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Finite-size corrections to the speed of a
branching-selection process
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Abstract. We consider a particle system studied by E. Brunet and B. Derrida
(Phys. Rev. E 70 (2004) 016106), which evolves according to a branching
mechanism with selection of the fittest keeping the population size fixed and
equal to N . The particles remain grouped and move like a travelling front
driven by a random noise with a deterministic speed. Because of its mean-
field structure, the model can be further analysed as N → ∞. We focus on
the case where the noise lies in the max-domain of attraction of the Weibull
extreme value distribution and show that under mild conditions the correction
to the speed has universal features depending on the tail probabilities.

1 Introduction and main result

We consider a model of front propagation introduced by Brunet and Derrida
(2004). A constant number N of particles evolve on the real line in discrete time.
Let X1(0), . . . ,XN(0) be the particles initial positions. With {ξij (s);1 ≤ i, j ≤
N, s ≥ 1} an i.i.d. family of r.r.v.s, the positions evolve as

Xi(t + 1) := max
1≤j≤N

{
Xj(t) + ξji(t + 1)

}
. (1.1)

The Xj(t)’s can be seen as the positions of individuals in a branching/selection
particle system, which dynamics can be described as follows: in a first step, each
individual alive in generation t gives birth to N offspring, positioned according to
the r.v.s ξji(t + 1). We assign the label i ∈ {1, . . . ,N} to the offspring of Xj(t)

that is at the position Xj(t) + ξji(t + 1). In a second step, among the N new born
individuals with label i we select the right-most one to form the next generation
Xi(t +1) := max{Xj(t)+ξji(t +1)}, we break eventual ties with any deterministic
rule. We emphasize that the evolution from a generation to the next one is totally
synchronous, and that the selection mechanism is particular. The whole N -particle
system here changes at each time unit, and is such that, given the current particle
configuration, the new configuration is an independent N -sample. For ξij ∈ L1, it
is proved in Comets, Quastel and Ramírez (2013) that the limits

lim
t→∞

1

t
max

1≤i≤N
Xi(t) = lim

t→∞
1

t
min

1≤i≤N
Xi(t) = vN(ξ)
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exist a.s. with vN(ξ) a real constant depending on the law of ξ . The limit vN(ξ)

is called the speed of the N -particle system, and we study here its asymptotics for
large N .

One major question of the field is to understand what really determines the mo-
tion and derive the universality properties of such models. In particular, the speed
of propagation depends on the parameter tuning how stringent the selection is, and
one is interested in the corrections with respect to the speed of the model with-
out selection. The definition of “rightmost” used in the present paper, see (1.2),
is somewhat specific, and is different from the traditional choice of M-branching
random walks (Brunet and Derrida, 1997, 1999) when all newborn individuals are
simultaneously compared. For the latter choice we mention Bérard and Gouéré
(2010), Couronné and Gerin (2014), and also Mueller, Mytnik and Quastel (2011)
for the continuous case. A dual problem is the survival of the branching popula-
tion killed by a moving obstacle, for example, a line (Berestycki, Berestycki and
Schweinsberg, 2013). In its general form, the model relates to propagations of
pulled fronts, when the motion is determined by the leading edge (Panja, 2004).
Archetypes of pulled fronts are branching random walks or branching Brownian
motions, described by the Kolmogorov-Petrovskii-Piskunov equation. There, and
in contrast to the present case, one looks for the second order correction in time
of the rightmost position to its leading order (Bramson, 1983). Though effective
equations in the continuum are available to describe front dynamics, the process
here is intrinsically random and discrete, adding interest to its understanding. We
note from Durrett and Remenik (2011) that asynchronous dynamics leads to free
boundary problems.

Already mentioned in Cook and Derrida (1990), the model (1.1) was taken up
in Brunet and Derrida (2004) and studied in the case of Gumbel distribution for ξ ,
which leads to an exact solution for fixed N , and results have been extended in a
perturbative picture provided that ξ has an exponential upper tail (Comets, Quastel
and Ramírez, 2013). In the present paper, we consider perturbations of the Weibull
distribution, including bounded ξ ’s with a polynomial density close to its maximal
value.

From a different perspective, our model can be interpreted as a first passage
percolation. By a simple induction argument, one obtains from (1.1) the formula

Xi(t) = max

{
Xj0(0) +

t∑
s=1

ξjs−1js (s);

1 ≤ js ≤ N,∀s = 0, . . . , t − 1 and jt = i

}
,

(1.2)

which yields a path representation of the interacting particle system. We interpret
now −ξji(t + 1) as the passage time on the oriented edge from (j, t) to (i, t + 1):
As (1.2) shows, the negative of Xi(t) is the passage time from the line t = 0 to the
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point (i, t), in a model of first passage percolation on the vertex set {1, . . . ,N}×N,
and vN is the so-called time constant of the model. Here the graph is oriented
(t-coordinate increases by one unit at each step of the path), though on the trans-
verse direction jumps are allowed between all pairs of sites j , i (1 ≤ i, j ≤ N ).
Since the graph is complete in the transverse direction, the model is of mean-field
type. For general percolation models the value of the time constant is not avail-
able, but in the present case the mean-field feature allows us to determine the
time-constant up to first order in the limit of large graphs. In the particular case of
exponential passage times, the first formula in display (1.8) below is in force.

To describe our framework, denote by �(u) the logarithmic generating function
of ξij ,

�(u) := lnE
[
exp(uξij )

]
,

and let D� := {u ∈ R;�(u) < ∞} be its domain. In this paper, we will assume
that the following hypothesis hold:

(H1) 0 ∈ D0
� (the interior of D�). In particular, ξij has finite moments of all

orders.
(H2) For every N ∈ N there exists a uN ∈ D0

� ∩ [0,∞) such that

uN�′(uN) − �(uN) = lnN. (1.3)

The function u�′(u) − �(u) is increasing on D0
� ∩ [0,∞), hence uN is unique.

Under these hypothesis the number

vN := �′(uN) (1.4)

is well defined. Let Iξ (v) denote the Cramer transform of ξij

Iξ (v) := sup
x∈R

{
vx − �(x)

}
,

and refer to Figure 1. Then, it can be easily checked that vN in display (1.4) is the
unique positive solution of Iξ (vN) = lnN , that it satisfies I ′

ξ (vN) = uN and that
vN > E[ξ ].

In Section 3, we show that vN is an upper bound for the velocity vN(ξ) of
the N -particle system. To obtain a lower bound to vN(ξ), we do some additional
assumptions on ξij and focus on a more restrictive class of distributions. Denoting
by F(·) the common probability distribution function

F(x) := P(ξij ≤ x),

we will further assume that F(·) belongs to the max-domain of attraction of the
Type III extreme value distribution with probability distribution function �α(·)
given by

�α(x) =
{

exp
(−|x|α)

if x < 0,

1 if x ≥ 0,
(1.5)
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Figure 1 In the above figure, Iξ is the Cramer transform of ξ a r.v. with compact support; xξ is the
essential upper-bound of ξ and vN is the unique solution of Iξ (vN ) = lnN .

for some α > 0. This law is sometimes called reverse—Weibull (see, e.g., Chap-
ter 1 in Resnick, 1987), or Weibull for short, and it is the law of −E1/α with E an
exponential variable with mean 1. It is well known that F(·) belongs to the domain
of attraction of �α(·) if and only F(·) has a finite right-end

xξ := sup
{
x ∈ R;F(x) < 1

}
< ∞,

and for each x > 0

lim
h→0+

1 − F(xξ − hx)

1 − F(xξ − h)
= xα,

see, for example, Proposition 1.13 in Section 1.3 of Resnick (1987). In this case,
let

aN := xξ − inf
{
x;F(x) ≥ 1 − 1/N

}
, (1.6)

then FN(xξ + xaN) → �α(x) as N → ∞ and

lim
N→∞N

(
1 − F(xξ − aN)

) = 1.

The main result of this paper is the following theorem concerning the speed of the
N particle system.

Theorem 1.1. Assume that (H1), (H2) hold, and that ξij belongs to the domain of
attraction of the extreme value distribution �α , for some α > 0. Let

cα := α

e

(
�(α)α

)− 1
α , (1.7)

where �(·) is Euler’s gamma function and e = 2.718 . . . is the Napier’s constant.
Then, the speed vN(ξ) of the N -particle system satisfies

vN(ξ) = xξ − cαaN + o(aN) as N → ∞,

where aN is given by (1.6) and o(aN) denotes an error term such that o(aN)/aN →
0 as N → ∞.
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E. Brunet and B. Derrida (2004) raise the problem concerning the behaviour of
(1.1) when the disorder ξij is different from the Gumbel distribution. Theorem 1.1
gives a partial answer to this question providing the finite-size corrections to the
speed for a large class of distributions that are bounded from above. Our result
comprises, for example, the negative of the exponential distribution and the uni-
form distribution, for which the correction to the speed are respectively

vN(−E) ∼ − 1

eN
and

(
vN(U) − 1

) ∼ − 1

eN
as N → ∞. (1.8)

In the above formulas “∼” means that the ratio of the sides approaches to one as
N diverges.

Warm-up calculations: Let us explain how to determine the order of magnitude
of the correction from elementary considerations. Assume in this paragraph that
xξ = 0. On the one hand, we can bound from below our N -particle system with
a single particle following the leader, i.e., the random walk with jumps law given
by maxi≤N ξ1i , resulting with a lower bound for vN(ξ) of order aN . On the other
hand, a naive upper bound is given by the random walk with jumps maxi,j≤N ξji ,
which leads to a different order O(aN2) of the correction for the maximum is
over N2 variables this time. One can improve the upper bound by using the first
moment method of Section 3, leading to the same order O(aN) as the lower bound.
However, the multiplicative factors do not match, and some deeper understanding
and improvement of the lower bound is needed. This is what we implement in
Section 4, using a comparison with a branching random walk with selection.

Organization of the paper: In Section 2, we present some point processes and
branching random walks related to our model and we summarize the necessary
results for our purpose. We prove the upper bound for the speed in Section 3 by
a first moment estimate, and the lower bound in Section 4 by coupling, the two
bounds resulting in Theorem 1.1.

2 Point processes and branching random walks

In this section, we introduce different processes entering the analysis of the particle
system (1.1).

2.1 Point measures on R

It is convenient to represent populations of particles by point measures on R. Given
a vector x ∈ R

n with coordinates x1, . . . , xn, one can associate the point measure

x :=
n∑

i=1

δ{xi}.

We use the notation Mb to represent the set of all simple point measures on R,
which are locally finite and have a maximum. Throughout this paper, a point pro-
cess is any random variable L taking values on Mb.
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Conversely, an element ν ∈ Mb can be described as a sequence ν = (νi)i=1,2,...

(possibly finite) such that

ν1 ≥ ν2 ≥ . . . .

We denote by max(ν) = ν1 the maximum of the support of ν, and by |ν| = ν(R) ≤
∞ the number of points in ν. If two point measures ν and μ have the same number
of points |ν| = |μ| = K , we can define the distance

‖ν − μ‖ = sup
1≤i≤K

{|νi − μi |}. (2.1)

We use the notation “≺” to denote the usual stochastic ordering

ν ≺ μ if and only if ν[x,+∞) ≤ μ[x,+∞) ∀x ∈R,

and we will say that “ν bounds μ from below”, in this case |ν| ≤ |μ|. If we repre-
sent ν and μ as an ordered sequence of points, then ν ≺ μ implies that

νi ≤ μi for every i ≤ |ν|.
With a slight abuse of notation we will say that the vector x ∈ R

n bounds y ∈ R
m

from below and denote “x ≺ y” if the point measures x , y associated to x and y

respectively, satisfy x ≺ y .

2.2 Poisson point processes on (−∞,0]
In this section, we present some elementary facts concerning Poisson Point Process

P = {P1 > P2 > · · · } ⊂ R−,

with intensity measure |z|βC dz on R−; we use the abbreviation PPP and assume
that C > 0, β > −1. For an integer K ≥ 1, we define the K-truncation of P as

P(K) := (Pi )i≤K, (2.2)

it consists in the K largest points of P and it will play an important role in the
next sections.

For L a random point measure on R−, we denote by ψ(u | L) its logarithmic
moments generating function

ψ(u | L) := lnE
[∫

euyL(dy)

]
.

We can easily compute the logarithmic generating function of the PPP.

Lemma 2.1. For β > −1, C > 0, let P be the Poisson point process on (−∞,0]
with intensity measure μ(dz) = |z|βC dz, and P(K) its K-truncation. For u > 0
we have

E

[∫ 0

−∞
euzP(dz)

]
= �(1 + β)C

u1+β
, E

[∫ 0

−∞
zeuzP(dz)

]
= −�(2 + β)C

u2+β
,
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and

lim
K→∞E

[
K∑

i=1

euPi

]
= �(1 + β)C

u1+β
, lim

K→∞E

[
K∑

i=1

Pie
uPi

]
= −�(2 + β)C

u2+β
.

Proof. The first claim is obtained by the Campbell formula (see Chapter 9 in
Daley and Vere-Jones, 2003) and the second claim is obtained by monotone con-
vergence. �

Corollary 2.2. Under the assumptions of Lemma 2.1, the sequence ψ(u | P(K))

converges uniformly on the compacts of R+ to ψ(u | P) as K → ∞. In particular,
if uK > 0 is such that

ψ
(
uK | P(K)) = ψ ′(uK | P(K))uK,

then

lim
K→∞ψ ′(uK | P(K)) = −1 + β

e

(
1

C�(1 + β)

)1/1+β

. (2.3)

Proof. The compact convergence is a direct consequence of the pointwise con-
vergence together with the monotonicity of ψ(u | P(K)) and the continuity of
ψ(u | P) in u (Dini’s theorem). Let

u∞ = e
(
�(1 + β)C

)1/1+β
,

then from the first part of Lemma 2.1 we have that

ψ(u∞ | P) = ψ ′(u∞ | P)u∞ and

ψ ′(u∞ | P) = −1 + β

e

(
C�(1 + β)

)−1/1+β
.

By Lemma 2.1, uK → u∞ so the second claim follows from the uniform conver-
gence. �

2.3 Branching random walks

Branching Random Walks (BRW for short) have been extensively studied in the
past years, see the seminal paper (Aïdékon, 2013) for a general literature and im-
portant results on the subject. In this paper, we focus on BRW defined as follows.
Let L be a point process on R, which defines the positions of particles and the
reproductive law of the underlying Galton–Watson tree. The process starts with
one particle located at 0. At each time step t → t + 1, the particles in generation t

split into new individuals located according to independent copies of L, translated
by their birth position. We use the notation BRW(L) to denote a BRW defined as
above.



The speed of a branching-selection process 483

Let T be the Galton–Watson tree obtained by the genealogical tree of the pro-
cess, thus, its offspring distribution is |L|. To each point (or individual) of the
BRW(L) one can associate a unique vertex w ∈ T. Let e ∈ T be the root of the
Galton–Watson tree, then for a vertex w ∈ T, let �e,w� denote the unique path
connecting e with w, and |w| the length of this path. We will sometimes write its
points �e,w� = (e,w1, . . . ,wk) with i = |wi | and wk = w. It is a standard prop-
erty of Galton–Watson trees that the process Tw starting from a vertex w ∈ T is
also a Galton–Watson tree having the same distribution as T. For a vertex w′ in
the sub-tree Tw starting from w, we denote by ww′ the vertex in T obtained by
concatenation.

We also denote by η(w) the positions of the individual w ∈ T, and by y(t) the
point measure associated to the BRW(L) at generation t , that is

y(t) := ∑
w∈T;|w|=t

δ{η(w)}.

Finally, an infinite ray �e,w∞� := {e,w1,w2, . . .} ⊂ T is an infinite collection of
vertices (or infinite path), such that wi is connected to wi+1 and |wi | = i for every
i ∈ N, in which case we say that wi is the parent of wi+1. It represents a family
branch in the BRW that has not extinguished, and is parametrized by an element
w∞ ∈ ∂T of the topological boundary ∂T of the tree.

Under mild conditions on L, the asymptotic behaviour of max(y(t)) is known
(Athreya and Ney, 2004, Biggins, 1977), that we recall now. Assume that for some
a > 0

E
[|L|1+a]

< ∞, (2.4)

a condition which can be weakened (Aïdékon, 2013), but in this paper we will
always assume that |L| = K a constant, which trivially implies (2.4). We also
assume that the logarithmic generating function of the branching random walk

ψ(u |L) := lnE
[∫

euyL(dy)

]
(2.5)

is finite in a neighbourhood of u = 0 and that there exists a u∗ = u(L) > 0 for
which

ψ
(
u∗ | L) = u∗ψ ′(u∗ | L)

. (2.6)

If (2.4)–(2.6) hold, there exists a constant γ (L) depending only on L such that

lim
t→∞

1

t
max

(
y(t)

) = γ (L) a.s. (2.7)

The limit γ (L) is often called the speed of the BRW and it is explicitly given
by the formula γ (L) = ψ ′(u∗ | L), see Aïdékon (2013), Athreya and Ney (2004),
Gantert, Hu and Shi (2011) for a rigorous proof and more results on the subject.

The theorem below, proved by Gantert, Hu and Shi (2011), gives the precise
decay for the probability that there exists an infinite ray in the BRW that always
stays close to γ (L).
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Theorem 2.3 (Theorem 1.2 in Gantert, Hu and Shi, 2011). Let L be a point
process satisfying (2.4)–(2.6) and (η(w);w ∈ T) be the BRW(L). Given δ > 0,
denote by ρ(∞, δ) the probability that there exists an infinite ray in the branching
random walk that always lies above the line of slope γ (L) − δ,

ρ(∞, δ) := P
(∃w∞ ∈ ∂T : η(wt) ≥ (

γ (L) − δ
)
t,∀wt ∈ �e,w∞�)

,

where wt ∈ �e,w∞� is the vertex in generation t . Then, as δ ↘ 0

ρ(∞, δ) ∼ exp
(
−

[
χ(L) + o(1)

δ

]1/2)
,

where χ(L) = u∗ψ ′′(u∗ | L) for u∗ given by (2.6).

2.4 Models with selection and the M-BRW

Models of evolving particle systems under the effect of selection have been
the subject of recent studies (Bérard and Gouéré, 2010, Cortines, 2014, 2016,
Couronné and Gerin, 2014, Maillard, 2016, Mallein, to appear). The selection cre-
ates correlation between individuals in the same generation and additional depen-
dence in the whole process.

Bérard and Gouéré (2010) focused on the binary Branching Random Walk with
selection of the M rightmost individuals (the M-BRW). It consists in a BRW sub-
ject to the effects of selection, defined by the point process

L = δ{p1} + δ{p2},
where p1 and p2 are i.i.d. r.r.v.s. As soon as the population size exceeds M , we
only keep the M rightmost individuals and eliminate the others. If at time zero the
number of particles is already M , the population size is kept constant.

Denote by yM(t) the point process generated by this M-BRW. Bérard and
Gouéré (2010) show that the support of yM(t) has a diameter of order lnM . They
also prove that under some assumptions on the exponential moment of pi there
exists a constant γM(L) such that

lim
t→∞ t−1 min

(
yM(t)

) = lim
t→∞ t−1 max

(
yM(t)

) = γM(L) a.s.

The existence of γM(L) is obtained by the Kingman’s sub-additive ergodic the-
orem, and by monotonicity arguments one can prove that γM(L) converges as
M → ∞. The striking result is that they also compute the asymptotic limit and the
rate of convergence:

γM(L) = γ (L) + χ(L)(lnM)−2 + o
(
(lnM)−2)

as M → ∞,

where γ (L) is the asymptotic speed for the BRW(L), and χ(L) is from Theo-
rem 2.3.

One can easily define more general M-BRW, let L be a point process, for which

|L| ≥ 1 a.s. (2.8)
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so the process does not extinguish. Under similar assumptions on the exponential
moments of L, one can prove that the cloud of M points does not spread and that
it travels at a deterministic speed γM(L), see Mallein (to appear).

In Section 4, we show that under the hypothesis of the Theorem 1.1, the N -
particle system (1.1) can be bounded from below by a family of M-BRW indexed
by N . We will then adapt the arguments in Bérard and Gouéré (2010) to obtain a
uniform lower bound for the speeds of the BRWs.

2.5 Elementary properties of Brunet–Derrida’s N -particle system

In this section, we present some elementary properties of the N -particle system
entering the proof of Theorem 1.1 and also introduce some notations that will
be useful in the coming sections. Most of these properties have been rigorously
proved in Comets, Quastel and Ramírez (2013), therefore we will simply outline
the main ideas.

It will be convenient to consider the process X∗(t) obtained by ordering the
components of X(t) := (X1(t), . . . ,XN(t)) at each time t . We denote by

X(1)(t) ≥ X(2)(t) ≥ · · · ≥ X(N)(t)

its components and let σ = σ(t) be the random permutation of {1, . . . ,N} defined
by

X(i)(t) = Xσi(t)(t). (2.9)

Such a ranking permutation is unique up to ties, which we break in the order of the
original labels. Consider the random variable

T := inf
{
t ≥ 1; ξσ1(t−1),i(t) = max

1≤j≤N

{
ξji(t)

}; ∀i = 1 . . .N
}
,

then, T is a stopping time for the filtration

Ft := σ
{
Xi(0), ξij (s);1 ≤ i, j ≤ N and s ≤ t

}
, (2.10)

and it has a geometric distribution with parameter not smaller than (1/N)N . More-
over, in generation T the position of each particle Xi(T ) is determined by the po-
sition of the leader Xσ1 in generation T − 1. We define the process seen from the
leading edge

X◦
i (t) := Xi(t) − Xσ1(t)(t).

It is Markov process on R
N , which is irreducible, aperiodic and Harris recurrent

(due to the renewal structure), thus there exists a unique stationary measure π ,
and for any starting point X(0) = x the law of X(t) converges in total variation
distance,

distT.V.
(
L

(
X(t) | X(0) = x

)
, π

) → 0 as t → ∞.
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In particular, it shows that the cloud of N points remains grouped as t → ∞.
Moreover, by the renewal and ergodic theorems, the limit

vN(ξ) = lim
t→∞

1

t
max

1≤i≤N

{
Xi(t)

} = lim
t→∞

1

t
min

1≤i≤N

{
Xi(t)

}
exists a.s., see Section 2 in Comets, Quastel and Ramírez (2013) for a rigorous
proof and more details.

3 Upper bound for the velocity

In this section, we show that if ξij satisfies the hypothesis (H1), (H2), then

vN(ξ) ≤ vN = �′(uN),

where uN > 0 is the unique positive solution of u�′(u) − �(u) = lnN . The idea
is to use the so-called first moment method to bound the probability

P

(
max

1≤i≤N

{
Xi(t)

}
> t�′(uN)

)
.

A first and simple observation is that the initial position of the particles does not
change the speed of the N -particle system. Hence, we will assume without loss of
generality that all N particles start from zero. Using the representation (1.2) one
gets

max
1≤i≤N

{
Xi(t)

} = max

{
t∑

s=1

ξjs−1js (s);1 ≤ js ≤ N,∀s = 0, . . . , t

}
.

By the union bound and Chernoff bound we obtain, for v > vN = �′(uN) (notice
that for all N sufficiently large v > E[ξ ] as well),

P

(
max

1≤i≤N

{
Xi(t)

} ≥ tv
)

= P

(
∃j0, j1, . . . , jt :

t∑
s=1

ξjs−1js (s) ≥ tv

)

≤ Nt+1
P

(
t∑

s=1

ξjs−1js (s) ≥ tv

)

≤ Nt+1 exp
(−tIξ (v)

)
for all N ∈ N.

(3.1)

Since (H1) and (H2) hold, Iξ (v) exists and it satisfies Iξ (v) > lnN . As a conse-
quence, (3.1) has a geometrical decay as t → ∞, which implies, by Borel–Cantelli
lemma,

P

(
max

1≤i≤N
Xi(t) ≥ tv for infinitely many t ∈N

)
= 0,
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hence, lim supt→∞ t−1 max{Xi(t)} ≤ v a.s. for every v > vN , finally yielding

lim sup
t→∞

1

t
max

1≤i≤N
Xi(t) ≤ vN a.s. (3.2)

We formalize this result in a proposition.

Proposition 3.1. Assume that (H1), (H2) hold. Let uN > 0 be the unique positive
solution of uN�′(uN) − �(uN) = lnN and vN = �′(uN), then, for every N ∈ N

vN(ξ) ≤ vN .

The next step is to study the asymptotics of vN , we start with the case xξ = 0.

Proposition 3.2. Assume that the hypothesis of Theorem 1.1 hold with xξ = 0. Let
uN > 0 be the unique solution of uN�′(uN)−�(uN) = lnN , cα be given by (1.7)
and aN by (1.6), then,

vN := �′(uN) = −cαaN + o(aN) as N → ∞,

which implies that lim supN→∞ a−1
N vN(ξ) ≤ −cα .

Proof. By definition of �(·) and by (H2), we have that

E[uNξij euNξij ]
E[euNξij ] − ln

(
E

[
euNξij

]) = lnN.

It is a direct consequence of the monotonicity and continuity of u�′(u) − �(u)

that uN diverges as N → ∞. Hence, the asymptotic behaviour of the Laplace
transform of ξij in uN is determined by its behaviour in a neighbourhood of zero.
Since ξij is in the domain of attraction of �α , the function 1 −F(−x) :R+ →R+
is α-regularly varying at zero. By Karamata’s representation (see the Corollary of
Theorem 0.6 in Resnick, 1987)

1 − F(−x) = P(ξij > −x) = xαc
(
x−1)

exp
(∫ x−1

1

ε(t)

t
dt

)
, x > 0,

where c(·) and ε(·) are positive functions such that c(t) → c > 0 and ε(t) → 0
as t → ∞. As a consequence, given ε > 0, one can find a uε > 0 such that for
0 < u ≤ uε

1 − F(−u) ≥ (c − ε)uα.

Now, we compute the Laplace transform of ξij in uN

E
[
euNξij

] = P(ξijuN ≥ −1)

∫ ∞
0

e−zP(ξijuN ≥ −z)

P(ξijuN ≥ −1)
dz

= (
1 − F

(−u−1
N

))(∫ √
uN

0
· · · dz +

∫ ∞
√

uN

· · · dz

)
.



488 F. Comets and A. Cortines

We analyse each integral separately. For N sufficiently large u−1
N ≤ uε , hence∫ ∞

√
uN

e−z P(ξijuN ≥ −z)

P(ξijuN ≥ −1)
dz ≤ uα

N

(c − ε)

∫ ∞
√

uN

e−z dz,

which converges to zero as N → ∞. Take L > 0, and assume that
√

uN > L, then
∫ √

uN

0
e−z P(ξijuN ≥ −z)

P(ξijuN ≥ −1)
dz =

∫ L

0
· · · dz +

∫ √
uN

L
· · · dz.

If z ≤ L the ratio P(ξijuN ≥ −z)/P(ξijuN ≥ −1) is bounded and converges to zα

as N → ∞, therefore we use dominated convergence and then monotone conver-
gence as L → ∞ to obtain

lim
L→∞ lim

N→∞

(∫ L

0
e−z P(ξijuN ≥ −z)

P(ξijuN ≥ −1)
dz

)
= �(α + 1).

Finally, we prove that the integral from L to
√

uN vanishes as N → ∞ and L →
∞ (in this order). For L > 1 and L ≤ z ≤ √

uN , Karamata’s representation yields

P(ξijuN ≥ −z)

P(ξijuN ≥ −1)
= zα c(z−1uN)

c(uN)
exp

(
−

∫ uN

uN/z

ε(t)

t
dt

)
.

Since ε(t) > 0, the exponential term is smaller than 1, then, we take N sufficiently
large such that |c − c(u)| ≤ ε for every u ≥ √

uN to obtain

P(ξijuN ≥ −z)

P(ξijuN ≥ −1)
≤ zα (c + ε)

(c − ε)
,

which yields the upper bound∫ √
uN

L
e−z P(ξijuN ≥ −z)

P(ξijuN ≥ −1)
dz ≤ (c + ε)

(c − ε)

∫ ∞
L

e−zzα dz.

The right-hand side of this inequality decays to zero as L → ∞, and hence

E
[
euNξij

] ∼ (
1 − F

(−u−1
N

))
�(1 + α) as N → ∞.

By a similar argument, one obtains that

E
[
uNξij euNξij

] ∼ (
1 − F

(−u−1
N

))(
�(1 + α) − �(α + 2)

)
as N → ∞.

The formula uN�′(uN) − �(uN) = lnN yields

(
1 − F

(−u−1
N

))
N ∼ 1

eαα�(α)
as N → ∞.

It is easy to obtain from (1.6) that N ∼ (1 − F(−aN))−1 as N → ∞, and hence,
the equation in the left-hand side of the display is asymptotically equivalent to (1−
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F(−u−1
N ))/(1 − F(−aN)). By Karamata’s representation, the above ratio behaves

like (u−1
N /aN)α as N → ∞, which yields

lim
N→∞

u−1
N

aN

= 1

e

(
1

α�(α)

)1/α

,

and hence as N → ∞
�′(uN) ∼ − α

uN

∼ −α

e

(
1

α�(α)

)1/α

aN,

proving the statement. The second claim is a direct consequence of (3.2). �

If xξ �= 0, we can simply translate the ξij by xξ , so the hypothesis of Proposi-
tion 3.2 hold. In the next corollary, we prove the upper bound in Theorem 1.1.

Corollary 3.3. Assume that the hypothesis of Theorem 1.1 hold, then,

lim sup
N→∞

(
vN(ξ) − xξ

)
a−1
N ≤ −cα.

Proof. In the case xξ = 0, it is a straightforward consequence of Proposition 3.2
and (3.2). If xξ �= 0, it suffices to translate the variables ξij by xξ . �

4 Lower bound

In this section, we show that for every ε > 0 there exists a N0 such that ∀N ≥ N0

(vN(ξ) − xξ )

aN

≥ −cα − ε, (4.1)

which proves the lower bound in Theorem 1.1. For what follows, we fix an arbi-
trary ε > 0, and we assume that xξ = 0 without loss of generality. To prove (4.1),
we construct a process x(t) ∈ R

M that bounds X(t) from below, hence

max
(
x(t)

) ≤ max
(
X(t)

)
.

Then, we check in Sections 4.1 and 4.2 that the process x(t) is a M-BRW and that
for M large enough and the appropriate offspring distribution

lim inf
t→∞

1

t
max

(
x(t)

) ≥ −(cα + ε)aN a.s.

which implies (4.1) for xξ = 0. The general case is obtained by a simple affine
transformation.

4.1 Coupling with a branching random walk

We construct x(t) inductively as follows: let M,K ∈ N such that KM ≤ N , the
appropriate values for K and M will be given later on and we will choose KM
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negligible when compared to N . For t = 0, we define

xi(0) = Xσi
(0),

with σi = σi(0) denoting the permutation from (2.9). Assuming that the process
x(·) has been constructed up to time t ∈ N, the vector x(t + 1) ∈ R

M is obtained
according to the following inductive rule.

1. Branching step: Every particle xi(t) is replaced by K new particles (reproduc-
tive law), whose positions are defined by a point process L(K)(xi(t)) translated
by xi(t).

The point processes (L(K)(xi(t));1 ≤ i ≤ M) are also constructed according
to an inductive rule, that we describe:

• For i = 1, let T1 := {1, . . . ,N − KM} and denote by

ξ
(1:T1)
σ1(t)

(t + 1) ≥ ξ
(2:T1)
σ1(t)

(t + 1) ≥ · · · ≥ ξ
(K:T1)
σ1(t)

(t + 1),

the K largest values among {ξσ1(t),j (t + 1); j ∈ T1}. Let also

J1 = J1(t + 1) := {
j

(1)
1 , . . . , j

(1)
K

}
be the set of their indices, that is,

ξ
(l:T1)
σ1(t)

(t + 1) = ξ
σ1(t),j

(1)
l

(t + 1),

we will keep track of these labels. Note that the indices j
(1)
l = j

(1)
l (t + 1);

1 ≤ l ≤ K are random. Then, L(K)(x1(t)) is the point process

L(K)(x1(t)
) := ∑

j∈J1(t+1)

δ{ξσ1j (t+1)},

obtained by the K largest values among {ξσ1(t),j (t + 1); j ∈ T1} and the de-
scendants of x1(t) are at the positions:

x1(t) + ξ
(l:T1)
σ1(t)

(t + 1) for 1 ≤ l ≤ K.

• Assume that we have constructed (L(K)(xj (t));1 ≤ j ≤ i − 1) and that the
(random) sets J1, . . . ,Ji−1 appearing in the respective constructions are all
disjoint. Then, given J1 ∪ · · · ∪Ji−1, we choose

Ti = Ti (t + 1) ⊂ {1, . . . ,N} \ (J1 ∪ · · · ∪Ji−1)

according to a deterministic rule. For example, one can choose the N − MK

first elements (in the usual order of N) in {1, . . . ,N} \ (J1 ∪ · · · ∪Ji−1). By
construction, Ti is a random set of {1, . . . ,N} and it satisfies the property

Ti ∩J1 = ∅= Ti ∩J2 = · · · = Ti ∩Ji−1.
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Let

ξ
(1:Ti )
σi (t)

(t + 1) ≥ ξ
(2:Ti )
σi (t)

(t + 1) ≥ · · · ≥ ξ
(K:Ti )
σi (t)

(t + 1)

be the K largest values among {ξσi(t),j (t + 1); j ∈ Ti}, and Ji (t + 1) =
{j (i)

1 , . . . , j
(i)
K } be the set of their indices, that is,

ξ
(l:Ti )
σi (t)

(t + 1) = ξ
σi(t)j

(i)
l

(t + 1).

Then, L(K)(xi(t)) is the point process formed by the these K points.

We end up the branching step with KM new particles.
2. Selection: We select the M rightmost particles among the KM obtained in the

branching step.
3. Ordering: We reorder the M selected particles to obtain the vector x(t + 1).

In the next two lemmas, we show that x(t) ≺ X(t) and that L(K)(·) are i.i.d.
which implies that the point process

x (t) :=
M∑
i=1

δ{xi(t)}

has the distribution of the point process obtained from a M-BRW(L(K)).
First, we prove that x(t) bounds X(t) from below. We bring to the reader’s

attention that the next lemma is a direct corollary of the construction of x(t) and it
holds without any assumption on the family {ξij (s);1 ≤ i, j ≤ N, s ≥ 1}.

Lemma 4.1. For N ≥ MK , let x(t) be the branching/selection process con-
structed as above. Then, x(t) bounds X(t) from below.

Proof. It is immediate that x(0) ≺ X(0), hence assume that x(t) ≺ X(t). Before
the selection step, there are MK points at the positions

xi(t) + ξ
σi(t),j

(i)
l

(t + 1), 1 ≤ l ≤ K and 1 ≤ i ≤ M.

By the construction of x(·) the j
(i)
l are all distinct. Since xi(t) ≤ Xσi(t)(t), we have

that

xi(t) + ξ
σi(t),j

(i)
l

(t + 1) ≤ Xσi(t)(t) + ξ
σi(t),j

(i)
l

(t + 1) ≤ X
j

(i)
l

(t + 1).

It is straightforward that a similar order relation holds after the selection step,
which yields x(t + 1) ≺ X(t + 1) and proves the statement. �

Now, we prove that the point processes L(K)(·) are i.i.d. The next lemma holds
under the unique assumption that the family {ξij (s);1 ≤ i, j ≤ N, s ≥ 1} is i.i.d.
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Lemma 4.2. Assume that N ≥ KM , and let {Ti (t); t ∈ N; i = 1, . . . ,M} be the
set of indices obtained in the above construction. For t ≥ 0 denote by �(xi(t)) the
point process

�
(
xi(t)

) := ∑
j∈Ti (t+1)

δ{ξσi (t),j
(t+1)},

then, {�(xi(t));1 ≤ i ≤ M; t ∈ N} are i.i.d. In particular, {L(K)(xi(t));1 ≤ i ≤
M; t ∈ N} are i.i.d. as well.

Proof. Note that the families of random variables{
σ(s);0 ≤ s ≤ t

}
,

{
Ti (s);0 ≤ s ≤ t;1 ≤ i ≤ M

}
,{

�
(
xi(s)

);1 ≤ s ≤ t − 1;1 ≤ i ≤ M
}
,

are Ft -measurable with Ft from (2.10). By assumption, σ {ξij (t +1);1 ≤ i, j ≤ N}
is independent from Ft , and one can easily check, by successive conditioning, that
under P(· | Ft ) (

ξσi(t),j (t + 1); i = 1, . . . ,M and j ∈ Ti

)
is distributed according to a M × (N −KM) vector, which entries are i.i.d. copies
of ξij . Notice that the conditional distribution does not depend on Ft , which yields
its independence from Ft . Moreover, the conditional independence of the ξσi ,j (t +
1) yields that (�(xi(t)); i = 1, . . . ,M) are also independent, which proves the first
claim.

The second claim is an immediate consequence of the first part of the lemma.
�

Finally, we focus on the asymptotic distribution of L(K)(·) after rescaling, pre-
cisely,

P(N,K)(xi(t)
) := ∑

z∈L(K)(xi(t))

δ{za−1
N }, (4.2)

for aN given by (1.6). With some abuse of notation, we will denote by P(N,K) the
common distribution of these point processes.

Proposition 4.3. Assume that the hypothesis of Theorem 1.1 hold with xξ = 0 and
that M and K are fixed. Then, as N → ∞,

P(N,K) −→ P(K) in law,

with P(K) defined in Corollary 2.2 with β = α−1 and C = α. Moreover, for every
� > 0 the moment convergence

lim
N→∞E

[∣∣minP(N,K)
∣∣�] = E

[∣∣minP(K)
∣∣�] < ∞

also holds.
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Proof. It suffices to prove the convergence for P(N,K)(x1(t)). Since ξij is in the
domain of attraction of �α and xξ = 0, we obtain for every z > 0

P
(
ξσ1(t)j (t) > −zaN

) ∼ zα
P

(
ξσ1(t)j (t) > −aN

) ∼ zα

N
as N → ∞. (4.3)

It is a classical result of extreme value theory Resnick (1987) that, as N → ∞, the
point process

P(N,K) law=
N−KM∑

j=1

δ{a−1
N ξ1,j (t)},

converges in distribution to a PPP with intensity measure |z|α−1α1{z<0} dz. A nec-
essary and sufficient condition for the convergence of the �th moment is that the
r.v. ξij has itself finite �th moment, which follows readily from (H1). We refer to
Proposition 2.1 in Resnick (1987) for the proof of this statement for the maxima
of i.i.d. random variables in the domain of attraction of �α . Now, a line-by-line
adaptation of this proof yields the same result for the K th maxima proving the last
claim. �

A straightforward consequence of Proposition 4.3 and the two previous lemmas
is that

x (N)(t) :=
M∑
i=1

δ{a−1
N xi(t)}

converges in distribution to the points of the M-BRW(P(K)) at time t , moreover,

aN

t
max

(
x (N)(t)

) ≤ 1

t
max

1≤j≤N

(
Xj(t)

)
.

We will prove in Section 4.2 that if one chooses K and M large enough (depending
only on ε and the distribution ξij ), then for N larger than some N0 > 0,

lim inf
t→∞

1

t
max

(
x (N)(t)

) ≥ −cα − ε a.s. (4.4)

which proves the lower bound (4.1).

4.2 Uniform lower bound for the velocities

In this subsection, we prove the lower bound (4.4), which concludes the proof of
Theorem 1.1. The proof is divided in two main steps. In the first one, we focus
on the BRWs defined by P(N,K). We prove that if N is sufficiently large, with
positive probability there exists more than M vertices w in generation n (see Sec-
tion 4.2.1 for its definition), such that

position(wt ) ≥ −(cα + ε/2)t ∀wt ∈ �e,w�.
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In the second step, we use this result to obtain the uniform lower bound (4.4) for
the M-BRWs.

Most of the arguments presented here have already been used by Bérard and
Gouéré (2010). In our case, though, we deal with a family of BRWs indexed by
N , whereas in Bérard and Gouéré (2010) they compute the velocity for a unique
M-BRW.

4.2.1 First step. Let P(N,K) be the distribution defined by (4.2) and P(K)

denote the distribution of the point process obtained from the K largest points
of a PPP with intensity measure |z|α−1α1{z≤0} dz. Then, BRW(P(N,K)) and
BRW(P(K)) generate the same Galton–Watson tree, in which every individual
has a constant number K of offspring, denote by TK this tree. We will construct
these BRWs on a same probability space.

Let {P(N,K)(w);w ∈ TK} be i.i.d. copies of P(N,K), {P(K)(w);w ∈ TK} be
i.i.d. copies of P(K), and (�,F,P) be a probability space where those families
of r.v. are defined. Since P(N,K) converges to P(K) in distribution (see Proposi-
tion 4.3), we can and we will assume that the stronger a.s. convergences

lim
N→∞P(N,K)(w) = P(K)(w) a.s. (4.5)

hold for all w ∈ TK , which implies the point-to-point convergence

lim
N→∞

∥∥P(N,K)(w) − P(K)(w)
∥∥ = 0 a.s.,

where ‖ · ‖ is the distance defined in (2.1). Note that we have not lost in generality,
since we can always construct a probability space (�,F,P), for which the a.s.
convergence holds.

Under these hypothesis, the construction goes as follows. Each individual
w ∈ TK has K offspring, that we label according to some deterministic order.
Let w(i) be its ith children, then, its position η(N)(ww(i)) and η(∞)(ww(i)) in the
BRW(P(N,K)) and BRW(P(K)) are given by

η(N)(ww(i)) = η(N)(w) + P(N,K)
i (w) and

η(∞)(ww(i)) = η(∞)(w) + P(K)
i (w),

where P(N,K)
i (w) and P(K)

i (w) denote the ith largest point in P(N,K)(w) and
P(K)(w) respectively. This construction couples the BRWs and for w ∈ TK fixed

lim
N→∞η(N)(w) = η(∞)(w) a.s.

A direct calculation shows that P(K) satisfies (2.4)–(2.6), which implies the
existence of the asymptotic velocity γ (P(K)). By (2.7), we have that γ (P(K)) =



The speed of a branching-selection process 495

ψ ′(u∗
K | P(K)), with u∗

K solving (2.6). Then, Corollary 2.2 with C = α and β =
α − 1 > −1 yields

lim
K→∞γ

(
P(K)) = −α

e

(
1

�(α)α

) 1
α = −cα.

Let δ = ε/12, then there exists K0 such that ∀K ≥ K0

γ
(
P(K)) ≥ −cα − δ. (4.6)

Fix K for which (4.6) holds; we bring to the reader’s attention that P(N,K) satis-
fies (2.4)–(2.5) as well and that γ (P(N,K)) tends to γ (P(K)) as N → ∞.

We now prove that with positive probability there exists more than M individu-
als w̃ ∈ T in generation n such that

η(N)(w̃t ) ≥ −cαt − 6δ for every w̃t ∈ �e, w̃�.
As it will become clearer in the sequel, we take n of the form n = sM + m, with

sM :=
⌈

lnM

lnϕ

⌉
+ 1 and m =

⌈
(|R| − cα − 6δ)sM

3δ

⌉
. (4.7)

The constants ϕ > 1 and R < −cα − 6δ < 0 are given by Lemma 4.4 and formula
(4.8) below and depend only on the distribution P(K). Although M may be large,
it is kept constant throughout this section (while N → ∞), hence sM and m are
also constants.

First, we obtain a lower bound for the probability of the set{∃w ∈ TK in generation m such that η(N)(wt ) ≥ (−cα − 3δ)t; ∀wt ∈ �e,w�}
.

Denote by Am,δ the set

Am,δ := {∥∥P(N,K)(w′) − P(K)(w′)∥∥ ≤ δ; ∀w′ ∈ TK such that
∣∣w′∣∣ ≤ m

}
,

then, for m ∈ N and δ fixed, one obtains from (4.5) that P(Am,δ) → 1 as N → ∞.
Since γ (P(K)) ≥ cα − δ we have the following set inclusions{∃w ∈ TK such that |w| = m and η(N)(wt ) ≥ (−cα − 3δ)t; ∀wt ∈ �e,w�}

⊃ {∃w ∈ TK such that |w| = m and η(N)(wt ) ≥ (−cα − 3δ)t;
∀wt ∈ �e,w�} ∩ Am,δ

⊃ {∃w ∈ TK such that |w| = m and η(∞)(wt ) ≥ (−cα − 2δ)t;
∀wt ∈ �e,w�} ∩ Am,δ

⊃ {∃w ∈ TK such that |w| = m and η(∞)(wt ) ≥ (−γ
(
P(K)) − δ

)
t;

∀wt ∈ �e,w�} ∩ Am,δ

⊃ {
BRW

(
P(K)) has an infinite ray lying above the line of slope(

γ
(
P(K)) − δ

)} ∩ Am,δ,
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which yields the lower bound

lim inf
N→∞ P

(∃w ∈ TK such that |w| = m and η(N)(wt ) ≥ (−cα − 3δ)t; ∀wt ∈ �e,w�)
≥ ρ(∞, δ).

From Theorem 2.3, ρ(∞, δ) > 0 is a constant depending only on P(K). Then,
there exists NM ∈ N depending only on m (and hence, on M) such that ∀N ≥ NM

P
(∃w ∈ TK : |w| = m,η(N)(wt ) ≥ (−cα − 3δ)t,∀wt ∈ �e,w�) ≥ ρ(∞, δ)

2
.

Now, we choose R and ϕ in (4.7). Since #P(K) ≡ K , we take R < −cα −6δ < 0
such that

P
(
P(K)[R,0) ≥ 2

)
>

2

3
. (4.8)

By the convergence in distribution of P(N,K), there exists a N ′ > 0 such that for
N ≥ N ′

P
(
P(N,K)[R,0) ≥ 2

) ≥ 2

3
.

Without loss of generality, we can and we will assume that NM ≥ N ′. Thus, the
Galton–Watson tree with offspring distribution

p
(N)
i = P

(
P(N,K)[R,0) = i

)
, i = 0,1, . . . (4.9)

has mean offspring larger than 4/3. Therefore, it is supercritical and the following
well-known result holds.

Lemma 4.4 (Theorem 2, Section 6, Chapter 1 in Athreya and Ney, 2004).
Let Mt denote the population size of a supercritical Galton–Watson process with
square integrable offspring distribution (started with one individual). Then, there
exists r > 0 and ϕ > 1 such that for all t ≥ 0

P
(
Mt ≥ ϕt ) ≥ r.

Let M
(N)
t denote the population size of the Galton–Watson processes defined

by (p
(N)
i )i=0,1,.... Using a simple coupling argument and Lemma 4.4, we can find

a ϕ > 1 and r > 0 not depending on N ≥ NM such that for all t ≥ 1

P
(
M

(N)
t ≥ ϕt ) > r.

With m and sM from (4.7), we have that

M(N)
sM

≥ M with probability at least r > 0,
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and that

(−cα − 3δ)m + R(t − m) ≥ (−cα − 6δ)t for every m ≤ t ≤ m + sM.

Let ww′ ∈ TK be a vertex in generation n, with the following properties: |w| = m,

η(N)(wt ) > (−cα − 3δ)t ∀wt ∈ �e,w�,
w′ is in generation sM in the TK sub-tree descending from w and

η(N)(w′
s+1

) − η(N)(w′
s

) ≥ R ∀w′
s ∈ �

w,w′�
.

Then, by a simple calculation one may conclude that the path �e,ww′� ⊂ TK has
always lain above the line of slope −cα − 6δ. For N ≥ NM , a conditioning argu-
ment yields the lower bound for the probabilities

P

(
#
{
w̃ ∈ TK; |w̃| = n and η(N)(w̃t ) ≥ −

(
cα + ε

2

)
t; ∀w̃t ∈ �e, w̃�

}
≥ M

)

≥ P
(∃w ∈ TK such that η(N)(wt ) ≥ (−cα − 3δ)t;

∀wt ∈ �e,w� and M(N)
sM

≥ M
)

≥ r
ρ(∞, δ)

2
,

in the second equation, w is a vertex in generation m and M
(N)
t is the population

size of the Galton–Watson process generated by the descendants of w for which

η(N)(w′
s+1

) − η(N)(w′
s

) ≥ R ∀w′
s ∈ �w,w′�.

In particular, we have proved the following proposition.

Proposition 4.5. Let (η(N)(w);w ∈ TK) the BRW defined by the point processes
P(N,K). Given ε > 0 let R be given by (4.8), r and ϕ as in Lemma 4.4, sM and m

as in (4.7). Put n = m + sM . Then, we can find NM (depending only on M) such
that ∀N ≥ NM

P

(
#
{
w ∈ TK; |w| = n and η(N)(wt ) ≥ −

(
cα + ε

2

)
t; ∀wt ∈ �e,w�

}
≥ M

)

≥ ρ(∞, ε/12)

2
r.

4.2.2 Second step: Uniform lower bound for the speed. In this step, we obtain
a uniform lower bound for the speed of the M-BRW(P(N,K))s, that is, a−1

N x(t).
Let x (N)(t) be the point process associated to a−1

N x(t)

x (N)(t) :=
M∑
i=1

δ{a−1
N xi(t)},
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and γM(P(N,K)) be the asymptotic velocity of the M-BRW(P(N,K)), then

lim
t→∞ t−1 min

(
x (N)(t)

) = lim
t→∞ t−1 max

(
x (N)(t)

) = γM

(
P(N,K)) a.s.

We will prove that for ε > 0 and K given by (4.6) the inequality

lim inf
M→∞

(
lim inf
N→∞ γM

(
P(N,K))) ≥ −(cα + ε)

holds, which finishes the proof of Theorem 1.1. Following the strategy of Bérard
and Gouéré (2010), we construct a third point process W(t) = W(N)(t) that bound
x (N)(t) from below. This new point process evolves like x (N)(t) up to a certain
random time τi , i ∈ N, from which we shift the position of all particles to the
minimal position minW(τi), and start the process afresh.

Let n = m + sM , where sM and m are given by (4.7). We will construct the
process W(t) and the stopping times 0 = τ0 < τ1 < · · · together

τ1 := inf
{
1 ≤ s ≤ n;min

(
x (N)(s)

) ≥ (−cα − ε/2)s
}
,

where inf{∅} = n. Then, τ1 ≤ n is a stopping time with respect to the filtration Ft .
For 0 ≤ t ≤ τ1 let

W(t) = x (N)(t),

and m1 := min(W(τ1)), then at the time step τ1 → τ1 + 1 we shift all particles Wi

to m1 and continue the construction up to τ2 according to the induction step.
Inductive step: assume that τ1 < · · · < τl and (W(t), t ≤ τl) are defined. Then,

for t ∈ (τl, τl+1] (we will define τl+1 below), W(t) is the point process of a
M-BRW(P(N,K)) starting from

ml := min
(
W(τl)

)
.

At each time step t → t + 1 the individuals (Wi(t))i=1,...,M give birth to K

new individuals, whose positions are determined by independent point process
(P(N,K)(xi(t)); i = 1, . . . ,M), and die immediately afterwards. We assume that
the point process defining x (N) and W(·) are the same. Moreover, we also assume
that the indices are such that x (N) couples W(·). We then select the M rightmost
particles to form the next generation.

The process evolves as above up to

τl+1 := inf
{
τl + 1 ≤ s ≤ τl + n;min

(
W(s)

) − ml ≥ (−cα − ε/2)s
}
,

where we shift the positions of the M particles to ml+1, the minimum of the posi-
tions. It is immediate from the construction of W(·) that

W(t) ≺ x (N)(t) ∀t ∈ N.

For l ≥ 1, the processes (W(t) − ml; t ∈ [τl + 1, τl+1]) and the random variables
τl+1 − τl are i.i.d. In the sequel, we use the notation τ := τ1, then by the law of
large numbers

lim
l→∞

1

l
min

(
x (N)(τl)

) = γM

(
P(N,K))

E[τ ] a.s.
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From the construction of W(·) and the renewal theorem, we also obtain that

lim inf
l→∞

1

l
min

(
x (N)(τl)

) ≥ lim inf
l→∞

1

l
min

(
W(τl)

) = E
[
min

(
W(τ)

)]
a.s.

which implies that

γM

(
P(N,K)) ≥ E[min(W(τ))]

E[τ ] . (4.10)

With B = {min(W(τ)) < (−cα − ε/2)τ }, we write

min
(
W(τ)

) ≥ (−cα − ε/2)τ1
B� + min

(
W(n)

)
1B

= (−cα − ε/2)τ + (cα + ε/2)τ1B + min
(
W(n)

)
1B.

Taking expected value we get

E
[
min

(
W(τ)

)] ≥ (−cα − ε/2)E[τ ] +E
[
min

(
W(n)

)
1B

]
. (4.11)

Let min(P(N,K)(Wi(t))) be the smallest point of the point process generated by
Wi(t) before the selection step, it has the law of the K th maxima of a N − KM

sample of ξij . Since ξij ≤ 0, one gets the lower bound

min
(
W(n)

) ≥
n∑

t=0

M∑
i=1

min
(
P(N,K)(Wi(t)

))
,

which implies that

E
[
min

(
W(n)

)
1B

] ≥ −(n + 1)ME
[∣∣min

(
P(N,K))1B

∣∣].
The Cauchy–Schwarz inequality yields

E
[
minW(n)1B

] ≥ −(n + 1)ME
[∣∣min

(
P(N,K))∣∣2]1/2

P(B)1/2.

By Proposition 4.3, the second moment of min(P(N,K)) converges as N → ∞ to
a finite constant. Hence, there exists a constant c̃, depending only on ξij , such that

E
[
minW(n)1B

] ≥ −c̃(n + 1)MP(B)1/2.

Finally, the probability of B can be estimated using Proposition 4.5. The evolution
of different individuals in the M-BRW is not independent. Yet, a M-BRW can be
coupled with M independent BRWs, see Section 3.3 in Bérard and Gouéré (2010),
so that the event “the minimum of the M-BRW always lies below the line of slope
−cα − ε/2” implies that none of the M independent BRWs has more than M

vertices in generation n that have always stayed above this line, hence

P(B) ≤
(

1 − ρ(∞, ε/12)

2
r

)M

.
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From the definition of n, if M is large enough c̃(n + 1)M < M2 and

lim sup
M→∞

M2
(

1 − ρ(∞, ε/12)

2
r

)M/2
= 0.

Then, choosing M properly (note that it depends only on ε and ξij but not on N ),
one gets

E
[
minW(n)1B

] ≥ −ε

2
.

Combined with (4.10), (4.11), this ends the proof.
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