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Abstract

We consider a non-Markovian optimal stopping problem on finite horizon. We prove
that the value process can be represented by means of a backward stochastic differen-
tial equation (BSDE), defined on an enlarged probability space, containing a stochastic
integral having a one-jump point process as integrator and an (unknown) process
with a sign constraint as integrand. This provides an alternative representation with
respect to the classical one given by a reflected BSDE. The connection between the
two BSDEs is also clarified. Finally, we prove that the value of the optimal stopping
problem is the same as the value of an auxiliary optimization problem where the
intensity of the point process is controlled.
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1 Introduction

Let (Ω,F ,P) be a complete probability space and let F = (Ft)t≥0 be the natural
augmented filtration generated by an m-dimensional standard Brownian motion W .
For given T > 0 we denote L2

T = L2(Ω,FT ,P) and introduce the following spaces of
processes.

1. H2 = {Z : Ω× [0, T ]→ Rm, F-predictable, ‖Z‖2H2 = E
∫ T

0
|Zs|2ds <∞};

2. S2 = {Y : Ω× [0, T ]→ R, F-adapted and càdlàg, ‖Y ‖2S2 = E supt∈[0,T ] |Ys|2 <∞};
3. A2 = {K ∈ S2, F-predictable, nondecreasing, K0 = 0};
4. S2

c = {Y ∈ S2 with continuous paths};
5. A2

c = {K ∈ A2 with continuous paths}.

We suppose we are given

f ∈ H2, h ∈ S2
c , ξ ∈ L2

T , satisfying ξ ≥ hT . (1.1)
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Optimal stopping and constrained BSDEs

We wish to characterize the process defined, for every t ∈ [0, T ], by

It = ess sup
τ∈Tt(F)

E

[∫ T∧τ

t

fs ds+ hτ 1τ<T + ξ 1τ≥T

∣∣∣∣Ft
]
,

where Tt(F) denotes the set of F-stopping times τ ≥ t. Thus, I is the value process of a
non-Markovian optimal stopping problem with cost functions f, h, ξ. In [7] the process
I is described by means of an associated reflected backward stochastic differential
equation (BSDE), namely it is proved that there exists a unique (Y, Z,K) ∈ S2

c ×H2 ×A2
c

such that, P-a.s.

Yt +

∫ T

t

Zs dWs = ξ +

∫ T

t

fs ds+KT −Ks, (1.2)

Yt ≥ ht,
∫ T

0

(Ys − hs) dKs = 0, t ∈ [0, T ], (1.3)

and that, for every t ∈ [0, T ], we have It = Yt P-a.s.
It is our purpose to present another representation of the process I by means of a

different BSDE, defined on an enlarged probability space, containing a jump part and
involving sign constraints. Besides its intrinsic interest, this result may lead to new
methods for the numerical approximation of the value process, based on numerical
schemes designed to approximate the solution to the modified BSDE. Some numerical
methods for this class of BSDEs have already been proposed and analyzed, see [11], [12].
In the context of a classical Markovian optimal stopping problem, this may give rise to
new computational methods for the corresponding variational inequality as studied in
[2].

We use a randomization method, which consists in replacing the stopping time τ

by a random variable η independent of the Brownian motion and in formulating an
auxiliary optimization problem where we can control the intensity of the (single jump)
point process Nt = 1η≤t. The auxiliary randomized problem turns out to have the same
value process as the original one.

This method seems to be essentially different from other randomization procedures
already introduced in the literature, for instance the classical relaxed controls technique
used to ensure existence of optimal controls in the deterministic framework and extended
to the stochastic case in [6], the randomized stopping method used to reduce optimal
stopping problems to continuous optimal control problems (originally introduced in [15]
and further studied in [9]), or the method developed in [16] to give a control-theoretic
interpretation of various penalization schemes in terms of value functions of auxiliary
optimization problems where intervention occurs only at arrival times of an exogenous
Poisson process.

On the other hand, our approach is more closely connected to another randomization
procedure that has been recently applied to several stochastic optimization problems
and which is directly connected to a class of BSDEs with a sign constraint on one of its
components. In [13] it has been shown that the solution to a constrained BSDE provides
a representation formula for the value function of an impulse control problem for a
controlled diffusion, coinciding with the solution to a quasi-variational inequality in the
viscosity sense. In [4] and [5] a similar program has been carried out in the context of
optimal switching problems. In [14] a BSDE representation has been constructed for
the solution to a large class of integro-differential equations of Hamilton-Jacobi-Bellman
type, including dynamic programming equations for the optimal control of a controlled
diffusion with jumps. This result has been extended in [8] to a case of non-Markovian
controlled diffusions. In all these papers the control process is randomized by means of
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Optimal stopping and constrained BSDEs

an auxiliary Poisson random measure µ (hence preserving the Markovian character of
the driving noise (W,µ)), whereas for our application to optimal stopping the one-jump
process N seems to be the appropriate technical tool.

2 Statement of the main results

We are given (Ω,F ,P), F = (Ft)t≥0, W , T as before, as well as f, h, ξ satisfying (1.1).
Let η be an exponentially distributed random variable with unit mean, defined in another
probability space (Ω′,F ′,P′). Define Ω̄ = Ω× Ω′ and let (Ω̄, F̄ , P̄) be the completion of
(Ω̄,F ⊗ F ′,P ⊗ P′). All the random elements W, f, h, ξ, η have natural extensions to Ω̄,
denoted by the same symbols. In particular, η is independent of W . Define

Nt = 1η≤t, At = t ∧ η,

and let F̄ = (F̄t)t≥0 be the P̄-augmented filtration generated by (W,N). Under P̄, A
is the F̄-compensator (i.e., the dual predictable projection) of N , W is an F̄-Brownian
motion independent of N and (1.1) still holds provided H2, S2

c , L2
T (as well as A2 etc.)

are understood with respect to (Ω̄, F̄ , P̄) and F̄ as we will do. We also define

L2 = {U : Ω̄× [0, T ]→ R, F̄−predictable, ‖U‖2L2 = Ē

∫ T

0

|Us|2dAs = Ē

∫ T

0

|Us|2dNs <∞}.

We will consider the BSDE

Ȳt+

∫ T

t

Z̄s dWs+

∫
(t,T ]

Ūs dNs = ξ 1η≥T+

∫ T

t

fs 1[0,η](s) ds+

∫
(t,T ]

hs dNs+K̄T−K̄t, t ∈ [0, T ],

(2.1)
with the constraint

Ut ≤ 0, dAt(ω̄) P̄(dω̄)− a.s. (2.2)

We say that a quadruple (Ȳ , Z̄, Ū , K̄) is a solution to this BSDE if it belongs to S2 ×H2 ×
L2 ×A2, (2.1) holds P̄-a.s., and (2.2) is satisfied. We say that (Ȳ , Z̄, Ū , K̄) is minimal if
for any other solution (Ȳ ′, Z̄ ′, Ū ′, K̄ ′) we have, P̄-a.s, Ȳt ≤ Ȳ ′t for all t ∈ [0, T ].

Our first main result shows the existence of a minimal solution to the BSDE with sign
constraint and establishes the connection with reflected BSDEs.

Theorem 2.1. Under (1.1) there exists a unique minimal solution (Ȳ , Z̄, Ū , K̄) to (2.1)-
(2.2). It can be defined starting from the solution (Y, Z,K) to the reflected BSDE
(1.2)-(1.3) and setting, for ω̄ = (ω, ω′), t ∈ [0, T ],

Ȳt(ω̄) = Yt(ω)1t<η(ω′), Z̄t(ω̄) = Zt(ω)1t≤η(ω′), (2.3)

Ūt(ω̄) = (ht(ω)− Yt(ω))1t≤η(ω′), K̄t(ω̄) = Kt∧η(ω′)(ω). (2.4)

Remark 2.2. The notion of minimality of the solution in Theorem 2.1 is the same as
in [3], [13], [4], [5], [14], [8]. In [3], Corollary 2.1, it is shown that, under appropriate
conditions, the minimal solution also satisfies a condition analogous to (1.3).

Now we formulate an auxiliary optimization problem. Let V = {ν : Ω̄×[0,∞)→ (0,∞),

F̄-predictable and bounded}. For ν ∈ V define

Lνt = exp

(∫ t

0

(1− νs) dAs +

∫ t

0

log νs dNs

)
= exp

(∫ t∧η

0

(1− νs) ds
)

(1t<η + νη1t≥η).

Since ν is bounded, Lν is an F̄-martingale on [0, T ] under P̄ and we can define an
equivalent probability P̄ν on (Ω̄, F̄) setting P̄ν(dω̄) = Lνt (ω̄) P̄(dω̄). By a theorem of
Girsanov type (Theorem 4.5 in [10]) on [0, T ] the F̄-compensator of N under P̄ν is

ECP 21 (2016), paper 3.
Page 3/7

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP4123
http://www.imstat.org/ecp/


Optimal stopping and constrained BSDEs

∫ t
0
νs dAs, t ∈ [0, T ], and W remains a Brownian motion under P̄ν . We wish to characterize

the value process J defined, for every t ∈ [0, T ], by

Jt = ess sup
ν∈V

Ēν

[∫ T∧η

t∧η
fs ds+ hη 1t<η<T + ξ 1η≥T

∣∣∣∣ F̄t
]
. (2.5)

Our second result provides a dual representation in terms of control intensity of the
minimal solution to the BSDE with sign constraint.

Theorem 2.3. Under (1.1), let (Ȳ , Z̄, Ū , K̄) be the minimal solution to (2.1)-(2.2). Then,
for every t ∈ [0, T ], we have Ȳt = Jt P̄-a.s.

The equalities J0 = Ȳ0 = Y0 = I0 immediately give the following corollary.

Corollary 2.4. Under (1.1), let (Ȳ , Z̄, Ū , K̄) be the minimal solution to (2.1)-(2.2). Then

Ȳ0 = sup
τ∈T0(F)

E

[∫ T∧τ

0

fs ds+ hτ 1τ<T + ξ 1τ≥T

]
= sup
ν∈V

Ēν

[∫ T∧η

0

fs ds+ hη 1η<T + ξ 1η≥T

]
Remark 2.5. Theorem 2.3 does not directly provide an optimal stopping rule in terms
of the minimal solution (Ȳ , Z̄, Ū , K̄). However, the optimal stopping time is described in
[7] in terms of the processes (Y,Z,K) solution to (1.2)-(1.3).

We would also like to raise the issue of the appropriate formulation of the auxiliary
(randomized) control problem (2.5). As it is stated, we are unable to prove that it admits
an optimal solution i.e., that the essential supremum is achieved in (2.5), and in fact we
suspect it does not. One could try to embed the randomized problem into a larger class
in order to achieve existence of a maximum, for example by relaxed control techniques
as in [6]. In this sense, Theorem 2.3 should be viewed as a representation result for the
value process rather than the solution of an auxiliary equivalent problem.

3 Proofs

Proof of Theorem 2.1. Uniqueness of the minimal solution is not difficult and it is estab-
lished as in [14], Remark 2.1.

Let (Y,Z,K) ∈ S2
c × H2 × A2

c be the solution to (1.2)-(1.3), and let (Ȳ , Z̄, Ū , K̄) be
defined by (2.3), (2.4). Clearly it belongs to S2×H2×L2×A2 and the constraint (2.2) is
satisfied due to the reflection inequality in (1.3). The fact that it satisfies equation (2.1)
can be proved by direct substitution, by considering the three disjoint events {η > T},
{0 ≤ t < η < T}, {0 < η < T, η ≤ t ≤ T}, whose union is Ω̄, P̄-a.s.

Indeed, on {η > T} we have Zs = Z̄s for every s ∈ [0, T ] and, by the local property of

the stochastic integral,
∫ T
t
Z̄s dWs =

∫ T
t
Zs dWs, P̄-a.s. and (2.1) reduces to (1.2).

On {0 ≤ t < η < T} (2.1) reduces to

Ȳt +

∫ T

t

Z̄s dWs + Ūη =

∫ η

t

fs ds+ hη + K̄T − K̄t, P̄− a.s.;

since
∫ T
t
Z̄s dWs =

∫ η
t
Zs dWs P-a.s., hη − Ūη = Yη and, on the set {0 ≤ t < η < T},

Ȳt = Yt and K̄T − K̄t = Kη −Kt, this reduces to

Yt +

∫ η

t

Zs dWs =

∫ η

t

fs ds+ Yη +Kη −Kt, P̄− a.s.

which again holds by (1.2).
Finally, on {0 < η < T, η ≤ t ≤ T} the verification of (2.1) is trivial, so we have proved

that (Ȳ , Z̄, Ū , K̄) is indeed a solution.
Its minimality property will be proved later.
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To proceed further we recall a result from [7]: for every integer n ≥ 1, let (Y n, Zn) ∈
S2
c ×H2 denote the unique solution to the penalized BSDE

Y nt +

∫ T

t

Zns dWs = ξ +

∫ T

t

fs ds+ n

∫ T

t

(Y ns − hs)− ds, t ∈ [0, T ]; (3.1)

then, setting Kn
t = n

∫ t
0
(Y ns − hs)− ds, the triple (Y n, Zn,Kn) converges in S2

c ×H2 ×A2
c

to the solution (Y,Z,K) to (1.2)-(1.3).
Define

Ȳ nt (ω̄) = Y nt (ω)1t<η(ω′), Z̄nt (ω̄) = Znt (ω)1t≤η(ω′), Ūnt (ω̄) = (ht(ω)− Y nt (ω))1t≤η(ω′),

and note that Ȳ n → Ȳ in S2.

Lemma 3.1. (Ȳ n, Z̄n, Ūn) is the unique solution in S2 ×H2 × L2 to the BSDE: P̄-a.s.,

Ȳ nt +

∫ T

t

Z̄ns dWs +

∫
(t,T ]

Ūns dNs = ξ 1η≥T +

∫ T

t

fs 1[0,η](s) ds (3.2)

+

∫
(t,T ]

hs dNs + n

∫ T

t

(Ūns )+1[0,η](s) ds, t ∈ [0, T ].

Proof. (Ȳ n, Z̄n, Ūn) belongs to S2 ×H2 ×L2 and, proceeding as in the proof of Theorem
2.1 above, one verifies by direct substitution that (3.2) holds, as a consequence of
equation (3.1). The uniqueness (which is not needed in the sequel) follows from the
results in [1].

We will identify Ȳ n with the value process of a penalized optimization problem. Let
Vn denote the set of all ν ∈ V taking values in (0, n] and let us define (compare with (2.5))

Jnt = ess sup
ν∈Vn

Ēν

[∫ T∧η

t∧η
fs ds+ hη 1t<η<T + ξ 1η≥T

∣∣∣∣ F̄t
]
. (3.3)

Lemma 3.2. For every t ∈ [0, T ], we have Ȳ nt = Jnt P̄-a.s.

Proof. We fix any ν ∈ Vn and recall that, under the probability P̄ν , W is a Brownian
motion and the compensator of N on [0, T ] is

∫ t
0
νs dAs, t ∈ [0, T ]. Taking the conditional

expectation given F̄t in (3.2) we obtain

Ȳ nt + Ēν

[∫
(t,T ]

Ūns νs dAs

∣∣∣∣ F̄t
]

= Ēν

[
ξ 1η≥T +

∫ T

t

fs 1[0,η](s) ds+

∫
(t,T ]

hs dNs

∣∣∣∣ F̄t
]

+Ēν

[
n

∫ T

t

(Ūns )+1[0,η](s) ds

∣∣∣∣ F̄t
]
.

We note that
∫

(t,T ]
hs dNs = hη 1t<η≤T = hη 1t<η<T P̄ν -a.s., since η 6= T P̄-a.s. and hence

P̄ν -a.s. Since dAs = 1[0,η](s) ds we have

Ȳ nt = Ēν

[
ξ 1η≥T +

∫ T∧η

t∧η
fs ds+ hη 1t<η<T

∣∣∣∣ F̄t
]

+Ēν

[∫ T

t

(n(Ūns )+ − Ūns νs)1[0,η](s) ds

∣∣∣∣ F̄t
]

(3.4)
Since nU+ − U ν ≥ 0 for every real number U and every ν ∈ (0, n] we obtain

Ȳ nt ≥ Ēν

[
ξ 1η≥T +

∫ T∧η

t∧η
fs ds+ hη 1t<η<T

∣∣∣∣ F̄t
]
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for arbitrary ν ∈ Vn, which implies Ȳ nt ≥ Jnt . On the other hand, setting νεs = n 1Ūns >0 +

ε 1−1≤Ūns ≤0 − ε (Ūns )−1 1Ūns <−1, we have νε ∈ Vn for 0 < ε ≤ 1 and n(Ūns )+ − Ūns νs ≤ ε.
Choosing ν = νε in (3.4) we obtain

Ȳ nt ≤ Ēνε
[
ξ 1η≥T +

∫ T∧η

t∧η
fs ds+ hη 1t<η<T

∣∣∣∣ F̄t
]

+ ε T ≤ Jnt + ε T

and we have the desired conclusion.

Proof of Theorem 2.3. Let (Ȳ ′, Z̄ ′, Ū ′, K̄ ′) be any (not necessarily minimal) solution to
(2.1)-(2.2). Since Ū ′ is nonpositive and K̄ ′ is nondecreasing we have

Ȳ ′t +

∫ T

t

Z̄ ′s dWs ≥ ξ 1η≥T +

∫ T

t

fs 1[0,η](s) ds+

∫
(t,T ]

hs dNs

= ξ 1η≥T +

∫ T∧η

t∧η
fs ds+ hη 1t<η≤T .

We fix any ν ∈ V and recall that W is a Brownian motion under the probability P̄ν . Taking
the conditional expectation given F̄t we obtain

Ȳ ′t ≥ Ēν

[
ξ 1η≥T +

∫ T∧η

t∧η
fs ds+ hη 1t<η<T

∣∣∣∣ F̄t
]
,

where we have used again the fact that η 6= T P̄-a.s. and hence P̄ν -a.s. Since ν was
arbitrary in V it follows that Ȳ ′t ≥ Jt and in particular Ȳt ≥ Jt.

Next we prove the opposite inequality. Comparing (2.5) with (3.3), since Vn ⊂ V it
follows that Jnt ≤ Jt. By the previous lemma we deduce that Ȳ nt ≤ Jt and since Ȳ n → Ȳ

in S2 we conclude that Ȳt ≤ Jt.

Conclusion of the proof of Theorem 2.1. It remained to be shown that the solution (Ȳ ,
Z̄, Ū , K̄) constructed above is minimal. Let (Ȳ ′, Z̄ ′, Ū ′, K̄ ′) be any other solution to
(2.1)-(2.2). In the previous proof it was shown that, for every t ∈ [0, T ], Ȳ ′t ≥ Jt P̄-a.s.
Since we know from Theorem 2.3 that Ȳt = Jt we deduce that Ȳ ′t ≥ Ȳt. Since both
processes are càdlàg, this inequality holds for every t, up to a P̄-null set.
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