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Abstract. We consider the recently introduced Transformation-based
Markov Chain Monte Carlo (TMCMC) (Stat. Methodol. 16 (2014) 100–116),
a methodology that is designed to update all the parameters simultaneously
using some simple deterministic transformation of a one-dimensional ran-
dom variable drawn from some arbitrary distribution on a relevant support.
The additive transformation based TMCMC is similar in spirit to random
walk Metropolis, except the fact that unlike the latter, additive TMCMC uses
a single draw from a one-dimensional proposal distribution to update the
high-dimensional parameter. In this paper, we first provide a brief tutorial
on TMCMC, exploring its connections and contrasts with various available
MCMC methods.

Then we study the diffusion limits of additive TMCMC under various
set-ups ranging from the product structure of the target density to the case
where the target is absolutely continuous with respect to a Gaussian mea-
sure; we also consider the additive TMCMC within Gibbs approach for all
the above set-ups. These investigations lead to appropriate scaling of the one-
dimensional proposal density. We also show that the optimal acceptance rate
of additive TMCMC is 0.439 under all the aforementioned set-ups, in contrast
with the well-established 0.234 acceptance rate associated with optimal ran-
dom walk Metropolis algorithms under the same set-ups. We also elucidate
the ramifications of our results and clear advantages of additive TMCMC
over random walk Metropolis with ample simulation studies and Bayesian
analysis of a real, spatial dataset with which 160 unknowns are associated.

1 Introduction

Markov Chain Monte Carlo (MCMC), particularly, the Metropolis–Hastings (MH)
methods, have revolutionized Bayesian computation—this pleasing truth, however,
is often hard to appreciate in the face of the challenges posed by computational
complexities and convergence issues of traditional MCMC. Indeed, exploration of
very high-dimensional posterior distributions using MCMC can be both compu-
tationally very expensive and troublesome convergence-wise. Thus, there seems
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to be trade-off between the great flexibility of MCMC algorithms [see, for exam-
ple, Storvik (2011), Martino and Read (2013)] and choice of the right MCMC
algorithm that ensures good convergence properties and reasonable computational
complexity. Investigation of connections between varieties of available MCMC
methods, as provided in the aforementioned papers, seems to be important to de-
cide upon a suitable MCMC algorithm, given any paricular problem at hand.

The random walk Metropolis (RWM) algorithm is a popular MH algorithm be-
cause of its simplicity and ease in implementation, but unless great care is taken to
properly scale the proposal distribution the algorithm can have poor convergence
properties. For instance, if the variance of the proposal density is small, then the
jumps will be small in magnitude, implying that the Markov chain will require
a large number of iterations to explore the entire state-space. On the other hand,
large variance of the proposal density causes too many rejections of the proposed
moves, again considerably slowing down convergence of the underlying Markov
chain. The need for an optimal choice of the proposal variance is thus inherent in
the RWM algorithms. The pioneering approach towards obtaining an optimal scal-
ing of the RWM proposal is due to Roberts, Gelman and Gilks (1997) in the case
of target densities associated with independent and identical (iid) random vari-
ables; generalization of this work to more general set-ups are provided by Bedard
(2007) (target density associated with independent but non-identical random vari-
ables) and Mattingly, Pillai and Stuart (2011) (target density absolutely continuous
with respect to a Gaussian measure). The approach used in all these works is to
study the diffusion approximation of the high-dimensional RWM algorithm, and
maximization of the speed of convergence of the limiting diffusion. The optimal
scaling, the optimal acceptance rate and the optimal speed of convergence of the
limiting diffusion, along with the complexity of the algorithm are all obtained from
this powerful approach.

In practice, a serious drawback of the RWM algorithm in high dimensions is
that there is always a positive probability that a particular co-ordinate of the high-
dimensional random variable is ill-proposed; in that case the acceptance ratio will
tend to be extremely small, prompting rejection of the entire high-dimensional
move. In general, unless the high-dimensional proposal distribution, which need
not necessarily be a random walk proposal distribution, is designed with extreme
care, such problem usually persists. Unfortunately, such carefully designed pro-
posal density is rare in high dimensions. To combat these difficulties Dutta and
Bhattacharya (2014) proposed an approach where the entire block of parame-
ters can be updated simultaneously using some simple deterministic transforma-
tion of a scalar random variable sampled from some arbitrary distribution defined
on some suitable support. The strategy effectively reduces the high-dimensional
proposal distribution to a one-dimensional proposal, greatly improving the ac-
ceptance rate and computational speed in the process. This methodology is no
longer Metropolis–Hastings for dimensions greater than one; the proposal den-
sity in more than one dimension becomes singular because it is induced by a
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one-dimensional random variable. However, in one-dimensional cases this coin-
cides with Metropolis–Hastings with a specialized mixture proposal density; in
particular, the additive transformation based TMCMC coincides with RWM in
one-dimensional situations. Dutta and Bhattacharya (2014) refer to this new gen-
eral methodology as Transformation-based MCMC (TMCMC). In their work the
authors point out several advantages of the additive transformation in compari-
son with the other valid transformations. For instance, they show that additive
TMCMC requires less number of ‘move-types’ compared to other valid transfor-
mations; moreover, the acceptance rate has a simple form for additive transforma-
tions since the Jacobian of additive transformations is 1.

The contribution of this paper is two-fold. First, we provide a brief tutorial on
TMCMC, attempting to convey the key ideas and the properties in simple terms
and from several perspectives. We explore various connections and contrasts with
existing MCMC algorithms.

Second, we investigate the diffusion limits of additive TMCMC in high-
dimensional situations under various forms of the target density when the one-
dimensional random variable used for the additive transformation is drawn from
a left truncated zero-mean normal density. In particular, we consider situations
when the target density corresponds to iid random variables, independent but
non-identically distributed random variables; we also study the diffusion limit
of additive TMCMC when the target is absolutely continuous with respect to a
Gaussian measure. Since all these forms are considered in the MCMC literature
related to diffusion limits and optimal scaling of RWM, comparisons of our ad-
ditive TMCMC-based approaches can be made with the respective RWM-based
approaches. Furthermore, in each of the aforementioned set-ups, we also consider
additive TMCMC within Gibbs approach, where one or multiple components of
the high-dimensional random variable are updated by additive TMCMC, condi-
tioning on the remaining components. This we compare with the corresponding
RWM within Gibbs approach under the same settings of the target densities.

Briefly, our scaling investigations show that the optimal additive TMCMC ac-
ceptance rate in all the set-ups is 0.439, as opposed to 0.234 associated with RWM.
Moreover, we point out that even though the optimal diffusion speed of RWM is
slightly greater than that of additive TMCMC, the diffusion speed associated with
additive TMCMC is more robust with respect to the choice of the scaling constant.
In other words, if the optimal scaling constant for RWM is somewhat altered, this
triggers a sharp fall in the diffusion speed, but in the case of additive TMCMC
the rate of decrease of diffusion speed is much slower. Investigation of the conse-
quences of this phenomenon with simulation studies reveal severe decline in the
performance of RWM in comparison with additive TMCMC.

This non-robustness of RWM with respect to scale choices other than the op-
timal, presents quite important consequences for applied MCMC practitioners,
which we elaborate with a real, spatial data analysis problem. In a nutshell, in
the context of the spatial problem, we have provided a method, which appears to
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be generally applicable, for approximately achieving 44% and 23% acceptance
rates for additive TMCMC and RWM; however, achieving the desired acceptance
rates in general problems where optimal scaling theories are yet lacking, does not
guarantee that the achieved acceptance rates correspond to optimal scales, as there
are usually very many scale choices corresponding to the same acceptance rate.
Because of such sub-optimality, in the real spatial problem, RWM faces very se-
rious performance problems. On the other hand, additive TMCMC, because of its
robustness with respect to the scales, performs quite reasonably.

Our paper is structured as follows. In Section 2, we provide a brief tutorial on
TMCMC. We develop the theory for optimal additive TMCMC scaling in the iid
set-up in Section 3; in the same section (Section 3.1) we also develop the corre-
sponding theory for additive TMCMC within Gibbs in the iid situation. In Sec-
tion 4, we extend the additive TMCMC-based optimal scaling theory to the in-
dependent but non-identical set-up; in Section 4.1 we outline the corresponding
TMCMC within Gibbs case. We then further extend our additive TMCMC based
optimal scaling theory to the aforementioned dependent set-up in Section 5, pre-
senting the formal result in Section 5.2; the corresponding TMCMC within Gibbs
case is considered in Section 5.3. In Section 6, we provide numerical comparisons
between additive TMCMC and RWM in terms of optimal acceptance rates and
diffusion speeds; in Section 7, we illustrate our theoretical results and compare
the performances of additive TMCMC and RWM using simulation studies, illus-
trating that the former is a far more effective algorithm in comparison with the
latter. In Section 8, we compare additive TMCMC with RWM with respect to a
160-dimensional posterior density associated with a real, spatial dataset, vividly
demonstrating the clear superiority of additive TMCMC over RWM. Finally, we
make concluding remarks in Section 9.

Apart from the main developments provided in this article, we provide ad-
ditional details in our supplementary material [Dey and Bhattacharya (2016b)],
whose sections and figures have the prefix “S-” when referred to in this article.
Briefly, in Section S-1, we provide details on computational efficiency of TM-
CMC. Specifically, we demonstrate with an experiment the superior computational
speed of additive TMCMC in comparison with RWM, particularly in high dimen-
sions. In Section S-2 we discuss, with appropriate experiments, the necessity of
optimal scaling in additive TMCMC, while in Sections S-3 and S-4 we delve into
the robustness issues associated with the scale choices of additive TMCMC and
RWM. In Section S-5, we include brief discussions of adaptive versions of RWM
and TMCMC. Moreover, the proofs of all our technical results are provided in
Sections S-6 and S-7 of the supplement.

2 A brief overview of TMCMC

Suppose that we are simulating from a d dimensional space (usually Rd , where
R is the real line), and suppose we are currently at a point x = (x1, . . . , xd). Let
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us define the d-dimensional random vector b = (b1, . . . , bd), such that, for i =
1, . . . , d ,

bi =
⎧⎨⎩

+1 with probability pi;
0 with probability 1 − pi − qi;
−1 with probability qi,

(1)

where, for each i, 0 < pi, qi < 1 such that pi + qi ≤ 1. Let ε ∼ �(ε) = �̃(ε)IS(ε),
where �̃(·) is any arbitrary density supported on some suitable space S; here IS(·)
denotes the indicator function of S.

TMCMC uses moves of the following type:

(x1, . . . , xd) → (
T b1(x1, ε), . . . , T

bd (xd, ε)
)
, (2)

where T +1(xi, ε), the forward transformation to co-ordinate xi , and T −1(xi, ε),
the backward transformation to xi , are bijective for fixed ε and injective for fixed
xi , satisfying

T +1(T −1(xi, ε), ε
)= T −1(T +1(xi, ε), ε

)= xi. (3)

The transformation

T 0(xi, ε) ≡ xi, ∀ε ∈ S, (4)

indicates no change to the co-ordinate xi while updating the vector x = (x1, . . . ,

xd) to x∗ = Tb(x, ε), where Tb(x, ε) denotes the updated vector (T b1(x1, ε), . . . ,

T bd (xd, ε)). Assuming for simplicity of illustration that pi = qi for i = 1, . . . , d ,
move (2) is to be accepted with probability

α = min
{

1,
π(x∗)
π(x)

J b(x, ε)

}
, (5)

where J b(x, ε) = | ∂(T b(x,ε),ε)
∂(x,ε)

| is the Jacobian of the transformation associated

with T b. For general (p1, . . . , pd) and (q1, . . . , qd), the acceptance ratio depends
upon these probabilities; see Dutta and Bhattacharya (2014).

2.1 Detailed balance

In the supplement to Dutta and Bhattacharya (2014) the proof of detailed balance
has been provided, but here we refurnish the proof with more details and with more
intuitive discussion. For the purpose of detailed balance, we need the following
definition of “conjugate” bc = (bc

1, . . . , b
c
d) of the random vector d:

bc
i =
⎧⎨⎩

+1 with probability qi;
0 with probability 1 − pi − qi;
−1 with probability pi.

(6)

This definition is needed for returning to x from x∗, so that moving from x to x∗
using the transformation T b has, in essence, the same probability as returning from
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x∗ to x using the transformation T bc
. Details are provided below; at this point we

note that for the ith co-ordinate xi , the probability of making a forward move to
x∗
i using T +1(xi, ε) is pi , which is also the probability of returning from x∗

i to xi

using the backward move T −1(x∗
i , ε) = T (+1)c (x∗

i , ε).
Letting K denote the Markov transition kernel associated with TMCMC, note

that for moving from x to x∗, the kernel satisfies

π(x)K
(
x → x∗)= π(x)P (b)�(ε)min

{
1,

π(x∗)
π(x)

J b(x, ε)

}
= min

{
π(x)P (b)�(ε),P (b)�(ε)π

(
x∗)J b(x, ε)

}
,

(7)

where P(b) is the probability of b responsible for the movement of the underlying
Markov chain from x to x∗. For returning from x∗ to x, the kernel satisfies

π
(
x∗)K(x∗ → x

)
= π
(
x∗)P (bc)�(ε)J b(x, ε)min

{
1,

π(x)

π(x∗)
J bc(

x∗, ε
)}

= min
{
π
(
x∗)P (bc)�(ε)J b(x, ε),

π(x)P
(
bc)�(ε)J b(x, ε) × J bc(

x∗, ε
)}

= min
{
π
(
x∗)P (bc)�(ε)J b(x, ε),

π(x)P
(
bc)�(ε)J b(x, ε) × J bc(

x∗, ε
)}

.

(8)

It follows from (3) and (4) that T bc
(T b(x, ε)) = x, so that

J b(x, ε) × J bc(
x∗, ε

)
=
∣∣∣∣∂(T b(x, ε), ε)

∂(x, ε)

∣∣∣∣× ∣∣∣∣∂(T bc
(T b(x, ε)), ε)

∂(T b(x, ε), ε)

∣∣∣∣
=
∣∣∣∣∂(T b(x, ε), ε)

∂(x, ε)

∣∣∣∣× ∣∣∣∣ ∂(x, ε)

∂(T b(x, ε), ε)

∣∣∣∣
= 1.

(9)

Substituting (9) in (8), we obtain

π
(
x∗)K(x∗ → x

)= min
{
π
(
x∗)P (bc)g(ε)J b(x, ε),π(x)P

(
bc)g(ε)

}
. (10)

If, for simplicity of illustration we assume pi = qi for i = 1, . . . , d , it follows
that P(b) = P(bc), so that (10) is equal to (7), proving detailed balance. Detailed
balance of course holds for general probabilities (p1, . . . , pd) and (q1, . . . , qd);
see the supplement of Dutta and Bhattacharya (2014).



Tutorial and optimal scaling of TMCMC 575

2.2 Discussion on the independence of the acceptance probability of the
proposal density �

An important feature of the TMCMC acceptance probability distinguishing it from
the acceptance probability of the Metropolis–Hastings algorithms is its indepen-
dence of the proposal density �, irrespective of whether or not it is symmetric,
and for all valid transformations T b. The reason for this is implicit in the above
detailed balance arguments—the same ε is generated from the proposal density �

while moving forward from x to x∗ as well as while returning to x from x∗. This
is exactly the reason why �(ε) features in both (7) and (8). Consequently, detailed
balance is satisfied only if the acceptance ratio of TMCMC is independent of �.

2.3 Relationship of TMCMC with the MH methodology

Note that, although in Section 2 we indicated a single ranodom variable ε to be
used in the transformations, it is permissible to use k random variables {ε1, . . . , εk},
where k ∈ {1, . . . , d}. Here it is also important to remark that general TMCMC
with k = d does not reduce to general MH method for the very reason that the ac-
ceptance ratio of TMCMC is always independent of the proposal density, while in
MH it is not. For dimension d = 1, however, TMCMC boils down to an MH algo-
rithm with a specialized two-component mixture proposal density, where the mix-
ture components correspond to the two available move types, forward and back-
ward. See Dutta and Bhattacharya (2014) for the complete technical details.

As pointed out by a reviewer, TMCMC can be viewed as a MH within Gibbs
methodology, which updates the variables one at a time using general MH [Geyer
(2011) criticizes this terminology since Gibbs is a special case of MH]. This can be
seen as follows. Suppose that we assign positive probabilities to the sets b̃i = (b1 =
0, . . . , bi−1 = 0, bi, bi+1 = 0, . . . , bd = 0), for i = 1, . . . , d , where bi ∈ {−1,0,1}.
For TMCMC, at each iteration, we can select one of the sets b̃i∗ by choosing
i∗ ∈ {1, . . . , d} at random, and generate bi∗ ∈ {−1,0,1} with probabilities qi∗ , 1 −
pi∗ − qi∗ and pi∗ . The corresponding xi∗ , corresponding to bi∗ , is then updated
according to the TMCMC mechanism. This being a single-dimensional TMCMC
step, coincides with an MH within Gibbs procedure with a specialized proposal
mechanism.

2.4 Additive and multiplicative transformations in TMCMC

2.4.1 Additive TMCMC. The additive TMCMC, which is of our interest in this
work, uses moves of the following type:

(x1, . . . , xd) → (x1 + b1ε, . . . , xd + bdε),

where ε ∼ �(ε). Here �(·) is an arbitrary density with support R+, the positive
part of the real line. In other words, we assume that T bi (xi, ε) = xi + biε. In this
work, we shall assume that pi = 1/2 and qi = 1/2 for i = 1, . . . , d , so that the
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probabilities of choosing bi = 0 and bc
i = 0 are zero. Indeed, as proved in Dutta

and Bhattacharya (2014), this is a completely valid and efficient choice for additive
transformations. For this work, we set �(ε)I{ε>0} ≡ N(0, �2

d
)I{ε>0}.

Note that, for each i, biε ∼ N(0, �2

d
), but even though biε are pairwise uncor-

related (E(biε × bj ε) = 0 for i 	= j ), they are not independent since all of them
involve the same ε. Also observe that biε+bj ε = 0 with probability 1/2 for i 	= j ,
showing that the linear combinations of biε need not be normal. In other words, the
joint distribution of (b1ε, . . . , bdε) is not normal, even though the marginal distri-
butions are normal and the components are pairwise uncorrelated. This also shows
that biε are not independent, because independence would imply joint normality
of the components.

Thus, a single ε is simulated from a truncated normal distribution, which is then
either added to, or subtracted from each of the d coordinates of x with probability
1/2. Assuming that the target distribution is proportional to π , the new move x∗ =
(x1 + b1ε, . . . , xd + bdε) is accepted with probability

α = min
{

1,
π(x∗)
π(x)

}
. (11)

The RWM algorithm, unlike additive TMCMC, proceeds by simulating ε1, . . . ,

εd independently from N(0, �2

d
), and then adding εi to the co-ordinate xi , for

each i. The new move is accepted with probability having the same form as (11).
As discussed in Section 2.3 for TMCMC it is permissible to use k random variables
{ε1, . . . , εk}, where k ∈ {1, . . . , d}. Thus, with such a proposal, if k = d , additive
TMCMC reduces to RWM, showing that the latter is a special case of the former.

Discussion of computational efficiency of TMCMC is already provided in Dutta
and Bhattacharya (2014). In this article, we supplement the discussion by demon-
strating with an experiment the substantial computational gains of additive TM-
CMC over RWM, particularly in high dimensions; see Section S-1.

2.4.2 Multiplicative TMCMC. In contrast with additive TMCMC, multiplicative
TMCMC proceeds by generating ε from some relevant distribution �(ε) supported
on [−1,1] \ {0} and then either multiplying or dividing the current states by ε.
In this case, it is necessary to assign positive probabilities to bi = 0 and bc

i =
0 to ensure irreducibility. For i = 1, . . . , d , the general multiplicative TMCMC
algorithm applies the transformation xiε

bi to xi , which necessitates multiplication
of the Jacobian ε

∑d
i=1 bi to the ratio of the target distribution evaluated at the new

and current states, for computation of the acceptance ratio; see Dutta (2012), Dutta
and Bhattacharya (2014) and Dey and Bhattacharya (2016a).

There is an alternative version of multiplicative TMCMC that proceeds by gen-
erating ε from �(ε) that is supported on (0,1], then making the transformation
xi 
→ cixiε

bi , where ci = 1 with probability ri and −1 with probability 1 − ri ,
where 0 < ri < 1. Here, it is again permissible to set the probabilities of bi = 0
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and bc
i = 0 to zero. The Jacobian remains the same as in the previous multiplica-

tive version.
Note that the multiplicative proposal allows relatively large jumps, while the

additive moves are local in nature. Hence, judicious combination of the two pro-
posals may allow local moves as well as large jumps, which would result in a
more efficient algorithm compared to the individual proposals. Indeed, Dey and
Bhattacharya (2016a) demonstrate that a mixture of the additive and multiplica-
tive transformations outperforms individual additive TMCMC and multiplicative
TMCMC.

2.4.3 Additive-multiplicative TMCMC. Apart from these TMCMC mechanisms
where all the coordinates are given either additive transformation or multiplicative
transformation, it is possible to give additive transformation to some co-ordinates
and multiplicative to the rest; this TMCMC mechanism has been referred to as
additive-multiplicative TMCMC in Dutta and Bhattacharya (2014) and Dey and
Bhattacharya (2016a).

2.5 A manifold interpretation of the TMCMC proposal mechanism

A reviewer observed that for a d-dimensional target distribution, the TMCMC
proposal can be viewed as generating points in a manifold M such that M ⊆ Rd .
For instance, for additive TMCMC this manifold M is formed by hyperplanes
within Rd . When d = 2, Figure 1 depicts the manifold as intersecting straight
lines with the current state (x1, x2) being the point of intersection. For the two
versions of multiplicative TMCMC, the manifolds are shown in Figures 2 and 3,
respectively.

The TMCMC proposal implicitly describes the manifold parametrically, where
ε ∈ Rk plays the role of the parameter. If k = 1, the proposed values must belong
to appropriate curves embedded in Rd . It is important to clarify, as the reviewer
also observed, that �(ε) does not completely define the TMCMC proposal; the
complete TMCMC proposal consists of first generating ε from � and then trans-
forming the current state deterministically with the help of ε in a way that ensures
the transformed state falls within the appropriate manifold.

Figure 1 Relevant manifold representing the one-step proposal mechanism for additive TMCMC
for d = 2 given the current state, denoted by the dark patch at the intersecting point of the two lines.
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Figure 2 Relevant manifold representing the one-step proposal mechanism for the first version of
multiplicative TMCMC for d = 2 given the current state, denoted by the dark patch at the intersecting
point of the straight lines and the curve towards the upper right portion of the diagram.

Figure 3 Relevant manifold representing the one-step proposal mechanism for the second version
of multiplicative TMCMC for d = 2 given the current state, denoted by the dark patch at the inter-
secting point of the curve and the straight line towards the upper right portion of the diagram.

Since, for d > 1, M ⊂ Rd even for k = d , the above manifold viewpoint also
succeeds in explaining why, even for k = d , the TMCMC proposal does not reduce,
in general, to the standard MH methodology. This perspective also clearly shows
the singularity of the proposal, which also explains the association of the Jacobian
with the acceptance probability of TMCMC. Note that for d = 1 (so that k = 1),
however, we must have M =R.

2.6 Contrast of TMCMC with deterministic transformation based
generalized Gibbs/MH approaches

TMCMC uses deterministic transformations to update the variables; however, de-
terministic transformations have also been considered by Liu and Yu (1999), Liu
and Sabatti (2000), Kou, Xie and Liu (2005) in an attempt to improve mixing be-
haviour of the underlying usual Gibbs or MH algorithm. In a nutshell, these authors
apply suitable deterministic transformations, usually additive, as (x1, . . . , xd) →
(x1 + ε, . . . , xd + ε), or multiplicative, (x1, . . . , xd) → (ηx1, . . . , ηxd), to the sam-
ples generated at each iteration of Gibbs or MH in a way that the stationarity of the
target distribution is preserved, while mixing properties of chain after the trans-
formation may perhaps be improved. To maintain stationarity, ε and η must be
simulated from some appropriate distribution which is often impossible to gener-
ate from [see Liu and Yu (1999)]. To alleviate the problem Liu and Sabatti (2000)
[see also Kou, Xie and Liu (2005)] suggest MH methods.
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As pointed out in the supplement of Dutta and Bhattacharya (2014), these gen-
eralized Gibbs/MH methods are mere attempts towards improving mixing of the
underlying MCMC. These are not stand-alone methodologies which can converge
to the target by themselves, unlike TMCMC. In fact, as shown in the supplement
of Dutta and Bhattacharya (2014) the aforementioned additive and multiplicative
transformations of generalized Gibbs/MH approaches are themselves not even ir-
reducible, and are hence generally non-convergent. See the supplement of Dutta
and Bhattacharya (2014) for detailed discussions regarding various issues pertain-
ing to these approaches.

It is important to point out that the aforementioned generalized Gibbs/MH ap-
proaches are not the first to consider deterministic transformations, the earlier
methods being the hit-and-run algorithm [see, for example, Berbee et al. (1987),
Bélisle, Romeijn and Smith (1993), Romeijn and Smith (1994), Smith (1996)]
and the adaptive direction sampling algorithm [Gilks, Roberts and George (1994),
Roberts and Gilks (1994)]. The hit-and-run algorithm proceeds by generating ran-
dom directions from an available set of directions and then considers addition of a
scalar times the sampled direction to the current state as the updated state, where
the scalar is drawn from an appropriate, but non-trivial distribution associated with
the target density. The adaptive direction sampler generalizes the hit-and-run algo-
rithm by selecting the directions and the current state adaptively, based on all the
previous iterations. Since sampling the scalar directly is usually difficult or im-
possible, this step can be replaced with an appropriate MH step as in the case of
generalized Gibbs/MH methods discussed above [see, for example, Romeijn and
Smith (1994)].

The adaptive version of additive TMCMC [Dey and Bhattacharya (2015)],
where the scales are chosen adaptively, comes close to the Metropolized versions
of hit-and-run and adaptive direction sampling methods. The differences are that,
in the latter algorithms, the directions (and also the current state in adaptive di-
rection method) are chosen randomly and require a Jacobian of transformations
to be evaluated at both the numerator and denominator of the acceptance ratio
apart from the proposal distribution (if not symmetric), while in adaptive additive
TMCMC the directions (and the current state) are chosen deterministically, and
the acceptance ratio depends neither on any Jacobian, nor on proposal densities.

2.7 Contrast of the TMCMC idea with reversible jump Markov chain
Monte Carlo (RJMCMC)

Interestingly, although both TMCMC and RJMCMC are based on determinis-
tic transformations, the philosophy of TMCMC is in sharp contrast with that of
RJMCMC. First, TMCMC is designed for simulation from fixed-dimensional dis-
tributions while RJMCMC is meant for generating from variable-dimensional dis-
tributions. Second, the deterministic transformations in RJMCMC are not required
for move-types that are not meant for changing dimensions, while in TMCMC
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none of the moves change dimensions, yet all of them are based on determinis-
tic transformations. Third, the acceptance rates of dimension changing moves of
RJMCMC depend upon the proposal density because for moving from lower to
higher dimension simulation of random variables is required but for returning to
lower dimension from higher dimension no simulation is necessary. For instance,
for moving from x1 ∈ R to (x∗

1 , x∗
2 ) ∈ R2, one may simulate u ∼ ϕ, where ϕ is

some density supported on R, and then make the transformation x∗
1 = x1 − u

and x∗
2 = x1 + u. However, for returning from (x∗

1 , x∗
2 ) to x1, one simply sets

x1 = x∗
1 +x∗

2
2 , without simulating any random variable. On the other hand, as dis-

cussed in Section 2.2, since ε is simulated from � while moving forward and also
for moving back, the detailed balance condition dictates that the acceptance ratio
of TMCMC must always be independent of �.

2.8 Discussion of extension of TMCMC to variable dimensional problems

Das and Bhattacharya (2016) extend TMCMC to accommodate variable-dim-
ensional problems; they refer to the new variable dimensional methodology as
Transdimensional Transformation based Markov chain Monte Carlo (TTMCMC).
TTMCMC is designed to update the entire set of parameters, both fixed and vari-
able dimensional, as well as the number of parameters, in a single block us-
ing simple deterministic transformations of some low-dimensional (often one-
dimensional) random variable drawn from some fixed, but arbitrary distribution
defined on some relevant support. Again, the acceptance probability is independent
of the proposal density. The advantages of TMCMC over Metropolis–Hastings al-
gorithms are clearly carried over to the advantages of TTMCMC over RJMCMC.
In fact, since it is well-known that efficient implementation of RJMCMC is gen-
erally infeasible, TTMCMC offers huge advantages in this regard; see Das and
Bhattacharya (2016) for details.

3 Optimal scaling of additive TMCMC when the target density is a
product based on iid random variables

It must be emphasized that the proposal density for ε in TMCMC can be any distri-
bution on the positive support. Similarly, the RWM algorithm also does not require
the proposal to be normal. However, the optimal scaling results for RWM inher-
ently assume normality, and for the sake of comparison, we have also restricted

our focus on ε ∼ N(0, �2

d
)I{ε>0} in the subsequent sections.

In this paper, we are primarily interested in choosing the parameters of the pro-
cess judiciously so as to enhance the performance of the chain. Our method as
stated above involves only a single parameter—the proposal variance, or to be
more precise, the scaling factor �. Details on the need for optimal scaling of addi-
tive TMCMC with regard to the scaling factor � are provided in Section S-2 of the
supplement.
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In this section, we consider the problem of optimal scaling in the simplest case
where the target density π is a product of iid marginals, given by

π(x) =
d∏

i=1

f (xi). (12)

Assuming that the TMCMC chain is started at stationarity, we shall show that
for each component of X, the corresponding one-dimensional process converges
to a diffusion process which is analytically tractable and whose diffusion and drift
speeds may be numerically evaluated. It is important to remark that it is possible to
relax the assumption of stationarity; see Jourdain, Lelièvre and Miasojedow (2013)
in the context of RWM, although we do not pursue this in our current work.

Let Xd
t = (Xt,1, . . . ,Xt,d). We define Ut

d = X[dt],1 ([·] denotes the integer
part), the sped up first component of the actual additive TMCMC-induced Markov
chain. Note that this process proposes a jump every 1

d
time units. As d → ∞, that

is, as the dimension grows to ∞, the process essentially becomes a continuous
time diffusion process.

Before proceeding first let us introduce the notion of Skorohod topology
[Skorohod (1956)]. It is a topology generated by a class of functions from [0,1] →
R for which the right-hand side and the left-hand side limits are well defined at
each point (even though they may not be the same). It is an important tool for for-
mulating Poisson process, Levy process and other stochastic point processes. As
considered in Roberts, Gelman and Gilks (1997) here we also consider the metric
separable topology on the above class of functions as defined in Skorohod (1956).
In other words, whenever we mention convergence of discrete time stochastic pro-
cesses to diffusion process in this paper, we mean convergence with respect to this
topology.

In what follows, we assume the following:

Ef

(
f ′(X)

f (X)

)4
< ∞, (13)

Ef

(
f ′′(X)

f (X)

)4
< ∞, (14)

Ef

(
f ′′′(X)

f (X)

)4
< ∞. (15)

Ef

∣∣∣∣f ′′′′(X)

f (X)

∣∣∣∣< ∞. (16)

These assumptions can also be somewhat relaxed, depending upon the order of
the Taylor’s series expansions used in the proofs. Following Roberts, Gelman and
Gilks (1997), let us denote weak convergence of processes in the Skorohod topol-
ogy by ⇒.
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We next present our formal result in the iid situation, the proof of which is
presented in Section S-6.1. Our proof differs from the previous approaches asso-
ciated with RWM particularly because as already shown in Section 2, in additive
TMCMC, the terms biε are not jointly normally distributed unlike the RWM-based
approaches. Thus, unlike the RWM-based approaches, in our case obtaining appro-
priate normal approximation to relevant quantities are not assured. To handle the
difficulty, we had to apply Lyapunov’s central limit theorem on sums associated
with the discrete random variables {bi; i = 2, . . . , d}, conditional on ε (and b1).
This required us to verify Lyapunov’s condition [see, for example, Koralov and
Sinai (2007)] before applying the central limit theorem. We then integrated over
ε and b1. These issues make our proof substantially different from the previous
approaches associated with RWM. It is important to remark that, not only in this
i.i.d . scenario, but in all the set-ups that we consider in this paper, application
of Lyapunov’s central limit theorem, conditionally on ε (and often b1), is crucial,
before finally integrating over the conditioned variables to obtain our results.

Theorem 3.1. Assume that f is positive with at least three continuous deriva-
tives and that the fourth derivative exists almost everywhere. Also assume that
(logf )′ is Lipschitz continuous, and that (13)–(16) hold. Let Xd

0 ∼ π , that is,
the d-dimensional additive TMCMC chain is started at stationarity, and let the
transition be given by (x1, . . . , xd) → (x1 + b1ε, . . . , bdε), where for i = 1, . . . , d ,
bi = ±1 with equal probability and ε ≡ �√

d
ε∗, where ε∗ ∼ N(0,1)I{ε∗>0}. We then

have {
Ud

t ; t ≥ 0
} ⇒ {Ut ; t ≥ 0},

where U0 ∼ f and {Ut ; t ≥ 0} satisfies the Langevin stochastic differential equa-
tion (SDE)

dUt = g(�)1/2 dBt + 1

2
g(�)

(
logf (Ut)

)′
dt, (17)

with Bt denoting standard Brownian motion at time t ,

g(�) = 4�2
∫ ∞

0
u2


(
−u�

√
I

2

)
φ(u)du; (18)


(·) and φ(·) being the standard normal cumulative distribution function (cdf)
and density, respectively, and

I = Ef

(
f ′(X)

f (X)

)2
. (19)

In connection with our diffusion equation (see Equation (18) in connection with
the proof of Theorem 3.1 in Section S-6.1), we note that our SDE is also Langevin
like the usual RWM approach. But, we have a different speed and it is interesting
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to compare how the two speed functions of our method is related to that of RWM
and also, how it alters the optimal expected acceptance rate of the process. In what
follows, we use the terms speed and diffusion speed of the process, given by g(�)

as in (18) interchangeably.

Corollary 3.1. The diffusion speed g(�) is maximized by

�opt = 2.426√
I

, (20)

and the optimal acceptance rate is given by

αopt = 4
∫ ∞

0



(
−u�opt

√
I

2

)
φ(u)du

= 0.439 (up to three decimal places).

(21)

3.1 TMCMC within Gibbs for iid product densities

The main notion of Gibbs sampling is to update one or multiple components of
a multidimensional random vector conditional on the remaining components. In
TMCMC within Gibbs, we update only a fixed proportion cd of the d co-ordinates,
where cd is a function of d and we assume that as d → ∞, then cd → c, for some
0 < c ≤ 1. In order to explain the transitions in this process analytically, we define
an indicator function χi for i = 1, . . . , d . For fixed d ,

χi = 1 if transition takes place in the ith co-ordinate

= 0 if no transition takes place in the ith co-ordinate.
(22)

Our assumptions imply that

P(χi = 1) = cd; i = 1, . . . , d. (23)

Then a feasible transition with respect to additive TMCMC can be analytically
expressed as

(x1, . . . , xd) → (x1 + χ1b1ε, . . . , xd + χdbdε), (24)

where ε ≡ �√
d
ε∗, where ε∗ ∼ N(0,1)I{ε∗>0}. We then have the following theorem,

the proof of which is presented in Section S-6.2 of the supplement.

Theorem 3.2. Assume that f is positive with at least three continuous derivatives
and that the fourth derivative exists almost everywhere. Also assume that (logf )′
is Lipschitz continuous, and that (13)–(16) hold. Suppose also that the transition is
given by (24) and that as d → ∞, cd → c, for some 0 < c ≤ 1. Let Xd

0 ∼ π , that is,
the d-dimensional additive TMCMC chain is started at stationarity. We then have{

Ud
t ; t ≥ 0

} ⇒ {Ut ; t ≥ 0},
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where U0 ∼ f and {Ut ; t ≥ 0} satisfies the Langevin SDE

dUt = gc(�)
1/2 dBt + 1

2
gc(�)

(
logf (Ut )

)′
dt, (25)

where

gc(�) = 4c�2
∫ ∞

0
u2


(
−u�

√
cI

2

)
φ(u)du, (26)

and I is given by (19).

Corollary 3.2. The diffusion speed gc(�) is maximized by

�opt = 2.426√
cI

, (27)

and the optimal acceptance rate is given by

αopt = 4
∫ ∞

0



(
−u�opt

√
cI

2

)
φ(u)du

= 0.439 (up to three decimal places).

(28)

4 Diffusion approximation for independent but non-identical random
variables

So far we have considered only those target densities π which correspond to iid
components of x. Now, we extend our investigation to those target densities that
are associated with independent but not identically distributed random variables.
That is, we now consider

π(x) =
d∏

i=1

fi(xi). (29)

We concentrate on a particular form of the target density involving some scal-
ing constant parameters, as considered in Bedard (2008b), Bédard and Rosenthal
(2008).

π(x) =
d∏

j=1

θj (d)f
(
θj (d)xj

)
. (30)

As before, we assume that f is twice continuously differentiable with existence of
third derivative almost everywhere, and that (logf )′ is Lipschitz continuous. We
define �(d) = {θ1(d), θ2(d), . . . , θd(d)} and we shall focus on the case where d →
∞. Some of the scaling terms are allowed to appear multiple times. We assume
that the first k terms of the parameter vector may or may not be identical, but the
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remaining d − k terms can be split into m subgroups of independent scaling terms.
In other words,

�(d) = (θ1(d), θ2(d), . . . , θk(d), θk+1(d), . . . , θk+m(d),

θk+1(d), . . . , θk+1(d)︸ ︷︷ ︸
r(1,d)−1

, θk+2(d), . . . , θk+2(d)︸ ︷︷ ︸
r(2,d)−1

, . . . ,

θk+m(d), . . . , θk+m(d)︸ ︷︷ ︸
r(m,d)−1

)
,

(31)

where r(1, d), r(2, d), . . . , r(m,d) are the number of occurrences of the parame-
ters in each of the m distinct classes. We assume that for any i,

lim
d→∞ r(i, d) = ∞. (32)

Also, we assume a particular form of each scaling parameter θi(d):

1

{θi(d)}2 = Ki

dλi
; i = 1, . . . , k, and

1

{θi(d)}2 = Ki

dγi
; i = k + 1, . . . , k + m.

(33)

Assume that θi
−2(d) are so arranged that γi are in a decreasing sequence for

i = k + 1, . . . , k +m and also let λi form a decreasing sequence from i = 1, . . . , k.
According to Bedard (2007), the optimal form of the scaling variance σ 2(d) should
be of the form σ 2(d) = �2

dα , where �2 is some constant and α satisfies

lim
d→∞

dλ1

dα
< ∞, and lim

d→∞
dγi r(i, d)

dα
< ∞; i = 1, . . . ,m. (34)

Here, let Ud
t be the process at time t sped up by a factor of dα . That is, Ud

t =
(X1([dαt]), . . . ,Xd([dαt])). We then have the following theorem, the proof of
which is provided in Section S-6.3 of the supplement.

Theorem 4.1. Assume that the target distribution is of the form (30), where f is
positive with at least three continuous derivatives and that the fourth derivative ex-
ists almost everywhere. Also assume that (logf )′ is Lipschitz continuous, and that
(13)–(16), (31), (32), (33) and (34) hold. Let Xd

0 ∼ π , that is, the d-dimensional
additive TMCMC chain is started at stationarity. Let the transition be given by
(x1, . . . , xd) → (x1 + b1ε, . . . , xd + bdε), where, for i = 1, . . . , d , bi = ±1 with
equal probability and ε ≡ �

d
α
2
ε∗, with ε∗ ∼ N(0,1)I{ε∗>0}. We then have{

Ud
t ; t ≥ 0

} ⇒ {Ut ; t ≥ 0},
where U0 ∼ f and {Ut ; t ≥ 0} satisfies the Langevin SDE

dUt = gξ (�)
1/2 dBt + 1

2
gξ (�)

(
logf (Ut)

)′
dt, (35)
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where

gξ (�) = 4�2
∫ ∞

0
u2


(
−u�ξ

√
I

2

)
φ(u)du. (36)

Corollary 4.1. The diffusion speed gc(�) is maximized by

�opt = 2.426

ξ
√
I

, (37)

and the optimal acceptance rate is given by

αopt = 4
∫ ∞

0



(
−u�optξ

√
I

2

)
φ(u)du

= 0.439 (up to three decimal places).

(38)

4.1 TMCMC within Gibbs for independent but non-identical random
variables

As in Section 3.1, here also we define transitions of the form (24), where χi , having
the same definitions as (22) and (23), indicates whether or not the ith co-ordinate
xi will be updated.

The rest of the proof is a simple modification of the proof for independent but
non-identical random variables provided in Section S-6.3. There we must replace

1

r(i, d)

r(i,d)∑
j=1

(
f ′(uj )

f (uj )

)2
→ E

[{
f

′
(U)

f (U)

}2]
= I

with

cd

cdr(i, d)

cdr(i,d)∑
j=1

(
f ′(uj )

f (uj )

)2
→ cE

[{
f

′
(U)

f (U)

}2]
= cI. (39)

With the above modification the diffusion speed can be calculated as

gc,ξ (�) = 4c�2
∫ ∞

0

{
u2


(
−u�ξ

√
cI

2

)}
φ(u)du. (40)

Formally, we have the following theorem.

Theorem 4.2. Assume that the target distribution π is of the form (30), where f

is positive with at least three continuous derivatives and that the fourth deriva-
tive exists almost everywhere. Also assume that (logf )′ is Lipschitz continuous,
and that (13)–(16), (31), (32), (33) and (34) hold. Let Xd

0 ∼ π , that is, the d-
dimensional additive TMCMC chain is started at stationarity. Let the transition be
(x1, . . . , xd) → (x1 + χ1b1ε, . . . , χdbdε), where for i = 1, . . . , d , P(χi = 1) = cd ,
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bi = ±1 with equal probability, and ε ≡ �

d
α
2
ε∗, with ε∗ ∼ N(0,1)I{ε∗>0}. We then

have {
Ud

t ; t ≥ 0
} ⇒ {Ut ; t ≥ 0},

where U0 ∼ f and {Ut ; t ≥ 0} satisfies the Langevin SDE

dUt = gc,ξ (�)
1/2 dBt + 1

2
gc,ξ (�)

(
logf (Ut)

)′
dt, (41)

where gx,ξ (�) is given by (40).

Corollary 4.2. The diffusion speed gc,ξ (�) is maximized by

�opt = 2.426

ξ
√

cI
, (42)

and the optimal acceptance rate is given by

αopt = 4
∫ ∞

0



(
−u�optξ

√
cI

2

)
φ(u)du

= 0.439 (up to three decimal places).

(43)

5 Diffusion approximation for a more general dependent family of
distributions

So far, we assumed that the target density π is associated with either iid or mutu-
ally independent random variables, with a special structure. Now, we extend our
notion to a much wider class of distributions where there is a particular form of
dependence structure between the components of the distribution. In determining
these non-product measures, we adopted the framework of Mattingly, Pillai and
Stuart (2011), Beskos, Roberts and Stuart (2009), Beskos and Stuart (2009). For
clarity, we first discuss this in the case of finite dimension d , and then discuss the
generalization in infinite dimensions.

Let xd ∈ Rd denote the first d co-ordinates of x ∈ R∞. Let us assume that the
d-dimensional target density πd satisfies

dπd

dπd
0

(
xd)= M�d exp

(−�d(xd)), (44)

where �d is measurable with respect to the Borel σ -field on Rd , M�d is an appro-
priate normalizing constant depending upon �d , and πd has the density

πd
0
(
xd)= d∏

j=1

1

λj

φ

(
xj

λj

)
(45)
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with respect to the Lebesgue measure. In other words, under πd
0 , xj ∼ N(0, λ2

j );
j = 1,2, . . . , d .

Then, with respect to Lebesgue measure, πd has the following density:

πd(xd)= M�d exp
(−�d(xd)) d∏

i=1

1

λi

φ

(
xi

λi

)
. (46)

The above finite dimensional structure can be represented in terms of projection
onto the first d eigenfunctions of an appropriate covariance operator associated
with a Hilbert space. Indeed, let (H, 〈·〉,‖·‖) denote a real, separable Hilbert space.
Consider a covariance operator � : H → H, which is self-adjoint, positive, and
trace class operator on H with a complete orthonormal eigenbasis {λ2

j , φj }∞j=1 such
that

�φj = λ2
jφj ; j = 1,2, . . . . (47)

As in Mattingly, Pillai and Stuart (2011), we assume that the eigenvalues are ar-
ranged in decreasing order and λj > 0.

Now note that any function x in R∞ can be uniquely represented as

x =
∞∑

j=1

xjφj where xj = 〈x,φj 〉. (48)

The function x can be identified with its co-ordinates {xj }∞j=1 which belongs to
the space of square-summable sequences. Note that � is diagonal with respect
to the co-ordinates of this eigenbasis, and if xj ∼ N(0, λ2

j ); j = 1,2, . . . inde-
pendently, then by the Karhunen-Loéve expansion [see, for example, Prato and
Zabczyk (1992)], x follows the Gaussian measure π0, which is an infinite dimen-
sional generalization of (45). In particular, we assume that π0 is a Gaussian mea-
sure with mean 0 and covariance �.

Now, let �d(·) = �(P d ·), where P d denotes projection (in H) onto the first d

eigen functions of �, and � is a real π0-measurable function on R∞. Then πd(xd)

given by (46) can be represented as

πd(x) = M�d exp
(
−�d(x) − 1

2

〈
x,
(
�d)−1

x
〉)

, (49)

where �d = P d�P d . As d → ∞, (49) approximates the target density π(x),
where the Radon Nikodym derivative of the target π with respect to the Gaussian
measure π0 is given by

dπ

dπ0
(x) = M� exp

(−�(x)
)
. (50)

Hence, for our purpose we shall work with the finite-dimensional approximation
(49); as d → ∞, the appropriate piecewise linear, continuous interpolant (to be
defined subsequently in Section 5.2) that is described by our additive TMCMC
algorithm and associated with πd will converge to the correct diffusion equation
associated with the infinite dimensional distribution π represented by (50).



Tutorial and optimal scaling of TMCMC 589

5.1 Representation of the additive TMCMC algorithm in the dependent
set-up

Under the TMCMC set up, the move at the (k + 1)th time point can be explicitly
stated in terms of the position at kth time point as follows

xk+1 = γ k+1yk+1 + (1 − γ k+1)xk, (51)

where

γ k+1 ∼ Bernoulli
(

min
{

1,
πd(yk+1)

πd(xk)

})
.

We define the move yk+1 as

yk+1 = xk +
√

2�2

d
�

1
2 ξk+1, (52)

where ξk+1 = (b1
k+1εk+1, . . . , bd

k+1εk+1) with bi = ±1 with probability 1/2

each, and ε ∼ N(0,1)I{ε>0}. From (49), it follows that min{1,
πd(yk+1)

πd(xk)
} can be

written as min{1, eQ(xk,ξk+1)} where Q(x, ξ) is given by

Q(x, ξ) = 1

2

∥∥�− 1
2
(
P dx

)∥∥2 − 1

2

∥∥�− 1
2
(
P dy

)∥∥2 + �d(x) − �d(y). (53)

Using (52), one obtains

Q(x, ξ) = −
√

2�2

d
〈η, ξ〉 − �2

d
‖ξ‖2 − r(x, ξ), (54)

where

η = �− 1
2
(
P dx

)+ �
1
2 ∇�d(x), (55)

and

r(x, ξ) = �d(y) − �d(x) − 〈∇�d(x),P dy − P dx
〉
. (56)

We further define

R(x, ξ) = −
√

2�2

d

d∑
j=1

ηj ξj − �2

d

d∑
j=1

ξj
2, (57)

and

Ri(x, ξ) = −
√

2�2

d

d∑
j=1,j 	=i

ηj ξj − �2

d

d∑
j=1,j 	=i

ξj
2. (58)



590 K. K. Dey and S. Bhattacharya

Using Lemma 5.5 of Mattingly, Pillai and Stuart (2011), for large d one can
show that

Q(x, ξ) = R(x, ξ) − r(x, ξ) ≈ Ri(x, ξ) −
√

2�2

d
ηiξi . (59)

Using (57) and (59), it can be seen that Q(x, ξ) is approximately equal to
R(x, ξ) as d goes to ∞, where R(x, ξ) in our case is given by

R(x, ξ) = −ε

√
2�2

d

d∑
j=1

ηjbj − �2ε2. (60)

Note that in the case of Mattingly, Pillai and Stuart (2011), conditional on x,
Ri(x, ξ) was independent of ξi , which enabled them to compute E0(min{1,

eQ(x,ξ)}ξi) by first computing it over ξi and then over ξ \ ξi . However, such in-
dependence does not hold in our case since all the components of ξ involve ε.

To obtain E0(min{1, eQ(x,ξ)}ξi) in our case, we need to obtain the asymptotic
distribution of Q(x, ξ) for large d . Since our TMCMC based proposal is not iid,
we verify Lyapunov’s central limit theorem; see Section S-7.1. For obtaining the
diffusion approximation in this dependent set-up we need to obtain the expected
drift and the expected diffusion coefficient. In Section S-7.2, we calculate the ex-
pected drift and in Section S-7.3, we obtain the expected diffusion coefficient.

5.2 Formal statement of our main result in the general dependent set-up

Before formally stating our result in the dependent set-up, we need to provide the
explicit form of a continuous interpolant which converges to the solution of the
appropriate SDE.

Note that we can construct, following Mattingly, Pillai and Stuart (2011), the
following continuous interpolant

zd(t) = (dt − k)xk+1 + (k + 1 − dt)xk, k ≤ dt < k + 1. (61)

Observe that zd(t) admits the following representation

zd(t) = z0 +
∫ t

0
ϑd(z̄d (s)

)
ds +

√
2g(�)Wd(t), (62)

where z0 ∼ π , g(�) = �2β , ϑd(x) = dE0(x
1 − x), z̄d (t) = xk ; t ∈ [tk, tk+1] is a

piecewise constant interpolant of xk , where

tk = k�t, ηk,d = √
�t

k∑
j=1

�j,d, (63)

Wd(t) = η[dt],d + dt − [dt]√
d

�[dt]+1,d; t ∈ [0, T ], (64)

where T > 0 is fixed.
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In fact as d → ∞, there exists Ŵ d ⇒ W such that zd(t) admits the following
representation:

zd(t) = z0 − g(�)

∫ t

0

(
zd(s) + �∇�

(
zd(s)

))
ds +

√
2g(�)Ŵ d(t). (65)

It can be shown, proceeding in the same way, and using the same assumptions
on the covariance operator and � as Mattingly, Pillai and Stuart (2011), that zd(t)

converges weakly to z [see Mattingly, Pillai and Stuart (2011) for the rigorous
definition], where z satisfies the SDE given by

dz

dt
= −g(�)

(
z + �∇�(z)

)+√2g(�)
dW

dt
, z(0) = z0, (66)

where z0 ∼ π , W is a Brownian motion in a relevant Hilbert space with covariance
operator �, and

g(�) = �2β, (67)

is the diffusion speed.
Our result, which we state as Theorem 5.1, requires the same assumptions on

the decay of eigenvalues λ2
j of � and properties of � that were also required

by Mattingly, Pillai and Stuart (2011). For the sake of completeness we present
these assumptions below. But before that we need to define some new notation, as
follows.

Using the expansion (48), following Mattingly, Pillai and Stuart (2011) we de-
fine the Sobolev spaces Hr ; r ∈R, where the inner products and norms are defined
by

〈x, y〉r =
∞∑

j=1

j2rxj yj , ‖x‖2
r =

∞∑
j=1

j2rx2
j .

For an operator L : Hr → Hl , we denote, following Mattingly, Pillai and Stuart
(2011), the operator norm on H by ‖L‖L(Hr ,Hl ) defined by

‖L‖L(Hr ,Hl ) = sup
‖x‖r=1

‖Lx‖l .

5.2.1 Assumptions.

(1) Decay of eigenvalues λ2
j of �: There exist M−,M+ ∈ (0,∞) and κ > 1

2
such that

M− ≤ jκλj ≤ M+ ∀j ∈ Z+ = {1,2,3, . . .}. (68)

(2) Assumptions on �: There exist constants Mi ∈ R, i ≤ 4 and s ∈ [0, κ − 1
2)

such that

M1 ≤ �(x) ≤ M2
(
1 + ‖x‖2

s

) ∀x ∈ Hs (69)∥∥∇�(x)
∥∥−s ≤ M3

(
1 + ‖x‖s

) ∀x ∈Hs (70)∥∥∂2�(x)
∥∥
L(Hr ,Hl ) ≤ M4 ∀x ∈ Hs . (71)
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(3) Assumptions on �d : The functions �d satisfy the same conditions imposed
on � given by (69), (70) and (71) with the same constants uniformly across d .

Theorem 5.1. Let assumptions (1)–(3), as stated in Section 5.2.1, hold. Let x0 ∼
πd , where πd is given by (49) and let zd(t) be given by (61). Then zd converges
weakly to the diffusion process z given by (66) with z(0) ∼ π .

Corollary 5.1. The diffusion speed g(�) is maximized by

�opt = 2.426√
2

= 1.715, (72)

and the optimal acceptance rate is given by

αopt = 4
∫ ∞

0



(
−�optu√

2

)
φ(u)du

= 0.439 (up to three decimal places).

(73)

5.3 TMCMC within Gibbs for the dependent family of distributions

As before, here we define transitions of the form (24), where the random variable
χi ; i = 1, . . . , d indicates whether or not the ith coordinate of x will be updated.
Formally,

xk+1 = γ k+1yk+1 + (1 − γ k+1)xk, (74)

where

γ k+1 ∼ Bernoulli
(

min
{

1,
πd(yk+1)

πd(xk)

})
.

We define the new move yk+1 of the same form as (52), but with the indicator
variables χi incorporated appropriately. In other words,

yk+1 = xk +
√

2�2

d
�

1
2 ξk+1, (75)

where ξk+1 = (χk+1
1 b1

k+1
εk+1, . . . , χk+1

d bd
k+1εk+1); bi = ±1 with probability

1/2 each, ε ∼ N(0,1)I{ε>0}, and for any k > 0 and for i = 1, . . . , d , P(χk+1
i =

1) = cd . As before, we assume that cd → c as d → ∞, where 0 < c ≤ 1.
The proof again required only minor modification to the above proof provided

in the case of this dependent family of distributions. Here, additionally, we only
need to take expectations with respect to χk+1

i ; i = 1, . . . , d , so that we now have

[
Q(x, ξ)|bi, ε

]≈ d

(
−�2ε2 − cε

√
2�2

d
ηibi,2�2ε2c2

)
.
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Proceeding in the same manner as in the above proof, we obtain a stochastic dif-
ferential equation of the same form as (66), but with g(�) replaced with

gc(�) = c�2βc, (76)

where

βc = 4
∫ ∞

0
u2


(
− �u

c
√

2

)
φ(u)du.

The result can be stated formally as follows:

Theorem 5.2. Let assumptions (1)–(3), as stated in Section 5.2.1, hold. Let x0 ∼
πd , where πd is given by (49) and let zd(t) be given by (61), where zd(t) depends

upon xk and xk+1 through ξk+1 = (χk+1
1 b1

k+1
εk+1, . . . , χk+1

d bd
k+1εk+1), where

for any k > 0 and for i = 1, . . . , d , P(χk+1
i = 1) = cd , other definitions remaining

the same as before. Then zd converges weakly to the diffusion process z having
the same form as (66), but g(�) replaced with gc(�) given by (76), and as before,
z(0) ∼ π .

Corollary 5.2. The diffusion speed gc(�) is maximized by

�opt = 2.426c√
2

= 1.715c, (77)

and the optimal acceptance rate is given by

αopt = 4
∫ ∞

0



(
−�optu

c
√

2

)
φ(u)du

= 0.439 (up to three decimal places).

(78)

6 Comparison with RWM

6.1 Comparison in the iid set-up

Note that for both the standard RWM algorithm and our additive TMCMC al-
gorithm, the diffusion process reduces to the Langevin diffusion having the
same form, but different diffusion speeds. For the RWM algorithm, the diffusion

speed h(�) is given by h(�) = 2�2
(− �
√
I

2 ), and the optimal acceptance rate is

2
(− �opt
√
I

2 ), where �opt maximizes h(�). A comparison between (18) and the
above diffusion speed reveals that if, instead of the standard normal distribution,
z∗

1 associated with equation (13) of the supplement, corresponding to the proof of
Theorem 3.1, had a distribution that assigned probability 1/2 to each of +1 and
−1, then the additive TMCMC-based diffusion speed would reduce to the RWM-
based diffusion speed.
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Figure 4 Comparison of diffusion speeds of TMCMC and RWM in the iid case.

Note that the optimum value of � in RWM is �opt = 2.381√
I

and the correspond-
ing expected acceptance rate is 0.234. However, in TMCMC it is observed on
maximizing (18) that �opt = 2.426√

I
and the corresponding expected acceptance rate

is 0.439; see Corollary 3.1. Hence, although the values of the optimizer �opt are
close for RWMH and additive TMCMC, the optimal acceptance rate of the latter
is significantly higher. This much higher acceptance rate for TMCMC is to be ex-
pected because effectively just a one-dimensional proposal distribution is used to
update the entire high-dimensional random vector x.

Figure 4 compares the diffusion speeds of TMCMC and RWM in the iid case.
Observe that the maximum diffusion speed for RWM is greater than that of
TMCMC. However, the graph for RWM falls much more steeply compared to
TMCMC for large �, showing that the diffusion speed is quite sensitive towards
misspecification of the scaling constant, and that scaling constants other than the
maximizer can substantially decrease the diffusion speed. On the other hand, the
graph for TMCMC is much more flat, indicating relatively more robustness with
respect to the choice of �.

As we will see, the same phenomenon holds for all the other set-ups, such as
the target distributions with non-identical and dependent components. This is an
important issue in practice for general high-dimensional target distributions, par-
ticularly with non-identical and dependent components since, as discussed in Sec-
tions S-3 and S-4, in practice, tuning the scaling constants of the proposal distribu-
tions to approximately achieve the optimal acceptance rate is generally infeasible
in high dimensions, which in turn makes the maximum diffusion speed infeasible
to achieve. For the RWM algorithm any such misspecification entails a sharp fall
in the diffusion speed. Since in high dimensions misspecifications are very much
likely, RWM is quite generally prone to sub-optimal performances. From the dis-
cussion presented in Section S-5, it can be anticipated that in very high dimensions,
it may not be practically feasible to achieve the optimal acceptance rate using adap-
tive algorithms based on RWM. On the other hand, additive TMCMC remains far
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Figure 5 Comparison of diffusion speeds of TMCMC within Gibbs and RWM within Gibbs in the
iid case, with c = 0.3.

more robust even in the face of such mis-specifications, thus significantly cutting
down the risk of poor performance in high dimensions. Adaptive algorithms based
on additive TMCMC are also demonstrated by Dey and Bhattacharya (2015) to be
much more efficient compared to the adaptive RWM algorithms.

6.1.1 Within Gibbs comparison in the iid set-up. Now we compare TMCMC
within Gibbs based diffusion speed and optimal acceptance rate given by

gc(�) = 4c�2
∫ ∞

0
u2


(
−u�

√
cI

2

)
φ(u)du (79)

(see (26) of the supplement, Section S-6.2) and (28) with those of RWM within
Gibbs. The diffusion speed for the RWM within Gibbs algorithm is hc(�) =
2c�2
(− �

√
cI

2 ), and the optimal acceptance rate is 2
(− �opt
√

cI

2 ), where �opt max-
imizes hc(�); see Neal and Roberts (2006). It turns out that �opt for RWM within
Gibbs is given by 2.381√

cI
, and the optimal acceptance rate is 0.234, as before. Fig-

ure 5 compares the diffusion speeds associated with TMCMC within Gibbs and
RWM within Gibbs, with c = 0.3. Once again, we observe that the diffusion speed
of TMCMC within Gibbs is more robust with respect to misspecification of the
scale.

6.2 Comparison in the independent but non-identical set-up

The equations

gξ (�) = 4�2
∫ ∞

0

{
u2


(
−u�ξ

√
I

2

)}
φ(u)du (80)

(see also (39) of the supplement) and (38) provide the diffusion speed and the opti-
mal acceptance rate for TMCMC in the independent but non-identical set-up. The

corresponding quantities for RWM are given by 2�2
(− �ξ
√
I

2 ) and 2
(− �optξ
√
I

2 ),
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Figure 6 Comparison of diffusion speeds of TMCMC within Gibbs and RWM within Gibbs in the
independent but non-identical case, with ξ = 10.

Figure 7 Comparison of diffusion speeds of TMCMC within Gibbs and RWM within Gibbs in the
independent but non-identical case, with ξ = 10, c = 0.3.

respectively. As before, the optimal acceptance rates remain 0.234 and 0.439 for
RWM and TMCMC, respectively. Figure 6 compares the diffusion speeds associ-
ated with TMCMC and RWM, with ξ = 10. Here both the graphs are steep, but
that for RWM is much more steeper, leading to the same observations regarding
robustness with respect to misspecification of scale.

6.2.1 Within Gibbs comparison in the independent but non-identical set-up. It
can be easily shown that the RWM-based diffusion speed and the acceptance rate in

the independent but non-identical set-up are 2c�2
(− �ξ
√

cI
2 ) and 2
(− �optξ

√
cI

2 ),
respectively. These are to be compared with the TMCMC-based quantities given
by (40) and (43). The optimal acceptance rates for TMCMC and RWM, as be-
fore, are 0.234 and 0.439. Conclusions similar as before are reached on observing
Figure 7 that compares the diffusion speeds of TMCMC and RWM in this case.
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Figure 8 Comparison of diffusion speeds of TMCMC and RWM in the dependent case.

Figure 9 Comparison of diffusion speeds of TMCMC within Gibbs and RWM within Gibbs in the
dependent case, with c = 0.3.

6.3 Dependent case

In the dependent case, the diffusion speed and the optimal acceptance rate of addi-
tive TMCMC are of the forms (67) and (73), respectively. As usual, the TMCMC-
based optimal acceptance rate turns out to be 0.439. The corresponding RWM-
based optimal acceptance rate, having the form 2
(− �opt√

2
), turns out to be 0.234

as before, where �opt maximizes the corresponding diffusion speed 2�2
(− �√
2
).

Similar information as before are provided by Figure 8.

6.3.1 Within Gibbs comparison in the dependent set-up. In the dependent case,
it is easily shown that the RWM-based diffusion speed and the acceptance rate are,
respectively, 2c�2
(− �

c
√

2
) and 2
(− �opt

c
√

2
). The corresponding TMCMC-based

quantities are (76) and (78). The optimal acceptance rates remain 0.234 and 0.439
for RWM and TMCMC. Figure 9, comparing the diffusion speeds of TMCMC
within Gibbs and RWM within Gibbs in the dependent set-up, lead to similar ob-
servations as before.
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7 Simulation experiments

So far, we have invested most of our efforts in the theoretical development of opti-
mal scaling mechanism in the additive TMCMC case. Now, we shall consider some
simulation experiments to illustrate the performance of our method with respect to
the standard RWM methodology, under the iid, independent but non-identical, and
dependent set-ups.

7.1 Comparison of additive TMCMC and RWM in the iid case

We compare the performance of RWM and TMCMC corresponding to three dif-
ferent choices of the proposal variance, with scalings � being 2.4 (approximately
optimal for both RWM and additive TMCMC) and 6 (sub-optimal for both RWM
and additive TMCMC) respectively. We consider target densities of dimensions
ranging from 2 to 200. For our purpose, we consider the target density π to be the
multivariate normal distribution with mean vector zero and covariance matrix I ,
the identity matrix. The starting point x0 is randomly generated from U(−2,2),
the uniform distribution on (−2,2). The univariate density of ε for TMCMC was
taken to be a left-truncated normal having mean 0 and variance �2

d
for each coor-

dinate, where � is the value of the scaling constant. For RWM, each coordinate of
the d dimensional proposal density was assumed to have the above distribution,
but without the truncation.

In each run, the chain was observed up to 100,000 trials (including the rejected
moves). The choice of burn-in was made somewhat subjectively, removing one
fourth of the total number of iterates initially. This choice was actually a bit con-
servative as both RWM and TMCMC were found to be sufficiently close to the
target density well ahead of the chosen point. We measured the efficiency of the
TMCMC chain with respect to the RWM chain using certain performance eval-
uation measures—Acceptance rate, Average Jump Size (AJS), Integrated Auto-
Correlation Time (IACT) and Integrated Partial Auto-Correlation Time (IPACT)
[see Roberts and Rosenthal (2009)]. All calculations of AJS, IACT, IPACT were
done corresponding to the process after burn-in in order to ensure stationarity.
In calculating the integrated autocorrelation time, we considered 25 lags of ACF.
IPACT was similarly computed. The first eight columns of Table 1 compare the
performances of TMCMC and RWM with respect to these measures.

7.1.1 Average Kolmogorov–Smirnov distance for comparing convergence of
TMCMC and RWM. The measures acceptance rate, IACT, IPACT and AJS do
not explicitly measure how close the MCMC-based empirical distribution is to
the target distribution. For this, we also considered the Kolmogorov-Smirnov (K-
S) distance to evaluate the performances of the MCMC algorithms. We ran 100
copies of the RWM and TMCMC chains starting from the same initial point and
with the same target density π and observed how well the empirical distribution
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Table 1 The performance evaluation of RWM and TMCMC chains for different dimensions. It is assumed that proposal has independent normal
components for RWM with same proposal variance along all co-ordinates. The proposal scales are 2.4 (optimal) and 6 (sub-optimal). All calculations
done after burn in

Test

Acceptance Average
Rate (%) IACT IPACT AJS K-S distance

Dimension Scaling RWM TMCMC RWM TMCMC RWM TMCMC RWM TMCMC RWM TMCMC

2 2.4 (opt) 34.9 44.6 6.08 7.04 2.46 2.55 0.93 0.74 0.1651 0.1657
6 (sub-opt) 18.66 29.15 7.08 8.08 2.52 2.56 0.79 0.62 0.1659 0.1655

5 2.4 (opt) 28.6 44.12 9.98 12.45 2.67 2.77 1.15 0.79 0.1659 0.1664
6 (sub-opt) 2.77 20.20 15.6 14.11 2.77 2.81 0.39 0.48 0.1693 0.1674

10 2.4 (opt) 25.6 44.18 15.16 18.26 2.77 2.88 1.22 0.73 0.1667 0.1677
6 (sub-opt) 1.37 20.34 17.55 16.31 2.91 2.86 0.25 0.49 0.1800 0.1688

100 2.4 (opt) 23.3 44.1 18.14 18.46 2.88 2.89 1.34 0.73 0.1794 0.1671
6 (sub-opt) 0.32 20.6 18.62 18.25 2.89 2.88 0.26 0.69 0.1787 0.1684

200 2.4 (opt) 23.4 44.2 18.4 18.67 2.88 2.89 1.3 0.92 0.1813 0.1735
6 (sub-opt) 0.33 20.7 18.86 18.74 2.89 2.89 0.09 0.54 0.1832 0.1755
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corresponding to these 100 copies, after discarding the burn-in period, fits the true
density by evaluating the K-S distance [Smirnov (1948)] at each time point for
both the chains. As an overall measure we take the average of the K-S distances
over all the time points. This averaging over the time points makes sense since the
chains are assumed to be in stationarity after the burn-in period, and hence every
time point must yield the same (stationary) distribution. Our average K-S distance
can be viewed as quantifying how well the MCMC algorithm explores the station-
ary distribution after convergence is attained. The average K-S distances for RWM
and TMCMC are shown in the last two columns of Table 1.

7.1.2 Observations regarding the results presented in Table 1. As evident from
Table 1, TMCMC seems to have a uniformly better acceptance rate than RWM
for all dimensions and all choices of proposal variances. There is sufficient gain
in acceptance rate over RWM even for 2 dimensions and the difference increases
once we move to higher dimensions or consider larger proposal variances. That
large proposal variance would affect the performance of RWM is intuitively clear,
because in this case getting an outlying observation in any of the d co-ordinates
becomes more likely.

An interesting observation from Table 1 is that even for 2 dimensions, our ac-
ceptance ratio corresponding to the optimal scaling of 2.4 is very close to 0.44
and it remains close to the optimal value for all the dimensions considered. It is
interesting to note that 0.44 is also the (non-asymptotic) optimal acceptance rate
of RWM for one-dimensional proposals in certain settings obtained by minimizing
the first order auto-correlation of the RWM algorithm; see Roberts and Rosenthal
(2001), Roberts and Rosenthal (2009). Since in one dimension additive TMCMC
is equivalent to RWM and because the former is effectively a one-dimensional al-
gorithm irrespective of the actual dimensionality, this perhaps intuitively suggests
that for TMCMC, the optimal acceptance rate will remain very close to 0.44 irre-
spective of dimensionality. For RWM however, the optimal acceptance rate is quite
far from 0.234 for smaller dimensions. From the asymptotics perspective (setting
aside the above argument regarding TMCMC being effectively one-dimensional
for any actual dimension), this demonstrates that convergence to the diffusion
equation occurs at a much faster rate in TMCMC as compared to RWM. Hence,
even in smaller dimensions a TMCMC user can tune the proposal to achieve ap-
proximately 44% acceptance rate. Indeed, in low dimensions the tuning exercise
is far more easier than in higher dimensions.

When the scale is changed from the optimum value 2.4 to the sub-optimal value
6, we witness very significant drop in the acceptance rates of RWM. Particularly
for dimensions d = 100 and d = 200 the acceptance rate of RWM falls off very
sharply and becomes almost negligible. In keeping with the discussion presented in
Sections S-3 and S-4 of the supplement this indicates how difficult it can be in the
case of general, high-dimensional target distributions, to adjust the RWM proposal
to achieve the acceptance rates between 15% and 50%, as suggested by Roberts
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and Rosenthal (2001). On the other hand, for any dimension, the acceptance rate
of TMCMC remains more than 20%, indicating it is a lot more easier and safer to
tune the TMCMC proposal.

The measure IACT is uniformly higher for TMCMC for all dimensions when
the optimal scale is considered. This is to be expected since the maximum diffu-
sion speed is higher for RWM, and IACT decreases as diffusion speed increases.
However, when the scale is sub-optimal, IACT of TMCMC is uniformly lower
than that of RWM in all dimensions. This is in accordance with the discussion on
the lack of robustness of RWM and the relative robust behaviour of the diffusion
speed of TMCMC with respect to scale changes, presented in Sections S-3 and S-4
of the supplement. Indeed, the sub-optimal scale choice causes the diffusion speed
of RWM to drop sharply, increasing the integrated autocorrelation in the process.
On the other hand, the diffusion speed of TMCMC remains relatively more stable,
thus not allowing IACT to increase significantly.

Although in the lower dimensions IPACT is slightly higher for TMCMC than for
RWM, in dimensions 10, 100 and 200, it is slightly lesser for TMCMC when the
scale is suboptimal (for d = 200 IPACT is almost the same for both the algorithms
in the sub-optimal case).

The average jump size, AJS, is uniformly somewhat larger for RWM compared
to TMCMC when the scale is optimally chosen. However, for the sub-optimal scal-
ing, AJS for TMCMC is significantly larger than those for RWM for dimensions
d = 5,10,100,200. Since in general sub-optimal scaling is to be expected, as per
the discussions in Sections S-3 and S-4 of the supplement, one can expect better
exploration (in terms of AJS) of the general, high-dimensional target density, by
additive TMCMC.

For dimensions d = 100 and d = 200, the average K-S distance is smaller for
TMCMC with respect to both optimal and sub-optimal scales. Moreover, for the
sub-optimal scale, the K-S distance is uniformly smaller for TMCMC for all the
dimensions considered. Furthermore, note that for the sub-optimal scale, as the di-
mension increases, the difference between the average K-S distances of RWM and
TMCMC also increases. This suggests that at least when the scale is sub-optimal,
TMCMC performs increasingly better than RWM in terms of better exploration of
the target density, as dimension increases.

7.1.3 Visualizing the rate of convergence of TMCMC and RWM to the stationary
distribution using Kolmogorov–Smirnov distance. Apart from measuring the per-
formance of the chains after stationarity, one might be interested in visualizing how
fast the chains converge to the target density starting from an initial value. In other
words, it is of interest to know which of these chains have a steeper downward
trend with respect to the other, when the respective optimal scales are used for
both the algorithms. To investigate this empirically, we again use the K-S distance,
plotting the distances with respect to the iteration number (time). Thus, while the
average K-S distance, calculated after the burn-in, provides an overall measure of
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Figure 10 K-S distance comparison before burn-in between the RWM and the TMCMC chains for
dimension d = 30.

how well an MCMC algorithm explores the stationary distribution after conver-
gence, a simple plot of the K-S distances with respect to time can help visualize
the rate of convergence of the MCMC algorithm to stationarity.

For smaller dimensions like 2 and 10, we did not perceive much difference be-
tween the two chains in terms of the plots of the K-S distance. But for higher
dimensions, we observed a significant improvement in convergence for our TM-
CMC method in comparison with that of RWM. Two instances, for dimensions
d = 30 and d = 100, are presented in Figures 10 and 11, respectively.
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Figure 11 K-S distance comparison before burn-in between the RWM and the TMCMC chains for
dimension d = 100.

7.2 Comparisons between additive TMCMC and RWM in the
indepdendent, but non-identical set-up

We now compare additive TMCMC with RWM under an instance of independent,
but non-identical situation provided in Bedard (2008a). In particular, we assume
the target distribution to have independent normal components with all the means
zero, and variances given by θ−2(d) = (d−1/5, d−1/5,3, d−0.5,3, d−0.5, . . . ,3,

d−0.5). For our purpose, we set d = 50 and implement 30 chains each for additive
TMCMC and RWM, each chain run for 10,000 iterations. For any given iteration,
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Figure 12 Independent but non-identical case: K-S comparisons between additive TMCMC and
RWM for θ−2(d) = 3.

Figure 13 Independent but non-identical case: K-S comparisons between additive TMCMC and
RWM for θ−2(d) = d−0.5.

and for both TMCMC and RWM, we then compute the K-S distances based on the
30 chains, which are then compared.

Note that θ−2(d) consists of three forms of co-ordinates, namely, θ−2(d) =
3, θ−2(d) = d−0.5, and θ−2(d) = d− 1

5 . These are associated with three distinct
marginal target densities. In the figures below, for these three distinct marginals, we
separately compare TMCMC and RWM using K-S distances. That is, Figures 12,
13 and 14 compare TMCMC and RWM when θ−2(d) = 3, θ−2(d) = d−0.5, and

θ−2(d) = d− 1
5 , respectively.

All the three instances, Figures 12, 13 and 14, clearly demonstrate the superior-
ity of additive TMCMC over RWM.
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Figure 14 Independent but non-identical case: K-S comparisons between additive TMCMC and

RWM for θ−2(d) = d− 1
5 .

7.3 Comparisons between additive TMCMC and RWM in the depdendent
set-up

We now compare additive TMCMC and RWM in the dependent set-up, as (46).
That is, here we consider target densities of the type

πd(xd) = exp
(−xT

d Mdxd

) d∏
i=1

1

λi

φ

(
xi

λi

)
.

For our purpose, we consider the following forms of λ = (λ1, . . . , λd) and Md :

λ = α

(
1,

1

d
,

1

d2 , . . . ,
1

dd

)
,

and

Md = γ (1 − ρ)Id + ρ1d1T
d ,

where Id is the identity matrix of order d and 1d is the d-component vector with all
elements 1. We report the results of our experiments with three set-ups: (a) ρ = 0.3,
α = 0.1, γ = 100; (b) ρ = 0.3, α = 0.01, γ = 100, and (c) ρ = 0.3, α = 0.01,
γ = 1000. The corresponding K-S based comparisons are provided in Figures 15,
16 and 17. In all the three experiments, TMCMC very convincingly outperforms
RWM. With various other choices of ρ, α and γ we observed similar results (not
reported due to lack of space).

7.4 Discussion on simulation studies with multivariate Cauchy and
multivariate t as target densities

We have so far restricted ourselves to comparisons between TMCMC and RWM
when the target distribution is Gaussian (iid, independent but non-identical, and
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Figure 15 Dependent case: K-S comparisons between additive TMCMC and RWM for ρ = 0.3,
α = 0.1, γ = 100.

Figure 16 Dependent case: K-S comparisons between additive TMCMC and RWM for ρ = 0.3,
α = 0.01, γ = 100.

Figure 17 Dependent case: K-S comparisons between additive TMCMC and RWM for ρ = 0.3,
α = 0.01, γ = 1000.

dependent). However, Dey and Bhattacharya (2016a) conduct comparative studies
between the two algorithms when the targets are multivariate Cauchy and mul-
tivariate t . Briefly, they compare the algorithms with respect to K-S distance,
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when the location vectors and scale matrices are μ = 0d and � = diag{0.71′
d} +

0.31d1′
d , respectively, where 0d is a d-dimensional vector with all elements 0. For

multivariate t , they choose ν = 10 degrees of freedom. For both RWMH and ad-
ditive TMCMC they consider the scale of the proposal distribution to be 2.4, and
illustrate the methods for dimension d = 50.

In fact, they compare the performances of RWM and additive TMCMC by two
methods. In one method, since the above-mentioned target densities are not in
the super-exponential family [see Dey and Bhattacharya (2016a) and the refer-
ences therein], they transform them to superexponential distributions using a dif-
feomorphism proposed by Johnson and Geyer (2012), obtain samples from the
transformed target densities using RWM and TMCMC, and then give inverse trans-
formations to the simulated values so that they finally represent the original mul-
tivariate Cauchy and multivariate t . The other method is direct application of the
algorithms to the original targets. In other words, Dey and Bhattacharya (2016a)
also apply RWM and TMCMC directly to multivariate Cauchy and multivariate t ,
without resorting to diffeomorphism, and compare their performances. However,
they also note that there are substantial gains with respect to mixing properties in
the diffeomorphism based approach.

In either case, Dey and Bhattacharya (2016a) demonstrate that additive
TMCMC outperforms RWM quite significantly in the case of the dependent, high-
dimensional target densities. They even compare their performances in the case
of iid Cauchy and t (with ν = 10 degrees of freedom) distributions and reach the
same conclusions.

8 Comparison of additive TMCMC and RWM in the case of a real,
spatial data set

We now compare additive TMCMC and RWM with respect to a real, spatial dataset
on radionuclide count data on Rongelap Island, analysed by Diggle, Tawn and
Moyeed (1998) using a Bayesian hierarchical spatial model. This dataset and the
model has been used subsequently by Christensen (2006) and Dutta and Bhat-
tacharya (2014), to evaluate performances of Metropolis–Hastings and TMCMC
algorithms, respectively.

8.1 Model and prior specification

For i = 1, . . . ,157, Diggle, Tawn and Moyeed (1998) model the radionuclide
count data as

Yi ∼ Poisson(Mi),

where

Mi = ti exp
{
β + S(xi )

};
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ti is the duration of observation at location xi , β is an unknown parameter and S(·)
is a zero-mean Gaussian process with isotropic covariance function of the form

Cov
(
S(z1), S(z2)

)= σ 2 exp
{−(α‖z1 − z2‖)δ}

for any two locations z1, z2. In the above, ‖ · ‖ denotes the Euclidean dis-
tance between two locations, and (σ 2, α, δ) are unknown parameters. Following
Christensen (2006), we set δ = 1, and assume uniform priors on the entire param-
eter space corresponding to (β, log(σ 2), log(α)). Thus, there are 160 parameters
to be updated in each iteration of additive TMCMC and RWM.

8.2 Optimal scaling

Note that the likelihood times the prior in this case can be approximately ex-
pressed as (46), that is, although the Poisson likelihood is expressible in the form
exp(−�d(xd)), the Gaussian process prior for S(·) does not of course admit the
form

∏d
i=1

1
λi

φ( xi

λi
) because of its dependence structure. Hence, this is an instance

of a target density which does not fall within the class of densities for which opti-
mal scaling theory has been developed. As is recommended in general cases, one
may attempt tuning the parameters to approximately achieve the optimal accep-
tance rate. But this is a difficult task because of the large dimensionality, as already
discussed. A far more important cause for concern is that, even if one succeeds in
approximating the optimal acceptance rate, the corresponding scales will gener-
ally still be sub-optimal, because of the existence of many solutions such that the
optimal acceptance rate holds. Indeed, we devise a method for approximately ob-
taining the optimal acceptance rates, but show that the corresponding scales lead
to really poor performance of RWM, while thanks to the robustness property of
additive TMCMC, the latter yields much reasonable performance. Details follow.

8.2.1 Pilot TMCMC for facilitating approximate optimal scaling. We first con-
sider a pilot TMCMC run consisting of 11×106 iterations, with the same TMCMC
algorithm used by Dutta and Bhattacharya (2014). In other words, for the pilot run
we draw ε ∼ N(0,1)I(ε > 0), and consider the following additive transformations:

T (β, ε) = β ± 2ε,

T
(
log
(
σ 2), ε)= log

(
σ 2)± 5ε,

T
(
log(α), ε

)= log(α) ± 5ε,

T
(
S(xi ), ε

)= S(xi ) ± 2ε for i = 1, . . . ,157,

where “+” and “−” occur with probability 1/2 each.
After discarding the first 106 iterations as burn-in, we then store one TMCMC

sample in every 100 iterations to yield 105 thinned TMCMC realizations. With
these stored realizations, we then obtain the empirical variance-covariance matrix
of the 160 unknowns and store the 160 eigenvalues of the matrix.
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8.2.2 Approximately optimal acceptance rates of additive TMCMC and RWM us-
ing the stored eigenvalues. For i = 1, . . . ,160, letting θi denote the unknowns,
and λi , the corresponding eigenvalues, we then consider the following additive
transformations for TMCMC:

T (θi, ε) = θi ± cTMCMC

√
2λi�

2
opt,TMCMC

d
ε,

where ε ∼ N(0,1)I(ε > 0), “+” and “−” occur with probability 1/2 each,
�opt,TMCMC = 1.715 (see (72)), and cTMCMC is a tuning parameter for adjusting
the acceptance rate to about 44%. It turned out, after setting cTMCMC = 0.95, that
the empirical acceptance rate obtained from a TMCMC run of length 1.01 × 108,
after discarding the first 1.7 × 107 iterations as burn-in, is very accurately approxi-
mated as 0.439. Implementing this TMCMC algorithm, we store one in every 100
realizations after the burn-in to obtain 8.5×105 thinned additive TMCMC realiza-
tions from the posterior distribution. The total time for the implementation took 46
hours and 51 minutes on a 64 bit machine with CPU MHz 1600 and about 8 GB
memory.

For RWM, we consider the following proposal:

T (θi, εi) = θi + cRWM

√
2λi�

2
opt,RWM

d
εi,

where ε
iid∼ N(0,1), �opt,RWM = 1.715, and cRWM = 0.95 = cTMCMC. We obtain

the empirical acceptance rate from a RWM run of length 1.01 × 108, after discard-
ing the frst 1.7 × 107 iterations as burn-in, as approximately 0.228. We implement
this RWM algorithm, storing one in every 100 realizations after the burn-in to ob-
tain 8.5 × 105 thinned RWM realizations from the posterior. The total time for
the implementation took 46 hours and 53 minutes on the same machine on which
TMCMC was implemented.

8.3 Results of comparison

Figures 18 and 19 show the trace plots of the stored realizations obtained by
TMCMC and RWM, respectively, after a further thinning of size 300. Such sub-
stantial further thinning is required to facilitate effortless visual comparison of the
autocorrelation plots for TMCMC and RWM shown in Figure 20. In Figures 18
and 19, it is worth observing that, RWM, composed of 160 εi’s in this example, is
prone to require a large number of iterations to return to any given set with posi-
tive posterior probability, once it leaves it. On the other hand, TMCMC marches
off to convergence much faster than RWM, exploiting its more localized move
types thanks to a single ε. This insight is more formalized by the comparison of
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Figure 18 Rongelap island data: TMCMC based trace plots.

the associated autocorrelation plots shown in Figure 20. It is obvious that TMCMC
significantly outperforms RWM in terms of autocorrelations in all the cases.

Since scaling is directly related to autocorrelation (see Sections S-3 and S-4 of
the supplement), it is clear that poor scaling of RWM in comparison with additive
TMCMC is the reason for the relatively poor performance of the former. Indeed,
even though we could approximately achieve the desired acceptance rates, there
are many solutions for the scales, given the same acceptance rate; in fact, selecting
reasonable scales gets increasing difficult with increasing dimensions. Thus, it is
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Figure 19 Rongelap island data: RWM based trace plots.

highly unlikely that the chosen scales are even reasonable in this high-dimensional
example, for either TMCMC or RWM. As a result it makes sense to conclude with
respect to the autocorrelations that, in this real data study, sensitivity of RWM
with respect to optimal scales is the reason for its relatively poor performance,
while robustness of TMCMC in this regard is the reason for its quite reasonable
performance.

Thus, in this real data example, additive TMCMC very clearly and very con-
vincingly outperforms RWM.
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Figure 20 Rongelap island data: Comparisons of the ACF’s based on TMCMC and RWM. The
darker hue depicts the TMCMC-based ACF’s and the lighter hue corresponds to the RWM-based
ACF’s.

9 Conclusion

Overall, our assessment is that TMCMC is clearly advantageous compared to
RWM from various perspectives. It has significantly less computational complex-
ity and the acceptance rate corresponding to the optimal scaling for TMCMC
(0.439) is almost twice that of RWM (0.234). Although the maximum diffusion
speed of RWM is somewhat higher than that of additive TMCMC, the latter is
much more robust with respect to misspecifications of the scales. The advantages
of such robustness are spelt out in the discussions in Sections S-3 and S-4 of the
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supplement. Our simulation studies reported in Section 7 and Table 1, and the real
data analysis in Section 8, clearly vindicate these discussions.

Related to the discussions on robustness and the difficulty of choosing proper
scalings in high dimensions is also the issue of increasing computational complex-
ity, particularly in the Bayesian paradigm. Note that complex, high-dimensional
posteriors routinely arise in Bayesian applications. It is extremely uncommon
among MCMC practitioners to use the RWM algorithm for updating all the param-
eters in a single block associated with any significantly high-dimensional posterior
arising from any complex Bayesian application. We presume that the extreme diffi-
culty of determining proper scalings in practice prevent the researchers from using
the RWM as an algorithm for updating all the parameters in a single block. Indeed,
as we demonstrated with our simulation study reported in Table 1, misspecifica-
tion even in the case of the simple target distribution being a product of iid normal
densities, leads to acceptance rates that are almost zero. In the context of the real
data study in Section 8, we proposed a method for approximately obtaining the
presumed optimal acceptance rates, and which appears to be generally applica-
ble, but as we demonstrated, RWM failed to exhibit adequate mixing properties.
Adaptive strategies may be thought of as alternative methods, but these are yet
to gain enough popularity among applied MCMC practitioners; moreover, as we
mention in Section S-5 of the supplement, extremely long runs may be necessary
to reach adequate acceptance rates for adaptive RWM, which may be prohibitive
in very high dimensions, for example, when the acceptance ratio involves high-
dimensional matrix inversions at every iteration, such as in our spatial example.

The aforementioned difficulties force the researchers to use RWM to sequen-
tially update the parameters, either singly, or in small blocks. Since one (or just a
few) parameters are updated at a time by RWM, the acceptance rate can be con-
trolled at each stage of the sequential updating procedure. However, this sequential
procedure also requires computation of the acceptance ratio as many times as ev-
ery small block is updated in a sequence. If each parameter is updated singly (that
is, each small block consists of only one element), then the computational com-
plexity increases d-folds compared to the procedure where all the d parameters
are updated in a single block. Thus, when d is large, the computation can become
prohibitively slow.

On the other hand, TMCMC is designed to update all the parameters in a single
block in such a way that the acceptance rate remains reasonable in spite of the high
dimensionality and complexity of the target distribution. Our simulation studies
and real data example in Section 8 show that mis-specification of the scales do not
have drastic effect on the efficiency of additive TMCMC, thanks to its robustness
property. As a result, with much less effort compared to that required for RWM,
we can achieve reasonable scalings that ensure adequate performance of additive
TMCMC, so that resorting to sequential updating will not be necessary.

This also implies that unlike RWM, additive TMCMC can save enormous com-
putational effort when the dimension d is large. Finally, adaptive TMCMC may
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be of much value in very high dimensions because of its quick convergence to the
correct optimal acceptance rate, and for ensuring good performance. The details
will be covered in Dey and Bhattacharya (2015).

Our empirical findings reported in this article with respect to the simulation
studies pertaining to iid, independent but non-identical, as well as dependent cases
clearly point towards supremacy of TMCMC over RWM. Quite importantly, in
the real, spatial data example, TMCMC outperformed RWM very significantly.
Indeed, even though we could tune the scales so as to achieve approximately the
respective optimal acceptance rates, the chosen scales need not be actually opti-
mal, for either of TMCMC and RWM. Here RWM is convincingly outperformed
by TMCMC thanks to its remarkably robust nature with respect to the choice of
scales. Thus, all our experiments, particularly, the challenging real data example,
lead us to clearly recommend TMCMC in general situations.

Given the importance of the general TMCMC idea, we have decided to create
a software for its general usage. In this regard, we have now made available an R
package tmcmcR for implementing TMCMC along with its adaptive versions at
the Github page https://github.com/kkdey/tmcmcR. The software will be contin-
uously updated in accordance with further developments of TMCMC; moreover,
TTMCMC, the variable-dimensional version of TMCMC, will also be incorpo-
rated, and kept updated.

As part of our future work, we plan to extend TMCMC to multiple-try TMCMC,
and investigate the corresponding optimal scaling theory. By multiple-try TMCMC
we mean the TMCMC algorithm that selects the next proposal from a set of avail-
able, perhaps dependent, proposals. For MH-adapted versions of such an idea,
see, for example, Liu, Liang and Wong (2000) and Liang, Liu and Caroll (2010),
Martino and Read (2013). Bédard, Douc and Moulines (2012) investigated scaling
analysis of such methods in the MH context. The advantages of TMCMC over MH
quite reasonably lead us to expect substantial gains of multiple-try TMCMC over
multiple-try MH.
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Supplement to “A brief tutorial on transformation based Markov Chain
Monte Carlo and optimal scaling of the additive transformation” (DOI:
10.1214/16-BJPS325SUPP; .pdf). Additional details are provided in this supple-
mentary material, whose sections and figures have the prefix “S-” when referred
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to in this article. Briefly, in Section S-1, we provide details on computational effi-
ciency of TMCMC. Specifically, we demonstrate with an experiment the superior
computational speed of additive TMCMC in comparison with RWM, particularly
in high dimensions. In Section S-2 we discuss, with appropriate experiments, the
necessity of optimal scaling in additive TMCMC, while in Sections S-3 and S-4
we delve into the robustness issues associated with the scale choices of additive
TMCMC and RWM. In Section S-5, we include brief discussions of adaptive ver-
sions of RWM and TMCMC. Moreover, the proofs of all our technical results are
provided in Sections S-6 and S-7 of the supplement.
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