2kn}) = 0. Delete this P null set
from (Q,f,f’) to obtain a probability space (Q F, P) such that if (w,z1,22,...) € QO
then z, is restricted to satisfy zF» = Z*»(w). Now extend Z*~ to a Z,, as follows: for
(w,21,22,...) € Q and n € N put Z,(w,z1,22,...) := z,. Due to z;» = ZFn (w), this
definition transfers Z*~ consistently from (2, F,P) to (, F, P) Finally transfer Z to

(Q F, P) by putting Z(w Z1,Z2,...) = Z( ) for (w,z1,22,...) € Q. O

here
)

The final corollary extends Corollary 3.2 to continuous time.

Corollary 3.3. Let Z;, Z,, ..., Z be random elements in (D, D) ® (E, ) where (D,D) =
(D0, ), D[0,00)) is the Skorohod space of a Polish space and (E, £) is Polish. Then the
coupling (Ztll, Z?, ce Z) in Theorem 2.1 can be extended to a coupling (Zl, Zo, ..., Z)
OfZl,ZQ,...,Z.

Proof. The Skorohod space (D, D) is Polish and thus the product (H,H) = (D,D)® (E,E)
is Polish. Proceed as in the proof of Corollary 3.2 referring to Theorem 2.1 rather than
Corollary 2.2, replacing (G, G) by (H,H) and k,, by t,,, and with A € H and z!» € H!». O
4 The Skorohod representation

In this section let F be a metric space with metric d and £ its Borel subsets. Recall
that X, is said to converge to X in distribution as n — oo if for all bounded continuous

functions A from E to R,
/thn — /th, n — 0.

Recall also that A € £ is called a P-continuity set if P(O0A) = 0 where JA denotes
the boundary of A, and that by the Portmanteau Theorem (Theorem 11.1.1 in [8])
convergence in distribution is equivalent to

P,(A) — P(A) as n — oo for all P-continuity sets A. (4.1)

We shall now use Corollary 3.1 to prove the Skorohod representation theorem in the
separable case.

Theorem 4.1. Let X, X5,..., X be random elements in a metric space FE equipped
with its Borel subsets £. Further, let X take values almost surely in a separable subset
Ey € £. Then

X,, — X in distribution as n — oo 4.2)

if and only if there is a coupling (Xl,XQ, .. ,X) of X1, Xo,..., X such that

Xn S X pointwise as n — oo. 4.3)

ECP 21 (2016), paper 63. http://www.imstat.org/ecp/
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Proof. Let d be the metric. We begin with basic preliminaries. First, assume existence
of the coupling and let h be a bounded continuous function. Then (4.3) yields that
h(Xn) — h(X) pointwise as n — co and by bounded convergence, [hdP, — [hdP as
n — o0o. Thus (4.2) holds.

Conversely, assume from now on that (4.2), and thus (4.1), holds. For each ¢ > 0, any
separable Borel set can be covered by countably many E-balls of diameter < e. Note that
foreveryy € Eandr >0, {x € E: d(y,z) <r} C Iz € E:d(y,z) = r} and that the set
on the right-hand side has P-mass 0 except for countably many radii ». Thus the covering
sets below may be taken to be P-continuity sets. Moreover, since 9(AN B) C 0AUJIB
for all subsets A and B of E, the covering sets can be taken to be disjoint.

Let A, A3, ... be disjoint P-continuity sets of diameter < 1 covering F; and put
Ay =FE\ (A2 UA3U...). Then A, is also a P-continuity set since P(A;) = 0 and since
0A; cannot contain interior points of the P-continuity sets A;, As,... Thus {A4;:i € N}
is a partition of F into P-continuity sets. Put A;; = A; and A, = A13=--- = &. For
i>1,let Ajs, A3, ... be disjoint P-continuity subsets of A; of diameter < 1/2 covering
EoN A; and put A;; = A; \ (A2 U A;3U...). Then again {A;z: i> € IN?} is a partition
of E into P-continuity sets. Continue this recursively in k € IN to obtain a sequence of
partitions {A;x: i* € IN*} of E into P-continuity sets such that

A, iF € (IN\ {1})*, cover E; and are each of diameter < 1/k (4.4)

and such that the partitions are nested in the sense that for & € IN and i* € IN* it holds
that Ajp = Ajpg U A UL ..

After these basic preliminaries, we are now ready to apply Corollary 3.1. Let Z;,
Zs, ..., Z be the random elements in (IN,2M)N ® (E, £) defined as follows (well-defined
because the partitions are nested): set Z;° = X,, and Z°° = X and for k € IN

ZF =i if X,e Ay and ZF=i" if X € Aq.

Due to (4.1), we have P(ZF = i*) — P(Z* = i*) asn — oo, i* € N¥, k € N. Thus Z*F — Z*

in density as n — oo and Corollary 3.1 yields the existence of a coupling (Zl, Zo,..., Z)
of (Z1,Z,,...,7Z), an N-valued random variable N, and integers 0 < k1 < ko < -+ — 00,
such that

Zkn =7F n > N. (4.5)

Now define the coupling of X7, X5,..., X by setting X, = Zﬁo and X = Z*. Then (after
deleting a null event) we have that X € Ej and that for kK € IN

ZF =i* if X,eAx and ZF=i" if X € Au.
Thus Xn S Azkn and X € Ay, forall n € IN. Apply (4.5) to obtain that
both X,, € Ay, and X € A,,, when n > N. (4.6)

Finally, apply (4.4): since X € E, we have that Z*» ¢ (IN\ {1})*~ so A, has diameter
< 1/k,. From this and (4.6) we obtain that

d(X,, X) <1/k,, n>N.

Since N < oo and lim,_, 1/k, = 0 this implies that d(Xn,X ) — 0 pointwise, that is,
(4.3) holds. O
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5 Application to Markov chains

In this final section we shall first apply Corollary 3.1 to discrete time Markov chains
with time set IN U {0}, and then apply Corollary 3.3 to continuous time Markov chains
with time set [0, 00).

Theorem 5.1. Let X, X5, ..., X be discrete time irreducible Markov chains on a count-

able state space E with initial distributions a1, as,...,«a and with transition matrices
M17M2,...,M. Then

an, — « and M, — M pointwise asn — oo (5.1)

if and only if there exists a coupling (Xl, Xg, ..., X) of X1,Xs,...,X such that for some
IN-valued random variable N and some sequence of integers 0 < k1 < ko < --- — o0,

SO Gy

Proof. Let p,(i,j) and p(i,j) be the (i,j) € E x E entries of M,, and M. Due to irre-
ducibility, (5.1) holds if and only if for all £k € IN and ig,%1,... € E

lim o, (20)pn (0, 21) - - - Pr(ik—2,1k—1) = a(io)p(io, 1) . .. p(ik—2,ik—1),
n—oo

that is, if and only if
VkeIN: XF ! 5 X* ! in density as n — oo.

The desired result now follows from Corollary 3.1 by taking Z* = X*~! and Z* = X*~!
for k,n € IN and letting Z;° and Z*° be arbitrary fixed states. O

Theorem 5.1 is an immediate consequence of Corollary 3.1 because the finite seg-
ments X% X% ... X* are discrete. In the continuous time case the finite segments are
not discrete so the argument becomes more involved.

Theorem 5.2. Let X1, X9, ..., X be continuous time irreducible nonexplosive Markov
chains on a countable state space E with initial distributions a1, as, ..., «a and intensity
matrices C,Cs,...,C. Then

a, — « and C, — C' pointwise asn — oo (5.2)
if and only if there exists a coupling (Xl, Xg, . ,X) of X1, X3, ..., X such that for some
IN-valued random variable N and some sequence of real numbers 0 < t; <ty < -+ — 00,

Xl =X n>N.

Proof. Let c(i, j) be the (i,j) € E x E entry of C. Let c(i) = >, c(i,j) be the total
intensity in state ¢ € E. For i # j let p(i,7) = ¢(4,7)/c(i) be the jump probability from i
toj. Let YO Y'!, ... be the states visited by X. Let S, S2, ... be the times when X enters
the states Y!, Y2 ... Let K(t) be the last k such that Sk < t. Since X is nonexplosive,
K(t) is a.s. finite. Let ¢, (i), pn(i, ), YO, Y, ..., S} 82 ... and K, (t) be obtained in the
same way from C,, and X,,.

Both (Y,0,..., v g1 Sff"(t)) and (YO,...,YK® g1 SK(®)take values in the
union A® = [J22, AR of the disjoint sets
AR — prtly BR) where BOR) = {(s1,...,55) : 0 < 51 <+ < s, < t}.
ECP 21 (2016), paper 63. http://www.imstat.org/ecp/
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Let A®) be the measure on A®) defined by \¥ (AR 0 .) = ;B where u(t%) is the
product of counting measure on E*t! and Lebesgue measure on B(:*). On A(t¥), the
density f® of (Y°,...,YK® gl SK®) with respect to A(*) is

FO o, yiny 51,y s6) = alio)p(ioy i) . .. p(ik—1,ix)
c(ig) . .. c(ik,l)e*c(io)sl e Clik—1)(sk—sk—1) o —c(in) (t—sk)

and the density " of (v9,... Y e Sf"(t)) with respect to A®) is

FO (0, oyiky 81,y 88) = n(i0)pn(iosi1) - - - Prlik—1, k)
en(ig) - .. cn(ik,l)e_C“(iO)sl e enlin-1)(sk—sk-1) g—cn (in)(t—sk)

Note that lim,, o ¢, (i)e D% = ¢(i)e=°()* holds for all > 0 if and only if lim,, ¢y (i) =
c(i) and if and only if liminf,,_,.oc,(i)e~ (D% = ¢(i)e~()* holds for all z > 0. This and
irreducibility implies that (5.2) holds if and only if for all ¢ € [0, c0), lim inf,, fr(f) = f®,
Now (Y0,... Y™ gl g} and (Y0,...,yK® 51 .. §K(1) are random ele-

ments in a common space and X!, and X' are random elements in a common space, and
since these two spaces are Borel equivalent we obtain that (5.2) holds if and only if

vt €[0,00): X! — X' in density as n — oo.

The theorem now follows from Corollary 3.3 by taking Z! = X! and Z! = X* fort € [0, 00),
n € IN, and letting Z° and Z*° be arbitrary fixed states. O
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