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Abstract. In this work, we study bond percolation on random causal trian-
gulations. While in the sub-critical regime there is no phase transition, we
show that for percolation on critical random causal triangulations there exists
a non-trivial phase transition and we compute an upper bound for the criti-
cal probability. Furthermore, the critical value is shown to be almost surely
constant.

1 Introduction

The study of random geometrical objects such as random graphs and networks is of
importance to many branches of science, ranging from physics and mathematics to
economics and social sciences (see, for instance, Newman (2010)). One particular
field of interest are models of random geometry which originated in the context
of quantum gravity (see Ambjørn, Durhuus and Jonsson (1997) for an overview).
Gaining a more thorough mathematical understanding of those models has led
to interesting developments in probability theory, most notably the study of the
Brownian map Le Gall and Miermont (2011) which is related to two-dimensional
Euclidean quantum gravity.

In this work, we focus on models related to so-called two-dimensional
Lorentzian or causal quantum gravity which was originally introduced in Ambjørn
and Loll (1998). After the approach led to a number of interesting results con-
cerning its significance as a physical model of quantum gravity (see Ambjørn
et al. (2012)), probabilistic aspects of the two-dimensional model were first anal-
ysed Malyshev, Yambartsev and Zamyatin (2001), Durhuus, Jonsson and Wheater
(2010), Krikun and Yambartsev (2012), Sisko, Yambartsev and Zohren (2012),
Sisko, Yambartsev and Zohren (2013), Giasemidis, Wheater and Zohren (2012).
In the probabilistic context, the model is also referred to as random or Gibbs causal
triangulations.

An interesting extension of the pure model of random causal triangulations is
the analysis of simple statistical physics models coupled to them. Early works in-
clude numerical simulations, using Monte-Carlo techniques, of the Ising model
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and Potts model coupled to causal triangulations Ambjørn, Anagnostopoulos and
Loll (1999), Benedetti and Loll (2007), Ambjørn et al. (2008), as well as combi-
natorial approaches for solving classes of dimer models coupled to causal trian-
gulations Ambjørn et al. (2012a), Atkin and Zohren (2012), Ambjørn, Durhuus
and Wheater (2014). On the more probabilistic side, the quenched Krikun and
Yambartsev (2012) and annealed Hernández et al. (2013), Napolitano and Turova
(2015) Ising model coupled to causal triangulations were analysed. In particular,
the former proves the existence of a phase transition for the quenched Ising model
coupled to critical or uniform infinite causal triangulations. In this work, we build
on techniques developed in Krikun and Yambartsev (2012) to study percolation
coupled to random causal triangulations.

Percolation is a fundamental stochastic model for spatial disorder; detailed ac-
counts of the basic theory may be found in Grimmett (1999) and Bollobas and
Riordan (2006). Here we consider bond percolation on random causal triangula-
tions. We show that the model presents no phase transition for sub-critical ran-
dom causal triangulations, while for critical random causal triangulations there
exists a non-trivial phase transition. Furthermore, we prove that the critical perco-
lation probability is almost surely less or equal than 1/2. The above results can
be understood intuitively: As illustrated in Figure 2, in the sub-critical regime ran-
dom causal triangulations behave effectively one-dimensional, thus the percolation
model has no phase transition. However, in the critical regime the random geom-
etry becomes two-dimensional resulting in a phase transition with a non-trivial
critical percolation probability.

2 Causal triangulations ensemble

We start with the definition of rooted causal (or Lorentzian) triangulations of the
cylinder C = S × [0,∞], where S is a unite circle. Where possible, we follow
definitions and notations of Krikun and Yambartsev (2012).

Consider a connected graph G with a countable set of vertices embedded into
the cylinder C. Any connected component of C \ G is called a face. Let the size
of a face be the number of edges incident to it, with the convention that an edge
incident to the same face on both sides counts for two. We then call a face of size
3 (or 3-sided face) a triangle.

The graph G defines an infinite causal (or Lorentzian) triangulation t of if (i) all
vertices lie in circles S × {j}, j ∈ N ∪ {0} = {0,1, . . . }; (ii) each face is triangle;
(iii) each face of t belongs to some strip S × [j, j + 1], j = 0,1, . . . , and has all
vertices and exactly one edge on the boundary (S × {j}) ∪ (S × {j + 1}) of the
strip S × [j, j + 1]; and (iv) the number of edges on S × {j} is positive and finite
for any j = 0,1, . . . . See Figure 1 for an example of causal triangulation.

We note that two vertices of a triangle on a same circle, say S × {j}, may coin-
cide (in this case, the corresponding edge stretches over the whole circle S × {j},
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Figure 1 Left: A patch of a causal triangulation. Right: Illustration of the bijection between causal
triangulations and planar rooted trees. In both figures the left and right of the strip are identified.

i.e., is a loop). The root in a triangulation t consists of a triangle � of t, called the
root face, with the anti-clockwise ordering on its vertices (o, x, y), where o and x

lie in S × {0} (they can coincide) and y belongs to S × {1}. The vertex o is called
the root vertex or simply root. The edge (o, x) belongs to S × {0}.

Two rooted triangulations, say t and t′, are equivalent if t and t′ are embeddings
it, it′ of the same graph G and there exists a self-homeomorphism h : C → C such
that hit = it′ . We suppose that the homeomorphism h transforms each slice S×{j},
j ∈ N to itself and preserves the root: h sends the root of t to the root of t′. The
equivalence class of embedded rooted causal (Lorentzian) triangulations is called
causal triangulation.

In the same way, we can also define a causal triangulation of a cylinder CN =
S × [0,N]. Let LTN and LT∞ be the sets of all causal triangulations with the
supports CN = S × [0,N] and C = S × [0,∞), respectively. The number of edges
on the upper boundary S × {N} is not fixed. We introduce a Gibbs measure on the
set LTN as

PN,μ(t) = 1

ZN(μ)
e−μFN(t), (2.1)

where FN(t) is the number of triangles in the first N strips of the triangulation t,
and ZN(μ) is the partition function. Here μ is related to the fugacity g of a triangle
via the relation g = e−μ.

The measure on the set of infinite triangulations LT∞ is defined by the weak
limit

Pμ := lim
n→∞PN,μ.

It was shown in Malyshev, Yambartsev and Zamyatin (2001) that this limit exists
for all μ ≥ μc := ln 2. The latter also provided some properties of causal triangu-
lations under the limit measure Pμ. The probability space (LT∞,F,Pμ) we refer
to as a random causal triangulations or causal triangulations ensemble, for any
μ ≥ ln 2. The following properties of random causal triangulations were derived in
Malyshev, Yambartsev and Zamyatin (2001):
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Theorem 2.1. For any n ≥ 0 let kn = kn(t) be the number of the vertices at the
nth level (on slice S × {n}) in a triangulation t.

(a) For μ > ln 2, the sequence {kn} is a positive recurrent Markov chain with
respect to the limit measure Pμ, with invariant measure

π = {
π(n) = (1 − �)2n�n−1 : n ∈ N

}
,

where �(μ) = [1−
√

1−4e−2μ

2e−μ ]2. In addition, the transition probabilities of the
Markov chain are given by

P
(
n,n′) = n′

n
�n′−n−1

(
n + n′ − 1

n − 1

)
e−μ(n+n′). (2.2)

(b) For μ = ln 2 the sequence {kn} is distributed as the branching process ξn

with a geometric offspring distribution with parameter 1/2, conditioned to non-
extinction at infinity,

Pμc(kn = m) = lim
N→∞ Pr(ξn = m | ξN > 0) = mnm−1

(n + 1)m+1 . (2.3)

3 Percolation on causal triangulation. Main results

For any causal triangulation t ∈ LT∞, we define a bond percolation on t with
parameter p ∈ (0,1). Let us denote the resulting probability measure on t by P

(t)
p ,

and E
(t)
p denotes expectation w.r.t. P(t)

p . We define the percolation function p →
θ(p) by

θ(t)(p) = P
(t)
p

(|Co| = ∞)
, (3.1)

where Co is the percolation cluster containing the root o of the triangulation t.
If θ(t)(p) = 0, then the probability that the root o is inside of an infinite con-

nected component is 0, therefore it also means that no infinite connected compo-
nent exists a.s. On the other hand, if θ(t)(p) > 0 then the proportion of the vertices
in infinite connected components is equals to θ(t)(p), which is positive, and we
say that the system percolates. We define the critical value on the triangulation t
by

pc(t) = inf
{
p : θ(t)(p) > 0

}
. (3.2)

For percolation on causal triangulations, it is natural to ask whether the critical
value is non-trivial (different from both 0 and 1), and whether it depends on the
specific triangulation t sampled from the distribution Pμ or whether it is constant
for a “typical” triangulation which one obtains almost surely.

In the following sections, we show that the critical value obeys a zero-one law
and is constant Pμ-a.s. for any μ ≥ ln 2. Further, we show that the critical value is
non-trivial only in the case μ = μc = ln 2, Pμ-a.s. These results are summarised
in Theorem 3.1 below.
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Theorem 3.1. For the considered percolation model on random causal triangula-
tions the following statements hold.

1. The critical value pc(t) is constant Pμ-a.s.
2. The critical value satisfy the following relation

pc(t) =
{

1 if μ > ln 2,

0 < pc(t) < 1 if μ = ln 2.
Pμ-a.s. (3.3)

3. If μ = μc = ln 2, then pc(t) ≤ 1
2 , Pμc -a.s.

4 Absence of infinite cluster for subcritical causal triangulations

In this section, we prove the second statement of Theorem 3.1 for sub-critical
random causal triangulations (LT∞,F,Pμ), that is, μ > ln 2.

According to Theorem 2.1, the sequence {kn}n∈N defines the Markov chain on
the probability space (LT∞,F,Pμ), where kn = kn(t) is the number of vertices
of the triangulation t on slice S × {n}. Let X1 be the first passage time to state 1
(space contraction) defined by

X1(t) = inf
{
n > 0 : kn(t) = 1 and kn+1(t) = 1

}
,

where inf∅= ∞. We now define inductively the r th passage time Xr to state 1 by

Xr+1(t) = inf
{
n ≥ Xr(t) + 2 : kn(t) = 1 and kn+1(t) = 1

}
,

for r = 0,1,2, . . . . By Theorem 2.1, for μ > ln 2, the sequence {kn}n∈N is the pos-
itive recurrent Markov chain with measure Pμ, thus limr→∞ Xr(t) = +∞ Pμ-a.s.

For each N ∈ N, let TN be the number of contractions up to time N , which can
be written in terms of indicator functions as

TN =
∞∑

k=1

1{Xk≤N}.

By recurrence of the Markov chain {kn}, we have the following result.

Lemma 4.1. For any μ > ln 2 and for all N ≥ 1 the number of contractions is
finite Pμ-a.s., that is, TN(t) < ∞, Pμ-a.s. Moreover, the following limit holds true:

lim
N→∞TN = ∞ Pμ-a.s.

Furthermore, by ergodic theorem for Markov chains, we have that

TN(t)
N

→ (1 − �)2

�
e−2μ as N → ∞ Pμ-a.s.
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Each causal triangulation t from LT∞ is identified as a consistent sequence

t = (
t(0), t(1), . . . , t(N), . . .

)
,

where t(i) is a causal triangulation of the strip S × [i, i + 1]. The property of
consistency means that for each pair (t(i), t(i + 1)) every side of a triangle from
t(i) lying in S × {i + 1} serves as a side of a triangle from t(i + 1), and vice versa.

Denote ∂N := S ×{N}. Let {o ↔ ∂N } be the event that there exists an open path,
in the classical bound percolation sense, joining the root vertex in the first strip to
some vertex in ∂N .

Lemma 4.2. For any μ > ln 2 and p ∈ [0,1)

P
(t)
p (o ↔ ∂N) ≤ e−(1−p)2TN(t) Pμ-a.s. (4.1)

Proof. Denote by X1, . . . ,XTN
the contraction times of the triangulation t up to

time N (see Figure 2). We say that a strip t(i) of the triangulation t is open if there
exist at least one open edge connecting S × {i} with S × {i + 1}. Thus, we obtain
that following relation

P
(t)
p (o ↔ ∂N) ≤ P

(t)
p

(
t(X1) is open, . . . , t(XTN

) is open
)

=
TN∏
i=1

P
(t)
p

(
t(Xi) is open

) = (
1 − (1 − p)2)TN .

Using the inequality 1 − a ≤ e−a , when a ∈ [0,1), we obtain

P
(t)
p (o ↔ ∂N) ≤ e−(1−p)2TN . �

Using Lemma 4.1 and Lemma 4.2, and letting N → ∞ in (4.1), one finally
arrives at the following lemma.

Lemma 4.3. If μ > ln 2, then for all p ∈ [0,1)

P
(t)
p (o ↔ ∞) = 0 Pμ-a.s. (4.2)

Figure 2 A typical sequence X1, . . . ,XTN
in the case μ > ln 2, i.e. for a sub-critical random causal

triangulation.
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Lemma 4.3 implies that the critical value for percolation on sub-critical random
causal triangulations, that is, when μ > ln 2, is pc = 1. This proves Theorem 3.1
in the sub-critical case.

5 Phase transition for percolation model in the critical case

In this section, we prove the first and third statement of Theorem 3.1.

5.1 Two-dimensional CDT and Galton–Watson trees

Based on earlier work Di Francesco, Guitter and Kristjansen (2001), a bijection
between causal triangulations and planar trees was established in Malyshev, Yam-
bartsev and Zamyatin (2001) and independently by Durhuus, Jonsson and Wheater
(2010), see Figure 1. This bijection permits to obtain a tree parametrisation of in-
finite causal triangulations.

Below we briefly sketch this bijection, which also serves as a way to simulate
random causal triangulations.

Given a triangulation t ∈ LTn, define the subgraph τ ⊂ t by taking, for each ver-
tex v ∈ t, the leftmost edge going from v downwards (see Figure 1). The obtained
graph is a spanning forest of t, and connecting all vertices on the circle S × {0}
we obtain a tree τ . Moreover, t can be reconstructed knowing τ . We call τ the
tree parametrisation of t. Denote this bijection by η. According to the bijection
the measure Pμc on infinite causal triangulations will induce a measure ρ∞ on the
set of infinite trees. In Malyshev, Yambartsev and Zamyatin (2001), it was proved
that the measure ρ∞ corresponds to the critical Galton–Watson process with off-
spring distribution p = (pk = 1/2k+1, k = 0,1, . . . ) conditioned to non-extinction
at infinity. Moreover, (see, for example, Durhuus (2006)) an infinite tree generated
by this process belongs to the set of so-called single spine trees:

(i) it contains a single infinite path, {v0, v1, . . . }, starting at the root vertex
v0 = o; this path is called a spine;

(ii) at each vertex vi on the spine a pair of finite trees (Li,Ri) is attached, one
of each side of the spine;

(iii) the pairs (Li,Ri) are i.i.d. each distributed by critical Galton–Watson with
offspring distribution p.

This representation helps to prove that the critical probability is constant almost
sure according to the measure Pμc .

Note here that the same construction works for any critical Galton–Watson pro-
cess: see Lyons, Pemantle and Peres (1995) and Geiger (1999).

5.2 The critical value is constant Pμc a.s.

Lemma 5.1. Let G,G′ be two infinite, locally finite graphs that differ only by a
finite subgraph, that is, there exist two finite subgraphs H ⊂ G, H ′ ⊂ G′, such that
G \ H is isomorphic to G′ \ H ′. Then pc(G) = pc(G

′).
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Proof. Note that the tail σ -algebras for the percolation model on G and on G′
coincide. Let E denote the event that there exists an open infinite cluster. This
event belongs to the tail σ -algebras which are equivalent and thus, the probabilities
P

G′
(E) = P

G(E). This implies the equality of critical probabilities. �

The proof that the critical probability is constant Pμc a.s. is the same as the
proof that the critical temperature for the Ising model on causal triangulations is
constant Pμc a.s., see Krikun and Yambartsev (2012). We provide the proof for
completeness.

The critical probability pc ≡ pc(t) is a function of t. Given a causal triangula-
tion t, let us consider its tree parametrisation (Li(τ ),Ri(τ )), where τ = η(t). Let
π :N →N be a finite permutation of the set N, more precisely, π is a bijection such
that π(n) = n for all but finitely many n. Denote by π(t) = (Lπ(i)(t),Rπ(i)(t))
a new triangulation constructed by the permutation π from t. By Lemma 5.1
for any finite permutation π , the critical probabilities coincide pc(t) = pc(π(t)).
The Hewitt–Savage zero-one law applies for pc(t), as a function of the sequence
(Li,Ri)i∈N. This proves that pc(t) is constant Pμc a.s.

5.3 The critical value is non-trivial

This statement is a direct consequence of Theorem 1.2 from Häggström (2000).
Let G be the class of all infinite, locally finite, connected graphs. Denote GBP the
class of graphs in G whose critical probability for bond percolation is less than 1.
Similarly, we write GI for the class of graphs from G which exhibit a phase tran-
sition for the Ising model. Theorem 1.2 (Häggström (2000)) states that GBP = GI .
The existence of the phase transition for Ising model on critical random causal
triangulations was established in Krikun and Yambartsev (2012). Thus, from the
above the results follows for percolation on critical random causal triangulations.

5.4 Upper bound for critical probability: pc ≤ 0.5

In order to obtain the simple upper bound for critical probability pc, we apply
the Peierls argument. The main difficulty here is that the causal triangulations are
random, thus we need take into consideration the randomness of the triangula-
tion when counting the contours around the root. The Peierls method for the Ising
model on random causal triangulation was developed in Krikun and Yambartsev
(2012), and can be easily adapted for bond percolation.

For any causal triangulation t, let t∗ be its dual graph: it is a graph whose vertices
V ∗ correspond to triangles in t and two vertices v∗

1 , v∗
2 form an edge, e∗ = (v∗

1 , v∗
2),

whenever the corresponding triangles on t are separated from each other by an
edge, see Figure 3.

We choose in any causal triangulation t the spine path of the tree parametrisation
γ∞ = γ∞(t) = (v0, v1, . . . ) starting at the root v0, such that vi ∈ S × {i}.
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Figure 3 A dual graph (red) for a causal triangulation (black).

Let C(t)(n) be the set of closed loops (set of contours) of length n in t∗ (the
dual triangulation on the infinite cylinder), separating v0 from the infinite part of
the graph. Then

Pp

(|Co| < ∞) ≤ ∑
γ

Pp

(
γ is closed in t∗

)

≤ ∑
n≥1

∣∣C(t)(n)
∣∣(1 − p)n.

Lemma 5.2. Let t be a random causal triangulation, and let v0 be the root vertex
of t. For any p ∈ (1/2,1]∑

n≥1

∣∣C(t)(n)
∣∣(1 − p)n < ∞, Pμc -a.s. (5.1)

Proof. It will be sufficient to show that the expectation (with respect to the mea-
sure Pμc ) of the sum is

Eμc

∑
n≥1

∣∣C(t)(n)
∣∣(1 − p)n < ∞,

for any p close to 1.
Let C

(t)
R,n ⊂ C(t)(n) be the set of contours of length n which surround v0 and

intersect γ∞ at height R. Note that any such contour does not exit from the strip
S ×[R −n,R +n]. Let also SR,n be the number of vertices in the tree parametrisa-
tion of t at height R − n which have nonempty offspring in the generation located
at height R +n. Since every contour of C(t)(n), in order to surround v0, must cross
each subtree starting of each vertex of SR,n, we have (see Figure 4)

{SR,n > n} ⇒ {
γ ∈ C(t)(n)

} = ∅.
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Figure 4 Construction of the set SR,n in the proof of the Lemma 5.2.

Since the contours C
(t)
R,n live on the dual graph t∗, which has all vertices of

degree 3, there are at most 2n self-avoiding path with a fixed starting point (which
is in our case the intersection with γ∞); this provides the following estimation:

∣∣C(t)
R,n

∣∣ ≤ 2n.

In addition, note that C(t)(n) = ⋃
R≥2 C

(t)
R,n, thus,

Eμc

∣∣C(t)
R,n

∣∣ = Eμc

[∣∣C(t)
R,n

∣∣ | SR,n > n
]
Pμc(SR,n > n)

+ Eμc

[∣∣C(t)
R,n

∣∣ | SR,n ≤ n
]
Pμc(SR,n ≤ n) (5.2)

≤ 2nPμc(SR,n ≤ n).

Using the last inequality (5.2), we obtain the following inequality

Eμc

∑
n≥1

∣∣C(t)(n)
∣∣(1 − p)n ≤ ∑

n≥1

(1 − p)n2n
∑
R≥2

Pμc(SR,n ≤ n). (5.3)

The estimation Pμc(SR,n ≤ n) was obtained in Krikun and Yambartsev (2012):
there exists a constant A1 > 0 such that

Pμc(SR,n ≤ n) ≤ n2 + A1

(R − n)2 . (5.4)

Continuing inequality (5.3) we use the upper bound (5.4): there exist constants A2,
A3 such that

Eμc

∑
n≥1

∣∣C(t)(n)
∣∣(1 − p)n ≤ ∑

n≥1

(
2(1 − p)

)n(
A2n

2 + A3
)
. (5.5)

Thus, the series in (5.5) converges whenever p ∈ (1/2,1]. This conclude the proof
of Lemma 5.2. �
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Finally, we finish the upper bound for critical probability by observation that
the inequality (5.1) means the existence of an infinite open cluster. Indeed, let
C(t) = ⋃

n≥1 C(t)(n) be the set of all contours we are interested in, thus

Pp

(
C(t)) ≤ ∑

n≥1

Pp

(
C(t)(n)

) ≤ ∑
n≥1

∣∣C(t)(n)
∣∣(1 − p)n < ∞ Pμc -a.s., (5.6)

if p ∈ (1/2,1]. It follows from (5.6) that

Pp

( ∞⋂
n=1

⋃
m≥n

C(t)(m)

)
= 0 Pμc -a.s. (5.7)

The inequality (5.7) means that with probability 1 there exists a finite number of
closed contours on the dual graph t∗ surrounding 0. Thus, if A denotes the event
exist an infinite cluster, then

P
(t)
p (A) = 1 Pμc -a.s., (5.8)

if p ∈ (1/2,1]. Thus, we conclude that pc(t) ≤ 1/2, Pμc -a.s. t.

6 Conclusion

We analyse bond percolation on random causal triangulations. It is shown that for
sub-critical random causal triangulations, there is no phase transition, while for
critical random causal triangulations we prove the existence of a non-trivial phase
transitions. Intuitively, this result can be explained by the fact that sub-critical
random causal triangulations have a fractal dimension of df = 1, while critical
random causal triangulations have a fractal dimension df = 2. Using a Peierls ar-
gument, we furthermore show that the critical probability of bond percolation on
critical causal triangulations is bounded by pc ≤ 1/2, Pμc -a.s.

In Figure 5, we show a numerical evaluation of pc = inf{p : θ(p) > 0} for
a range of values for p. It is seen that the critical probability is approximately
pc ≈ 0.36, consistent with the above bound. While the proof of the existence of a
phase transition, as well as the bound of pc ≤ 1/2 are important first steps in the
study of percolation on random causal triangulations, the numerical results indicate
that this bound is not tight. It would thus be interesting, in future work, to tighten
this upper bound, as well as to establish a tight lower bound. Another promising
continuation of this work, which we are currently pursuing, is an extensive nu-
merical study of percolation on random causal triangulations, which, besides the
critical values of the percolation probability, also determines a range of critical
exponents. In our numerical simulations, which will be presented elsewhere, we
use an efficient numerical algorithm which is based on the tree parametrisation
of causal triangulations and the corresponding Galton–Watson branching weights.
Instead of sampling an entire causal triangulation, then sampling percolation on
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Figure 5 Percolation probability (or percolation function) θ(p) for bond percolation on critical
random causal triangulation as a function of p. One can clearly identify the critical value pc , which
is determined numerically as pc ≈ 0.36, consistent with the theoretical bound pc ≤ 1/2. Numerically
estimates were obtained from triangulations of height 100, with 1000 samples for each value of p.

it and then searching for percolation clusters sequentially, we perform all those
steps jointly. In fact, our algorithm only stores in memory the information of the
last time-slice. For this to work, the labelling of the clusters has to be augmented:
Instead of labelling bonds 0 (open) and 1 (closed), we check in the construction
of a new slice whether any new vertex is joined to an already existing cluster or
whether it forms a new cluster in which case it receives a new label assigned in
increasing order from the set of integers. Once clusters join, all vertices with the
higher label of the joining clusters will be assigned the label of the other cluster.
The above algorithm also enables one to store information of the volume of various
clusters, which is needed for the calculation of several critical exponents.
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